Test No. 1

Answers & Hints

for Olympiads, NTSE & Class X-2020
TEST - 1

Test Date: 21-07-2019

ANSWERS

SECTION-I (Code-D)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(1)</td>
<td>21</td>
<td>(3)</td>
<td>41</td>
<td>(2)</td>
<td>61</td>
<td>(3)</td>
<td>81</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>(1)</td>
<td>22</td>
<td>(4)</td>
<td>42</td>
<td>(3)</td>
<td>62</td>
<td>(2)</td>
<td>82</td>
<td>(2)</td>
</tr>
<tr>
<td>3</td>
<td>(1)</td>
<td>23</td>
<td>(2)</td>
<td>43</td>
<td>(2)</td>
<td>63</td>
<td>(2)</td>
<td>83</td>
<td>(4)</td>
</tr>
<tr>
<td>4</td>
<td>(1)</td>
<td>24</td>
<td>(3)</td>
<td>44</td>
<td>(4)</td>
<td>64</td>
<td>(2)</td>
<td>84</td>
<td>(1)</td>
</tr>
<tr>
<td>5</td>
<td>(4)</td>
<td>25</td>
<td>(4)</td>
<td>45</td>
<td>(1)</td>
<td>65</td>
<td>(4)</td>
<td>85</td>
<td>(2)</td>
</tr>
<tr>
<td>6</td>
<td>(2)</td>
<td>26</td>
<td>(1)</td>
<td>46</td>
<td>(3)</td>
<td>66</td>
<td>(4)</td>
<td>86</td>
<td>(1)</td>
</tr>
<tr>
<td>7</td>
<td>(1)</td>
<td>27</td>
<td>(1)</td>
<td>47</td>
<td>(2)</td>
<td>67</td>
<td>(2)</td>
<td>87</td>
<td>(4)</td>
</tr>
<tr>
<td>8</td>
<td>(Deleted)</td>
<td>28</td>
<td>(2)</td>
<td>48</td>
<td>(3)</td>
<td>68</td>
<td>(1)</td>
<td>88</td>
<td>(2)</td>
</tr>
<tr>
<td>9</td>
<td>(3)</td>
<td>29</td>
<td>(3)</td>
<td>49</td>
<td>(1)</td>
<td>69</td>
<td>(3)</td>
<td>89</td>
<td>(1)</td>
</tr>
<tr>
<td>10</td>
<td>(3)</td>
<td>30</td>
<td>(3)</td>
<td>50</td>
<td>(3)</td>
<td>70</td>
<td>(3)</td>
<td>90</td>
<td>(4)</td>
</tr>
<tr>
<td>11</td>
<td>(2)</td>
<td>31</td>
<td>(4)</td>
<td>51</td>
<td>(2)</td>
<td>71</td>
<td>(1)</td>
<td>91</td>
<td>(3)</td>
</tr>
<tr>
<td>12</td>
<td>(1)</td>
<td>32</td>
<td>(3)</td>
<td>52</td>
<td>(1)</td>
<td>72</td>
<td>(3)</td>
<td>92</td>
<td>(2)</td>
</tr>
<tr>
<td>13</td>
<td>(2)</td>
<td>33</td>
<td>(3)</td>
<td>53</td>
<td>(2)</td>
<td>73</td>
<td>(2)</td>
<td>93</td>
<td>(1)</td>
</tr>
<tr>
<td>14</td>
<td>(1)</td>
<td>34</td>
<td>(4)</td>
<td>54</td>
<td>(1)</td>
<td>74</td>
<td>(3)</td>
<td>94</td>
<td>(2)</td>
</tr>
<tr>
<td>15</td>
<td>(4)</td>
<td>35</td>
<td>(4)</td>
<td>55</td>
<td>(3)</td>
<td>75</td>
<td>(1)</td>
<td>95</td>
<td>(4)</td>
</tr>
<tr>
<td>16</td>
<td>(3)</td>
<td>36</td>
<td>(4)</td>
<td>56</td>
<td>(3)</td>
<td>76</td>
<td>(3)</td>
<td>96</td>
<td>(3)</td>
</tr>
<tr>
<td>17</td>
<td>(2)</td>
<td>37</td>
<td>(2)</td>
<td>57</td>
<td>(3)</td>
<td>77</td>
<td>(3)</td>
<td>97</td>
<td>(4)</td>
</tr>
<tr>
<td>18</td>
<td>(4)</td>
<td>38</td>
<td>(4)</td>
<td>58</td>
<td>(3)</td>
<td>78</td>
<td>(3)</td>
<td>98</td>
<td>(2)</td>
</tr>
<tr>
<td>19</td>
<td>(3)</td>
<td>39</td>
<td>(2)</td>
<td>59</td>
<td>(2)</td>
<td>79</td>
<td>(2)</td>
<td>99</td>
<td>(1)</td>
</tr>
<tr>
<td>20</td>
<td>(3)</td>
<td>40</td>
<td>(4)</td>
<td>60</td>
<td>(4)</td>
<td>80</td>
<td>(3)</td>
<td>100</td>
<td>(3)</td>
</tr>
</tbody>
</table>

SECTION-II (Code-E)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(4)</td>
<td>7</td>
<td>(1)</td>
<td>13</td>
<td>(3)</td>
<td>19</td>
<td>(1)</td>
<td>25</td>
<td>(2)</td>
</tr>
<tr>
<td>2</td>
<td>(2)</td>
<td>8</td>
<td>(2)</td>
<td>14</td>
<td>(3)</td>
<td>20</td>
<td>(4)</td>
<td>26</td>
<td>(2)</td>
</tr>
<tr>
<td>3</td>
<td>(3)</td>
<td>9</td>
<td>(4)</td>
<td>15</td>
<td>(3)</td>
<td>21</td>
<td>(2)</td>
<td>27</td>
<td>(1)</td>
</tr>
<tr>
<td>4</td>
<td>(2)</td>
<td>10</td>
<td>(2)</td>
<td>16</td>
<td>(1)</td>
<td>22</td>
<td>(1)</td>
<td>28</td>
<td>(3)</td>
</tr>
<tr>
<td>5</td>
<td>(3)</td>
<td>11</td>
<td>(3)</td>
<td>17</td>
<td>(3)</td>
<td>23</td>
<td>(3)</td>
<td>29</td>
<td>(4)</td>
</tr>
<tr>
<td>6</td>
<td>(2)</td>
<td>12</td>
<td>(3)</td>
<td>18</td>
<td>(2)</td>
<td>24</td>
<td>(4)</td>
<td>30</td>
<td>(4)</td>
</tr>
</tbody>
</table>

SECTION-III (Code-F)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(2)</td>
<td>4</td>
<td>(2)</td>
<td>7</td>
<td>(1)</td>
<td>10</td>
<td>(4)</td>
<td>13</td>
<td>(1)</td>
</tr>
<tr>
<td>2</td>
<td>(2)</td>
<td>5</td>
<td>(3)</td>
<td>8</td>
<td>(3)</td>
<td>11</td>
<td>(3)</td>
<td>14</td>
<td>(2)</td>
</tr>
<tr>
<td>3</td>
<td>(3)</td>
<td>6</td>
<td>(2)</td>
<td>9</td>
<td>(3)</td>
<td>12</td>
<td>(3)</td>
<td>15</td>
<td>(3)</td>
</tr>
</tbody>
</table>
SECTION-I (Code-D)

1. Answer (1)
2. Answer (1)
\[
\frac{360}{\theta} - 1 = n
\]
\[
\Rightarrow \frac{360}{\theta} - 1 = 5
\]
\[
\Rightarrow \theta = 60^\circ
\]
When angle is reduced by 30°
Then,
\[
n = \frac{360}{\theta}
\]
\[
= \frac{360}{60}
\]
\[
= 12
\]
Number of images = \(n - 1 \)
\[
= 12 - 1 = 11
\]
3. Answer (1)
4. Answer (1)
\[
v' = \frac{c}{\mu}
\]
Time = \(\frac{\text{thickness}}{\text{speed}} \)
\[
= \frac{\mu t}{c}
\]
\[
= \frac{1.5 t}{c}
\]
\[
= \frac{3 f}{2 c}
\]
5. Answer (4)
\[
P_{eq} > 0
\]
\[
P_1 + P_2 > 0
\]
\[
\frac{1}{f_1} - \frac{1}{f_2} > 0
\]
\[
\Rightarrow \frac{1}{f_1} > \frac{1}{f_2}
\]

6. Answer (2)
7. Answer (1)
\[
\frac{1}{f} = \frac{1}{v} + \frac{1}{u}
\]
\[
\Rightarrow \frac{1}{f} = \frac{1}{v} - \frac{1}{2f}
\]
\[
\Rightarrow \frac{1}{v} = \frac{1}{f} + \frac{1}{2f}
\]
\[
\Rightarrow \frac{1}{v} = \frac{3}{2f}
\]
\[
\Rightarrow v = \frac{2f}{3}
\]
\[
m = \frac{v}{u}
\]
\[
= \frac{2f}{-2f}
\]
\[
= \frac{1}{3}
\]
8. Answer (Deleted)
9. Answer (3)

\[\Delta S'PQ \sim \Delta S'P'Q'\]
10. Answer (3)
11. Answer (2)
12. Answer (1)
\[v_i = 2 \text{ m/s}\]
\[v_i = \frac{2}{1} \text{ m/s}\]
\[v_{ig} = v_0 + 2v_m\]
\[= 2 + 2 \times 1\]
\[= 4 \text{ m/s}\]
13. Answer (2)
14. Answer (1)
15. Answer (4)
16. Answer (3)
17. Answer (2)
\[m = \frac{-v}{u}\]
\[-2 = \frac{-v}{-u}\]
\[\Rightarrow v = -2u\]
\[\frac{1}{f} = \frac{1}{v} + \frac{1}{u}\]
\[\Rightarrow \frac{1}{f} = \frac{1}{v} + \frac{1}{u}\]
\[\Rightarrow \frac{1}{f} = \frac{-3}{2u}\]
\[\Rightarrow u = \frac{-3}{2f}\]
Therefore, \[v = -3f\]
Distance between object and image = \[-3f + \frac{3}{2}f\]
\[= \frac{-3}{2}f\]
18. Answer (4)
19. Answer (3)
\[d' = \frac{d}{\mu}\]
\[= \frac{20}{4} = \frac{5}{3}\]
\[= 15 \text{ cm}\.]
20. Answer (3)
21. Answer (3)
22. Answer (4)
23. Answer (2)
24. Answer (3)
25. Answer (4)
Chemical formula of rust is \(\text{Fe}_2\text{O}_3 \cdot x\text{H}_2\text{O}\)
26. Answer (1)
27. Answer (1)
28. Answer (2)
29. Answer (3)
30. Answer (3)
31. Answer (4)
32. Answer (3)
33. Answer (3)
34. Answer (4)
35. Answer (4)
36. Answer (4)
37. Answer (2)
\[\text{Na}_2\text{SO}_4(aq) + \text{BaCl}_2(aq) \rightarrow \text{BaSO}_4(s) + 2\text{NaCl(aq)}\]
38. Answer (4)
In \(\text{H}_2\text{SO}_4\)
Oxidation number of H = +1
Oxidation number of O = –2
Let oxidation number of S = x
In \(\text{H}_2\text{SO}_4\), total charge = 0
\[\therefore 2 \times 1 + x + 4 \times (-2) = 0\]
\[\Rightarrow 2 + x - 8 = 0\]
\[\Rightarrow x - 6 = 0\]
\[\therefore x = +6\]
39. Answer (2)
40. Answer (4)
41. Answer (2)
42. Answer (3)
43. Answer (2)
44. Answer (4)
45. Answer (1)
46. Answer (3)
47. Answer (2)
48. Answer (3)
49. Answer (1)
50. Answer (3)
51. Answer (2)

In transpiration, pure water is lost in the form of vapours.

52. Answer (1)
53. Answer (2)

The reactions in the dark phase are catalysed by RuBisCO enzyme.

54. Answer (1)
55. Answer (3)
56. Answer (3)

The given characteristics are of leucocytes.

57. Answer (3)
58. Answer (3)
59. Answer (2)

Molluscs are ammonotelic.

60. Answer (4)
61. Answer (3)
62. Answer (2)

\[2x - 9 = (6 - x)^2\]
\[2x - 9 = 36 + x^2 - 12x\]
\[x^2 - 14x + 45 = 0\]
\[(x - 9)(x - 5) = 0\]
\[x = 9\] and \[5\]

If we put \(x = 9\) and \(5\)
\[x = 9\] does not satisfy the equation
\[\therefore\] extraneous root = 9

63. Answer (2)

\[1176 = 2^3 \times 3 \times 7^2\]
\[\therefore\] sum of all the factors of \(1176\)
\[1176 = \left(\frac{2^4 - 1}{2 - 1}\right) \left(\frac{3^2 - 1}{3 - 1}\right) \left(\frac{7^3 - 1}{7 - 1}\right)\]

64. Answer (2)

\[-\frac{b}{a} = 2\] ...(i)

and

\[-\frac{c}{a} = -3\] ...(ii)

From (i) and (ii)

\[-\frac{b}{c} = \frac{2}{3}\]

65. Answer (4)
66. Answer (4)
67. Answer (2)
68. Answer (1)
69. Answer (3)
70. Answer (3)
71. Answer (1)
72. Answer (3)
73. Answer (2)
74. Answer (3)
75. Answer (1)
76. Answer (3)
77. Answer (3)

78. Answer (3)
79. Answer (2)
80. Answer (3)
81. Answer (1)

Pattern is \(n^2 + n + 1\)

82. Answer (2)

Pattern obtained by double difference of the terms.

83. Answer (4)

\[23^2, 29^2, 31^2, 37^2, 41^2, 43^2\ldots\]

84. Answer (1)
85. Answer (2)

Letters at prime positions.
86. Answer (1)
 \[2n : (n + 1)^2 \]

87. Answer (4)
 \[abc : 2 \times (a \times b + c) \]

88. Answer (2)
 \[abc : (a + b)^2 \]

89. Answer (1)
90. Answer (4)
91. Answer (3)
92. Answer (2)
93. Answer (1)
94. Answer (2)
95. Answer (4)
96. Answer (3)
97. Answer (4)

\[
\begin{array}{cccc}
 a & b & c & d \\
 a & b & c & d \\
 a & b & c & d \\
\end{array}
\]

98. Answer (2)

\[
\begin{array}{cccc}
 a & x & b & y \\
 a & x & b & y \\
 a & x & b & y \\
\end{array}
\]

99. Answer (1)
100. Answer (3)

SECTION-II (Code-E)

1. Answer (4)
 Trypsin is secreted by pancreas.
2. Answer (2)
3. Answer (3)
4. Answer (2)
5. Answer (3)

Residual volume is the volume of air that is left in the alveoli of lungs even after forceful expiration.
6. Answer (2)
7. Answer (1)
8. Answer (2)
9. Answer (4)
10. Answer (2)
11. Answer (3)

One mole of ATP releases 30.5 kJ/mol of energy.
12. Answer (3)

13. Answer (3)
 ‘A’ represents Basophils.
14. Answer (3)
15. Answer (3)
16. Answer (1)
17. Answer (3)
18. Answer (2)

‘X’ is parasitic mode of nutrition.
19. Answer (1)

Glycolysis is the common process in aerobic and anaerobic respiration.
20. Answer (4)
21. Answer (2)
22. Answer (1)
23. Answer (3)
24. Answer (4)
25. Answer (2)
26. Answer (2)
27. Answer (1)
28. Answer (3)
29. Answer (4)
30. Answer (4)

‘A’ is sublingual gland, ‘B’ is submandibular gland and ‘C’ is parotid gland.

SECTION-III (Code-F)

1. Answer (2)
2. Answer (2)
3. Answer (3)
4. Answer (2)
5. Answer (3)

\[
13^{1001} \times 7^{133} \times 2^{143}
\]

\[
13^{1000} \times 13 \times 7^{132} \times 7 \times 2^{142} \times 2
\]

\[
\left[(13)^4 \right]^{250} \times (7^4)^33 \times (2^2)^71 \times (13 \times 7 \times 2)
\]

\[
(1)^{250} \times (1)^{33} \times (4)^{70} \times (4 \times 13 \times 7 \times 2)
\]

\[
1 \times 1 \times [4^2]^{35} \times 8
\]

\[
8 \times [16]^{35}
\]

\[
8 \times 6 = 8 \text{ [unit digit]}
\]
6. Answer (2)

Minimum value = \(-\frac{D}{4a}\) [where \(a > 0\)]

7. Answer (1)

8. Answer (3)

\[
\sqrt{a} = \frac{b + c}{\sqrt{a}}
\]

\[
a = \frac{b + c}{2}
\]

2a = b + c \quad \ldots (i)

4a = 2(b + c)

2a + 2a = 2(b + c)

b + c + 2a = 2(b + c)

(a + b) + (a + c) = 2(b + c),

Hence, a + b, b + c, a + c are in A.P.

9. Answer (3)

10. Answer (4)

Sum of \((n - 1)\) terms = \((-1)^{n-1} (n - 1) (n - 1 - 1)\)

\(S_{n-1} = (-1)^{n-2} (n - 1) (n - 2)\)

\(\therefore \quad n^{th} \text{ term } = S_n - S_{n-1}\)

\[= (-1)^{n-1}n(n-1) - (-1)^{n-2} (n-1)(n-2)\]

\[= (-1)^{n-2} (n-1) [n(n-1) - (n-2)]\]

\[= (-1)^{n-2} (n-1) [-n - n + 2]\]

\[= (-1)^{n-2} (n-1) [-2n + 2]\]

\(\therefore \quad 4^{th} \text{ term } = (-1)^{4-2} (4-1) (-2 \times 4 + 2)\)

\[= (-1)^2 (3) (-8 + 2)\]

\[= 1 \times 3 (-6) = -18\]