All India Aakash Test Series for JEE (Advanced)-2021

TEST - 1A (Paper-1) - Code-E

Test Date : 17/11/2019

ANSWERS

PHYSICS		CHEMISTRY		MATHEMATICS		
	1.	(A, C)	19.	(B, C, D)	37.	(A, C)
	2.	(B, D)	20.	(A, B, D)	38.	(B, C, D)
	3.	(A, C, D)	21.	(B)	39.	(B, D)
	4.	(A, C, D)	22.	(A, B, C, D)	40.	(A, D)
	5.	(A, B, C, D)	23.	(B, C)	41.	(B, C)
	6.	(A, B)	24.	(A, B, C)	42.	(B, D)
	7.	(33)	25.	(10)	43.	(15)
	8.	(24)	26.	(51)	44.	(63)
	9.	(17)	27.	(68)	45.	(11)
	10.	(12)	28.	(15)	46.	(12)
	11.	(72)	29.	(12)	47.	(24)
	12.	(16)	30.	(18)	48.	(04)
	13.	(18)	31.	(20)	49.	(01)
	14.	(15)	32.	(50)	50.	(07)
	15.	(C)	33.	(A)	51.	(C)
	16.	(B)	34.	(B)	52.	(C)
	17.	(C)	35.	(A)	53.	(A)
	18.	(A)	36.	(C)	54.	(D)

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (A, C)

Hint : $\Delta \vec{r} = \vec{r}_f - \vec{r}_i$

Sol. :

Displacement $\vec{r} = \vec{r}_f - \vec{r}_i$

$$\Rightarrow \vec{r} = (3\hat{i} + 4\hat{j} + 5\hat{k}) - (2\hat{i} + 3\hat{j} + 5\hat{k}) = \hat{i} + \hat{j}$$

 \vec{r} makes 45° with +ve *x*-axis in anticlockwise sense.

2. Answer (B, D)

Hint. : Sudden impulsive force by spring is zero.

Sol. : Let the tension in string *BC* is *T* at equilibrium.

Then for m_1 to be in equilibrium $K \Delta x = m_1 g$

That means spring will be in extended condition and it will transmit $T_1 = K \Delta x = m_1 g$ force on string attached with spring.

So, for (*m*₂)

 \Rightarrow T = m₁g - m₂g

When string *BC* is burnt suddenly then spring still transmit the same force so acceleration of mass m_1 is zero. And acceleration of mass m_2 is

$$a_2 = \frac{(m_1 - m_2)g}{m_2}$$

3. Answer (A, C, D) Hint : $v^2 = gr \tan \theta$

Sol. :

$$\tan \theta = \frac{n}{r}$$

 $\Rightarrow r = \frac{h}{\tan \theta}$

Along the plane, with respect to cone the particle is in state of equilibrium.

$$\therefore mg \sin \theta = \frac{mv^2}{r} \cdot \cos \theta$$

$$\Rightarrow gr \cdot \frac{\sin \theta}{\cos \theta} = v^2 \Rightarrow v^2 = \frac{gh}{\tan \theta} \tan \theta$$

$$\therefore v^2 = gh$$
Also, $N \cos \theta = mg$
And $N \sin \theta = \frac{mv^2}{2}$

$$\therefore \quad N\sin\theta = \frac{mv^2}{h}\frac{\sin\theta}{\cos\theta} \quad \Rightarrow \quad N\cos\theta = \frac{mv^2}{h}$$

r

Answer (A, C, D) **Hint** : For velocity to become perpendicular to initial direction $\theta > \frac{\pi}{4}$.

Sol. :

4.

For velocity to become perpendicular to initial direction $\theta > \frac{\pi}{4}$.

For same case, $m_1 = \tan \theta_1 = \tan \theta$

And
$$m_2 = \tan \theta_2 = \frac{(u \sin \theta - gt)}{u \cos \theta}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

$$\therefore \quad (m_1m_2=-1) \Rightarrow \quad \frac{(u\sin\theta-gt)}{u\cos\theta}\cdot\frac{\sin\theta}{\cos\theta}=-1$$

$$\Rightarrow u \sin^2 \theta - gt \sin \theta = -u \cos^2 \theta$$

 $\Rightarrow u = gt \sin \theta \therefore t = \frac{u}{g \sin \theta}$

And 1 s before, $\theta_1 = \tan^{-1}\left(\frac{g}{u\cos\theta}\right)$

So just after 1 s and before 1 s, $\Delta \theta$ = 2 θ

$$\Delta \theta = 2 \tan^{-1} \left(\frac{g}{u \cos \theta} \right)$$

5. Answer (A, B, C, D)

Hint : Tangential force will change the speed and perpendicular force will change the direction.

Sol. : If \vec{v} is opposite to \vec{F} the particle may retrace its path.

If \vec{F} is perpendicular to \vec{v} and so \vec{F} will provide the centripetal force and if $|\vec{F}|$ is constant, then radius of curvature will be constant. And if at a particular time instant \vec{v} and \vec{F} are some angle other than 0° or 180° and \vec{F} is constant, then it's analogues of projectile motion. Particle will trace the parabolic path.

6. Answer (A, B)

Hint:
$$v = \frac{dx}{dt}$$
; $a = \frac{d^2x}{dt^2}$
Sol.: $x = \alpha t^3 + \beta t^2 + \gamma t + \delta$
 $\therefore \frac{dx}{dt} = v = 3\alpha t^2 + 2\beta t + \gamma$
 $\frac{d^2x}{dt^2} = a = 6\alpha t + 2\beta$
 $\therefore 6\alpha t + 2\beta = 3\alpha t^2 + 2\beta t + \gamma$
 $\Rightarrow 3\alpha t^2 + (2\beta - 6\alpha) t + \gamma - 2\beta = 0$
Here, $4(3\alpha - \beta)^2 - 4 \times 3\alpha(\gamma - 2\beta) = 0$ for unique t
 $\Rightarrow 9\alpha^2 + \beta^2 - 3\alpha\gamma = 0$
And for that time instant $t > 0$
 $\therefore t = \frac{2(3\alpha - \beta)}{2 \times 3\alpha} = \frac{3\alpha - \beta}{3\alpha}$
 $\therefore 3\alpha - \beta \ge 0$

7. Answer (33)

Hint : For vertical upward motion, $y = u_y t - \frac{1}{2}gt^2$

Sol. : Let v_0 was the velocity of dropping of 1^{st} stone, then

$$\vec{y}_1 = v_0 2 - \frac{1}{2} \times 10 \times 4 = 2v_0 - 20$$

 $\Rightarrow |\vec{y}_1| = (20 - 2v_0)$ is the distance from dropping point.

After 1 sec balloon shall have velocity $v_2 = (v_0 + 1)$

And it must have travelled $|y| = \left(v_0 + \frac{1}{2}\right)$.

Then 1 sec after 2nd particle will be at

$$y_2 = (v_0 + 1) - \frac{1}{2} \times 10 \times 1$$

$$\Rightarrow \left| \vec{y}_2 \right| = 5 - v_0 - 1 = 4 - v_0$$

Distance from dropping point

$$\therefore \text{ Separation} \Rightarrow s = |\vec{y}_1| + |\vec{y}| - |\vec{y}_2|$$

$$\Rightarrow s = 20 - 2v_0 + v_0 + \frac{1}{2} - 4 + v_0$$

$$\Rightarrow s = 16 + \frac{1}{2} = \frac{33}{2}$$

$$\therefore 2s = 33$$

8. Answer (24)
Hint: $v = \frac{dr}{dt}, \quad a = \frac{d^2r}{dt^2}$
Sol.: $\vec{r} = 2t\hat{i} + 4t^2\hat{j} + \hat{k}$

$$\therefore \vec{v} = \frac{dr}{dt} = 2\hat{i} + 8t\hat{j}$$

And $\vec{a} = \frac{d^2r}{dt^2} = 8\hat{j}$
Acceleration is always along y direction.
So, velocity in y direction at $t = 3$ s is
 $|\vec{v}_y| = |8t| \Rightarrow (8 \times 3) = 24$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2021

Test - 1A (Paper-1) (Code-E)_(Hints & Solutions)

9. Answer (17)

Hint : $\tan \theta = \frac{|a_n|}{|a_t|}$

Sol. : Angle with velocity vector is 30°.

$$\sqrt{3}$$
 Ra R
 \therefore $t^2 = \frac{51}{\sqrt{3} \times \sqrt{3}} = 17$

10. Answer (12)

Hint :
$$N = mg\cos\theta + m\omega_1^2R\sin^2\theta$$

$$mg\sin\theta + \mu N = m\omega_1^2 R\sin\theta \cdot \cos\theta$$

Sol. : Let ω_1 be the maximum angular speed and ω_2 be the minimum angular speed, then

$$\therefore \quad \frac{\omega_1^2}{\omega_2^2} = \frac{\left(\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}} + \frac{2}{2\sqrt{2}}\right)}{\left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)\left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)}$$
$$\Rightarrow \quad \frac{\omega_1^2}{\omega_2^2} = \frac{\left(\frac{3}{2\sqrt{2}}\right)^2}{\left(\frac{1}{2\sqrt{2}}\right)^2} = 9$$

$$\therefore \quad X = \frac{\omega_1}{\omega_2} = 3 \quad \therefore \quad 4X = 12$$

11. Answer (72)

Hint :
$$\frac{mg}{120}x\mu = \frac{mg}{120}(120-x)$$

Sol. : For state of impending motion, let *x* be the length on the table, then

$$\frac{m}{120} xg\mu = \frac{mg}{120} (120 - x)$$
$$\Rightarrow \frac{2}{3}x = 120 - x \Rightarrow \frac{5x}{3} = 120$$
$$\Rightarrow x = \frac{120 \times 3}{5} = 72$$

Hint :
$$a = \frac{dv}{dt}$$

Sol.:
$$v(t) = \frac{8}{\sqrt{3}}\hat{i} + 8t\hat{j}$$

At
$$t = 1 \text{ s}$$
, $v = \frac{8}{\sqrt{3}}\hat{i} + 8\hat{j}$

$$\therefore \quad \tan \theta = \frac{8}{8} \cdot \sqrt{3} \quad \therefore \quad \theta = 60^\circ$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

$$\frac{mg}{\sqrt{2}} = \frac{ma_2}{\sqrt{2}} \quad \Rightarrow \quad a_0 = g$$

And
$$F_0 = 2ma_0 = 2mg$$

As
$$F = \frac{3}{2}F_0 \quad \therefore \quad \frac{3}{2} \cdot 2mg \quad \Rightarrow F = 3mg$$

Now as F = 3mg, let the acceleration of block be a_1 and wedge be a, then

$$\frac{ma}{\sqrt{2}} - \frac{mg}{\sqrt{2}} = ma_1$$

$$\therefore a_1 = \frac{1}{\sqrt{2}} - \frac{g}{\sqrt{2}}$$

And for wedge $3mg - \left(\frac{mg}{2} + \frac{ma}{2}\right) = ma$

$$\Rightarrow 6mg - mg - ma = 2ma$$

$$\Rightarrow 5g = 3a \Rightarrow a = \frac{5g}{3}$$

$$\therefore a_1 = \frac{1}{\sqrt{2}} \left(\frac{5}{3} - 1\right)g = \frac{2g}{3\sqrt{2}} = \frac{\sqrt{2}g}{3}$$

So, $\frac{L}{2} = \frac{1}{2} \frac{\sqrt{2}g}{3} \cdot t^2$

$$\Rightarrow t = \left[\frac{3L}{\sqrt{2}g}\right]^{\frac{1}{2}}$$

PART - II (CHEMISTRY)

19. Answer (B, C, D) Hint: Oxygen is the limiting reagent. **Sol.** : Number of moles of Mg = $\frac{1}{24}$

Number of moles of $O_2 = \frac{1}{64}$

Initial moles
$$\frac{1}{24}$$
 $\frac{1}{64}$
Moles at the end $\left(\frac{1}{24} - \frac{1}{32}\right)$ 0

2Mg

32)

32

+ $O_2 \rightarrow 2MgO$

Moles at the end

of reaction

$$= \left\lfloor \frac{1}{24} - \frac{1}{32} \right\rfloor \times 24 = 0.25 \text{ g}$$

O₂ gas is consumed completely.

Mass of MgO formed = $\frac{1}{32} \times 40 = 1.25$ g

20. Answer (A, B, D) Hint: Particles in the right zone have greater kinetic energy in distribution curve. Sol.: Greater the kinetic energy, greater would be the tendency to get evaporate $T_2 > T_1$. At higher temperature, vapour phase would exist.

21. Answer (B)

Hint:
$$P_{real} = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$

$$P_{ideal} = \frac{nRT}{V}$$

Sol.: When cylinder is full

$$P_{\text{real}} = \frac{60 \times 0.08 \times 300}{15 - (60 \times 0.05)} - 0.25 \left(\frac{60}{15}\right)^2$$

= 116 atm
$$P_{\text{ideal}} = \frac{60 \times 0.08 \times 300}{15} = 96 \text{ atm}$$

After prolonged used,

$$P_{\text{real}} = \frac{0.60 \times 0.08 \times 300}{15 - (0.6 \times 0.05)} - (0.25) \left(\frac{0.6}{15}\right)^2 \approx 0.96 \text{ atm}$$
$$P_{\text{ideal}} = \frac{0.6 \times 0.08 \times 300}{15} = 0.96 \text{ atm}$$

22. Answer (A, B, C, D) Hint: All statements are correct.

Sol.: At constant V,
$$P = \left(\frac{R}{V-b}\right)T$$

At constant P, $V = b + \left(\frac{R}{P}\right)T$

$$Z = \frac{PV}{RT} = 1 + \frac{Pb}{RT}$$

Since Z > 1, the repulsive forces dominate over attractive forces.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

23. Answer (B, C)

Hint : The probability of finding electron, ψ^2 is zero at radial nodes in an orbital.

Sol. : The radial wave function for a Bohr atom is given as

$$\psi(\text{radial}) = \frac{1}{16\sqrt{4}} \left[\frac{Z}{a_0}\right]^{\frac{3}{2}} \left[(\sigma - 1)(\sigma^2 - 8\sigma + 12)\right] e^{\frac{-\sigma}{2}}$$

where $\sigma = \frac{2Zr}{a_0}$

At radial nodes, $\psi^2 = 0$

or
$$(\sigma - 1) = 0$$
; $\sigma = 1 \implies r = \frac{a_0}{2Z}$
or $\sigma^2 - 8\sigma + 12 = 0$; $(\sigma - 6) (\sigma - 2) = 0$
 $\implies \sigma = 6$ or 2; $r = \frac{3a_0}{Z}$ or $\frac{a_0}{Z}$

- $\therefore \text{ Minimum position of radial node, } r = \frac{a_0}{2Z}$
 - Maximum position of radial node, $r = \frac{3a_0}{Z}$
- 24. Answer (A, B, C)

Hint : Hybridisation of central atom in all 4 molecules is same.

25. Answer (10)

Hint : Average atomic mass = $\Sigma X_i M_i$, where X_i is the mole fraction of an isotope and M_i is its atomic mass.

Sol.: Let the mole % of ${}^{25}Mg$ be x. Therefore, mole % of ${}^{26}Mg$ is (20 - x)%.

∴ $0.80 \times 24 + 0.01x \times 25 + 0.01 (20 - x) \times 26$ = 24.3 ∴ x = 10%

- Hint : N₂ is the limiting reagent, that decides the maximum mass of NH₃. Sol. : Number of moles of N₂ = $\frac{42}{28} = 1.5$ Number of moles of H₂ = $\frac{12}{2} = 6.0$ N₂ + 3H₂ \longrightarrow 2NH₃ Initial moles 1.5 6.0 Final moles 0 1.5 3.0 Maximum mass of NH₃ gas formed = 3.0×17 = 51 g
- 27. Answer (68)

26. Answer (51)

Hint: Number of photons

Sol.: Energy of a photon of wavelength,

$$\mathsf{E} = \frac{\mathsf{hc}}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{612 \times 10^{-9}} = \frac{6.6 \times 10^{-17}}{204}$$

Minimum energy needed to see an object

Number of photons required to see an object

$$= \frac{2.2 \times 10^{-17} \times 204}{6.6 \times 10^{-17}} = 68$$

28. Answer (15)

Hint: Molality of solution

= Number of moles of solute Mass of solvents in kg

Sol. : Molarity of the given solution = 3.9 M

- Volume of solvent in 1 L solution = 1 L
- Density of solvent = 0.26 g mL⁻¹

Mass of 1 L solvent = 260 gm

Molality of solution = $\frac{3.9 \times 1000}{260} = 15 \text{ mol kg}^{-1}$

29. Answer (12)

Hint : For n = 4, l = 0, 1, 2, and 3 For |m_e| = 1, m_e = ±1 and

For
$$|m_s| = \frac{1}{2}, m_s = \pm \frac{1}{2}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Sol. : For principal quantum number, n = 4, the possible values of azimuthal quantum number and magnetic quantum number are

$$\ell = 0$$
 m _{ℓ} = 0

$$\ell = 1$$
 m _{ℓ} = 0, ± 1

$$\ell = 2$$
 m _{ℓ} = 0, ± 1, ± 2

 $\ell = 3$ m_{ℓ} = 0, ± 1, ± 2, ± 3

Given values of magnetic and spin quantum numbers are

$$|\mathbf{m}_{\ell}| = 1 ; \Rightarrow \mathbf{m}_{\ell} = \pm 1$$

 $|\mathbf{m}_{s}| = \frac{1}{2}; \Rightarrow \mathbf{m}_{s} = \pm \frac{1}{2}$

There are 6 orbitals which satisfy the given conditions and can accommodate 12 electrons.

30. Answer (18)

Hint : Angular momentum of electron in 3^{rd} orbit of He⁺ ion

$$mv_3r_3 = 3\left(\frac{h}{2\pi}\right)$$

Radius of electron in 3rd orbit of He+ ion

$$r_3 = \frac{(3)^2 a_0}{2}$$

KE of electron in 3rd orbit of He⁺ ion = $\frac{(mv_3)^2}{2m}$

Sol. : Angular momentum of an electron in nth orbit of a Bohr atom is given by

$$mvr = n \frac{h}{2\pi}$$

For an electron in 3rd orbit of He⁺ ion,

$$mv_{3}r_{3} = 3\frac{h}{2\pi}$$

$$mv_{3} = \frac{3h}{2\pi r_{3}}$$

$$r_{3} = \frac{(3)^{2}a_{0}}{2} = \frac{9a_{0}}{2}$$
∴
$$mv_{3} = \frac{3h \times 2}{2\pi \times 9a_{0}} = \frac{h}{3\pi a_{0}}$$

$$KE = \frac{(mv_{3})^{2}}{2m} = \frac{h^{2}}{2m \times 9\pi^{2}a_{0}^{2}} = \left(\frac{h^{2}}{\pi^{2}ma_{0}^{2}}\right) \left(\frac{1}{18}\right)$$
∴
$$x = 18$$

31. Answer (20)

Hint : Molarity of stock solution \times V (ml) = 0.4 \times 460

Sol. : Millimoles of HCl in the final solution

$$= 0.4 \times 460$$

= 184

Mass of HCl in stock solution = 29.2 gm Number of moles of HCl in stock solution

$$= \frac{29.2}{36.5} = 0.8$$

Mass of HCl stock solution = 100 gm Density of stock solution = 1.15 g mL⁻¹ Volume of 100 g stock solution = $\frac{100}{1.15}$ mL

Molarity of stock solution = $\frac{0.8 \times 1.15 \times 1000}{100}$

Let V ml of stock solution is required $9.2 \times V = 184$

$$V = \frac{184}{9.2} = 20 \text{ mI}$$

32. Answer (50)

Hint : Number of moles of C_2H_5Br = 0.80 × Number of moles of C_2H_6 consumed Number of moles of n-butane

 $= \frac{0.56}{2} \times \text{Number of moles of } C_2H_5\text{Br consumed}$

Sol.: Let the volume of C_2H_6 required at STP be x L.

Number of moles of C₂H₆ required = $\frac{x}{22.4}$

$$C_2H_6 + Br_2 \xrightarrow{hv}{125^{\circ}C} C_2H_5Br + HBr (80\% \text{ yield})$$

Number of moles of C₂H₅Br produced

=
$$0.80 \times$$
 Number of moles of C₂H₆ consumed

$$= \frac{0.80 \times x}{22.4}$$

$$2C_{2}H_{5}Br + 2Na \xrightarrow{Dry}_{ether} C_{4}H_{10} + 2NaBr (56\% \text{ yield})$$

Number of moles of C₄H₁₀ produced

$$= \frac{0.56}{2} \times \text{number of moles of } C_2H_5Br \text{ consumed}$$
$$= \frac{0.56 \times 0.80 \times x}{2 \times 22.4}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Mass of C₄H₁₀ produced =
$$\frac{0.56 \times 0.80 \times x \times 58}{2 \times 22.4}$$
$$= 29 \text{ g}$$

x = 50 L

- 33. Answer (A)
 - **Hint :** Rate = $\frac{\text{Volume diffused}}{\text{Time}}$

Sol.:
$$\frac{r_X}{r_{O_2}} = \frac{V \times 5.65}{4 \times V} = \sqrt{\frac{32}{M_X}}; M_X = 16$$

34. Answer (B)

Hint : Rate =
$$\frac{\text{Moles diffused}}{\text{Time}}$$

Sol.:
$$r_{H_2} = \frac{x \times 32 \times 30}{2 \times 60 \times 1} = \sqrt{\frac{32}{2}}; x = 0.50 \text{ g}$$

35. Answer (A)

Hint & Sol. : Correct order of dipole moment $H_2O > NH_3 > NF_3$

36. Answer (C)

Hint & Sol. : Compounds (I) and (II) have non-zero dipole moment because the resultant of all the bond dipole moments do not got cancelled.

PART - III (MATHEMATICS)

37. Answer (A, C)

Hint : Form an equation whose roots are $\frac{\alpha_i}{1+\alpha_i}$,

where *i* = 1, 2, 3, 4.

Sol.: $x^4 - 7x + 1 = 0$ has roots $\alpha_1, \alpha_2, \alpha_3$ and α_4 .

Let
$$y = \frac{x}{1+x} \Rightarrow x = \frac{y}{1-y}$$

 $\left(\frac{y}{1-y}\right)^4 - 7\left(\frac{y}{1-y}\right) + 1 = 0$
 $\Rightarrow y^4 - 7y(1-y)^3 + (1-y)^4 = 0$
 $\Rightarrow 9y^4 - 25y^3 + 27y^2 - 11y + 1 = 0$...(i)
The roots of equation (i) are $\frac{\alpha_i}{1+\alpha_i}$; $i = 1, 2, 3, 4$
 $\sum_{i=1}^4 \frac{\alpha_i}{1+\alpha_i} =$ Sum of roots of $(i) = \frac{25}{9}$
 $\prod_{i=1}^4 \frac{\alpha_i}{1+\alpha_i} =$ Product of roots of $(i) = \frac{1}{9}$

38. Answer (B, C, D)
Hint: Put
$$x - 2 = t$$

Sol.: Let $x - 2 = t$
 $\Rightarrow (t + 1)^4 + (t - 1)^4 = k$
 $\Rightarrow t^4 + 6t^2 + 1 = \frac{k}{2}$
 $\Rightarrow (t^2 + 3)^2 = 8 + \frac{k}{2}$
 $\Rightarrow t^2 = -3 \pm \sqrt{8 + \frac{k}{2}}$...(i)

When $t^2 > 0 \Rightarrow$ Two distinct real values of *x*

 $t^2 < 0 \Rightarrow$ Two imaginary values of *x*.

From (i) at least one value of t^2 is negative, while other value may be positive if k > 2.

39. Answer (B, D) **Hint**: Put z = x + iy and solve for x and y. **Sol.**: Let z = x + iy $x + iy + 1 + i = \sqrt{x^2 + y^2}$

$$\Rightarrow (x+1) + i(y+1) = \sqrt{x^2 + y^2}$$

$$\Rightarrow y+1 = 0 \text{ and } x+1 = \sqrt{x^2 + y^2}$$

$$\Rightarrow y = -1 \text{ and } x = 0$$

So, z = -i

40. Answer (A, D) Hint : Range of f(x) is $\left[-\frac{1}{5}, \frac{1}{3}\right]$. Sol. : Domain of f(x) is R as $x^2 + x + 4 \neq 0$. Let $y = \frac{x+1}{x^2 + x + 4} = yx^2 + x(y-1) + (4y-1) = 0$ $\therefore x \in R, (y-1)^2 - 4y(4y-1) \ge 0$ $\Rightarrow 15y^2 - 2y - 1 \le 0$ $y \in \left[-\frac{1}{5}, \frac{1}{3}\right]$ 41. Answer (B, C) Hint : Use properties. Sol. : $\therefore 1 \notin A \cup (B \cap \{1, 2, 3\})$ $\Rightarrow 1 \notin A$ and $1 \notin B \cap \{1, 2, 3\}$ $\Rightarrow 1 \notin A \text{ and } 1 \notin B$ $\Rightarrow 1 \notin A \cup B$ $\Rightarrow 1 \in (A \cup B)'$ $\therefore 4 \notin B \cap \{1, 2, 3\}$ and $5 \notin B \cap \{1, 2, 3\}$

So, the smallest possible set $A = \{4, 5\}$ Also, smallest possible set $B = \phi$ (when $A = \{2, 3, 4, 5\}$)

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper-1) (Code-E) (Hints & Solutions) 42. Answer (B, D) 45. Answer (11) Hint: Use condition for common root. Hint: Find the range of both trigonometric **Sol.**: $(a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1) = (a_1c_2 - a_2c_1)^2$ functions. \Rightarrow 3(-2 λ) = (- λ)² **Sol.**: $\therefore 2k + 1 \in \left[-\sqrt{193}, \sqrt{193}\right]$...(i) $\Rightarrow \lambda = 0, -6$ Also, $2k = 4\sec^2 y + \csc^2 y$ 43. Answer (15) $2k = 5 + 4\tan^2 y + \frac{1}{\tan^2 y}$ **Hint** : Use $\tan\theta \cdot \tan(60^\circ - \theta) \cdot \tan(60^\circ + \theta) = \tan 3\theta$ Sol.: tan4°.tan8°.tan12°....tan88° $2 k \in [9, \infty]$...(ii) = (tan4°·tan56°·tan64°)(tan8°·tan52°·tan68°)... (tan28°·tan32°·tan88°)·tan60° From (i) and (ii), = (tan12°·tan24°·tan36°·tan48°·tan60°·tan72°· k = 5 or 6tan84°)√3 46. Answer (12) = 3[(tan12°·tan48°·tan72°)(tan24°·tan36°·tan84°)] **Hint**: $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$ = 3tan36°.tan72° $= 3 \cdot \frac{\sin 36^\circ \cdot \cos 18^\circ}{\cos 36^\circ \cdot \sin 18^\circ}$ **Sol.**: $\arg(z) = \arg(\sqrt{i}) - \arg(\sqrt{3} + i)$ $=\frac{1}{2}\arg(i)-\frac{\pi}{6}$ $= 3 \left[\frac{\sqrt{10 - 2\sqrt{5}} \cdot \sqrt{10 + 2\sqrt{5}}}{(\sqrt{5} + 1)(\sqrt{5} - 1)} \right]$ $=\frac{\pi}{4}-\frac{\pi}{6}$ $= 3 \left[\frac{\sqrt{100 - 20}}{4} \right]$ $=\frac{\pi}{12}$ $= 3\sqrt{5}$ 44. Answer (63) 47. Answer (24) **Hint** : $(A \times B \times B) \cap (A \times A \times B) = A \times (A \cap B) \times B$ Hint: $\tan C = -\tan(A+B) = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1-\tan^2\left(\frac{A+B}{2}\right)}$ **Sol.**: If $(x, y, z) \in (A \times B \times B) \cap (A \times A \times B)$, then $x \in A, y \in A$ and $y \in B, z \in B$ Possible number of values of x = 3**Sol.**: \therefore $C = \pi - (A + B)$ Possible number of values of y = 2 $\Rightarrow \tan C = -\tan(A + B)$ Possible number of values of z = 4 $\Rightarrow \tan C = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1-\tan^2\left(\frac{A+B}{2}\right)}$ \therefore $n((A \times B \times B) \cap (A \times A \times B)) = 24$ 48. Answer (04) **Hint** : Put $\log_2 3 = a$ to simplify X and use Now, $\tan\left(\frac{A+B}{2}\right) = \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}}$ $(\sqrt{3}-1)^2 = 2(2-\sqrt{3})$ to simplify Y. Sol.: $X = (4 + \log_2 3)(5 + \log_2 3) - (3 + \log_2 3)(6 + \log_2 3)$ = 8 Put $\log_2 3 = a$

So, tanC = $\frac{16}{63}$ cosC = $\frac{63}{65}$

 $Y = \frac{1 + \log_2(2 - \sqrt{3})}{\log_2(\sqrt{3} - 1)} = \frac{\log_2(4 - 2\sqrt{3})}{\log_2(\sqrt{3} - 1)} = 2$

 $\Rightarrow X = (4 + a)(5 + a) - (3 + a)(6 + a) = 2$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-E)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

49. Answer (01)

Hint:
$$x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$$

Sol.: $\log_{\frac{\sqrt{3}}{2}}(\sin x) \le \log_{\frac{\sqrt{3}}{2}}(\cos x)$
 $\Rightarrow \sin x \ge \cos x$ also $\sin x \ge 0 \cap \cos x \ge 0$
 $\Rightarrow x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$
 $\therefore x \in [0, 12]$, then $x \in \left[\frac{\pi}{4}, \frac{\pi}{2}\right] \cup \left[\frac{9\pi}{4}, \frac{5\pi}{2}, \frac{\pi}{2}\right]$
 $\therefore x$ is an integer, then $x = 1$ only.
Answer (07)
Hint: $f(x) = 3 + 2(\tan^2 x + \cot^2 x)$

Sol.:
$$f(x) = \sin^2 x + \cos^2 x + \tan^2 x + \tan^2 x$$

 $\cot^2 x + \sec^2 x + \csc^2 x$

$$\Rightarrow f(x) = 3 + 2(\tan^2 x + \cot^2 x)$$

$$\Rightarrow f(x) = 7 + 2(\tan x - \cot x)^2$$

- \therefore Minimum value of f(x) = 7
- 51. Answer (C)

50.

Hint : $e^x = \sin x$; draw the graphs of LHS and RHS

Sol.: $\therefore e^x = \sin x$

From the graph, there are two points of intersection.

Hint: Draw graphs of LHS and RHS.

Sol.:
$$\log_2|x| = |||x| - 1| - 1|$$

(-1, 1) (1, 1)
(-2, 0) 0 (2, 0)

From the graph; we get 4 solutions.

53. Answer (A)

52. Answer (C)

Hint : Put $x = \sin\theta \Rightarrow \sin 3\theta = \frac{1}{\sqrt{2}}$

Sol. : Let $x = \sin \theta$

$$\Rightarrow \sin 3\theta = \frac{1}{\sqrt{2}} = \sin 45^\circ$$

So, possible value of θ is 15°, then

$$x = \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

54. Answer (D)

Hint: Put $x = \sin\theta \Rightarrow \sin 2\theta = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$

Sol.: Let
$$x = \sin\theta$$

$$\Rightarrow \sin 2\theta = \frac{\sqrt{10-2\sqrt{5}}}{4}$$

 \Rightarrow sin2 θ = sin36°

So, possible value of θ is 18°, then

$$x = \sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$

All India Aakash Test Series for JEE (Advanced)-2021

TEST - 1A (Paper-1) - Code-F

Test Date : 17/11/2019

ANSWERS

PHYSICS		CHEMISTRY		MATHEMATICS		
	1.	(A, B)	19.	(A, B, C)	37.	(B, D)
	2.	(A, B, C, D)	20.	(B, C)	38.	(B, C)
	3.	(A, C, D)	21.	(A, B, C, D)	39.	(A, D)
	4.	(A, C, D)	22.	(B)	40.	(B, D)
	5.	(B, D)	23.	(A, B, D)	41.	(B, C, D)
	6.	(A, C)	24.	(B, C, D)	42.	(A, C)
	7.	(15)	25.	(50)	43.	(07)
	8.	(18)	26.	(20)	44.	(01)
	9.	(16)	27.	(18)	45.	(04)
	10.	(72)	28.	(12)	46.	(24)
	11.	(12)	29.	(15)	47.	(12)
	12.	(17)	30.	(68)	48.	(11)
	13.	(24)	31.	(51)	49.	(63)
	14.	(33)	32.	(10)	50.	(15)
	15.	(C)	33.	(A)	51.	(C)
	16.	(B)	34.	(B)	52.	(C)
	17.	(C)	35.	(A)	53.	(A)
	18.	(A)	36.	(C)	54.	(D)

HINTS & SOLUTIONS

PART - I (PHYSICS)

1. Answer (A, B)

Hint : $v = \frac{dx}{dt}$; $a = \frac{d^2x}{dt^2}$ Sol. : $x = \alpha t^3 + \beta t^2 + \gamma t + \delta$ $\therefore \quad \frac{dx}{dt} = v = 3\alpha t^2 + 2\beta t + \gamma$ $\frac{d^2x}{dt^2} = a = 6\alpha t + 2\beta$ $\therefore \quad 6\alpha t + 2\beta = 3\alpha t^2 + 2\beta t + \gamma$ $\Rightarrow \quad 3\alpha t^2 + (2\beta - 6\alpha) t + \gamma - 2\beta = 0$ Here, $4(3\alpha - \beta)^2 - 4 \times 3\alpha(\gamma - 2\beta) = 0$ for unique t $\Rightarrow \quad 9\alpha^2 + \beta^2 - 3\alpha\gamma = 0$ And for that time instant t > 0

$$\therefore \quad t = \frac{2(3\alpha - \beta)}{2 \times 3\alpha} = \frac{3\alpha - \beta}{3\alpha}$$

 $\therefore 3\alpha - \beta > 0$

2. Answer (A, B, C, D)

Hint : Tangential force will change the speed and perpendicular force will change the direction.

Sol.: If \vec{v} is opposite to \vec{F} the particle may retrace its path.

If \vec{F} is perpendicular to \vec{v} and so \vec{F} will provide the centripetal force and if $|\vec{F}|$ is constant, then radius of curvature will be constant. And if at a particular time instant \vec{v} and \vec{F} are some angle other than 0° or 180° and \vec{F} is constant, then it's analogues of projectile motion. Particle will trace the parabolic path.

3. Answer (A, C, D)

Hint : For velocity to become perpendicular to initial direction $\theta > \frac{\pi}{4}$.

Sol. :

For velocity to become perpendicular to initial direction $\theta > \frac{\pi}{4}$.

For same case, $m_1 = \tan \theta_1 = \tan \theta$

And
$$m_2 = \tan \theta_2 = \frac{(u \sin \theta - gt)}{u \cos \theta}$$

 $\therefore \quad (m_1 m_2 = -1) \Rightarrow \quad \frac{(u \sin \theta - gt)}{u \cos \theta} \cdot \frac{\sin \theta}{\cos \theta} = -1$
 $\Rightarrow \quad u \sin^2 \theta - gt \sin \theta = -u \cos^2 \theta$
 $\Rightarrow \quad u = gt \sin \theta \quad \therefore \quad t = \frac{u}{g \sin \theta}$
And 1 s before, $\theta_1 = \tan^{-1} \left(\frac{g}{u \cos \theta}\right)$
So just after 1 s and before 1 s, $\Delta \theta = 2\theta$

$$\Delta \theta = 2 \tan^{-1} \left(\frac{g}{u \cos \theta} \right)$$

4. Answer (A, C, D)

Hint : $v^2 = gr \tan \theta$

Sol. :

$$\tan \theta = \frac{n}{r}$$

$$\Rightarrow r = \frac{h}{\tan \theta}$$

Along the plane, with respect to cone the particle is in state of equilibrium.

$$\therefore mg\sin\theta = \frac{mv^2}{r} \cdot \cos\theta$$

$$\Rightarrow gr \cdot \frac{\sin\theta}{\cos\theta} = v^2 \Rightarrow v^2 = \frac{gh}{\tan\theta} \tan\theta$$

$$\therefore v^2 = gh$$
Also, $N\cos\theta = mg$
And $N\sin\theta = \frac{mv^2}{r}$

$$\therefore N\sin\theta = \frac{mv^2}{h}\frac{\sin\theta}{\cos\theta} \Rightarrow N\cos\theta = \frac{mv^2}{h}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-F)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

5. Answer (B, D)

Hint. : Sudden impulsive force by spring is zero.

Sol. : Let the tension in string *BC* is *T* at equilibrium.

Then for m_1 to be in equilibrium $K \Delta x = m_1 g$

That means spring will be in extended condition and it will transmit $T_1 = K\Delta x = m_1 g$ force on string attached with spring.

So, for (m_2)

$$\Rightarrow$$
 $T = m_1g - m_2g$

When string *BC* is burnt suddenly then spring still transmit the same force so acceleration of mass m_1 is zero. And acceleration of mass m_2 is

$$a_2 = \frac{(m_1 - m_2)g}{m_2}$$

6. Answer (A, C)

Hint :
$$\Delta \vec{r} = \vec{r}_f - \vec{r}_i$$

Sol. :

Displacement $\vec{r} = \vec{r}_f - \vec{r}_i$

$$\Rightarrow \vec{r} = (3\hat{i} + 4\hat{j} + 5\hat{k}) - (2\hat{i} + 3\hat{j} + 5\hat{k}) = \hat{i} + \hat{j}$$

 \vec{r} makes 45° with +ve *x*-axis in anticlockwise sense.

7. Answer (15) Hint : $2T\Delta\theta = \Delta m\omega^2 R$ Sol. :

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

 $\therefore 3a_2 = 18 \text{ m/s}^2$

All	India Aakash Test Series for JEE (Advanced)-2021	l Te	est - 1A (Paper-1) (Code-F)_(Hints & Solutions)	
9.	Answer (16)		$N = mg\cos\theta + m\omega_1^2 R\sin^2\theta$	
	Hint : $a = \frac{dv}{dt}$		And $mg\sin\theta + \mu N = m\omega_1^2 R \sin\theta \cdot \cos\theta$	
	Sol. : $v(t) = \frac{8}{\sqrt{2}}\hat{i} + 8t\hat{j}$		$\Rightarrow mg\sin\theta + \mu mg\cos\theta + \mu m\omega_1^2 R\sin^2\theta$	
	$\sqrt{3}$		$=m\omega_1^2R\sin\theta\cos\theta$	
	$\therefore \dot{a} = 8j$		$\Rightarrow \omega_1^2 R \sin \theta (\cos \theta - \mu \sin \theta) = g(\sin \theta + \mu \cos \theta)$	
	At $t = 1$ s, $v = \frac{8}{\sqrt{3}}\hat{i} + 8\hat{j}$		$\therefore \omega_1^2 = \frac{g(\sin\theta + \mu\cos\theta)}{R\sin\theta(\cos\theta - \mu\sin\theta)}$	
	$\therefore \tan \theta = \frac{8}{8} \cdot \sqrt{3} \therefore \theta = 60^{\circ}$		Similarly, $\omega_2^2 = \frac{g(\sin\theta - \mu\cos\theta)}{R\sin\theta(\cos\theta + \mu\sin\theta)}$	
	θ $\theta = 60^{\circ}$		$\therefore \frac{\omega_1^2}{\omega_2^2} = \frac{\left(\frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} + \frac{2}{2\sqrt{2}}\right)}{\left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right) \left(\frac{1}{\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)}$	
	$\therefore a_n = a\cos 60^\circ = 8 \times \frac{1}{2} = 4$		$\omega^2 \left(\frac{3}{2\sqrt{2}}\right)^2$	
	$\therefore 4 \vec{a}_n = 16$ Answer (72) Hint: $\frac{mg}{120} x\mu = \frac{mg}{120} (120 - x)$		$\Rightarrow \frac{\omega_1}{\omega_2^2} = \frac{(2\sqrt{2})}{(1)^2} = 9$	
10.			$\left(\frac{1}{2\sqrt{2}}\right)$	
			$\therefore X = \frac{\omega_1}{\omega_2} = 3 \therefore 4X = 12$	
	Sol. : For state of impending motion, let x be the length on the table, then $\frac{m}{120} xg\mu = \frac{mg}{120} (120 - x)$ $\Rightarrow \frac{2}{3} x = 120 - x \Rightarrow \frac{5x}{3} = 120$		Answer (17)	
			Hint : $\tan \theta = \frac{ a_n }{1}$	
			Sol. : Angle with velocity vector is 30°.	
			$\therefore \tan 30^\circ = \frac{ a_n }{ a_t } = \frac{V^2}{Ra}$	
	$\Rightarrow x = \frac{120 \times 3}{5} = 72$			

11. Answer (12)

Hint : $N = mg\cos\theta + m\omega_1^2 R\sin^2\theta$

$$mg\sin\theta + \mu N = m\omega_1^2 R\sin\theta \cdot \cos\theta$$

Sol. : Let ω_1 be the maximum angular speed and ω_2 be the minimum angular speed, then

a $\Rightarrow \frac{1}{\sqrt{3}} = \frac{a^2 t^2}{Ra}$ $\Rightarrow \frac{1}{\sqrt{3}} = \frac{a^2 t^2}{Ra} \Rightarrow \frac{a t^2}{R} = \frac{1}{\sqrt{3}}$ $\therefore \quad t^2 = \frac{51}{\sqrt{3} \times \sqrt{3}} = 17$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Hint:
$$v = \frac{dr}{dt}$$
, $a = \frac{d^2 r}{dt^2}$
Sol.: $\vec{r} = 2t\hat{i} + 4t^2\hat{j} + \hat{k}$
 $\therefore \quad \vec{v} = \frac{dr}{dt} = 2\hat{i} + 8t\hat{j}$
And $\vec{a} = \frac{d^2 r}{dt^2} = 8\hat{j}$

Acceleration is always along *y* direction. So, velocity in *y* direction at t = 3 s is

.2

$$|\vec{v}_{v}| = |8t| \implies (8 \times 3) = 24$$

14. Answer (33)

Hint : For vertical upward motion, $y = u_y t - \frac{1}{2}gt^2$

Sol. : Let v_0 was the velocity of dropping of 1^{st} stone, then

 \Rightarrow $|\vec{y}_1| = (20 - 2v_0)$ is the distance from dropping point.

After 1 sec balloon shall have velocity $v_2 = (v_0 + 1)$

And it must have travelled $|y| = \left(v_0 + \frac{1}{2}\right)$.

Then 1 sec after 2nd particle will be at

$$y_2 = (v_0 + 1) - \frac{1}{2} \times 10 \times 1$$

$$\Rightarrow |\vec{y}_2| = 5 - v_0 - 1 = 4 - v_0$$

Distance from dropping point

$$\therefore \text{ Separation} \Rightarrow s = |\vec{y}_1| + |\vec{y}| - |\vec{y}_2|$$

$$\Rightarrow s = 20 - 2v_0 + v_0 + \frac{1}{2} - 4 + v_0$$

$$\Rightarrow s = 16 + \frac{1}{2} = \frac{33}{2}$$

$$\therefore 2s = 33$$

- 15. Answer (C)
- 16. Answer (B)

Hint for Q.Nos. 15 and 16 :

For forward and backward, both motion, person must maintain the same angle with line *AB*.

Solution for Q.Nos. 15 and 16 :

Clearly $\sin 30^\circ = \frac{d}{AB}$

$$\Rightarrow AB = 2d$$

For forward and backward, both motion, person must maintain the same angle with line *AB*.

$$\therefore v \sin\theta = u \sin 30^{\circ} \implies \sin\theta = \frac{u}{4\sqrt{3}}$$
From A to B $\implies v \cos\theta + \frac{u\sqrt{3}}{2} = \frac{2d}{T_1}$
And from B to A $\implies v \cos\theta - \frac{u\sqrt{3}}{2} = \frac{2d}{T_2}$

$$\therefore u\sqrt{3} = 2d\left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\implies u\sqrt{3} = 2d\left(\frac{T_2 - T_1}{T_1 T_2}\right)$$

$$\therefore u = \frac{2d}{\sqrt{3}}\left[\frac{T_2 - T_1}{T_1 T_2}\right]$$
And $\sin\theta = \frac{1}{4\sqrt{3}} \cdot \frac{2d}{\sqrt{3}}\left(\frac{T_2 - T_1}{T_1 T_2}\right)$

$$\therefore \theta = \sin^{-1}\left(\frac{d}{6}\frac{(T_2 - T_1)}{T_1 T_2}\right)$$
17. Answer (C)

18. Answer (A)

Hint for Q.Nos. 17 and 18 :

Motion is accelerated reference frame.

Solution for Q.Nos. 17 and 18 :

Let the force be F_0 when small block does not slide with respect to wedge.

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Now as F = 3mg, let the acceleration of block be a_1 and wedge be a, then

 $\frac{ma}{\sqrt{2}} - \frac{mg}{\sqrt{2}} = ma_1$ $\therefore \quad a_1 = \frac{1}{\sqrt{2}} - \frac{g}{\sqrt{2}}$

 \Rightarrow 6mg - mg - ma = 2ma

And for wedge $3mg - \left(\frac{mg}{2} + \frac{ma}{2}\right) = ma$

$$\Rightarrow 5g = 3a \Rightarrow a = \frac{5g}{3}$$

$$\therefore a_1 = \frac{1}{\sqrt{2}} \left(\frac{5}{3} - 1\right) g = \frac{2g}{3\sqrt{2}} = \frac{\sqrt{2}g}{3}$$

So, $\frac{L}{2} = \frac{1}{2} \frac{\sqrt{2}g}{3} \cdot t^2$
$$\Rightarrow t = \left[\frac{3L}{\sqrt{2}g}\right]^{\frac{1}{2}}$$

PART - II (CHEMISTRY)

19. Answer (A, B, C)

Hint : Hybridisation of central atom in all 4 molecules is same.

20. Answer (B, C)

Hint : The probability of finding electron, ψ^2 is zero at radial nodes in an orbital.

Sol. : The radial wave function for a Bohr atom is given as

2

$$\psi(\text{radial}) = \frac{1}{16\sqrt{4}} \left[\frac{Z}{a_0} \right]^{\frac{3}{2}} \left[(\sigma - 1)(\sigma^2 - 8\sigma + 12) \right] e^{\frac{-\sigma}{2}}$$
where $\sigma = \frac{2Zr}{\sigma}$

where $\sigma = \frac{221}{a_0}$

At radial nodes, $\psi^2 = 0$

or
$$(\sigma - 1) = 0$$
; $\sigma = 1 \implies r = \frac{a_0}{2Z}$
or $\sigma^2 - 8\sigma + 12 = 0$; $(\sigma - 6) (\sigma - 2) = 0$

$$\Rightarrow \sigma = 6 \text{ or } 2; r = \frac{3a_0}{Z} \text{ or } \frac{a_0}{Z}$$

$$\therefore \text{ Minimum position of radial node, } r = \frac{a_0}{2Z}$$

Maximum position of radial node, $r = \frac{3a_0}{Z}$

21. Answer (A, B, C, D) Hint: All statements are correct.

Sol.: At constant V,
$$P = \left(\frac{R}{V-b}\right)T$$

At constant P, $V = b + \left(\frac{R}{P}\right)T$
 $Z = \frac{PV}{RT} = 1 + \frac{Pb}{RT}$

Since Z > 1, the repulsive forces dominate over attractive forces.

22. Answer (B)

Hint:
$$P_{real} = \frac{nRT}{V - nb} - a\left(\frac{n}{V}\right)^2$$

 $P_{ideal} = \frac{nRT}{V}$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-F)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

Sol.: When cylinder is full

= 116 atm

$$\mathsf{P}_{\mathsf{real}} = \frac{60 \times 0.08 \times 300}{15 - (60 \times 0.05)} - 0.25 \left(\frac{60}{15}\right)^2$$

$$P_{ideal} = \frac{60 \times 0.08 \times 300}{15} = 96 \text{ atm}$$

After prolonged used,

$$\mathsf{P}_{\mathsf{real}} = \frac{0.60 \times 0.08 \times 300}{15 - (0.6 \times 0.05)} - (0.25) \left(\frac{0.6}{15}\right)^2$$

≈ 0.96 atm

$$P_{ideal} = \frac{0.6 \times 0.08 \times 300}{15} = 0.96 \text{ atm}$$

23. Answer (A, B, D)

Hint : Particles in the right zone have greater kinetic energy in distribution curve.

Sol. : Greater the kinetic energy, greater would be the tendency to get evaporate $T_2 > T_1$.

At higher temperature, vapour phase would exist.

24. Answer (B, C, D)

Hint : Oxygen is the limiting reagent.

Sol. : Number of moles of Mg = $\frac{1}{24}$

Number of moles of $O_2 = \frac{1}{64}$

Initial moles

$$\frac{1}{64}$$

 $2Mg + O_2 \rightarrow 2MgO$

Moles at the end $\left(\frac{1}{24} - \frac{1}{32}\right) = 0$

of reaction

Mass of Mg left unreacted

$$=\left[\frac{1}{24}-\frac{1}{32}\right]\times 24 = 0.25 \text{ g}$$

O2 gas is consumed completely.

Mass of MgO formed =
$$\frac{1}{32} \times 40 = 1.25$$
 g

25. Answer (50)

Hint : Number of moles of C_2H_5Br

= $0.80 \times \text{Number of moles of } C_2H_6 \text{ consumed}$ Number of moles of n-butane

 $= \frac{0.56}{2} \times \text{Number of moles of } C_2H_5Br \text{ consumed}$

Sol.: Let the volume of C_2H_6 required at STP be x L.

Number of moles of C₂H₆ required =
$$\frac{x}{22.4}$$

$$C_2H_6 + Br_2 \xrightarrow{h\nu} C_2H_5Br + HBr (80\% \text{ yield})$$

Number of moles of C_2H_5Br produced

=
$$0.80 \times \text{Number of moles of } C_2H_6 \text{ consumed}$$

$$= \frac{0.80 \times x}{22.4}$$

$$2C_2H_5Br + 2Na \xrightarrow{Dry}_{ether} C_4H_{10} + 2NaBr (56\% \text{ yield})$$

Number of moles of C₄H₁₀ produced

$$= \frac{0.56}{2} \times \text{number of moles of } C_2H_5Br \text{ consumed}$$
$$= \frac{0.56 \times 0.80 \times x}{2 \times 22.4}$$

Mass of C₄H₁₀ produced = $\frac{0.56 \times 0.80 \times x \times 58}{2 \times 22.4}$

x = 50 L

26. Answer (20)

Hint : Molarity of stock solution \times V (ml) = 0.4 \times 460

= 29 g

Sol. : Millimoles of HCl in the final solution

 $= 0.4 \times 460$

Mass of HCl in stock solution = 29.2 gm Number of moles of HCl in stock solution

$$=\frac{29.2}{36.5}=0.8$$

Mass of HCl stock solution = 100 gm Density of stock solution = 1.15 g mL⁻¹ Volume of 100 g stock solution = $\frac{100}{1.15}$ mL Molarity of stock solution = $\frac{0.8 \times 1.15 \times 1000}{100}$ = 9.2 M Let V ml of stock solution is required 9.2 x V = 184 V = $\frac{184}{9.2}$ = 20 ml

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

All India Aakash Test Series for JEE (Advanced)-2021 Test - 1A (Paper

Test - 1A (Paper-1) (Code-F)_(Hints & Solutions)

27. Answer (18)

Hint : Angular momentum of electron in $\mathbf{3}^{rd}$ orbit of He^+ ion

$$mv_3r_3 = 3\left(\frac{h}{2\pi}\right)$$

Radius of electron in 3rd orbit of He+ ion

$$r_3 = \frac{(3)^2 a_0}{2}$$

KE of electron in 3rd orbit of He⁺ ion = $\frac{(mv_3)^2}{2m}$

Sol.: Angular momentum of an electron in n^{th} orbit of a Bohr atom is given by

$$mvr = n\frac{h}{2\pi}$$

For an electron in 3rd orbit of He⁺ ion,

h

$$mv_{3}r_{3} = 3\frac{\pi}{2\pi}$$

$$mv_{3} = \frac{3h}{2\pi r_{3}}$$

$$r_{3} = \frac{(3)^{2} a_{0}}{2} = \frac{9a_{0}}{2}$$

$$\therefore mv_{3} = \frac{3h \times 2}{2\pi \times 9a_{0}} = \frac{h}{3\pi a_{0}}$$

$$KE = \frac{(mv_{3})^{2}}{2m} = \frac{h^{2}}{2m \times 9\pi^{2}a_{0}^{2}} = \left(\frac{h^{2}}{\pi^{2}ma_{0}^{2}}\right)\left(\frac{1}{18}\right)$$

$$\therefore x = 18$$

28. Answer (12)

Hint : For n = 4, l = 0, 1, 2, and 3
For
$$|m_e| = 1$$
, $m_e = \pm 1$ and
For $|m_s| = \frac{1}{2}$, $m_s = \pm \frac{1}{2}$

Sol. : For principal quantum number, n = 4, the possible values of azimuthal quantum number and magnetic quantum number are

$$\begin{array}{ll} \ell=0 & m_\ell=0 \\ \\ \ell=1 & m_\ell=0,\pm 1 \\ \\ \ell=2 & m_\ell=0,\pm 1,\pm 2 \\ \\ \ell=3 & m_\ell=0,\pm 1,\pm 2,\pm 3 \\ \\ \\ \text{Given values of magnetic and spin quantum numbers are} \end{array}$$

 $|m_\ell|=1 \ ; \Rightarrow m_\ell=\pm 1$

$$|\mathbf{m}_{s}| = \frac{1}{2}; \Rightarrow \mathbf{m}_{s} = \pm \frac{1}{2}$$

There are 6 orbitals which satisfy the given conditions and can accommodate 12 electrons.

Hint : Molality of solution

$$= \frac{\text{Number of moles of solute}}{\text{Mass of solvents in kg}}$$

Sol. : Molarity of the given solution = 3.9 MVolume of solvent in 1 L solution = 1 LDensity of solvent = 0.26 g mL^{-1} Mass of 1 L solvent = 260 gm

Molality of solution =
$$\frac{3.9 \times 1000}{260} = 15 \text{ mol kg}^{-1}$$

30. Answer (68)

Hint: Number of photons

 $= \frac{\text{Total energy absorbed}}{\text{Photon energy}}$

Sol.: Energy of a photon of wavelength,

 $\lambda = 612 \text{ nm}$

$$\mathsf{E} = \frac{\mathsf{hc}}{\lambda} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{612 \times 10^{-9}} = \frac{6.6 \times 10^{-17}}{204}$$

Minimum energy needed to see an object

 $= 2.2 \times 10^{-17} \text{J}$

Number of photons required to see an object

$$=\frac{2.2\times10^{-17}\times204}{6.6\times10^{-17}}=68$$

31. Answer (51)

Hint : N_2 is the limiting reagent, that decides the maximum mass of NH_3 .

Sol.: Number of moles of N₂ = $\frac{42}{28} = 1.5$ Number of moles of H₂ = $\frac{12}{2} = 6.0$ N₂ + 3H₂ \longrightarrow 2NH₃ Initial moles 1.5 6.0

Final moles 0 1.5 3.0 Maximum mass of NH_3 gas formed = 3.0×17

= 51 g

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-F)_(Hints & Solutions) All India Aakash Test Series for JEE (Advanced)-2021

32. Answer (10)

Hint : Average atomic mass = $\Sigma X_i M_i$, where X_i is the mole fraction of an isotope and M_i is its atomic mass.

Sol.: Let the mole % of 25 Mg be x. Therefore, mole % of 26 Mg is (20 - x)%.

- ∴ $0.80 \times 24 + 0.011 \times 25 + 0.01 (20 x) \times 26$ = 24.3 ∴ x = 10%
- 33. Answer (A)

н

Sol.:
$$\frac{r_X}{r_{O_2}} = \frac{V \times 5.65}{4 \times V} = \sqrt{\frac{32}{M_X}}; M_X = 16$$

34. Answer (B)

Hint : Rate =
$$\frac{\text{Moles diffused}}{\text{Time}}$$

Sol.:
$$\frac{r_{H_2}}{r_{O_2}} = \frac{x \times 32 \times 30}{2 \times 60 \times 1} = \sqrt{\frac{32}{2}}; x = 0.50 \text{ g}$$

35. Answer (A)

Hint & Sol. : Correct order of dipole moment $H_2O > NH_3 > NF_3$

36. Answer (C)

Hint & Sol. : Compounds (I) and (II) have non-zero dipole moment because the resultant of all the bond dipole moments do not got cancelled.

PART - III (MATHEMATICS)

37. Answer (B, D) Hint: Use condition for common root. **Sol.**: $(a_1b_2 - a_2b_1)(b_1c_2 - b_2c_1) = (a_1c_2 - a_2c_1)^2$ \Rightarrow 3(-2 λ) = (- λ)² \Rightarrow $\lambda = 0. - 6$ 38. Answer (B, C) Hint: Use properties. **Sol.**: \therefore 1 \notin A \cup (B \cap {1, 2, 3}) \Rightarrow 1 \notin A and 1 \notin B \cap {1, 2, 3} \Rightarrow 1 \notin A and 1 \notin B \Rightarrow 1 \notin A \cup B \Rightarrow 1 \in (A \cup B)' \therefore 4 \notin B \cap {1, 2, 3} and 5 \notin B \cap {1, 2, 3} So, the smallest possible set $A = \{4, 5\}$ Also, smallest possible set $B = \phi$ (when $A = \{2, 3, ..., A \}$ 4, 5})

39. Answer (A, D)

Hint : Range of f(x) is $\left[-\frac{1}{5}, \frac{1}{3}\right]$. **Sol.**: Domain of f(x) is R as $x^2 + x + 4 \neq 0$. Let $y = \frac{x+1}{y^2 + y + 4} = yx^2 + x(y-1) + (4y-1) = 0$ $\therefore x \in R, (y-1)^2 - 4y(4y-1) \ge 0$ $\Rightarrow 15v^2 - 2v - 1 \le 0$ $y \in \left[-\frac{1}{5}, \frac{1}{3}\right]$ 40. Answer (B, D) **Hint :** Put z = x + iy and solve for x and y. **Sol.**: Let z = x + iy $x + iy + 1 + i = \sqrt{x^2 + y^2}$ $\Rightarrow (x+1) + i(y+1) = \sqrt{x^2 + y^2}$ \Rightarrow y+1=0 and x+1 = $\sqrt{x^2 + y^2}$ \Rightarrow y = -1 and x = 0 So. z = -i41. Answer (B, C, D) **Hint** : Put x - 2 = t**Sol.**: Let x - 2 = t $\Rightarrow (t+1)^4 + (t-1)^4 = k$ $\Rightarrow t^4 + 6t^2 + 1 = \frac{\kappa}{2}$

$$\Rightarrow (t^2 + 3)^2 = 8 + \frac{k}{2}$$
$$\Rightarrow t^2 = -3 \pm \sqrt{8 + \frac{k}{2}} \qquad \dots (i)$$

When $t^2 > 0 \Rightarrow$ Two distinct real values of x

 $t^2 < 0 \Rightarrow$ Two imaginary values of x.

From (i) at least one value of ℓ^2 is negative, while other value may be positive if k > 2.

42. Answer (A, C)

Hint : Form an equation whose roots are $\frac{\alpha_i}{1+\alpha_i}$,

where i = 1, 2, 3, 4.

Sol.: $x^4 - 7x + 1 = 0$ has roots $\alpha_1, \alpha_2, \alpha_3$ and α_4 .

Let
$$y = \frac{x}{1+x} \Rightarrow x = \frac{y}{1-y}$$
$$\left(\frac{y}{1-y}\right)^4 - 7\left(\frac{y}{1-y}\right) + 1 = 0$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

Test - 1A (Paper-1) (Code-F)_(Hints & Solutions)

$$\Rightarrow y^{4} - 7y(1 - y)^{3} + (1 - y)^{4} = 0 \qquad (4)$$

$$\Rightarrow 9y^{4} - 25y^{3} + 27y^{2} - 11y + 1 = 0 \qquad ((1)$$
The roots of equation (i) are $\frac{\alpha_{i}}{1 + \alpha_{i}}$; $i = 1, 2, 3, 4$

$$\sum_{i=1}^{4} \frac{\alpha_{i}}{1 + \alpha_{i}} = \text{Sum of roots of } (i) = \frac{25}{9}$$

$$\prod_{i=1}^{4} \frac{\alpha_{i}}{1 + \alpha_{i}} = \text{Product of roots of } (i) = \frac{1}{9}$$
43. Answer (07)
Hint: $f(x) = 3 + 2(\tan^{2}x + \cot^{2}x)$
Sol:: $f(x) = \sin^{2}x + \cos^{2}x + \tan^{2}x + \cot^{2}x + \sec^{2}x + \csc^{2}x + \csc^{2}x + \csc^{2}x + \csc^{2}x + \cot^{2}x)$

$$\Rightarrow f(x) = 3 + 2(\tan^{2}x + \cot^{2}x)$$

$$\Rightarrow f(x) = 7 + 2(\tan x - \cot x)^{2}$$

$$\therefore \text{ Minimum value of } f(x) = 7$$
44. Answer (01)
Hint: $x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$
Sol:: $\log_{\sqrt{3}}(\sin x) \le \log_{\sqrt{3}}(\cos x)$

$$\Rightarrow \sin x \ge \cos x \operatorname{also } \sin x > 0 \cap \cos x > 0$$

$$\Rightarrow x \in \left[2n\pi + \frac{\pi}{4}, 2n\pi + \frac{\pi}{2}\right]$$

$$\therefore x \text{ is an integer, then $x = 1$ only.
45. Answer (04)
Hint: Put log₂3 = *a* to simplify X and use $(\sqrt{3} - 1)^{2} = 2(2 - \sqrt{3})$ to simplify Y.
Sol.:
$$X = (4 + a)(5 + a) - (3 + a)(6 + a) = 2$$

$$Y = \frac{1 + \log_{2}(2 - \sqrt{3})}{\log_{2}(\sqrt{3} - 1)} = \frac{\log_{2}(4 - 2\sqrt{3})}{\log_{2}(\sqrt{3} - 1)} = 2$$
46. Answer (24)
Hint: $(A \times B \times B) \cap (A \times A \times B) = A \times (A \cap B) \times B$
Sol: $1 \text{ If } (x, y, z) \in (A \times B \times B) \cap (A \times A \times B), \text{ then } x \in A, y \in A \text{ and } y \in B, z \in B$
Possible number of values of $z = 4$

$$\therefore n((A \times B \times B) \cap (A \times A \times B)) = 24$$$$

7. Answer (12) Hint : $\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)$ Sol. : $\arg(z) = \arg(\sqrt{i}) - \arg(\sqrt{3} + i)$ $= \frac{1}{2}\arg(i) - \frac{\pi}{6}$ $= \frac{\pi}{4} - \frac{\pi}{6}$ $= \frac{\pi}{12}$ 8. Answer (11) Hint : Find the range of both trigonometric functions. Sol. : $\therefore 2k + 1 \in \left[-\sqrt{193}, \sqrt{193}\right] \dots(i)$ Also, $2k = 4\sec^2 y + \csc^2 y$ $2k = 5 + 4\tan^2 y + \frac{1}{\tan^2 y}$

tan² y

$$2 \ k \in [9, \infty]$$
 ...(ii)
From (i) and (ii),
 $k = 5 \text{ or } 6$

Hint:
$$\tan C = -\tan(A+B) = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1-\tan^2\left(\frac{A+B}{2}\right)}$$

Sol.: :: $C = \pi - (A + B)$

$$\Rightarrow \tan C = -\tan(A + B)$$
$$\Rightarrow \tan C = -\frac{2\tan\left(\frac{A+B}{2}\right)}{1-\tan^2\left(\frac{A+B}{2}\right)}$$

Now,
$$\tan\left(\frac{A+B}{2}\right) = \frac{\tan\frac{A}{2} + \tan\frac{B}{2}}{1 - \tan\frac{A}{2} \cdot \tan\frac{B}{2}}$$

8

$$= \frac{16}{63}$$

$$\cos C = \frac{63}{65}$$

Aakash Educational Services Limited - Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 Ph.011-47623456

50. Answer (15)
Hint : Use
$$\tan\theta \cdot \tan(60^\circ - \theta) \cdot \tan(60^\circ + \theta) = \tan 3\theta$$

Sol. : $\tan 4^\circ \cdot \tan 8^\circ \cdot \tan 12^\circ \dots \tan 88^\circ$
= $(\tan 4^\circ \cdot \tan 56^\circ \cdot \tan 64^\circ)(\tan 8^\circ \cdot \tan 52^\circ \cdot \tan 68^\circ)\dots$
 $(\tan 28^\circ \cdot \tan 32^\circ \cdot \tan 88^\circ) \cdot \tan 60^\circ$
= $(\tan 12^\circ \cdot \tan 24^\circ \cdot \tan 36^\circ \cdot \tan 48^\circ \cdot \tan 60^\circ \cdot \tan 72^\circ$.
 $\tan 84^\circ) \sqrt{3}$
= $3[(\tan 12^\circ \cdot \tan 48^\circ \cdot \tan 72^\circ)(\tan 24^\circ \cdot \tan 36^\circ \cdot \tan 84^\circ)]$
= $3\tan 36^\circ \cdot \tan 72^\circ$
= $3 \cdot \frac{\sin 36^\circ \cdot \cos 18^\circ}{\cos 36^\circ \cdot \sin 18^\circ}$
= $3 \left[\frac{\sqrt{10 - 2\sqrt{5}} \cdot \sqrt{10 + 2\sqrt{5}}}{(\sqrt{5} + 1)(\sqrt{5} - 1)} \right]$
= $3 \left[\frac{\sqrt{100 - 20}}{4} \right]$

₌ 3√5

51. Answer (C)

Hint : $e^x = \sin x$; draw the graphs of LHS and RHS

Sol.: $\therefore e^x = \sin x$

From the graph, there are two points of intersection.

52. Answer (C) Hint: Draw graphs of LHS and RHS.

From the graph; we get 4 solutions.

53. Answer (A)

Hint : Put $x = \sin\theta \Rightarrow \sin 3\theta = \frac{1}{\sqrt{2}}$

Sol.: Let
$$x = \sin \theta$$

$$\Rightarrow$$
 sin3 θ = $\frac{1}{\sqrt{2}}$ = sin45°

So, possible value of θ is 15°, then

$$x = \sin 15^\circ = \frac{\sqrt{3} - 1}{2\sqrt{2}}$$

54. Answer (D)

Hint: Put
$$x = \sin\theta \Rightarrow \sin2\theta = \frac{\sqrt{10-2\sqrt{5}}}{4}$$

Sol.: Let
$$x = \sin\theta$$

$$\Rightarrow \sin 2\theta = \frac{\sqrt{10 - 2\sqrt{5}}}{4}$$

$$\Rightarrow$$
 sin2 θ = sin36°

So, possible value of θ is 18°, then

$$x = \sin 18^\circ = \frac{\sqrt{5} - 1}{4}$$

