Medical |IIT-JEE | Foundations

Time : $\mathbf{3}$ Hrs. Regional Mathematical Olympiad (RMO)-2019
Oct. 20, 2019

Instruction:

1. Calculators (in any form) and protractors are not allowed.
2. Rulers and compasses are allowed.
3. Answer all the questions.
4. All questions carry equal marks. Maximum marks: 102.
5. Answer to each question should start on a new page. Clearly indicate the question number.
6. Suppose x is a nonzero real number such that both x^{5} and $20 x+\frac{19}{x}$ are rational numbers. Prove that x is a rational number.
7. Let $A B C$ be a triangle with circumcircle Ω and let G be the centroid of triangle $A B C$. Extend $A G, B G$ and $C G$ to meet the circle Ω again in A_{1}, B_{1} and C_{1}, respectively. Suppose $\angle B A C=\angle A_{1} B_{1} C_{1}, \angle A B C=$ $\angle A_{1} C_{1} B_{1}$ and $\angle A C B=\angle B_{1} A_{1} C_{1}$. Prove that $A B C$ and $A_{1} B_{1} C_{1}$ are equilateral triangles.
8. Let a, b, c be positive real numbers such that $a+b+c=1$. Prove that

$$
\frac{a}{a^{2}+b^{3}+c^{3}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+a^{3}+b^{3}} \leq \frac{1}{5 a b c} .
$$

4. Consider the following 3×2 array formed by using the numbers $1,2,3,4,5,6$:
$\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32}\end{array}\right)=\left(\begin{array}{ll}1 & 6 \\ 2 & 5 \\ 3 & 4\end{array}\right)$

Observe that all row sums are equal, but the sum of the squares is not the same for each row. Extend the above array to a $2 \times k$ array $\left(a_{i j}\right) 3 \times k$ for a suitable k, adding more columns, using the numbers $7,8,9$, ..., $3 k$ such that
$\sum_{j=1}^{k} a_{1 j}=\sum_{j=1}^{k} a_{2 j}=\sum_{j=1}^{k} a_{3 j}$ and $\sum_{j=1}^{k}\left(a_{1 j}\right)^{2}=\sum_{j=1}^{k}\left(a_{2 j}\right)^{2}=\sum_{j=1}^{k}\left(a_{3 j}\right)^{2}$.
5. In an acute angled triangle $A B C$, let H be the orthocenter, and let D, E, F be the feet of altitudes from A, B, C to the opposite sides, respectively. Let L, M, N be midpoints of segments $A H, E F, B C$, respectively. Let X, Y be feet of altitudes from L, N on to the line $D F$. Prove that $X M$ is perpendicular to $M Y$.
6. Suppose 91 distinct positive integers greater than 1 are given such that there are at least 456 pairs among them which are relatively prime. Show that one can find four integers a, b, c, d among them such that $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(c, d)=\operatorname{gcd}(d, a)=1$.

Medical |IIT-JEE | Foundations
(Divisions of Aakash Educational Services Limited)
Regd. Office : Aakash Tower, 8, Pusa Road, New Delhi-110005. Ph.: 011-47623456

Regional Mathematical Olympiad (RMO)-2019

Instruction:

1. Calculators (in any form) and protractors are not allowed.
2. Rulers and compasses are allowed.
3. Answer all the questions.
4. All questions carry equal marks. Maximum marks: 102.
5. Answer to each question should start on a new page. Clearly indicate the question number.
6. Let $20 x+\frac{19}{x}=a$ where $a \in Q$
$\Rightarrow \quad 20 x^{2}=a x-19$
Now, $x^{5} \in Q$
$\Rightarrow \quad x^{2}, x^{2}, x \in Q$
$\Rightarrow\left(\frac{a x-19}{20}\right)^{2} \cdot x \in Q$
$\Rightarrow \quad \frac{1}{400}\left[a^{2} x^{2}-38 a x+361\right] x \in Q$
$\Rightarrow \quad a^{2} x^{2}-38 a x+361 \in Q$
$\Rightarrow \quad x\left[\frac{a^{3}}{20}-38 a\right]-\underset{\text { rational number }}{\frac{19}{20} a^{2}} \in Q$
$\Rightarrow \quad x[\underbrace{\frac{a^{3}}{20}-38 a}_{\text {rational number }}] \in Q$
$\Rightarrow \quad x \in Q$
7. Refer to diagram,

$\triangle A B C \cong \triangle A_{1} B_{1} C_{1}$
$\angle A=\angle B_{1}, \angle B=\angle C_{1}$ and $\angle C=\angle A_{1}$
$\Rightarrow \quad \beta_{1}=\beta_{2}=\beta_{3}$
So, $\angle A_{1} B_{1} C=\beta_{1}=\beta_{2}=\triangle A A_{1} B_{1}$
Hence $A A_{1} \| B_{1} C$
In $\triangle B B_{1} C$;
$A_{1} G \| B_{1} C$ and $A_{1} G$ bisects $B C$, So, $A G$ also bisects $B B_{1}$. Similarly, G be the mid-point of $A A_{1}$.
$\therefore \quad$ Centre is the only point inside a circle that bisects more than one chord.
So, G be the centre of circle Ω, hence $\triangle A B C$ will be equilateral, so as $\Delta A_{1} B_{1} C_{1}$.
8. $\because a+b+c=1$

$$
\begin{aligned}
& \Rightarrow \quad a^{2}(a+b+c)=a^{2} \\
& \Rightarrow \quad a^{2}+b^{3}+c^{3}=a^{3}+b^{3}+c^{3}+a^{2} b+a^{2} c
\end{aligned}
$$

Now, $\frac{a^{3}+b^{3}+c^{3}+a^{2} b+a^{2} c}{5} \geq\left(a^{7} \cdot b^{4} \cdot c^{4}\right)^{\frac{1}{5}}$ (A.M. - G.M. Inequality)

$$
\Rightarrow \quad \frac{a}{a^{2}+b^{3}+c^{3}} \leq \frac{1}{5\left(a^{2} b^{4} c^{4}\right)^{\frac{1}{5}}}
$$

So, $\frac{a}{a^{2}+b^{3}+c^{2}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+a^{3}+b^{3}} \leq \frac{1}{5}\left[\frac{1}{\left(a^{2} b^{4} c^{4}\right)^{\frac{1}{5}}}+\frac{1}{\left(b^{2} c^{4} a^{4}\right)^{\frac{1}{5}}}+\frac{1}{\left(c^{2} a^{4} b^{4}\right)^{\frac{1}{5}}}\right]$
$\Rightarrow \quad \frac{a}{a^{2}+b^{3}+c^{3}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+a^{3}+b^{3}} \leq \frac{1}{5 a b c}\left[a^{3 / 5} b^{1 / 5} c^{1 / 5}+b^{3 / 5} c^{1 / 5} a^{1 / 5}+c^{3 / 5} a^{1 / 5} b^{1 / 5}\right]$

WLOG, let $a \geq b \geq c$, so, $a^{1 / 5} \geq b^{1 / 5} \geq c^{1 / 5}$ and $a^{3 / 5} \geq b^{3 / 5} \geq c^{3 / 5}($ as $a, b, c \in(0,1))$

Using rearrangement inequality, the sorted product is greatest among all permutations of product.
So, $a^{\frac{3}{5}} \cdot b^{\frac{1}{5}} \cdot c^{\frac{1}{5}}+b^{\frac{3}{5}} \cdot c^{\frac{1}{5}} \cdot a^{\frac{1}{5}}+c^{\frac{3}{5}} \cdot a^{\frac{3}{5}} \cdot b^{\frac{1}{5}} \leq a^{\frac{3}{5}} \cdot a^{\frac{1}{5}} \cdot a^{\frac{1}{5}}+b^{\frac{3}{5}} \cdot b^{\frac{1}{5}} \cdot b^{\frac{1}{5}}+c^{\frac{3}{5}} \cdot c^{\frac{1}{5}} \cdot c^{\frac{1}{5}}$

$$
\begin{equation*}
\Rightarrow \quad a^{\frac{3}{5}} \cdot b^{\frac{1}{5}} \cdot c^{\frac{1}{5}}+b^{\frac{3}{5}} \cdot c^{\frac{1}{5}} \cdot a^{\frac{1}{5}}+c^{\frac{3}{5}} \cdot a^{\frac{1}{5}} \cdot b^{\frac{1}{5}} \leq a+b+c=1 \tag{i}
\end{equation*}
$$

From (i) and (ii)

$$
\frac{a}{a^{2}+b^{3}+c^{3}}+\frac{b}{b^{2}+c^{3}+a^{3}}+\frac{c}{c^{2}+a^{3}+b^{3}} \leq \frac{1}{5 a b c}
$$

4. Consider the $3 \times k$ array as

$$
\left(\begin{array}{lll}
1 & 6 & ---- \\
2 & 5 & --- \\
3 & 4 & ---
\end{array}\right)_{3 \times k}
$$

Sum of squares of each row $=\frac{1}{3}\left[1^{2}+2^{2}+3^{2}+\ldots+(3 k)^{2}\right]$
$=\frac{k(3 k+1)(6 k+1)}{2 \times 3}$
As, $3 \times 3 k+1$ and $3 \times 6 k+1$
So, k should be divisible by 3 , but $k \neq 3$ because first two columns are already decided here, so if we put 7, 8,9 in third column in any order, the sum of each row will be different. Therefore the least possible value of k will be 6 and after that $9,12,15, \ldots$ are the possible values of k.

We are going to form the required array when $k=6$. So, integers, $1,2,3, \ldots ., 18$ will be available in the array. We will denote the sum of elements of $\mathrm{i}^{\text {th }}$ row as R_{i} and sum of squares of elements of $\mathrm{i}^{\text {th }}$ row as Si. As give 3×2 array suggests that
$S_{1}=a^{2}+(a+5)^{2}=a^{2}+10 a+25=\lambda_{a}+25$
$S_{2}=(a+1)^{2}+(a+4)^{2}=a^{2}+10 a+17=\lambda_{a}+17$
And $S_{3}=(a+2)^{2}+(a+3)^{2}=a^{2}+10 a+13=\lambda_{a}+13$
Here, $a=1$
So, we can write the expression of similar kind for b
$b^{2}+(b+5)^{2}=\lambda_{b}+25 ;(b+1)^{2}+(b+4)^{2}=\lambda_{b}+17$ and $(b+2)^{2}+(b+3)^{2}=\lambda_{b}+13$ for $b=7$
Till now integers from 7 to 12 are covered.
Again, $c^{2}+(c+5)^{2}=\lambda_{c}+25$
$(c+1)^{2}+(c+4)^{2}=\lambda_{c}+17$
And $(c+2)^{2}+(c+3)^{2}=\lambda_{c}+13$ for $c=13$

Here in each set of three relations sum of elements is fixed as $a+5, b+5$ and $c+5$ respectively.
Now, we will add these relations in such a way that sum of squares of each row will contain $\lambda_{a}+\lambda_{b}+\lambda_{c}$ $+(25+17+13)$.

So, the possible array will be
$\left(\begin{array}{llllll}1 & 6 & 8 & 11 & 15 & 16 \\ 2 & 5 & 9 & 10 & 13 & 18 \\ 3 & 4 & 7 & 12 & 14 & 17\end{array}\right)$ or $\left(\begin{array}{llllll}1 & 6 & 9 & 10 & 14 & 17 \\ 2 & 5 & 7 & 12 & 15 & 16 \\ 3 & 4 & 8 & 11 & 13 & 18\end{array}\right)$
5.

A circle having diameter $B C$ passes through E and F. AlsoAEHF is a cycle quadrilateral having $A H$ as diameter. So, EF is the common chord of two above mentioned circles which will be perpndicularily bisected by line joining their centres (which is $L N$). SoL, M and N are collinear. Now, we claim that $\triangle L F N$ and $\triangle X M Y$ are similar, because $\angle M X Y=\angle F L N(\because X L M F$ is cyclic quadrilateral) and $\angle X Y M=$ $\angle L N F(\because M F N Y$ is cyclic quadrilateral) hence third angle of the two triangles will also be the same $\angle X M Y$ $=\angle L F N=90^{\circ}(\because L N$ is the diameter of nine point circle passing through $F)$
$\Rightarrow \quad X M \perp M Y$
6. Let $x_{1}, x_{2}, x_{3} \ldots, x_{91}$ are 91 integers greater than one. Assume $A x_{i}$ be a set of integers which are coprime with x_{i} out of given 91 integers.
$A x_{i}=\{\alpha, \beta, \gamma, \ldots\}$ where $\operatorname{gcd}\left(x_{i}, \alpha\right)=\operatorname{gcd}\left(x_{i}, \beta\right)=\operatorname{gcd}\left(x_{i}, \gamma\right)=\ldots=1$
let $n\left(A x_{i}\right)=y_{i}$

So, $\frac{y_{1}+y_{2}+y_{3}+\ldots+y_{91}}{2} \geq 456$
$\Rightarrow \sum y_{i} \geq 912$
Now we consider their exist no four integers a, b, c, d such that
$\operatorname{gcd}\left(a_{1} b\right)=\operatorname{gcd}(b, c)=\operatorname{gcd}(c, d)=\operatorname{gcd}(a, d)=1$

This is only possible if no two sets out of $A x_{i}$'s have atleast two elements in common. Because if we assume that sets $A x_{1}$ and $A x_{2}$ have two elements α and β in common, that means $\operatorname{gcd}\left(x_{1}, \alpha\right)=\operatorname{gcd}\left(\alpha, x_{2}\right)=\operatorname{gcd}\left(x_{2}, \beta\right)=\operatorname{gcd}\left(\beta, x_{1}\right)=1$ which is against our assumption.

So, if we calculate the number of ordered pairs, that can be formed from each of the sets $A x_{i}$, no pair will be repeated and total number of such ordered pairs will be less that or equals to ${ }^{91} C_{2}$
${ }^{y_{1}} C_{2}+{ }^{y_{2}} C_{2}+\ldots+{ }^{y_{91}} C_{2} \leq{ }^{91} C_{2}$
$\Rightarrow \quad \sum_{i=1}^{91} y_{i}\left(y_{i}-1\right) \leq 90 \times 91$
$\Rightarrow \quad \sum_{i=1}^{91} y_{i}{ }^{2}-\sum_{i=1}^{91} y_{i} \leq 90 \times 91$
$\Rightarrow \frac{\left(\sum_{i=1}^{91} y_{i}\right)^{2}}{91}-\left(\sum_{i=1}^{91} y_{i}\right) \leq 90 \times 91$
$\Rightarrow\left(\sum_{i=1}^{91}\left(y_{i}\right)\right)^{2}-91 \sum_{i=1}^{91} y_{i} \leq 90 \times 91^{2}=745290$
From (1) $\because \sum_{i=1}^{91} y_{i} \leq 912$
So, $\left(\sum_{i=1}^{91} y_{i}\right)^{2}-91\left(\sum_{i=1}^{91} y_{i}\right) \geq 912(912-91)$
$\Rightarrow\left(\sum_{i=1}^{91} y_{i}\right)^{2}-91\left(\sum_{i=1}^{91} y_{i}\right) \geq 748752$
As (ii) and (iii) are opposing each other, so our assumption is wrong.
Hence, there exist atleast four integers a, b, c, d such that
$\operatorname{gcd}(a, b)=\operatorname{gcd}(b, c)=\operatorname{gcd}(c, d)=\operatorname{gcd}(d, a)=1$

