All India Aakash Test Series for JEE (Main)-2024

TEST - 1

Test Date : 08/10/2023

ANSWERS

PHYSICS

1. (4)
2. (4)
3. (4)
4. (3)
5. (3)
6. (1)
7. (1)
8. (2)
9. (1)
10. (1)
11. (1)
12. (4)
13. (1)
14. (3)
15. (3)
16. (4)
17. (2)
18. (1)
19. (3)
20. (3)
21. (22.00)
22. (01.50)
23. (04.00)
24. (02.00)
25. (24.00)
26. (12.00)
27. (13.50)
28. (06.00)
29. (04.00)
30. (00.25)

CHEMISTRY
31. (4)
32. (1)
33. (2)
34. (1)
35. (3)
36. (4)
37. (1)
38. (2)
39. (1)
40. (1)
41. (2)
42. (4)
43. (3)
44. (4)
45. (3)
46. (4)
47. (4)
48. (3)
49. (4)
50. (4)
51. (03.00)
52. (05.00)
53. (04.00)
54. (07.00)
55. (01.00)
56. (10.31)
57. (01.00)
58. (03.00)
59. (30.60)
60. (01.00)

MATHEMATICS

61. (1)
62. (2)
63. (3)
64. (3)
65. (1)
66. (2)
67. (4)
68. (1)
69. (3)
70. (1)
71. (3)
72. (1)
73. (1)
74. (2)
75. (2)
76. (3)
77. (1)
78. (3)
79. (2)
80. (3)
81. (05.00)
82. (01.00)
83. (01.00)
84. (05.00)
85. (96.00)
86. (04.00)
87. (01.00)
88. (08.00)
89. (13.00)
90. (00.00)

PART - A (PHYSICS)

1. Answer (4)

Hint : Bernoulli's theorem
Sol. : As cross-sectional areas of both the tubes A and C are same and tube is horizontal, hence according to equation of continuity, $v_{A}=$ v_{c} and therefore, according to Bernoulli's equation: $P+\frac{1}{2} \rho v^{2}=$ constant
$P_{A}=P_{C}$
i.e., height of liquid is same in both the tubes A^{\prime} and C^{\prime}.
2. Answer (4)

Hint : Theoretical
Sol. : Theoretical
3. Answer (4)

Hint : Bernoulli theorem
Sol. : $P_{0}=P+\frac{1}{2} \rho v^{2}$
$4.5 \times 10^{5}=4 \times 10^{5}+\frac{1}{2}\left(10^{3}\right) v^{2} \Rightarrow v=10 \mathrm{~m} / \mathrm{s}$
4. Answer (3)

Hint : $u=\frac{1}{2}$ (stress) $\times($ strain $)$
Sol. : $u=\frac{1}{2}$ (stress) $\times($ strain $)$
5. Answer (3)

Hint : Shear strain $=\frac{\text { Shear Stress }}{\text { Shear Modulus }}$
Sol. : Shear strain $=\frac{\text { Shear Stress }}{\text { Shear Modulus }}$
$=\frac{10 \times 10^{3} \times 10^{2}}{2 \times 10^{11}}$
$=5 \times 10^{-6}$
6. Answer (1)

Hint : Use formula of capillary rise
Sol. : $T(2 \pi r) \cos \theta=\rho g h\left(\pi r^{2}\right)$
$\Delta P=\rho g h=\left(\frac{2 T}{r}\right) \cos \theta$
7. Answer (1)

Hint : $\omega=\sqrt{\frac{3 g}{l}}$
Sol. : $\omega=\sqrt{\frac{3 g}{l}}$
$\left(a_{m}\right)_{x}=\omega^{2} \times \frac{1}{2}$
$=\frac{3 g}{2}$
8. Answer (2)

Hint : $l_{\text {sphere }}=\frac{2}{5} \rho($ Vol. $) R^{2}$
Sol. : Radius of sphere $=\frac{L}{2}$
$\frac{M^{\prime}}{M}=\frac{4 \pi}{3}\left(\frac{L}{2}\right)^{3} \times \frac{1}{L^{3}} \Rightarrow M^{\prime}=\frac{\pi M}{6}$
$I=\frac{2}{5}\left(\frac{\pi M}{6}\right)\left(\frac{L}{2}\right)^{2}=\frac{M L^{2} \pi}{60}$
9. Answer (1)

Hint: $J=$ Area under curve
Sol. : $J=$ Area under curve
$J=\frac{1}{2}(2+4)(50)=150$
10. Answer (1)

Hint : Apply uniformly accelerated motion equation
Sol. : $v_{0}=a t, t=\frac{v_{0}}{a}$
$S_{Q}=\frac{v_{0}^{2}}{2 a}, S_{P}=v_{0}\left(\frac{v_{0}}{a}\right)$
$\frac{S_{P}}{S_{Q}}=2$
11. Answer (1)

Hint : $F=\left[\mathrm{MLT}^{-2}\right]$
Sol. : We know
$\therefore \mathrm{M}=\left[\mathrm{FL}^{-1} \mathrm{~T}^{2}\right]$
12. Answer (4)

Hint : $a=\sqrt{a_{t}^{2}+a_{r}^{2}}$
Sol.: $v^{2}=2 a(2 \pi R) \Rightarrow \frac{v^{2}}{R}=a_{r}=4 \pi a$
$a=\sqrt{a_{t}^{2}+a_{r}^{2}}=a \sqrt{1+16 \pi^{2}}$
13. Answer (1)

Hint : $V_{\text {avg }}=\frac{\text { Total distance }}{\text { Total time }}$
Sol. : $\frac{S}{2}=\frac{1}{2} a t^{2} \Rightarrow t=\sqrt{\frac{S}{a}}=10$
$v_{\mathrm{avg}}=\frac{100}{20}=5 \mathrm{~m} / \mathrm{s}$
14. Answer (3)

Hint : $F_{\text {net }}=m g \sin \theta-f$
Sol.: $a=\frac{m g \sin \theta-\mu m g \cos \theta}{m}$
$a=g(\sin \theta-\mu \cos \theta)$
15. Answer (3)

Hint : $T_{1} \cos 53^{\circ}=T_{2} \cos 37^{\circ}$
Sol. : $T_{1} \cos 53^{\circ}=T_{2} \cos 37^{\circ}$
$\frac{T_{1}}{T_{2}}=\frac{4}{3}$
16. Answer (4)

Hint : Total energy = 0
Sol. : For any particle moving around the Earth, if it is just capable to go out of the gravitational pull,
T.E. = K.E. + P.E = 0
17. Answer (2)

Hint : W-E theorem
Sol. : $W_{F}+W_{m g}=0$
$\Rightarrow \quad W_{F}=-W_{m g}=m g R$
18. Answer (1)

Hint : K.E. $\frac{P^{2}}{2 m}$
Sol. : $\vec{P}_{1}+\vec{P}_{2}=0$ or $P_{1}=P_{2}$
$\frac{K_{P}}{K_{Q}}=\frac{P^{2} / 2 m_{P}}{P^{2} / 2 m_{Q}}=\frac{m_{Q}}{m_{P}}$
19. Answer (3)

Hint : P.E. $=-\int \vec{F} . d \vec{r}$
Sol. : $U_{r}=-\int_{\infty}^{r} \vec{F}_{c} \cdot d \vec{r}=\int_{\infty}^{r} \frac{K}{r^{2}} d r=\frac{-K}{r}$

$$
\because \quad \frac{K}{r^{2}}=\frac{m v^{2}}{r} \Rightarrow K=\frac{1}{2} m v^{2}=\frac{K}{2 r}
$$

Total energy $=U+K=\frac{-K}{2 r}$
20. Answer (3)

Hint : $e=\frac{V_{\text {sep. }}}{V_{\text {ap. }}}$
Sol. :

$\frac{1}{2}\left(\frac{1}{2} m u^{2}\right)=\frac{1}{2} M v^{2} \Rightarrow v=\frac{u}{2}$
$e=\frac{v}{u}=\frac{1}{2}$
21. Answer (22.00)

Hint : Error in case of Power
Sol.: $\frac{\Delta y}{y} \times 100 \%=4\left(\frac{\Delta a}{a} \times 100\right)+$

$$
2\left(\frac{\Delta b}{b} \times 100\right)+\frac{1}{3}\left(\frac{\Delta c}{c} \times 100\right)+\frac{4}{3}\left(\frac{\Delta d}{d} \times 100\right)
$$

$=4(2)+2(3)+\frac{1}{3}(4)+\frac{4}{3}(5)=22 \%$
22. Answer (01.50)

Hint : $P=\int F . d V$
Sol. : $P=m a \cdot v \Rightarrow P=m v \frac{d v}{d t}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{v^{2}}{2}=\frac{P}{m} t \Rightarrow v=c t^{1 / 2} \Rightarrow d s=c t^{1 / 2} d t \\
& \Rightarrow \quad s=c^{\prime} t^{3 / 2}
\end{aligned}
$$

3/14

23. Answer (04.00)

Hint : $R=\frac{u^{2} \sin 2 \theta}{g}$
Sol. : $T=\frac{2 u \sin \theta}{g} \Rightarrow 2 T=\frac{2(2 u) \sin \theta}{g}$
$\Rightarrow \quad R^{\prime}=(2 u)^{2} \frac{\sin 2 \theta}{g}=4 R$
24. Answer (02.00)

Hint : $T=\left(\sum m \cdot a\right)$
Sol. : $T_{P Q}=\frac{F}{3 m} \times 2 m=\frac{2 F}{3}$
$T_{Q R}=\frac{F}{3 m} \times m=\frac{F}{3}$
25. Answer (24.00)

Hint : W = Δ K.E
Sol. : $E=\frac{1}{2} m(5)^{2}-0$
$\therefore \quad \frac{1}{2} m(25)^{2}-\frac{1}{2} m(5)^{2}=\frac{1}{2} m(5)^{2}[25-1]=24 E$
26. Answer (12.00)

Hint : M.I. $=\frac{M h^{2}}{6}$
Sol. : M.I. $=\frac{M h^{2}}{6}=\frac{M\left(\ell \cos 45^{\circ}\right)^{2}}{6}=\frac{M \ell^{2}}{12}$
27. Answer (13.50)

Hint : $W=\int f d x=$ Area enclosed by force vs displacement graph
Sol. : $W=\int f d x=$ Area enclosed by force vs displacement graph
$W=3 \times 3+\frac{1}{2} \times 3 \times 3$
$=9+\frac{9}{2}=13.5 \mathrm{~J}$
28. Answer (06.00)

Hint : $I=\frac{G M}{r^{2}}$
Sol. : $\frac{G M_{\text {moon }}}{(n R)^{2}}=\frac{G M_{\text {Earth }}}{(60 R-n R)^{2}}$
$\Rightarrow \quad \frac{1}{(n R)^{2}}=\frac{81}{(60 R-n R)^{2}}$
$\Rightarrow 9 n=60-n \Rightarrow n=6$
29. Answer (04.00)

Hint : Breaking strength $=$ tension in the wire $=$ $m \omega^{2} r$
Sol. : Breaking strength $=$ tension in the wire $=$ $m \omega^{2} r$
$4.8 \times 10^{7} \times 10^{-6}=10 \times 0.3 \times \omega^{2} \Rightarrow \omega=4 \mathrm{rad} / \mathrm{s}$
30. Answer (00.25)

Hint : $v=\sqrt{2 g d}$ where d is the depth of water in barrel.
Sol. : $v=\sqrt{2 g d}$ where d is the depth of water in barrel.

$$
\begin{aligned}
& \because \quad t=\sqrt{\frac{2 h}{g}} \\
& \therefore \quad R=v t \Rightarrow d=\frac{R^{2}}{4 h}
\end{aligned}
$$

PART - B (CHEMISTRY)

31. Answer (4)

Hint : SO_{4}^{2-} is common ion
Sol. : The solution is saturated for SrSO_{4} and BaSO_{4}

$$
\begin{aligned}
& \frac{\left[\mathrm{Sr}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}{\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]}=\frac{7.5 \times 10^{-7}}{1.5 \times 10^{-10}}=5 \times 10^{3}=\frac{\mathrm{y}}{\mathrm{x}} \\
& \mathrm{BaSO}_{4}(\mathrm{~S}) \rightleftharpoons \underset{\mathrm{x}}{\rightleftharpoons} \mathrm{Ba}^{2+}+\underset{(\mathrm{x}+\mathrm{y})}{\mathrm{SO}_{4}^{2-}}
\end{aligned}
$$

where y is the $\left[\mathrm{SO}_{4}^{2-}\right]$ from SrSO_{4}
$\left[\mathrm{Ba}^{2+}\right]=x$ can be calculated as follows.
$x(x+y)=1.5 \times 10^{-10}$
$x^{2}+x y=1.5 \times 10^{-10}$
$x^{2}+5 \times 10^{3} x^{2}=1.5 \times 10^{-10} \quad\left(\frac{y}{x}=5 \times 10^{3}\right)$
$x=\left(3 \times 10^{-14}\right)^{\frac{1}{2}}$
$=1.7 \times 10^{-7}$

4/14

32. Answer (1)

Hint : \wedge_{m} of a given electrolyte depends on concentration and temperature.

Sol. : $\Lambda^{\circ} \mathrm{m}$ of strong electrolyte can be calculated by graphical method.
33. Answer (2)

Hint: CrO_{4}^{2-} is common ion
Sol. : In the $0.1 \mathrm{M} \mathrm{Na}_{2} \mathrm{CrO}_{4}$ solution, the solubility of PbCrO_{4} will be equal to $\left[\mathrm{Pb}^{2+}\right]$

$$
\left[\mathrm{Pb}^{2+}\right]=\frac{\mathrm{K}_{\mathrm{sp}}}{\left[\mathrm{CrO}_{4}^{2-}\right]}=\frac{10^{-16} \mathrm{M}^{2}}{0.1 \mathrm{M}}=10^{-15} \mathrm{M}
$$

34. Answer (1)

Hint : molecular velocity depends on temperature

Sol.: All molecular speed is directly proportional to square root of temperature.
35. Answer (3)

Hint : Graphical method for finding order

Sol.:

Graph-(i): $\ln [$ Reactant $]$ vs time is linear Hence, $1^{\text {st }}$ order
Graph-(ii) : [Reactant] vs time is linear Hence, zero order
36. Answer (4)

Hint : Surfactants have both lyophobic and lyophilic parts.

Sol. : The formation of micelle takes place above Kraft temperature and $\Delta \mathrm{S}$ system is positive.
37. Answer (1)

Hint : Gram atoms of C in 11800 g of hydrocarbon will be equal to the gram atoms of C in 49980 g of urea.

Sol. : On applying P.O.A.C. for carbon.
$\frac{11800 \times n}{12 n+2 n+2}=\frac{49980 \times 1}{60}$
On calculation $\mathrm{n} \simeq 12$
Hence alkane is $\mathrm{C}_{12} \mathrm{H}_{26}$.
38. Answer (2)

Hint : $\Delta \mathrm{H}^{\circ}-\mathrm{T} \Delta \mathrm{S}^{\circ} \leq 0$ for the reaction to be spontaneous.

Sol. : $\mathrm{Fe}_{3} \mathrm{O}_{4}+2 \mathrm{C} \rightarrow 3 \mathrm{Fe}+2 \mathrm{CO}_{2}$

$$
\begin{aligned}
& \Delta \mathrm{H}^{\circ}=320 \mathrm{~kJ}^{\Delta \mathrm{S}^{\circ}=360 \mathrm{JK}^{-1}}
\end{aligned}
$$

$\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}=0$
$T=\frac{320000}{360}=889 \mathrm{~K}$
39. Answer (1)

Hint: For ideal gas PV $=n R T$
Sol. : At final state $n T=\frac{P V}{R} \Rightarrow$ equal for both flasks

Let n_{1} moles in 300 K and n_{2} moles in 400 K flask
$\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{4}{3} \& \mathrm{n}_{1}+\mathrm{n}_{2}=0.7$
$\mathrm{n}_{2}=0.3$
40. Answer (1)

Hint : Higher order reactions (>3) are rare.
Sol. : Higher order greater than 3 for reaction is rare because there is low probability of simultaneous collision of all the reacting species.
41. Answer (2)

Hint : Ore $\mathrm{Ag}_{2} \mathrm{~S}$ consists of $\mathrm{Ag}_{2} \mathrm{~S}$ and impurities.
Sol. : Let us consider 100 g sample has m gram $\mathrm{Ag}_{2} \mathrm{~S}$.

On applying POAC for Ag
$\frac{2 m}{248}=\frac{1.08 \times 1}{108}, m=1.24$
Hence $\%$ of $\mathrm{Ag}_{2} \mathrm{~S}=\frac{1.24 \times 100}{100}=1.24$

5/14

42. Answer (4)

Hint :

Sol. : I_{3}^{-}is $s p^{3} d$ hybridised with one lone pairs at each equatorial position and each surrounding iodine (I) atom has three lone pairs.
I_{3}^{+}is $s p^{3}$ hybridised with two lone pairs at central atom while the each surrounding iodine (I) atom has three lone pairs.
43. Answer (3)

Hint : The finding of black body radiation could not be explained satisfactorily on the basis of wave theory.

Sol. : At a given temperature, intensity of radiation emitted increases with the increase of wavelength and then starts decreasing with further increase of wavelengths.
44. Answer (4)

Hint: $\left[\mathrm{H}^{+}\right]$of the given HCl solution $=0.1 \mathrm{M}$
Sol. : Let x litre of water be added to 1 litre of the given HCl solution to get $\mathrm{pH}=2$ or $\left[\mathrm{H}^{+}\right]$ $=10^{-2} \mathrm{M}$
$\frac{0.1}{1+x}=0.01 \Rightarrow x=9$ litre
45. Answer (3)

Hint : First ionisation enthalpy of N is higher than that of O.
Sol. : Due to half filled subshell the electron affinity of N is lower than that of C and ionisation energy is higher than that of O . The oxygen has electron affinity lower than that of Po.
46. Answer (4)

Hint : NaCl has $6: 6, \mathrm{CsCl}$ has $8: 8, \mathrm{CaF}_{2}$ has $8: 4$, $\mathrm{Li}_{2} \mathrm{O}$ has $4: 8$ coordination number ratio.
Sol. : NaCl has FCC of either ion and second ion is present in octahedral voids.

CsCl has simple cube of either ion and other ion is present at body center.
CaF_{2} has FCC of $\mathrm{Ca}^{2+} \& \mathrm{~F}^{-}$in tetrahedral voids.
$\mathrm{Li}_{2} \mathrm{O}$ has FCC of $\mathrm{O}^{2-} \& \mathrm{Li}^{+}$in tetrahedral voids.
47. Answer (4)

Hint : MW. Of fluorine is less than that of chlorine.

Sol. : Each waer molecule forms 4 hydrogen bonds, while each HF molecule forms 2 Hydrogen bonds.
HN_{3} has intermolecular hydrogen bond that is absent in $\mathrm{CH}_{3} \mathrm{~N}_{3}$.

The intermolecular hydrogen bond of NH_{3} is weaker.
48. Answer (3)

Hint : $3 \mathrm{Fe}+2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$ is thermochemical equation of formation of $\mathrm{Fe}_{3} \mathrm{O}_{4}$
Sol. : (i) $3 \mathrm{Fe}+2 \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4} \Delta \mathrm{H}_{1}=-1120 \mathrm{~kJ}$
(ii) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}_{2}=-400 \mathrm{~kJ}$
(iii) $\mathrm{Fe}_{3} \mathrm{O}_{4}+2 \mathrm{C} \rightarrow 3 \mathrm{Fe}+2 \mathrm{CO}_{2}$

$$
\Delta \mathrm{H}_{3}=2 \Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}
$$

Since chemical equation (iii) is obtained by
$2 \times$ equation (ii) - equation (i)
$\Delta \mathrm{H}_{3}=2 \Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}$
$=-800+1120 \mathrm{~kJ}$
$=320 \mathrm{~kJ}$
49. Answer (4)

Hint: Bond order of O_{2} is 2.0
Sol. : Higher is the bond order, shorter is the bond length. Bond order of O_{2}^{2+} is 3.0
50. Answer (4)

Hint: $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}$
Sol. : In iodimetry, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ reduces I_{2} to I^{-}and get oxidised to $\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$.
51. Answer (03.00)

Hint : The value of n for cell reaction is 4 .
Sol. : $\mathrm{E}=\mathrm{E}^{\circ}-\frac{0.06}{\mathrm{n}} \log \frac{\left[\mathrm{Fe}^{2+}\right]^{2}}{\mathrm{p}_{\mathrm{O}_{2}}\left[\mathrm{H}^{+}\right]^{4}}$
$\frac{0.06}{4} \log \frac{10^{-4}}{0.01\left[\mathrm{H}^{+}\right]^{4}}=0.15$
$\log \frac{10^{-2}}{\left[\mathrm{H}^{+}\right]^{4}}=10$
$\frac{10^{-2}}{\left[\mathrm{H}^{+}\right]^{4}}=10^{10}$
$\left[\mathrm{H}^{+}\right]=10^{-3}$
$\mathrm{pH}=3$
52. Answer (05.00)

Hint : The pH of 0.1 M solution of weak acid HX is 3 .

Sol. : $\mathrm{pH}=-\log \sqrt{\mathrm{cK}_{\mathrm{a}}}$
$10^{-3}=\sqrt{\mathrm{cK}_{\mathrm{a}}}$
$K_{a}=\frac{10^{-6}}{0.1}=10^{-5}$
$\mathrm{pK}_{\mathrm{a}}=5$
53. Answer (04.00)

Hint: $K E=\frac{1}{2} m v^{2}$
Sol. : KE of emitted photoelectron
$K E=$ Energy of incident photon-work function
$\frac{\mathrm{KE}_{2}}{\mathrm{KE}_{1}}=\frac{4}{1}$ as $\mathrm{KE}=\frac{1}{2} m v^{2}$
$\mathrm{KE}_{2}=\frac{\mathrm{hc}}{\lambda_{2}}-\mathrm{w}$
$4 \mathrm{KE}_{1}=\frac{\mathrm{hc}}{\lambda_{2}}-\mathrm{w}=5-\mathrm{w}$
$K E_{1}=\frac{h c}{\lambda_{1}}-w=4-w$
$w=\frac{11}{3}=3.66$
Nearest integer $=4$
54. Answer (07.00)

Hint : The angular node of $d_{z^{2}}$ is conical node.
Sol. : For unielectronic atomic species like Li^{2+} the third shell has nine orbitals of equal energy in which s has zero angular node, p has one angular node and d has two angular nodes. The angular node of p and d except $d_{z^{2}}$ is present in the form of planar node.
55. Answer (01.00)

Hint : Complex is $\mathrm{Ba}_{3}\left[\mathrm{Co}(\mathrm{CN})_{5}\right]_{2}$
$\mathrm{C}_{1} \mathrm{i}_{1}=\mathrm{C}_{2} \mathrm{i}_{2}$
Sol. : $0.05 \times \mathrm{i}=0.15$
$i=3$
$=1+\alpha(n-1)$
$\mathrm{n}=5$
The complex is $\mathrm{Ba}_{3}\left[\mathrm{Co}(\mathrm{CN})_{5}\right]_{2}$
Osmotic pressure $=\mathrm{ic}$ RT

$$
\begin{aligned}
& =5 \times 0.01 \times 0.082 \times 300 \mathrm{~atm} \\
& =1.23 \mathrm{~atm}
\end{aligned}
$$

56. Answer (10.31)

Hint : $\mathrm{K}_{\mathrm{P}}=\frac{\mathrm{p}_{\mathrm{NO}_{2}}^{4} p_{\mathrm{H}_{2} \mathrm{O}}^{2} p_{\mathrm{O}_{2}}}{\mathrm{p}_{\mathrm{HNO}_{3}}^{4}}$
Sol. : $K_{\mathrm{P}}=\frac{\mathrm{p}_{\mathrm{NO}_{2}}^{4} \mathrm{p}_{\mathrm{H}_{2} \mathrm{O}}^{2} \mathrm{p}_{\mathrm{O}_{2}}}{\mathrm{p}_{\mathrm{HNO}_{3}}^{4}}$
$=\frac{\left(4 \mathrm{p}_{\mathrm{O}_{2}}\right)^{4}\left(2 \mathrm{p}_{\mathrm{O}_{2}}\right)^{2} \mathrm{p}_{\mathrm{o}_{2}}}{\left(\mathrm{P}-7 \mathrm{p}_{\mathrm{O}_{2}}\right)^{4}}$
$=\frac{1024 p_{\mathrm{O}_{2}}^{7}}{\left(\mathrm{P}-7 \mathrm{p}_{\mathrm{O}_{2}}\right)^{4}}$
$x+n=1031$
$\frac{x+n}{100}=10.31$
57. Answer (01.00)

Hint : $\int d S=\int \frac{d Q}{T}$
Sol. :
$\underset{(\text { at } 273 \mathrm{~K})}{100 \mathrm{~g} \text { water }} \xrightarrow{\Delta \mathrm{s}_{1}} \underset{(\text { at } 373 \mathrm{~K})}{100 \mathrm{~g} \text { water }} \xrightarrow{\Delta s_{2}} \underset{\text { (at } 373 \mathrm{~K} \text {) }}{\text { Vapour }}$
$\Delta \mathrm{S}_{1}=2.303 \times 100 \times 4.2 \log \frac{373}{273}=125.74 \mathrm{JK}^{-1}$
$\Delta \mathrm{S}_{2}=\frac{100 \times 2257}{373}=605 \mathrm{JK}^{-1}$
$\Delta \mathrm{S}_{1}+\Delta \mathrm{S}_{2}=730.74$
$\simeq 731 \mathrm{~J} \mathrm{~K}^{-1}=0.731 \mathrm{~kJ} \mathrm{~K}^{-1}$ nearest integer is $1 \mathrm{~kJ} \mathrm{~K}^{-1}$
58. Answer (03.00)

Hint : KMnO_{4} has +7 oxidation state of Mn .
Sol. : In neutral medium, $\mathrm{H}_{2} \mathrm{O}_{2}$ reduces KMnO_{4} to MnO_{2}.
59. Answer (30.60)

Hint : KE $=-$ Total mechanical energy
Sol. : KE = -Total energy

$$
\begin{aligned}
& =\frac{13.6 \mathrm{eV} \times 9}{4} \\
& =30.6 \mathrm{eV}
\end{aligned}
$$

60. Answer (01.00)

Hint : One equivalent of $\mathrm{H}_{3} \mathrm{PO}_{4}$ consists of $\frac{1}{3}$ mol of $\mathrm{H}_{3} \mathrm{PO}_{4}$.

Sol. : Moles of $\mathrm{H}_{3} \mathrm{PO}_{4}$ in its one equivalent will be $\frac{1}{3}$.

The basicity of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is 3 , hence moles of H^{+} obtained will be equal to $\frac{1}{3} \times 3$ and so the number of H^{+}obtained will be N_{A}.

PART - C (MATHEMATICS)

61. Answer (1)

Hint : Rationalise $\frac{z-1}{2 z+i}$

Sol.

$\frac{x+i y-1}{2(x+i y)+1}=\frac{(x-1)+i y}{2 x+i(2 y+1)} \times \frac{2 x-i(2 y+1)}{2 x-i(2 y+1)}$
$=\frac{[(x-1)+i y] \times[2 x-i(2 y+1)]}{4 x^{2}+(2 y+1)^{2}}$
$=\frac{2 x(x-1)+y(2 y+1)+i[2 x y-(2 y+1)(x-1)]}{4 x^{2}+(2 y+1)^{2}}$
$=\frac{2 x^{2}+2 y^{2}-2 x+y}{4 x^{2}+(2 y+1)^{2}}+\frac{i(2 y-x+1)}{4 x^{2}+(2 y-1)^{2}}$
$\operatorname{Re}\left(\frac{z-1}{2 z+i}\right)=\frac{2 x^{2}+2 y^{2}-2 x+y}{4 x^{2}+(2 y+1)^{2}}=1$
$\Rightarrow 2 x^{2}+2 y^{2}-2 x+y=4 x^{2}+(2 y+1)^{2}$
$\Rightarrow 2 x^{2}+2 y^{2}+3 y+2 x+1=0$
$\Rightarrow\left(x+\frac{1}{2}\right)^{2}+\left(y+\frac{3}{4}\right)^{2}=\left(\frac{\sqrt{5}}{4}\right)^{2}$
Centre $=\left(-\frac{1}{2},-\frac{3}{4}\right)$
62. Answer (2)

Hint: Algebra of complex number
Sol. : $B=-A^{-1} B A$
$\Rightarrow A B=-B A$
$\Rightarrow A B+B A=0$
Now, $(A+B)^{2}=(A+B)(A+B)$

$$
\begin{aligned}
& =A^{2}+B A+A B+B^{2} \\
& =A^{2}+B^{2}
\end{aligned}
$$

63. Answer (3)

Hint: Special series
Sol. : $S=1+\frac{1}{2!}+\frac{1 \cdot 3}{4!}+\frac{1 \cdot 3 \cdot 5}{6!}+\ldots \infty$

$$
\begin{aligned}
\therefore T_{n} & =\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{(2 n)!} \times \frac{2 \cdot 4 \ldots 2 n}{2 \cdot 4 \ldots 2 n} \\
& =\frac{(2 n)}{(2 n)!2^{n}(n)!}=\frac{1}{2^{n} n!}
\end{aligned}
$$

$\therefore S=1+\sum T_{n}=1+\frac{1}{2(1)!}+\frac{1}{2^{2}(2!)}+\ldots . \infty$

$$
=e^{\frac{1}{2}}=\sqrt{e}
$$

64. Answer (3)

Hint : Geometry of complex Numbers.
Sol. : Let $A=-z, B=i z$ and $C=z-i z$
Let $z=x+i y$
$|A-B|,|B-C|$ and $|C-A|$ forms an isosceles triangle with $A C=B C$

Area $=\frac{1}{2} \times A B \times P C$
P is the mid-point of $A B=\frac{A+B}{2}=\frac{-z+i z}{2}$
Now, $P C=\left|z-i z-\frac{(-z+i z)}{2}\right|=\left|\frac{3 z-3 i z}{2}\right|$
$A B=|i z-(-z)|=|z+i z|$

Area of triangle $=\frac{1}{2} \times \frac{3|z-i z|}{2} \times|z+i z|$
$=\frac{3}{4} \times\left|z^{2}+z^{2}\right|=\frac{3}{4} \times 2|z|^{2}=\frac{3}{2}|z|^{2}$
65. Answer (1)

Hint : Cramer's rule
Sol. : $x+k y-2 z=0$
$2 x+y-3 z=0$
$4 x+2 y-k z=0$
For non-trivial solution
$\left|\begin{array}{lll}1 & k & -2 \\ 2 & 1 & -3 \\ 4 & 2 & -k\end{array}\right|=0$
$1(-k+6)-k(-2 k+12)-2(4-4)=0$
$-k+6+2 k^{2}-12 k=0$
$2 k^{2}-13 k+6=0$
$(k-6)(2 k-1)=0 \Rightarrow k=6, \frac{1}{2}$
$\Rightarrow k=6\left\{\because \frac{1}{2} \notin z\right\}$
66. Answer (2)

Hint : Principle of mathematical Induction.
Sol. : $P(n)=a^{n}+b^{n}$
$P(1)=a+b$, which is divisible by $a+b$
Now, Let $P(K)=a^{K}+b^{K}$ is divisible by $a+b$, where K is an odd integer
$\Rightarrow a^{K}+b^{K}=(a+b) f(a, b)$
Now, $P(K+2)=a^{K+2}+b^{K+2}$
$=a^{2}\left[(a+b) f(a, b)-b^{\kappa}\right]+b^{K+2}$
$=a^{2} f(a, b)(a+b)-a^{2} b^{\kappa}+b^{\kappa+2} \quad($ from (1))
$=a^{2} f(a, b)(a+b)-b^{\kappa}\left(a^{2}-b^{2}\right)$
$=(a+b)\left[a^{2} f(a, b)-b^{K}(a-b)\right]$, which is divisible by $(a+b)$
$\because a^{n}+b^{n}$ is divisible by $(a+b)$ for all odd positive integral n.
67. Answer (4)

Hint : Polar form is $r(\cos \theta+i \sin \theta)$
Sol. : $\left(\mu^{25}\right)^{3}=i^{75}=i^{72+3}=i^{4 \times 18+3}=\left(i^{4}\right)^{18} \cdot \beta$

$$
=-i
$$

Now polar form of $\left(R^{25}\right)^{3}=r(\cos \theta+i \sin \theta)$

$$
\begin{aligned}
& =1\left(\cos \left(-\frac{\pi}{2}\right)+i \sin \left(-\frac{\pi}{2}\right)\right) \\
& =\cos \frac{\pi}{2}-i \sin \frac{\pi}{2}
\end{aligned}
$$

68. Answer (1)

Hint : Proportion of modulus of complex number.

Sol. : $\left|\frac{z_{1}-3 z_{2}}{3-z_{1} \bar{z}_{2}}\right|=1$
$\left|z_{1}-3 z_{2}\right|=\left|3-z_{1} \bar{z}_{2}\right|$
Squaring,

$$
\begin{aligned}
& \Rightarrow\left|z_{1}-3 z_{2}\right|^{2}=\left|3-z_{1} \bar{z}_{2}\right|^{2} \\
& \Rightarrow\left(z_{1}-3 z_{2}\right)\left(\bar{z}_{1}-3 \bar{z}_{2}\right)=\left(3-z_{1} \bar{z}_{2}\right)\left(3-\bar{z}_{1} z_{2}\right) \\
& \Rightarrow\left|z_{1}\right|^{2}-3 z_{1} \bar{z}_{2}-3 z_{2} \bar{z}_{1}+9\left|z_{2}\right|^{2} \\
& \quad=9-3 \bar{z}_{1} z_{2}-3 z_{1} \bar{z}_{2}+\left|z_{1}\right|^{2}\left|z_{2}\right|^{2} \\
& \Rightarrow\left|z_{1}\right|^{2}-\left|z_{1}\right|^{2}\left|z_{2}\right|^{2}-9+9\left|z_{2}\right|^{2}=0 \\
& \Rightarrow\left|z_{1}\right|^{2}\left(1-\left|z_{2}\right|^{2}\right)-9\left(1-\left|z_{2}\right|^{2}\right)=0 \\
& \Rightarrow\left(1-\left|z_{2}\right|^{2}\right)\left(\left|z_{1}\right|^{2}-9\right)=0 \\
& \Rightarrow\left|z_{2}\right|=1
\end{aligned}
$$

69. Answer (3)

Hint : Product of Matrix
Sol. : $C^{-1}\left(A B^{-1}\right)^{-1}\left(C A^{-1}\right)^{-1} C^{2}$
$=C^{-1}\left(B^{-1}\right)^{-1} A^{-1}\left(A^{-1}\right)^{-1} C^{-1} C^{2}$
$=C^{-1} B A^{-1} A C^{-1} C^{2}$
$=C^{-1} B I C$
$=C^{-1} B C$
70. Answer (1)

Hint : Euler form is $z=r e^{i \theta}$
Sol. : $\frac{2+6 \sqrt{3} i}{5+\sqrt{3} i}$
$=\frac{(2+6 \sqrt{3} i)(5-\sqrt{3} i)}{(5+\sqrt{3} i)(5-\sqrt{3} i)}$
$=\frac{10-2 \sqrt{3} i+30 \sqrt{3} i-6 \times 3 \times i^{2}}{25-3 i^{2}}$
$=\frac{10+28 \sqrt{3} i+18}{25+3}=\frac{28(1+\sqrt{3} i)}{28}=1+\sqrt{3} i$
$r=|z|=\sqrt{(1)^{2}+(\sqrt{3})^{2}}=2$
$\theta=\tan ^{-1}\left(\frac{\sqrt{3}}{1}\right)=\frac{\pi}{3}$
Euler form $=2 e^{\frac{i \pi}{3}}$
71. Answer (3)

Hint : Combination
Sol. : Let x be the number of apples being selected
y be the number of mangoes being selected
z be the number of bananas being selected
Then, $x=0,1,2,3,4,5$

$$
\begin{aligned}
& y=0,1,2,3,4 \\
& z=0,1,2,3
\end{aligned}
$$

Total number of triplets (x, y, z) is $6 \times 5 \times 4=120$
Exclude ($0,0,0$)
\therefore Number of combinations $=120-1=119$
72. Answer (1)

Hint: Variable circle is $\left|z-z_{0}\right|=r$
Sol. : Let the variable circle be $\left|z-z_{0}\right|=r$

Then, $\left|z_{0}-z_{1}\right|=a+r$ and $\left|z_{0}-z_{2}\right|=b+r$
Eliminating r, we get
$\left|z_{0}-z_{1}\right|-\left|z_{0}-z_{2}\right|=a-b$
\because Locus is hyperbola.
73. Answer (1)

Hint : Calculate sum of square of terms in AP.
Sol. : $a_{K}+a_{K-2}=2 a_{K-1}$
Thus the terms are in A.P.
\because Sum of square of the terms in A.P. is
$a^{2}+(a+d)^{2}+\ldots(a+10 d)^{2}$
$\Rightarrow 11 a^{2}+110 a d+385 d^{2}=900$
$\Rightarrow a^{2}+10 a d+35 d^{2}=90$
$\Rightarrow 35 d^{2}+150 d+225-90=0$
$7 d^{2}+30 d+27=0$
$\Rightarrow(7 d+9)(d+3)=0$
$d=-3, \frac{-9}{7}$
$\because a_{2}<13.5, d=-3$
Thus, the average of 11 terms of an A.P.
$=a 6=15+(6-1)(-3)=0$
74. Answer (2)

Hint : Geometry of complex number.
Sol. $\because|C A|=|C B|$ and $\angle A C B=90^{\circ}$
$\therefore\left(z_{2}-z_{3}\right)= \pm i\left(z_{1}-z_{3}\right)$
$\Rightarrow\left(z_{2}-z_{3}\right)^{2}=-\left(z_{1}-z_{3}\right)^{2}$
$\Rightarrow z_{2}^{2}+z_{3}^{2}-2 z_{1} z_{2}=-z_{1}^{2}-z_{3}^{2}-2 z_{1} z_{2}$
$\Rightarrow z_{1}^{2}+z_{2}^{2}-2 z_{1} z_{2}=2\left(z_{1} z_{2}-z_{1} z_{3}-z_{2} z_{3}+z_{2}^{2}\right)$
$\Rightarrow\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$
$\therefore K=2$
75. Answer (2)

Hint : Principle of Mathematical Induction.
Sol. : For $n=1$, we have
$49 n+16 n+\lambda=49+16+\lambda=65+\lambda=64+(\lambda+1)$
which is divisible by 64 if $\lambda=-1$
For $n=2$
$49 n+16 n+\lambda=49^{2}+2(16)+\lambda=2433+\lambda=$ $(64 \times 38)+(\lambda+1)$
which is divisible by 64 if $\lambda=-1$
$\because \lambda=-1$
76. Answer (3)

Hint : Use cosine rule $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$
Sol. : $\frac{1}{a+c}+\frac{1}{b+c}=\frac{3}{a+b+c}$
$\Rightarrow \frac{b+c+a+c}{(a+c)(b+c)}=\frac{3}{a+b+c}$
$\Rightarrow \frac{a+b+2 c}{(a+c)(b+c)}=\frac{3}{a+b+c}$
$\Rightarrow a^{2}+a b+a c+b a+b^{2}+1 b c+2 a c+2 c b+2 c^{2}$

$$
=3 a b+3 a c+3 b c+3 c^{2}
$$

$\Rightarrow a^{2}+b^{2}-c^{2}+2 a b+3 c a+3 c b$ $=3 a b+3 a c+3 b c$
$\Rightarrow a^{2}+b^{2}-c^{2}=a b$
$\Rightarrow \frac{a^{2}+b^{2}-c^{2}}{a b}=1$
$\Rightarrow \frac{a^{2}+b^{2}-c^{2}}{2 a b}=\frac{1}{2}$
$\Rightarrow \cos C=\frac{1}{2}$
$\Rightarrow C=60^{\circ}$
77. Answer (1)

Hint : Number divisible by 3 when sum of digits is multiple of 3 .

Sol. : \because A five digit number is formed by using digits $0,1,2,3,4 \& 5$ divisible by 3 i.e., only possible when sum of digits is multiple of 3 which gives two cases.

Case I: Using digits $0,1,2,4,5$ the number of ways $=4 \times 4 \times 3 \times 2 \times 1=96$
Case II: Using digits $1,2,3,4,5$ the number of ways $=5 \times 4 \times 3 \times 2 \times 1=120$
\therefore Total number formed $=120+96$

$$
=216
$$

78. Answer (3)

Hint : Height and distance.
Sol. :

Tower $O P=h$
In $\triangle A O P$
$\tan 45^{\circ}=\frac{O P}{O A}$
$O A=\frac{O P}{\tan 45^{\circ}}$
$O A=O P=h$
In $\triangle B O P$
$\tan 60^{\circ}=\frac{O P}{O B}$
$O B=\frac{h}{\sqrt{3}}$
In $\triangle A B C, A B=A C$
$A O \perp B C$
$(A O)^{2}+(B O)^{2}=(A B)^{2}$
$h^{2}+\frac{h^{2}}{3}=10000$
$\frac{4 h^{2}}{3}=10000 \Rightarrow h=50 \sqrt{3} \mathrm{~m}$
79. Answer (2)

Hint : Expand the matrix
Sol. : 1(40-40)-3(20-24)

$$
+(2 \lambda+2)(10-12)=0
$$

$\Rightarrow 12+(\lambda+1)(-4)=0$
$\lambda=3-1=2$
80. Answer (3)

Hint : Write general term
Sol. : $T_{r+1}={ }^{256} C_{r}(\sqrt{3})^{256-r}(\sqrt[8]{5})^{r}$
$\Rightarrow r$ is multiple of 8 .
$\Rightarrow r=0,8,16 \ldots$
$\Rightarrow 33$ terms
81. Answer (05.00)

Hint : If $\alpha \& \beta$ are roots quadratic equation then

$$
\begin{array}{r}
\alpha+\beta=\frac{-b}{a} \\
\alpha \beta=\frac{c}{a}
\end{array}
$$

Sol. : Let the roots be α and 2α

$$
\alpha+2 \alpha=\frac{-(3 a-1)}{a^{2}-5 a+3}
$$

$3 \alpha=\frac{-(3 a-1)}{a^{2}-5 a+3}$
$\alpha=\frac{-(3 a-1)}{3\left(a^{2}-5 a+3\right)}$
$\alpha(2 \alpha)=\frac{2}{a^{2}-5 a+3}$
$\alpha^{2}=\frac{1}{a^{2}-5 a+3}$
$\Rightarrow\left[\frac{-(3 a-1)}{3\left(a^{2}-5 a+3\right)}\right]^{2}=\frac{1}{a^{2}-5 a+3}$
$\Rightarrow \frac{(3 a-1)^{2}}{9\left(a^{2}-5 a+3\right)^{2}}=\frac{1}{a^{2}-5 a+3}$
$\Rightarrow 9 a^{2}+1-6 a=9\left(a^{2}-5 a+3\right)$
$\Rightarrow 9 a^{2}+1-6 a=9 a^{2}-45 a+27$
$\Rightarrow 39 a=26$
$\Rightarrow a=\frac{2}{3}$
$\lambda+\mu=2+3=5$
82. Answer (01.00)

Hint : Concept of concurrent lines.
Sol. : $x+a y+a=0$
$a\left(\frac{x}{a}+y+1\right)=0$
$b x+y+b=0$
$x+\frac{y}{b}+1=0$
$c x+c y+1=0$
$x+y+\frac{1}{c}=0$
Subtracting (i) from (iii) we get,
$x-\frac{x}{a}+\frac{1}{c}-1=0$
$\Rightarrow x=\frac{c-1}{a-1} \cdot \frac{a}{c}$

Subtracting (ii) from (iii), we get
$\Rightarrow y=\frac{c-1}{b-1} \cdot \frac{b}{c}$
Substituting values of $x \& y$ in (iii)
$\frac{a}{a-1}+\frac{b}{b-1}+\frac{c}{c-1}=1$
83. Answer (01.00)

Hint: Expansion of Determinant.
Sol. : $x^{4}+y^{4}+z^{4}=0$
Since $x, y, z \in R$
$\therefore x=y=z=0$
$\left|\begin{array}{ccc}1 & x y & y z \\ z x & 1 & x y \\ y x & z x & 1\end{array}\right|=\left|\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right|=1$
84. Answer (05.00)

Hint : $t_{n}=a m^{m-1}$
Sol. : Let the first three terms of G.P. be $\frac{a}{r}$,
$a, a r$
$\left(\frac{a}{r}\right)(a)(a r)=1000$
$a^{3}=1000$
$a=10$
Now, $T_{4}+T_{3}=60$
$a r+a r^{2}=60$
$r^{2}+r-6=0$
$\Rightarrow(r+3)(r-2)=0$
$\Rightarrow r=2$
$T_{7}=a r^{5}$

$$
=10(2)^{5}=320
$$

85. Answer (96.00)

Hint : Permutation
Sol. : Total ways in which MEDICAL letters can be arranged if $A E$ are taken as 1 unit is $6!\times 2!=1440$

Now, out of these words in which $A E I$ comes and $A E$ together are $5!\times 4=480$

Total ways $=1440-480=960$
$\Rightarrow 960$ ways
86. Answer (04.00)

Hint : $\tan x=1 \Rightarrow x=n x+\frac{\pi}{4}$
Sol. : $\tan x=1$
$\Rightarrow x=\frac{\pi}{4}, \frac{5 \pi}{4}, \frac{9 \pi}{4}, \frac{13 \pi}{4}$
87. Answer (01.00)

Hint : : Let α be the common root

$$
\frac{\alpha^{2}}{b_{1} c_{2}-b_{2} c_{1}}=\frac{\alpha}{a_{2} c_{1}-a_{1} c_{2}}=\frac{1}{a_{1} b_{2}-a_{2} b_{1}}
$$

Sol. Here, $a_{1}=1, b_{1}=b, c_{1}=-a$

$$
a_{2}=1, b_{2}=-a, c_{2}=b
$$

Now, $\frac{\alpha^{2}}{b^{2}-a^{2}}=\frac{\alpha}{-a-b}=\frac{1}{-a-b}$

$$
\begin{equation*}
\alpha^{2}=\frac{b^{2}-a^{2}}{-a-b} \tag{i}
\end{equation*}
$$

$\& \alpha=1$
$1=\frac{b^{2}-a^{2}}{-a-b}$
$a^{2}-b^{2}=a+b$
$(a-b)(a+b)=(a+b)$
$a-b=1$
88. Answer (08.00)

Hint : $y=a \sin x \pm b \cos x$
$y_{\text {max }}=\sqrt{a^{2}+b^{2}}$
$y_{\text {min }}=-\sqrt{a^{2}+b^{2}}$
Sol. : $|7 \cos x+5 \sin x| \leq \sqrt{7^{2}+5^{2}}$

$$
\begin{aligned}
& \Rightarrow-\sqrt{7^{2}+5^{2}} \leq(7 \cos x+5 \sin x) \leq \sqrt{7^{2}+5^{2}} \\
& \Rightarrow-8.6 \leq 2 K+1 \leq 8.6 \\
& \Rightarrow-4.8 \leq K \leq 3.8
\end{aligned}
$$

Integral values of K are -4, $-3,-2,-1,0,1,2,3$
Total 8 values
89. Answer (13.00)

Hint : Number of diagonal of a polygon of n
sides $=\frac{n(n-3)}{2}$
Sol. : If a polygon has n vertices then it will have n sides and for every vertices we can draw $n-3$ diagonals. So, total number of diagonals should be $n(n-3)$ but his will mean that we have counted a diagonal twice.

So total number of diagonals should be
$\frac{n(n-3)}{2}$
$\because \frac{n(n-3)}{2}=65$
$\therefore n=13$
90. Answer (00.00)

Hint : Properties of modulus of complex number.

Sol. : $\frac{3}{\left|z_{2}-z_{3}\right|}=\frac{4}{\left|z_{3}-z_{1}\right|}=\frac{5}{\left|z_{1}-z_{2}\right|}=K$
$\frac{9}{\left|z_{2}-z_{3}\right|^{2}}=\frac{16}{\left|z_{3}-z_{1}\right|^{2}}=\frac{25}{\left|z_{1}-z_{2}\right|^{2}}=K^{2}$
$\frac{9}{z_{2}-z_{3}}=K^{2}\left(\bar{z}_{2}-\bar{z}_{3}\right)$
$\frac{16}{z_{3}-z_{1}}=K^{2}\left(\bar{z}_{3}-\bar{z}_{1}\right) \& \frac{25}{z_{1}-z_{2}}=K^{2}\left(\bar{z}_{1}-\bar{z}_{2}\right)$
So, $\frac{9}{z_{2}-z_{3}}+\frac{16}{z_{3}-z_{1}}+\frac{25}{z_{1}-z_{2}}$
$=K^{2}\left(\bar{z}_{2}-\bar{z}_{3}-\bar{z}_{3}-\bar{z}_{1}+\bar{z}_{1}-\bar{z}_{2}\right)=0$

