All India Aakash Test Series for JEE (Advanced)-2024

TEST - 2A (Paper-1) - Code-C

Test Date: 05/11/2023

ANSWERS						
CHEMISTRY		MATH	MATHEMATICS		PHYSICS	
1.	(A, B, C)	19.	(C, D)	37.	(A, C)	
2.	(A, C, D)	20.	(A, B, C, D)	38.	(A, C, D)	
3.	(A, C, D)	21.	(B, C)	39.	(B, D)	
4.	(C, D)	22.	(B, C)	40.	(A, C, D)	
5.	(A, B)	23.	(A, B, D)	41.	(A, D)	
6.	(A, D)	24.	(A, C)	42.	(B, C, D)	
7.	(02)	25.	(06)	43.	(00)	
8.	(02)	26.	(02)	44.	(02)	
9.	(03)	27.	(06)	45.	(12)	
10.	(02)	28.	(01)	46.	(10)	
11.	(03)	29.	(02)	47.	(02)	
12.	(03)	30.	(04)	48.	(04)	
13.	(03)	31.	(03)	49.	(03)	
14.	(00)	32.	(05)	50.	(12)	
15.	(C)	33.	(B)	51.	(B)	
16.	(A)	34.	(D)	52.	(B)	
17.	(B)	35.	(B)	53.	(C)	
18.	(B)	36.	(B)	54.	(D)	

HINTS & SOLUTIONS

PART - I (CHEMISTRY)

1. Answer (A, B, C)

Hint: FeSO₄ on heating gives SO₂ and SO₃

Sol.: $2FeSO_4 \xrightarrow{\Delta} Fe_2O_3 + SO_2 + SO_3$

2. Answer (A, C, D)

Hint: Al is extracted by electrolytic reduction.

Sol.: Cu, Hg and Pb can be extracted by self reduction process.

3. Answer (A, C, D)

Hint: Galena (PbS)

Sol.: Bauxite – Al₂O₃. 2H₂O

Haematite - Fe₂O₃

Calamine – ZnCO₃

4. Answer (C, D)

Hint: Metals which are less reactive than copper may be present as anode mud.

Sol.: Anode mud in electrorefining of copper contains Ag and Au.

5. Answer (A, B)

Hint: AgF \rightarrow Soluble in water

Sol.: AgBr \rightarrow Pale yellow

AgCl \rightarrow White ppt.

AgI → Bright yellow

6. Answer (A, D)

Hint: Acidified potassium permanganate can oxidise ferrous and stannous ions.

Sol. : In Be²⁺ and NO $_3^-$, central atoms are present in their respective highest oxidation states.

7. Answer (02)

Hint: Ni is present in +2 oxidation state

Sol. : CI⁻ is a weak field ligand and hence pairing will not take place.

8. Answer (02)

Hint: Complex is of type [Ma₃b₃]

Sol. : Facial and Meridional isomers are possible for [Ma₃b₃]

9. Answer (03)

Hint: Complex of type [M(AA)₂a₂]

Sol.: Cis isomer is optically active

Cis forms - two isomers

Trans form - one isomers

10. Answer (02)

Hint: Mn2+ is pale pink in color

Sol.: $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$

11. Answer (03)

Hint: Molecular formula of chromite ore is $FeCr_2O_4$

Sol.: Chromite ore is FeO·Cr₂O₃

12. Answer (03)

Hint: Three nitrogen atoms, each having one lone pair of electrons.

Sol.: Diethylenetriamine is

13. Answer (03)

Hint: White precipitate obtained is

2, 4, 6-tribromophenol

Sol.:

14. Answer (00)

Hint: Tertiary butyl alcohol is obtained

Sol.:

15. Answer (C)

Hint: Acids which are stronger than carbonic acid (H₂CO₃)

Sol.: Only 2, 4, 6-trinitrophenol (Picric acid) will evolve CO₂ gas with aqueous NaHCO₃ due to high acidic nature.

16. Answer (A)

Hint: —CN group increases the acidity of phenol.

Sol.: When electronreleasing group like MeO— is present on m-position w.r.t. —OH group then it acts as —I effect group and increases the acidity. MeO— is good electron-releasing group in comparison to —Me. So, order of acidity becomes as follows

$$MeO \xrightarrow{\hspace{1cm}} OH < Me \xrightarrow{\hspace{1cm}} OH < \underbrace{\hspace{1cm}}_{MeO} OH < NC \xrightarrow{\hspace{1cm}} OH < NC \xrightarrow{\hspace$$

17. Answer (B)

Hint: N₂ is highly inert gas

Sol.: N₂ has the maximum leaving group ability

18. Answer (B)

Hint: Group having maximum leaving ability is least basic.

Sol.:
$${}^{\circ}_{O} = {}^{\circ}_{O} = {}^{\circ}_{C_4}F_9$$
 is having maximum

leaving ability.

PART - II (MATHEMATICS)

19. Answer (C, D)

Hint:
$$\lim_{n\to\infty} \tan\left(\frac{1}{n}\right) \ln\left(\frac{1}{n}\right) = 0 \Rightarrow f(x) = 1$$

Sol.:
$$\lim_{n\to\infty} \tan\left(\frac{1}{n}\right) \ln\left(\frac{1}{n}\right) = 0 \implies f(x) = 1$$

$$\Rightarrow \int \frac{dx}{\sin^{11/3} x \cos^{1/3} x} = \frac{-3}{8} (\tan x)^{-8/3}$$

$$-\frac{3}{2}(\tan x)^{-\frac{2}{3}}+C$$

$$\therefore g\left(\frac{\pi}{6}\right) = -\frac{21}{8} \times 3^{\frac{1}{3}}$$

$$\Rightarrow C = 0$$

$$g\left(\frac{\pi}{4}\right) = -\frac{15}{8}$$

20. Answer (A, B, C, D)

Hint:

$$f(x) = \int_{-2}^{x} |t+1| dt = -\int_{-2}^{-1} (t+1) dt + \int_{-1}^{x} (t+1) dt = \frac{1}{2} + \left(\frac{t^{2}}{2} + t\right)_{-1}^{x}$$
$$= \frac{x^{2}}{2} + x + 1 \text{ for } x \ge -1$$

Sol.

$$f(x) = \int_{-2}^{x} |t+1| dt = -\int_{-2}^{-1} (t+1) dt + \int_{-1}^{x} (t+1) dt = \frac{1}{2} + \left(\frac{t^2}{2} + t\right)_{-1}^{x}$$
$$= \frac{x^2}{2} + x + 1 \text{ for } x \ge -1$$

f(x) is a quadratic polynomial.

Therefore, f(x) is continuous as well as differentiable in (-1, 1).

Also f(x) is continuous as well as differentiable in [-1, 1].

21. Answer (B, C)

Hint::
$$f(x) = x^3 - x^2 + 100x + 1001$$

$$f'(x) = 3x^2 - 2x + 100 > 0 \ \forall x \in R$$

Sol.:
$$f(x) = x^3 - x^2 + 100x + 1001$$

$$f'(x) = 3x^2 - 2x + 100 > 0 \ \forall x \in R$$

Therefore, f(x) is increasing (strictly).

Therefore,
$$f\left(\frac{1}{1999}\right) > f\left(\frac{1}{2000}\right)$$

$$\Rightarrow f(x+1) > f(x-1)$$

22. Answer (B, C)

$$\mathbf{Hint}: f(-x) = -f(x)$$

Sol.:
$$f(x) = ax^3 + bx^2 + cx + d$$

Now,
$$f(x)$$
 is odd. Therefore,

$$f(-x) = -f(x)$$

$$\Rightarrow$$
 $-ax^3 - bx^2 - cx - d = ax^3 + bx^2 - cx + d$

It gives b = 0 = d

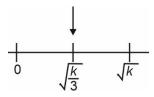
$$f(x) = ax^3 + cx = x(ax^2 + c)$$

Therefore, $f'(x) = 3ax^2 + c = 0$

Only when $x^2 = -\frac{c}{3a}$ is positive

Therefore, c and a are of different signs.

Let
$$-\frac{c}{a} = k$$
.



So, non-zero root of f(x) is $\pm \sqrt{k}$.

Also $\pm \sqrt{\frac{k}{3}}$ is closer to origin than $\pm \sqrt{k}$

23. Answer (A, B, D)

Hint:
$$F(x) = \int \frac{1}{4 - 3\cos^2 x + 5\sin^2 x} dx$$

= $\int \frac{1}{9 - 8\cos^2 x} dx$

Sol.:
$$F(x) = \int \frac{1}{4 - 3\cos^2 x + 5\sin^2 x} dx$$

= $\int \frac{1}{9 - 8\cos^2 x} dx$

$$= \int \frac{\sec^2 x}{9 \sec^2 x - 8} dx = \int \frac{\sec^2 x}{1 + 9 \tan^2 x} dx$$

$$= \frac{1}{3} \tan^{-1} (3 \tan x) + c$$

$$\Rightarrow g(x) = 3 \tan x$$

Therefore,
$$g\left(\frac{\pi}{4}\right) = 3$$

And
$$g'\left(\frac{\pi}{3}\right) = 12$$

24. Answer (A, C)

Hint:
$$I_n = \left(\frac{e^{-x}(\sin x)^n}{-1}\right)_0^x + n \int_0^x (\sin x)^{n-1} \cos x e^{-x} dx$$

$$= \int_0^x \left(-(\sin x)^n + (n-1)(1-\sin^2 x)(\sin x)\right)^{n-2} e^{-x} dx$$

$$= \frac{n(n-1)}{n^2 + 1} I_{n-2}$$

Sol.::
$$I_n = \left(\frac{e^{-x}(\sin x)^n}{-1}\right)_0^x + n\int_0^x (\sin x)^{n-1}\cos x e^{-x} dx$$

$$= \int_0^x \left(-(\sin x)^n + (n-1)(1-\sin^2 x)(\sin x)\right)^{n-2} e^{-x} dx$$

$$= \frac{n(n-1)}{n^2+1} I_{n-2}$$

Hence,
$$\frac{I_{10}}{I_8} = \frac{90}{101}$$

25. Answer (06)

Hint: f(x) can have point of inflection at points were f''(x) = 0.

Sol.: We have

$$f(x) = x^3 - 9x^2 + 200x - 10$$

That is,
$$f'(x) = 3x^2 - 18x + 200 > 0 \ \forall x \in R$$

$$f''(x) = 6x - 18$$

for point of inflection, f'(x) = 0

$$x = 3$$

$$\Rightarrow x_1 = 3$$

$$f'(x) = 3x^2 - 18x + 200$$

$$f''(x) = 6x - 18$$
,

$$f^{\prime\prime\prime}(x)=6$$

 \Rightarrow x = x₂ = 3 is point of local minima for f(x)

26. Answer (02)

Hint:
$$x = -1$$
 and $x = \frac{1}{3}$ are roots of $f'(x) = 0$.

Sol.:
$$x = -1$$
 and $x = \frac{1}{3}$ are roots of $f'(x) = 0$.

Therefore,
$$f'(x) = a(3x - 1)(x + 1)$$

= $a(3x^2 + 2x - 1)$

$$\Rightarrow f(x) = a(x^3 + x^2 - x + b)$$

$$f(-2) = 0$$

$$\Rightarrow b = 2$$

$$\Rightarrow f(x) = a(x^3 + x^2 - x + 2)$$

$$\int_{-1}^{1} f(x) dx = \frac{14}{3}$$

$$\Rightarrow \int_{1}^{1} a(x^3 + x^2 - x + 2) = \frac{14}{3}$$

$$\Rightarrow a \int_{-1}^{1} x^2 + 2 = \frac{14}{3}$$

$$\Rightarrow 2a\left(\frac{1}{3}+2\right)=\frac{14}{3}$$

$$\Rightarrow$$
 a = 1

Therefore, $f(x) = x^3 + x^2 - x + 2$

27. Answer (06)

$$Hint: g(x) = \frac{d}{dx} (f(x)f'(x))$$

Sol.:
$$g(x) = \frac{d}{dx}(f(x)f'(x))$$

To get the zero of g(x), we take function

$$h(x) = f(x) f'(x)$$

Between any two roots of h(x), there lies at least one root of h'(x) = 0. That is,

$$g(x) = 0$$

Now,
$$h(x) = 0$$
 and $f(x) = 0$

Or
$$f'(x) = 0$$

As f(x) = 0 has 4 minimum solutions and f'(x) = 0 has minimum 3 solutions, h(x) = 0 has minimum 7 solutions and h'(x) = g(x) = 0 has minimum 6 solutions.

28. Answer (01)

Hint:
$$f'(x) = e^{-(x^2+1)^2}$$
, $2x - e^{-(x^2)^2}$. $2x$

Sol.:
$$f'(x) = e^{-(x^2+1)^2}$$

$$e^{-(x^2+1)^2}$$
, $2x - e^{-(x^2)^2}$. $2x = 2xe^{-(x^4+2x^2+1)}\left(1 - e^{2x^2+1}\right)$
 $\Rightarrow f'(x) > 0, \ \forall x \in (-\infty, 0)$

29. Answer (02)

Hint:

$$\int_{0}^{\pi} f^{-1}(x) dx = \int_{t^{-1}(0)}^{t^{-1}(\pi)} tf'(t) dt = \left[tf(t) \right]_{t^{-1}(0)}^{t^{-1}(\pi)} - \int_{t^{-1}(0)}^{t^{-1}(\pi)} f(t) dt$$

Sol.:

$$\int_{0}^{\pi} f^{-1}(x) dx = \int_{r^{-1}(0)}^{r^{-1}(\pi)} tf'(t) dt = \left[tf(t) \right]_{r^{-1}(0)}^{r^{-1}(\pi)} - \int_{r^{-1}(0)}^{r^{-1}(\pi)} f(t) dt$$

$$f^{-1}(0) = 0$$

$$f^{-1}(\pi) = \pi$$

$$=\pi^2-\int\limits_0^\pi\bigl(t+\sin t\bigr)dt$$

$$= \pi^2 - \left(\frac{t^2}{2} - \cos t\right)^{\pi} = \pi^2 - \frac{\pi^2}{2} - 2 = \frac{\pi^2}{2} - 2$$

Therefore, k = 2.

30. Answer (04)

Hint:
$$f(x) = [x] + |1 - x|, -1 \le x \le 3$$

Sol.:
$$f(x) = [x] + |1 - x|, -1 \le x \le 3$$

$$=-x \text{ if } -1 \le x < 0$$

$$= 1 - x$$
 if $0 \le x < 1 = x$ if $1 \le x < 2$

$$= x + 1 \text{ if } 2 \le x < 3$$

$$= 5 \text{ if } x = 3$$

Clearly f is not continuous at x = 0, 1, 2 and 3

31. Answer (03)

$$Hint: f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Sol.:
$$f'(x) = \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}$$

$$\therefore f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{f\left(\frac{3x+3h}{3}\right) - f\left(\frac{3x+0}{3}\right)}{h}$$

$$= \lim_{h \to \infty} \frac{2 + f(3x) + f(3h)}{3} - \frac{2 + f(3x) + f(0)}{3}$$

$$= \lim_{h \to 0} \frac{f(3h) - f(0)}{3h - 0} = f'(0)$$

$$\Rightarrow f'(2) = f'(0) = 2$$

$$(:: f'(2) = 2)$$

$$\Rightarrow f'(x) = 2 \Rightarrow f(x) = 2x + c$$

Put
$$x = y = 0$$
 in

$$f\left(\frac{x+y}{3}\right) = \frac{2+f(x)+f(y)}{3}$$

$$\Rightarrow f(0) = 2$$

Now, from equation (i), f(0) = 0 + c = 2

$$\therefore c = 2$$

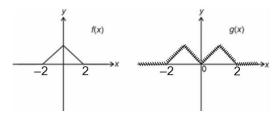
From equation (i), f(x) = 2x + 2

So, function g(x) = |2|x| - 1|, hence the points of non differentiability of g(x) are $x = \pm (1/2)$, 0.

32. Answer (05)

Hint: Plot the graph

Sol.:



33. Answer (B)

Hint: On differentiating a polynomial of n^{th} degree, we get another polynomial of (n-1) degrees.

Sol.: On differentiating a polynomial of n^{th} degree, we get another polynomial of (n-1) degrees.

So,

$$f(x) = \{f'(x)\}^2 \Rightarrow n = 2(n-1) \Rightarrow n = 2$$

34. Answer (D)

Hint: Let $f(x) = ax^2 + bx + c$

$$\Rightarrow f'(0) = b > 0$$

Sol.: Let $f(x) = ax^2 + bx + c$

$$\Rightarrow f'(0) = b > 0$$

Also, $f(x) = (f(x))^2$

$$\Rightarrow$$
 $ax^2 + bx + c = 4a^2x^2 + 4abx + b^2 \forall x$

Thus, $a = 4a^2$, b = 4ab and $c = b^2$

From which, we get $a = \frac{1}{4}$, since $(b \neq 0)$

Again,

$$\int_{0}^{1} f(x) dx = \frac{19}{12}$$

$$\Rightarrow \frac{a}{3} + \frac{b}{2} + c = \frac{19}{12}$$

Therefore,
$$\frac{b}{2} + b^2 = \frac{3}{2}$$

$$\Rightarrow b = 1$$

(since, (b > 0) and so c = 1)

Therefore,

$$f'(0) = b = 1$$

35. Answer (B)

Hint: Putting x = 9, y = 0 in the given equation of curve, we have

$$0 = 3a + 9b - \frac{1}{2} = \frac{a}{2 \times 3} + b$$

Sol.: Putting x = 9, y = 0 in the given equation of curve, we have

$$0 = 3a + 9b - \frac{1}{2} = \frac{a}{2 \times 3} + b$$

$$\Rightarrow a = -3b$$
 ...(1)

$$\frac{dy}{dx} = \frac{a}{2\sqrt{x}} + b$$

$$\frac{dy}{dx}\Big|_{(9,0)} = \frac{a}{6} + b = -\frac{1}{2}$$
 ...(2)

Using Eqs. (1) and (2), we get

$$b = -1 \text{ and } a = 3$$

Therefore,

$$v = 3\sqrt{x} - x$$

Point (1, 2) lies on curve as well as it is point of intersection of family of lines.

$$\frac{dy}{dx} = \frac{3}{2\sqrt{x}} - 1$$

$$\frac{dy}{dx}$$
 at $(1, 2)$ is $\frac{1}{2}$

$$y-2=\frac{1}{2}(x-1)$$

$$\Rightarrow x - 2y + 3 = 0$$

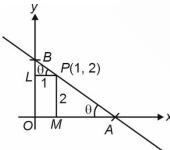
36. Answer (B)

Hint: $AB = AP + BP = 2\csc\theta + \sec\theta$

Sol. :
$$\sin\theta = \frac{2}{PA}$$

 $PA = 2 \csc\theta$

$$\cos\theta = \frac{1}{BP}$$



 $BP = \sec\theta$

$$AB = AP + BP = 2\csc\theta + \sec\theta$$

Therefore, minimum value of $AB = (2^{2/3} + 1)^{3/2}$

PART - III (PHYSICS)

37. Answer (A, C)

Hint: Apply lens maker's formula.

Sol.
$$\frac{1}{f} = (1.5 - 1) \left(\frac{2}{30}\right) = \frac{1}{30}$$

 $\therefore f = 30 \text{ cm}$

Image will be at 2f and is real.

38. Answer (A, C, D)

Hint: If $\theta = 90^{\circ}$, three images are formed.

Sol.: If $\theta = 90^{\circ}$, three images are formed.

39. Answer (B, D)

Hint: Before t = 0, $i = \frac{V}{R}$

Just after t = 0, $i = \frac{V}{R}$

Sol.: Before t = 0, $i = \frac{V}{R}$

40. Answer (A, C, D)

Hint: $\Delta V_{PQ} = Blv$

Sol. : $\Delta V = Blv$, $R_{eq} = 2R$

 $i_{PQ} = \frac{Blv}{2R}$

 $i_{R_1} = i_{R_2} = \frac{Blv}{4R}$

41. Answer (A, D)

Hint: $I_{\text{rms}} = \sqrt{\frac{\frac{T_0}{0} \int I_0^2 dt}{T_0}}$ and $I_{\text{avg}} = \frac{\int I dt}{\int dt}$

Sol.: $I_{ms} = \sqrt{\frac{\frac{T_0}{0} \int I_0^2 dt}{T_0}} = I_0$

 $I_{\text{avg}} = I_0$ for half cycle as current remains constant.

42. Answer (B, C, D)

Hint: Circuit is in resonance.

Sol. : ΔV across LC combination = 0

Circuit is in resonance.

43. Answer (00)

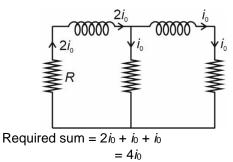
Hint: Find direction of induced electric field on *OA*.

Solution: There is no emf induced in *BA* and *CD*, since induced electric field is normal to *AB* and *CD*.

44. Answer (02)

Hint: Use the behaviour of the inductor concept.

Solution: After *S* is opened, current through inductor wouldn't change suddenly.



45. Answer (12)

Hint: Find equivalent focal length of the system.

Solution:
$$\frac{1}{F} = 2\left(\frac{1}{f_{lens}}\right) + \left(\frac{1}{f_m}\right)$$

$$=2\Bigg[(1.5-1)\Bigg(\frac{1}{12}-\frac{1}{\infty}\Bigg)\Bigg]+\Bigg(\frac{1}{\infty}\Bigg)$$

$$\Rightarrow f = 12 \text{ cm}$$

46. Answer (10)

Hint: Apply lens maker's formula

Sol. : R = 10 cm

$$-\frac{1}{20} = \left[\frac{1.5}{1+0.1\,t} - 1\right] \frac{2}{10}$$
3 1.5

$$\frac{3}{4} = \frac{1.5}{1 + 0.1 t}$$

$$t = 10 \, s$$

47. Answer (02)

Hint:
$$\varepsilon = -L \frac{dl}{dt}$$

Sol.:

$$\varepsilon = -L\frac{di}{dt} = Bv\ell$$

$$iB\ell = -\frac{mdv}{dt}$$

$$B\ell \frac{di}{dt} = m \frac{d^2 v}{dt^2}$$

$$\frac{B^2\ell^2v}{L} = -m\frac{d^2v}{dt}$$

$$m\frac{d^2v}{dt^2} + \frac{B^2\ell^2}{L}v = 0$$

$$v = v_0 \cos(\omega t)$$

$$\omega = \frac{B\ell}{\sqrt{mL}}$$

$$V = V_0 \cos \left[\frac{B\ell}{\sqrt{mL}} \times \frac{\pi \sqrt{mL}}{4B\ell} \right]$$

$$=\frac{v_0}{\sqrt{2}}$$

$$\Rightarrow \frac{1}{2}Li^2 = \frac{1}{2}m\left[v_0^2 - \frac{v_0^2}{2}\right]$$

$$\Rightarrow i = \sqrt{\frac{mv_0^2}{2L}}$$

48. Answer (04)

Hint: $\mu_1 \sin i = \mu_2 \sin r$

Sol.:

$$\delta = 2i - 2r + \pi - 2r$$

$$= [\pi + 2i - 4r]$$

$$\frac{\sin i}{\sin r} = \sqrt{3}$$
, δ is minimum at $\theta = \sin^{-1} \left(\frac{1}{3}\right)$

49. Answer (03)

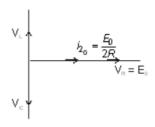
Hint: Draw phasor diagram

Sol.:

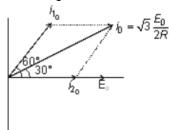
For branch containing R & C



For branch containing *L*, *C* & *R*



Combining both



 i_0 leads E_0 by $\pi/6$

$$z = \frac{E_0}{i_0} = \frac{2R}{\sqrt{3}}$$

$$i_1 = \frac{E_0}{2R} \sin\left(\omega t + \frac{\pi}{3}\right)$$

$$i_2 = \frac{E_0}{2R} \sin \omega t$$

50. Answer (12)

$$Hint: C = \frac{E_0}{B}$$

Solution:
$$E_0 = CB_0 = (3 \times 10^8) (4 \times 10^{-6}) \text{ V/m}$$

= 1200 V/m

- 51. Answer (B)
- 52. Answer (B)

Hints and Solutions of Q. Nos. 51 & 52

Hint

In LC oscillation, total energy is constant.

Solution:

$$V_L = 0$$

$$V_C = V_{2C} = V_0$$

$$\frac{1}{2}LI_1^2 + \frac{1}{2}(3C)V_0^2 = \frac{1}{2}(2C)4V_0^2 + \frac{1}{2}CV_0^2$$

$$I_1 = V_0 \sqrt{\frac{6C}{I}}$$

$$t_0 = \frac{T}{4} = \frac{1}{4} \times \frac{2\pi}{\omega}$$

$$= \frac{\pi}{2} \sqrt{\frac{2LC}{3}}$$

53. Answer (C)

Hint: Use spherical refraction concept

Sol..:

$$\frac{2}{V} + \frac{1}{x} = \frac{2-1}{R}$$

$$\left[\frac{2}{V} = \frac{1}{R} - \frac{1}{x}\right]$$

54. Answer (D)

Hint: Use spherical refraction concept

Sol. : V = +4R

Image is inverted and magnified

First refraction : $\frac{2}{V} - \frac{1}{-2R} = \frac{2-1}{R}$

 $\Rightarrow v = 4R$

$$\Rightarrow m_1 = \frac{\frac{V}{\mu_2}}{\frac{u}{\mu_1}} = -1$$

For second refraction,

 $m_2 = +1$

 $\Rightarrow m_{\text{net}} = -1$

 \Rightarrow Inverted and of same size.