All India Aakash Test Series for JEE (Advanced)-2024

```
TEST - 2A (Paper-1) - Code-C
```

Test Date : 05/11/2023

ANSWERS

CHEMISTRY

1. (A, B, C)
2. (A, C, D)
3. (A, C, D)
4. (C, D)
5. (A, B)
6. (A, D)
7. (02)
8. (02)
9. (03)
10. (02)
11. (03)
12. (03)
13. (03)
14. (00)
15. (C)
16. (A)
17. (B)
18. (B)

MATHEMATICS
19. (C, D)
20. (A, B, C, D)
21. (B,C)
22. (B, C)
23. (A, B, D)
24. (A, C)
25. (06)
26. (02)
27. (06)
28. (01)
29. (02)
30. (04)
31. (03)
32. (05)
33. (B)
34. (D)
35. (B)
36. (B)

PHYSICS
37. (A, C)
38. (A, C, D)
39. (B, D)
40. (A, C, D)
41. (A, D)
42. (B, C, D)
43. (00)
44. (02)
45. (12)
46. (10)
47. (02)
48. (04)
49. (03)
50. (12)
51. (B)
52. (B)
53. (C)
54. (D)

HINTS \& SOLUTIONS

PART - I (CHEMISTRY)

1. Answer (A, B, C)

Hint: FeSO_{4} on heating gives SO_{2} and SO_{3}
Sol. : $2 \mathrm{FeSO}_{4} \xrightarrow{\Delta} \mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{SO}_{2}+\mathrm{SO}_{3}$
2. Answer (A, C, D)

Hint: AI is extracted by electrolytic reduction.
Sol. : Cu, Hg and Pb can be extracted by self reduction process.
3. Answer (A, C, D)

Hint : Galena (PbS)
Sol. : Bauxite $-\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& \text { Haematite }-\mathrm{Fe}_{2} \mathrm{O}_{3} \\
& \text { Calamine }-\mathrm{ZnCO}_{3}
\end{aligned}
$$

4. Answer (C, D)

Hint : Metals which are less reactive than copper may be present as anode mud.
Sol. : Anode mud in electrorefining of copper contains Ag and Au.
5. Answer (A, B)

Hint: AgF \rightarrow Soluble in water
Sol. : $\mathrm{AgBr} \rightarrow$ Pale yellow
$\mathrm{AgCl} \rightarrow$ White ppt.
Agl \rightarrow Bright yellow
6. Answer (A, D)

Hint : Acidified potassium permanganate can oxidise ferrous and stannous ions.

Sol. : In Be^{2+} and NO_{3}^{-}, central atoms are present in their respective highest oxidation states.
7. Answer (02)

Hint : Ni is present in +2 oxidation state
Sol. : Cl^{-}is a weak field ligand and hence pairing will not take place.
8. Answer (02)

Hint : Complex is of type [$\mathrm{Ma}_{3} \mathrm{~b}_{3}$]

Sol. : Facial and Meridional isomers are possible for [Ma3b3]
9. Answer (03)

Hint : Complex of type $\left[M(A A)_{2} a_{2}\right.$]
Sol. : Cis isomer is optically active
Cis forms - two isomers
Trans form - one isomers
10. Answer (02)

Hint : Mn^{2+} is pale pink in color
Sol.: $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \longrightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
11. Answer (03)

Hint : Molecular formula of chromite ore is $\mathrm{FeCr}_{2} \mathrm{O}_{4}$

Sol.: Chromite ore is $\mathrm{FeO} \cdot \mathrm{Cr}_{2} \mathrm{O}_{3}$
12. Answer (03)

Hint : Three nitrogen atoms, each having one lone pair of electrons.

Sol.: Diethylenetriamine is

13. Answer (03)

Hint : White precipitate obtained is
2, 4, 6-tribromophenol

Sol.:

14. Answer (00)

Hint : Tertiary butyl alcohol is obtained
Sol.:

15. Answer (C)

Hint : Acids which are stronger than carbonic acid $\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)$

Sol. : Only 2, 4, 6-trinitrophenol (Picric acid) will evolve CO_{2} gas with aqueous NaHCO_{3} due to high acidic nature.
16. Answer (A)

Hint : -CN group increases the acidity of phenol.

Sol.: When electronreleasing group like MeO is present on m-position w.r.t. - OH group then it acts as -l effect group and increases the acidity. MeO- is good electron-releasing group in comparison to -Me . So, order of acidity becomes as follows

17. Answer (B)

Hint: N_{2} is highly inert gas
Sol.: N_{2} has the maximum leaving group ability
18. Answer (B)

Hint : Group having maximum leaving ability is least basic.

Sol.:
 leaving ability.

PART - II (MATHEMATICS)

19. Answer (C, D)

Hint : $\lim _{n \rightarrow \infty} \tan \left(\frac{1}{n}\right) \ln \left(\frac{1}{n}\right)=0 \Rightarrow f(x)=1$
Sol. : $\lim _{n \rightarrow \infty} \tan \left(\frac{1}{n}\right) \ln \left(\frac{1}{n}\right)=0 \Rightarrow f(x)=1$
$\Rightarrow \int \frac{d x}{\sin ^{11 / 3} x \cos ^{1 / 3} x}=\frac{-3}{8}(\tan x)^{-8 / 3}$
$-\frac{3}{2}(\tan x)^{-\frac{2}{3}}+C$
$\because g\left(\frac{\pi}{6}\right)=-\frac{21}{8} \times 3^{\frac{1}{3}}$
$\Rightarrow C=0$
$g\left(\frac{\pi}{4}\right)=-\frac{15}{8}$
20. Answer (A, B, C, D)

Hint :

$f(x)=\int_{-2}^{x}|t+1| d t=-\int_{-2}^{-1}(t+1) d t+\int_{-1}^{x}(t+1) d t=\frac{1}{2}+\left(\frac{t^{2}}{2}+t\right)_{-1}^{x}$
$=\frac{x^{2}}{2}+x+1$ for $x \geq-1$
Sol. :
$f(x)=\int_{-2}^{x}|t+1| d t=-\int_{-2}^{-1}(t+1) d t+\int_{-1}^{x}(t+1) d t=\frac{1}{2}+\left(\frac{t^{2}}{2}+t\right)_{-1}^{x}$
$=\frac{x^{2}}{2}+x+1$ for $x \geq-1$
$f(x)$ is a quadratic polynomial.
Therefore, $f(x)$ is continuous as well as differentiable in $(-1,1)$.

Also $f(x)$ is continuous as well as differentiable in $[-1,1]$.
21. Answer (B, C)

Hint : : $f(x)=x^{3}-x^{2}+100 x+1001$
$f^{\prime}(x)=3 x^{2}-2 x+100>0 \quad \forall x \in R$
Sol. : $f(x)=x^{3}-x^{2}+100 x+1001$
$f^{\prime}(x)=3 x^{2}-2 x+100>0 \forall x \in R$
Therefore, $f(x)$ is increasing (strictly).
Therefore, $f\left(\frac{1}{1999}\right)>f\left(\frac{1}{2000}\right)$
$\Rightarrow f(x+1)>f(x-1)$
22. Answer (B, C)

Hint: $f(-x)=-f(x)$
Sol. : $f(x)=a x^{3}+b x^{2}+c x+d$
Now, $f(x)$ is odd. Therefore,
$f(-x)=-f(x)$
$\Rightarrow-a x^{3}-b x^{2}-c x-d=a x^{3}+b x^{2}-c x+d$
It gives $b=0=d$
$f(x)=a x^{3}+c x=x\left(a x^{2}+c\right)$
Therefore, $f^{\prime}(x)=3 a x^{2}+c=0$
Only when $x^{2}=-\frac{c}{3 a}$ is positive
Therefore, c and a are of different signs.
Let $-\frac{c}{a}=k$.

So, non-zero root of $f(x)$ is $\pm \sqrt{k}$.
Also $\pm \sqrt{\frac{k}{3}}$ is closer to origin than $\pm \sqrt{k}$
23. Answer (A, B, D)

Hint: $F(x)=\int \frac{1}{4-3 \cos ^{2} x+5 \sin ^{2} x} d x$

$$
=\int \frac{1}{9-8 \cos ^{2} x} d x
$$

Sol. : $F(x)=\int \frac{1}{4-3 \cos ^{2} x+5 \sin ^{2} x} d x$

$$
=\int \frac{1}{9-8 \cos ^{2} x} d x
$$

$=\int \frac{\sec ^{2} x}{9 \sec ^{2} x-8} d x=\int \frac{\sec ^{2} x}{1+9 \tan ^{2} x} d x$
$=\frac{1}{3} \tan ^{-1}(3 \tan x)+c$
$\Rightarrow g(x)=3 \tan x$
Therefore, $g\left(\frac{\pi}{4}\right)=3$
And $g^{\prime}\left(\frac{\pi}{3}\right)=12$
24. Answer (A, C)

Hint : $I_{n}=\left(\frac{e^{-x}(\sin x)^{n}}{-1}\right)_{0}^{x}+n \int_{0}^{x}(\sin x)^{n-1} \cos x e^{-x} d x$
$=\int_{0}^{x}\left(-(\sin x)^{n}+(n-1)\left(1-\sin ^{2} x\right)(\sin x)\right)^{n-2} e^{-x} d x$
$=\frac{n(n-1)}{n^{2}+1} l_{n-2}$
Sol. : : $I_{n}=\left(\frac{e^{-x}(\sin x)^{n}}{-1}\right)_{0}^{x}+n \int_{0}^{x}(\sin x)^{n-1} \cos x e^{-x} d x$
$=\int_{0}^{x}\left(-(\sin x)^{n}+(n-1)\left(1-\sin ^{2} x\right)(\sin x)\right)^{n-2} e^{-x} d x$
$=\frac{n(n-1)}{n^{2}+1} I_{n-2}$
Hence, $\frac{I_{10}}{I_{8}}=\frac{90}{101}$
25. Answer (06)

Hint : $f(x)$ can have point of inflection at points were $f^{\prime \prime}(x)=0$.
Sol. : We have
$f(x)=x^{3}-9 x^{2}+200 x-10$
That is, $f^{\prime}(x)=3 x^{2}-18 x+200>0 \forall x \in R$
$f^{\prime \prime}(x)=6 x-18$
for point of inflection, $f^{\prime}(x)=0$
$x=3$
$\Rightarrow x_{1}=3$
$\because f^{\prime}(x)=3 x^{2}-18 x+200$
$f^{\prime \prime}(x)=6 x-18$,
$f^{\prime \prime}(x)=6$
$\Rightarrow x=x_{2}=3$ is point of local minima for $f(x)$
26. Answer (02)

Hint : $x=-1$ and $x=\frac{1}{3}$ are roots of $f^{\prime}(x)=0$.
Sol. : $x=-1$ and $x=\frac{1}{3}$ are roots of $f^{\prime}(x)=0$.

Therefore, $f^{\prime}(x)=a(3 x-1)(x+1)$

$$
=a\left(3 x^{2}+2 x-1\right)
$$

$\Rightarrow f(x)=a\left(x^{3}+x^{2}-x+b\right)$
$f(-2)=0$
$\Rightarrow b=2$
$\Rightarrow f(x)=a\left(x^{3}+x^{2}-x+2\right)$
$\int_{-1}^{1} f(x) d x=\frac{14}{3}$
$\Rightarrow \int_{-1}^{1} a\left(x^{3}+x^{2}-x+2\right)=\frac{14}{3}$
$\Rightarrow a \int_{-1}^{1} x^{2}+2=\frac{14}{3}$
$\Rightarrow 2 a\left(\frac{1}{3}+2\right)=\frac{14}{3}$
$\Rightarrow a=1$
Therefore, $f(x)=x^{3}+x^{2}-x+2$
27. Answer (06)

Hint : $g(x)=\frac{d}{d x}\left(f(x) f^{\prime}(x)\right)$
Sol. : $g(x)=\frac{d}{d x}\left(f(x) f^{\prime}(x)\right)$
To get the zero of $g(x)$, we take function
$h(x)=f(x) f^{\prime}(x)$
Between any two roots of $h(x)$, there lies at least one root of $h^{\prime}(x)=0$. That is,
$g(x)=0$
Now, $h(x)=0$ and $f(x)=0$
Or $f^{\prime}(x)=0$
As $f(x)=0$ has 4 minimum solutions and $f^{\prime}(x)=0$ has minimum 3 solutions, $h(x)=0$ has minimum 7 solutions and $h^{\prime}(x)=g(x)=0$ has minimum 6 solutions.
28. Answer (01)

Hint: $f^{\prime}(x)=e^{-\left(x^{2}+1\right)^{2}}, 2 x-e^{-\left(x^{2}\right)^{2}} \cdot 2 x$
Sol. : $f^{\prime}(x)=e^{-\left(x^{2}+1\right)^{2}}$,
$e^{-\left(x^{2}+1\right)^{2}}, 2 x-e^{-\left(x^{2}\right)^{2}} \cdot 2 x=2 x e^{-\left(x^{4}+2 x^{2}+1\right)}\left(1-e^{2 x^{2}+1}\right)$
$\Rightarrow f^{\prime}(x)>0, \forall x \in(-\infty, 0)$
29. Answer (02)

Hint :

$$
\int_{0}^{\pi} f^{-1}(x) d x=\int_{f^{-1}(0)}^{f^{-1}(\pi)} t f^{\prime}(t) d t=[t f(t)]_{f^{-1}(0)}^{f^{-1}(\pi)}-\int_{f^{-1}(0)}^{f^{-1}(\pi)} f(t) d t
$$

Sol. :

$$
\begin{aligned}
& \int_{0}^{\pi} f^{-1}(x) d x=\int_{f^{-1}(0)}^{f^{-1}(\pi)} t f^{\prime}(t) d t=[t f(t)]_{f^{-1}(0)}^{t^{-1}(\pi)}-\int_{f^{-1}(0)}^{f^{-1}(\pi)} f(t) d t \\
& f^{-1}(0)=0 \\
& f^{-1}(\pi)=\pi \\
& =\pi^{2}-\int_{0}^{\pi}(t+\sin t) d t \\
& =\pi^{2}-\left(\frac{t^{2}}{2}-\cos t\right)_{0}^{\pi}=\pi^{2}-\frac{\pi^{2}}{2}-2=\frac{\pi^{2}}{2}-2
\end{aligned}
$$

Therefore, $k=2$.
30. Answer (04)

Hint: $f(x)=[x]+|1-x|,-1 \leq x \leq 3$
Sol. : $f(x)=[x]+|1-x|,-1 \leq x \leq 3$
$=-x$ if $-1 \leq x<0$
$=1-x$ if $0 \leq x<1=x$ if $1 \leq x<2$
$=x+1$ if $2 \leq x<3$
$=5$ if $x=3$
Clearly f is not continuous at $x=0,1,2$ and 3
31. Answer (03)

Hint : $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
Sol. : $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$\therefore f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \frac{f\left(\frac{3 x+3 h}{3}\right)-f\left(\frac{3 x+0}{3}\right)}{h}$

$$
=\lim _{h \rightarrow \infty} \frac{\frac{2+f(3 x)+f(3 h)}{3}-\frac{2+f(3 x)+f(0)}{3}}{h}
$$

$=\lim _{h \rightarrow 0} \frac{f(3 h)-f(0)}{3 h-0}=f^{\prime}(0)$
$\Rightarrow f^{\prime}(2)=f^{\prime}(0)=2$
$\left(\because f^{\prime}(2)=2\right)$
$\Rightarrow f^{\prime}(x)=2 \Rightarrow f(x)=2 x+c$

Put $x=y=0$ in
$f\left(\frac{x+y}{3}\right)=\frac{2+f(x)+f(y)}{3}$
$\Rightarrow f(0)=2$

Now, from equation (i), $f(0)=0+c=2$
$\therefore c=2$

From equation (i), $f(x)=2 x+2$

So, function $g(x)=|2| x|-1|$, hence the points of non differentiability of $g(x)$ are $x= \pm(1 / 2), 0$.
32. Answer (05)

Hint : Plot the graph

Sol. :

33. Answer (B)

Hint : On differentiating a polynomial of $n^{\text {th }}$ degree, we get another polynomial of $(n-1)$ degrees.

Sol.: On differentiating a polynomial of $n^{\text {th }}$ degree, we get another polynomial of $(n-1)$ degrees.
So,
$f(x)=\left\{f^{\prime}(x)\right\}^{2} \Rightarrow n=2(n-1) \Rightarrow n=2$
34. Answer (D)

Hint : Let $f(x)=a x^{2}+b x+c$
$\Rightarrow f^{\prime}(0)=b>0$
Sol. : Let $f(x)=a x^{2}+b x+c$
$\Rightarrow f^{\prime}(0)=b>0$
Also, $f(x)=(f(x))^{2}$
$\Rightarrow a x^{2}+b x+c=4 a^{2} x^{2}+4 a b x+b^{2} \forall x$
Thus, $a=4 a^{2}, b=4 a b$ and $c=b^{2}$
From which, we get $a=\frac{1}{4}$, since $(b \neq 0)$
Again,
$\int_{0}^{1} f(x) d x=\frac{19}{12}$
$\Rightarrow \frac{a}{3}+\frac{b}{2}+c=\frac{19}{12}$
Therefore, $\frac{b}{2}+b^{2}=\frac{3}{2}$
$\Rightarrow b=1$
(since, $(b>0)$ and so $c=1$)
Therefore,
$f^{\prime}(0)=b=1$
35. Answer (B)

Hint : Putting $x=9, y=0$ in the given equation of curve, we have
$0=3 a+9 b-\frac{1}{2}=\frac{a}{2 \times 3}+b$
Sol. : Putting $x=9, y=0$ in the given equation of curve, we have
$0=3 a+9 b-\frac{1}{2}=\frac{a}{2 \times 3}+b$
$\Rightarrow a=-3 b$
$\frac{d y}{d x}=\frac{a}{2 \sqrt{x}}+b$
$\left.\frac{d y}{d x}\right|_{(9,0)}=\frac{a}{6}+b=-\frac{1}{2}$
Using Eqs. (1) and (2), we get
$b=-1$ and $a=3$
Therefore,
$y=3 \sqrt{x}-x$
Point $(1,2)$ lies on curve as well as it is point of intersection of family of lines.
$\frac{d y}{d x}=\frac{3}{2 \sqrt{x}}-1$
$\frac{d y}{d x}$ at $(1,2)$ is $\frac{1}{2}$
$y-2=\frac{1}{2}(x-1)$
$\Rightarrow x-2 y+3=0$
36. Answer (B)

Hint : $A B=A P+B P=2 \operatorname{cosec} \theta+\sec \theta$
Sol. : $\sin \theta=\frac{2}{P A}$
$P A=2 \operatorname{cosec} \theta$
$\cos \theta=\frac{1}{B P}$

$B P=\sec \theta$
$A B=A P+B P=2 \operatorname{cosec} \theta+\sec \theta$
Therefore, minimum value of $A B=\left(2^{2 / 3}+1\right)^{3 / 2}$

PART - III (PHYSICS)

37. Answer (A, C)

Hint : Apply lens maker's formula.
Sol. $\frac{1}{f}=(1.5-1)\left(\frac{2}{30}\right)=\frac{1}{30}$
$\therefore f=30 \mathrm{~cm}$
Image will be at $2 f$ and is real.
38. Answer (A, C, D)

Hint: If $\theta=90^{\circ}$, three images are formed.
Sol. : If $\theta=90^{\circ}$, three images are formed.
39. Answer (B, D)

Hint : Before $t=0, i=\frac{v}{R}$
Just after $t=0, i=\frac{v}{R}$
Sol. : Before $t=0, i=\frac{V}{R}$
40. Answer (A, C, D)

Hint : $\Delta V_{P Q}=B / v$
Sol. : $\Delta V=B / v, R_{\text {eq }}=2 R$
$i_{P Q}=\frac{B / v}{2 R}$

$$
i_{R_{1}}=i_{R_{2}}=\frac{B l v}{4 R}
$$

41. Answer (A, D)

Hint : I $I_{\mathrm{ms}}=\sqrt{\frac{T_{0} \int I_{0}^{2} d t}{T_{0}}}$ and lavg $=\frac{\int I d t}{\int d t}$
Sol. : $I_{r m s}=\sqrt{\frac{T_{0} \int I_{0}^{2} d t}{0_{0}}}=I_{0}$
lavg $=10$ for half cycle as current remains constant.
42. Answer (B, C, D)

Hint : Circuit is in resonance.
Sol. : ΔV across $L C$ combination $=0$

Circuit is in resonance.
43. Answer (00)

Hint : Find direction of induced electric field on $O A$.

Solution : There is no emf induced in $B A$ and $C D$, since induced electric field is normal to $A B$ and $C D$.
44. Answer (02)

Hint : Use the behaviour of the inductor concept

Solution : After S is opened, current through inductor wouldn't change suddenly.

Required sum $=2 i_{0}+i_{0}+i_{0}$

$$
=4 i 0
$$

45. Answer (12)

Hint : Find equivalent focal length of the system.
Solution : $\frac{1}{F}=2\left(\frac{1}{f_{\text {lens }}}\right)+\left(\frac{1}{f_{m}}\right)$
$=2\left[(1.5-1)\left(\frac{1}{12}-\frac{1}{\infty}\right)\right]+\left(\frac{1}{\infty}\right)$
$\Rightarrow f=12 \mathrm{~cm}$
46. Answer (10)

Hint : Apply lens maker's formula
Sol. : $R=10 \mathrm{~cm}$
$-\frac{1}{20}=\left[\frac{1.5}{1+0.1 t}-1\right] \frac{2}{10}$
$\frac{3}{4}=\frac{1.5}{1+0.1 t}$
$t=10 \mathrm{~s}$
47. Answer (02)

Hint : $\varepsilon=-L \frac{d l}{d t}$
Sol. :
$\varepsilon=-L \frac{d i}{d t}=B v \ell$
$i B \ell=-\frac{m d v}{d t}$
$B \ell \frac{d i}{d t}=m \frac{d^{2} v}{d t^{2}}$
$\frac{B^{2} \ell^{2} v}{L}=-m \frac{d^{2} v}{d t}$
$m \frac{d^{2} v}{d t^{2}}+\frac{B^{2} l^{2}}{L} v=0$
$v=v_{0} \cos (\omega \mathrm{t})$
$\omega=\frac{B \ell}{\sqrt{m L}}$
$v=v_{0} \cos \left[\frac{B \ell}{\sqrt{m L}} \times \frac{\pi \sqrt{m L}}{4 B \ell}\right]$
$=\frac{v_{0}}{\sqrt{2}}$
$\Rightarrow \frac{1}{2} L i^{2}=\frac{1}{2} m\left[v_{0}^{2}-\frac{v_{0}^{2}}{2}\right]$
$\Rightarrow i=\sqrt{\frac{m v_{0}^{2}}{2 L}}$
48. Answer (04)

Hint : $\mu_{1} \sin i=\mu_{2} \sin r$
Sol. :
$\delta=2 i-2 r+\pi-2 r$
$=[\pi+2 i-4 r]$
$\frac{\sin i}{\sin r}=\sqrt{3}, \delta$ is minimum at $\theta=\sin ^{-1}\left(\frac{1}{3}\right)$
49. Answer (03)

Hint : Draw phasor diagram
Sol. :
For branch containing $R \& C$

For branch containing L, C \& R

Combining both

i_{0} leads E_{0} by $\pi / 6$
$z=\frac{E_{0}}{i_{0}}=\frac{2 R}{\sqrt{3}}$
$i_{1}=\frac{E_{0}}{2 R} \sin \left(\omega t+\frac{\pi}{3}\right)$
$i_{2}=\frac{E_{0}}{2 R} \sin \omega t$
50. Answer (12)

Hint : $C=\frac{E_{0}}{B}$
Solution : $E_{0}=C B_{0}=\left(3 \times 10^{8}\right)\left(4 \times 10^{-6}\right) \mathrm{V} / \mathrm{m}$

$$
=1200 \mathrm{~V} / \mathrm{m}
$$

51. Answer (B)
52. Answer (B)

Hints and Solutions of Q. Nos. 51 \& 52
Hint:
In LC oscillation, total energy is constant.

Solution:

$V_{L}=0$
$V_{C}=V_{2 C}=V_{0}$
$\frac{1}{2} L l_{1}^{2}+\frac{1}{2}(3 C) V_{0}^{2}=\frac{1}{2}(2 C) 4 V_{0}^{2}+\frac{1}{2} C V_{0}^{2}$
$I_{1}=V_{0} \sqrt{\frac{6 C}{L}}$
$t_{0}=\frac{T}{4}=\frac{1}{4} \times \frac{2 \pi}{\omega}$
$=\frac{\pi}{2} \sqrt{\frac{2 L C}{3}}$
53. Answer (C)

Hint : Use spherical refraction concept
Sol,. :
$\frac{2}{V}+\frac{1}{x}=\frac{2-1}{R}$
$\left[\frac{2}{V}=\frac{1}{R}-\frac{1}{x}\right]$
54. Answer (D)

Hint : Use spherical refraction concept
Sol. : $\quad V=+4 R$
Image is inverted and magnified
First refraction : $\frac{2}{v}-\frac{1}{-2 R}=\frac{2-1}{R}$
$\Rightarrow v=4 R$
$\Rightarrow m_{1}=\frac{\frac{v}{\mu_{2}}}{\frac{u}{\mu_{1}}}=-1$
For second refraction,
$m_{2}=+1$
$\Rightarrow m_{\text {net }}=-1$
\Rightarrow Inverted and of same size.

