Memory Based Answers \& Solutions

Time : $\mathbf{3}$ hrs.

JEE (Main)-2022 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and -1 mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. In the following circuit, the current through the cell is

(1) $\frac{3}{4} \mathrm{~A}$
(2) $\frac{5}{3} \mathrm{~A}$
(3) $\frac{5}{4} \mathrm{~A}$
(4) $\frac{4}{5} \mathrm{~A}$

Answer (2)

Sol.

$\therefore \quad R_{\text {eq }}=\frac{5 \times 7.5}{12.5}=3 \Omega$
$\therefore \quad I=\frac{5}{3} \mathrm{~A}$
2. Electric field due to a charged sheet at a distance of I and $4 I$ at points A and B is (surface charge density of sheet is σ).
(1) $E_{A}=\frac{\sigma}{\varepsilon_{0}}, E_{B}=\frac{\sigma}{2 \varepsilon_{0}}$
(2) $E_{A}=E_{B}=\frac{\sigma}{2 \varepsilon_{0}}$
(3) $E_{A}=E_{B}=\frac{\sigma}{\varepsilon_{0}}$
(4) $E_{A}=\frac{2 \sigma}{\varepsilon_{0}}, E_{B}=\frac{\sigma}{\varepsilon_{0}}$

Answer (2)

Sol. $E_{A}=\frac{\sigma}{2 \varepsilon_{0}}, \quad E_{B}=\frac{\sigma}{2 \varepsilon_{0}}$

$$
\therefore \quad E_{A}=E_{B}=\frac{\sigma}{2 \varepsilon_{0}}
$$

3. If \hat{A} and \hat{B} are unit vectors and θ is angle between them, then choose the correct option.
(1) $|\hat{A}-\hat{B}|=|\hat{A}+\hat{B}| \tan \left(\frac{\theta}{2}\right)$
(2) $|\hat{A}+\hat{B}|=|\hat{A}-\hat{B}| \tan \frac{\theta}{2}$
(3) $|\hat{A}-\hat{B}|=|\hat{A}+\hat{B}| \cos \frac{\theta}{2}$
(4) $|\hat{A}+\hat{B}|=|\hat{A}-\hat{B}| \cos \frac{\theta}{2}$

Answer (1)
Sol. $|\hat{A}+\hat{B}|=2 \cos \left(\frac{\theta}{2}\right)$

$$
\begin{aligned}
& |\hat{A}-\hat{B}|=2 \sin \left(\frac{\theta}{2}\right) \\
& \therefore \frac{|\hat{A}-\hat{B}|}{|\hat{A}+\hat{B}|}=\frac{\sin \left(\frac{\theta}{2}\right)}{\cos \left(\frac{\theta}{2}\right)}=\tan \left(\frac{\theta}{2}\right) \\
& \Rightarrow|\hat{A}-\hat{B}|=|\hat{A}+\hat{B}| \tan \left(\frac{\theta}{2}\right)
\end{aligned}
$$

4. Find the ratio of speed of electron in $\mathrm{He}^{+} 3^{\text {rd }}$ orbit and $\mathrm{H}^{+} 3^{\text {rd }}$ orbit
(1) $1: 1$
(2) $1: 2$
(3) $2: 1$
(4) $4: 1$

Answer (3)
Sol. $v \propto \frac{Z}{n}$

$$
\begin{aligned}
& \Rightarrow \frac{v_{\mathrm{He}^{+}}}{v_{\mathrm{H}}}=\frac{\frac{2}{3}}{\frac{1}{3}}=2: 1 \\
& \Rightarrow \frac{v_{\mathrm{He}^{+}}}{v_{\mathrm{H}}}=\frac{2}{1}
\end{aligned}
$$

5. Find the equivalent capacitance between A and B. ($C=8 \mu \mathrm{~F}$)

(1) $\frac{21}{8} \mu \mathrm{~F}$
(2) $\frac{27}{4} \mu \mathrm{~F}$
(3) $\frac{24}{7} \mu \mathrm{~F}$
(4) $\frac{29}{7} \mu \mathrm{~F}$

Answer (3)

Sol. Equivalent circuit is as shown

$$
C_{e q}=\frac{3 C \times \frac{C}{2}}{3 C+\frac{C}{2}}=\frac{24 \times 4}{28}=\frac{24}{7} \mu \mathrm{~F}
$$

6. In the following figure x length is hanging from the table. For what maximum value of x the chain will not slip

(1) 3 m
(2) 4 m
(3) 2 m
(4) 1 m

Answer (3)

Sol. $(\lambda x) \times g=\mu \times(L-x) \times g \times \lambda$
$\Rightarrow \quad x=0.5(6-x)$
$\Rightarrow x=3-0.5 x$
$\Rightarrow 1.5 x=3$
$\Rightarrow x=2 \mathrm{~m}$
7. If on the surface of earth, the gravitational acceleration is g_{0}, then the value of gravitational acceleration at height of $2 R$ is (R is the radius of earth)
(1) $\frac{g_{0}}{4}$
(2) $\frac{g_{0}}{2}$
(3) $\frac{g_{0}}{3}$
(4) $\frac{g_{0}}{9}$

Answer (4)

Sol.

$g_{0}=\frac{G M}{R^{2}}$
$g_{0}=\frac{G M}{R^{2}}$
$g=\frac{G M}{(R+h)^{2}}$
$=\frac{G M}{(R+2 R)^{2}}$
$=\frac{G M}{9 R^{2}}$
$=\frac{g_{0}}{9}$
8. A particle starts moving in the influence of force $\vec{F}=(10 \hat{i}+5 \hat{j}) \mathrm{N}$, if mass of particle is 0.1 kg then its displacement (\vec{s}) in $t=2 \sec$ is $\vec{s}=a \hat{i}+b \hat{j}$ then the value of $\frac{a}{b}$ is
(1) 1
(2) 2
(3) 3
(4) 4

Answer (2)
Sol. $\vec{F}=10 \hat{i}+5 \hat{j}$

$$
\begin{aligned}
& \therefore \vec{a}=\frac{10 \hat{i}+5 \hat{j}}{0.1}=100 \hat{i}+50 \hat{j} \\
& \begin{aligned}
\therefore \vec{s} & =\vec{u} t+\frac{1}{2} \vec{a} t^{2} \\
& =0+\frac{1}{2} \times(100 \hat{i}+50 \hat{j}) \times 4 \\
& =200 \hat{i}+100 \hat{j} \\
\therefore a & =200 ; b=100 \\
\therefore & \frac{a}{b}=\frac{200}{100}=2
\end{aligned}
\end{aligned}
$$

9. For O_{2} ratio of rms speed of molecule and most probable speed of molecule is
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{\sqrt{2}}{3}$
(3) $\sqrt{\frac{3}{2}}$
(4) $\sqrt{\frac{2}{3}}$

Answer (3)

Sol. $\because u_{\text {rms }}=\sqrt{\frac{3 R T}{M}}$

$$
\begin{aligned}
v_{\mathrm{mps}} & =\sqrt{\frac{2 R T}{M}} \\
\therefore \frac{u_{\mathrm{mss}}}{v_{\mathrm{mps}}} & =\sqrt{\frac{3}{2}}
\end{aligned}
$$

10. 5 MHz frequency is transmitted by
(1) Coaxial
(2) Optical fibres
(3) Twisted copper wire
(4) None of these

Answer (3)

Sol. 5 MHz frequency is transmitted through twisted copper wire.
11. Photodiode is reverse biased for which of the following reason?
(1) To increase the sensitivity
(2) To increase the current flow
(3) To decrease depletion width
(4) To decrease the potential barrier

Answer (1)

Sol.

Photodiode is reversed biased to facilitate collection of photons (detection) through large depletion region. Current sensitivity is increased in reversed biased photodiodes.
12. $\frac{A^{2} B^{3}}{C^{4}}=D$

Find the maximum percentage error in D.
(1) $\left(\frac{2 \Delta A}{A}+\frac{3 \Delta B}{B}+\frac{4 \Delta C}{C}\right) \times 100$
(2) $\frac{2 \Delta A}{A}-\frac{3 \Delta B}{B}+\frac{4 \Delta C}{C}$
(3) $\frac{2 \Delta A}{A}+\frac{3 \Delta B}{B}-\frac{4 \Delta C}{C}$
(4) $\frac{\Delta A}{A}+\frac{\Delta B}{B}+\frac{\Delta C}{C}$

Answer (1)

Sol. According to the given relation,
$D=\frac{A^{2} B^{3}}{C^{4}}$
$\Rightarrow \frac{\Delta D}{D}=2 \cdot \frac{\Delta A}{A}+3 \cdot \frac{\Delta B}{B}+4 \cdot \frac{\Delta C}{C}$
\Rightarrow Maximum percentage error is D is
$\frac{\Delta D}{D} \times 100=\left(\frac{2 \Delta A}{A}+\frac{3 \Delta B}{B}+\frac{4 \Delta C}{C}\right) \times 100$
13. Choose the correct option matching entries of column 1 and column 2.

	Column 1		Column 2
(i)	AC-generator	(a)	Detects current
(ii)	Transformer	(b)	Changes AC voltage
(iii)	Metal detector	(c)	Identify the resonance in circuit
(iv)	Galvanometer	(d)	Converts mechanical energy into electrical energy

(1) (i) \rightarrow (a), (ii) \rightarrow (c), (iii) \rightarrow (d), (iv) \rightarrow (b)
(2) (i) \rightarrow (d), (ii) \rightarrow (b), (iii) \rightarrow (c), (iv) \rightarrow (a)
(3) (i) \rightarrow (d), (ii) \rightarrow (b), (iii) \rightarrow (a), (iv) \rightarrow (c)
(4) (i) \rightarrow (a), (ii) \rightarrow (c), (iii) \rightarrow (b), (iv) \rightarrow (d)

Answer (2)
Sol. AC generator is used to convert mechanical energy into electrical energy.

Transformer is used to change AC voltages.
Metal detector is used to detect resonance in circuit.
Galvanometer is used to detect current.
14. Terminal velocity of rain drop of radius r depends on
(1) $r^{1 / 2}$
(2) $r^{3 / 2}$
(3) r^{2}
(4) r

Answer (3)
Sol. Terminal velocity $V_{T}=\frac{2 r^{2}(\rho-\sigma) g}{9 \eta}$
$\Rightarrow V_{T} \propto r^{2}$
15. If, $I_{1}=9 I, I_{2}=I$ at point P and
phase difference is $\frac{\pi}{2}$. At point Q,
phase diff. is π, find the difference between the intensity of waves at P and Q.
(1) $9 /$
(2) $6 /$
(3) $8 /$
(4) 101

Answer (2)
Sol. We know that
$I=I_{1}+I_{2}+2 \sqrt{I_{1} I_{2}} \cos (\Delta \phi)$
$I_{P}=9 I+I+6 I \cos \left(\frac{\pi}{2}\right)=10 I$
and $I_{Q}=9 I+I+6 I \cos (\pi)=4 I$
$\Rightarrow I_{P}-I_{Q}=6 I$
16. Dielectric constant of material is 4 and relative permeability is 1 , then find critical angle for the refraction with the air.
(1) 10°
(2) 20°
(3) 30°
(4) 60°

Answer (3)
Sol. $\mu=\sqrt{\varepsilon_{r} \mu_{r}}=2$
$C=\sin ^{-1}\left(\frac{1}{2}\right)=30^{\circ}$
17. Current flows through a cross-section of radius R as shown:
The value of this current is i. For radial distance $r<R$, magnetic field depends on r as

(1) $B \propto r^{1}$
(2) $B \propto r^{2}$
(3) $B \propto \frac{1}{r}$
(4) $B \propto r^{0}$

Answer (1)

Sol. Applying Ampere's circuital law:

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{l}=\mu_{0} i_{\text {enc }} \\
& \Rightarrow \quad \text { For } r<R, \\
& \quad B(2 \pi r)=\mu_{0}\left[\frac{1}{\pi R^{2}} \times \pi r^{2}\right] \\
& \Rightarrow B \propto r^{1}
\end{aligned}
$$

18. A teacher uses 3 times the reading of shunted galvanometer for an experiment
(1) Shunt resistance is double the resistance of galvanometer
(2) Shunt resistance is half of the resistance of galvanometer
(3) Shunt resistance has the value equal to that of galvanometer
(4) None of these

Answer (2)

$$
\begin{aligned}
& I_{\mathrm{G}}=\frac{r_{\mathrm{s}}}{r_{\mathrm{s}}+r_{\mathrm{G}}} \times I \\
& \Rightarrow \frac{1}{3}=\frac{r_{\mathrm{s}}}{r_{\mathrm{s}}+r_{\mathrm{G}}} \times I \\
& \Rightarrow r_{\mathrm{s}}+r_{\mathrm{G}}=3 r_{\mathrm{s}} \\
& \Rightarrow r_{\mathrm{s}}=\frac{r_{\mathrm{G}}}{2}
\end{aligned}
$$

19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section-B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Strongest oxidising agent is,
(1) Mn^{+3}
(2) Ti^{+3}
(3) Fe^{+3}
(4) Cr^{+3}

Answer (1)

Sol. Of the four metal ions given the strongest oxidising agent is Mn^{3+} because its standard reduction potential is higher than those of others.

$$
\begin{array}{lll}
\mathrm{E}_{\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}}^{\circ}=+1.57 \mathrm{~V} & ; & \mathrm{E}_{\mathrm{TH}^{3+} / \mathrm{Ti}^{2+}}^{0}=-0.37 \mathrm{~V} \\
\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}=+0.77 \mathrm{~V} & ; \quad \mathrm{E}_{\mathrm{Cr}^{3+} / \mathrm{Cr}^{2+}}^{\circ}=-0.41 \mathrm{~V}
\end{array}
$$

2. Product formed on reaction of AgCl with aq. NH_{3}
(1) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{Cl}$
(2) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$
(3) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
(4) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]$

Answer (3)

Sol. AgCl dissolves in aq. NH_{3} to form a complex $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}$
$\mathrm{AgCl}(\mathrm{s})+2 \mathrm{NH}_{3}(\mathrm{aq}) \rightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right] \mathrm{Cl}(\mathrm{aq})$
3. Find intermediate in the following reaction.
$\mathrm{R}-\mathrm{CONH}_{2}+\mathrm{Br}_{2} \xrightarrow{\mathrm{NaOH}} \mathrm{R}-\mathrm{NH}_{2}$
(1) $\mathrm{R}-\mathrm{CN}$
(2) R-NC
(3) R-NCO
(4) $\mathrm{R}-\mathrm{COOH}$

Answer (3)

Sol.

4. Which of the following are isoelectronic species?
(1) HF and $\mathrm{H}_{2} \mathrm{O}$
(2) CH_{4} and SF_{6}
(3) O_{2} and O_{3}
(4) H_{2} and F_{2}

Answer (1)

Sol. Isoelectronic means having same number of electrons.

Total number of electrons in $\mathrm{HF}=10$
Total number of electrons in $\mathrm{H}_{2} \mathrm{O}=10$
Hence, HF and $\mathrm{H}_{2} \mathrm{O}$ are isoelectronic
5. In which of the following bond order increases?
(1) $\mathrm{CO} \rightarrow \mathrm{CO}^{+}$
(2) $\mathrm{N}_{2} \rightarrow \mathrm{~N}_{2}^{+}$
(3) $\mathrm{H}_{2} \rightarrow \mathrm{H}_{2}^{+}$
(4) $\mathrm{O}_{2} \rightarrow \mathrm{O}_{2}^{+}$

Answer (1, 4)
Sol.
$\underset{\text { B.0. }=3}{\mathrm{CO}} \rightarrow \underset{\text { B.0. }=3.5}{\mathrm{CO}^{+}}$

$$
\underset{\text { B.O. }=2.0}{\mathrm{O}_{2}} \rightarrow \underset{\text { B.O. }}{\mathrm{O}_{2}^{+}}+=.
$$

$$
\begin{aligned}
& \underset{\text { B.O. }=3.0}{\mathrm{~N}_{2}} \rightarrow \underset{\text { B.0. }=2.5}{\mathrm{~N}_{2}^{+}} \\
& \underset{\text { B.O. }=1.0}{\mathrm{H}_{2}} \rightarrow \underset{\text { B.O. }=0.5}{\mathrm{H}_{2}^{+}}
\end{aligned}
$$

6.

A \& B can be separated by
(1) Chromatography
(2) Fractional distillation
(3) Mass spectrometry
(4) NMR

Answer (2)

Sol.
 bonding)

Boiling point of A is lower than that of B, so A and B can be separated by fractional distillation.
7.

(1)

(2)

(3)

(4)

Answer (1)

Sol.

The intermediate X is
(1)

(2)

(3)

(4)

Answer (1)

Sol.

9. Which of the following is a natural sweetner?
(1) Bithionol
(2) Sucralose
(3) Alitame
(4) Lactose

Answer (4)

Sol. The lactose found in plain milk is considered as natural sugar.
10. Why micelle is not formed when concentration of micelle is less?
(1) Micelle is not formed as the concentration is less than CMC
(2) Less hydrophilic
(3) Amount of soap is less
(4) None of these

Answer (1)

Sol. If concentration is less, or on dilution, the associated colloid i.e. micelles revert back to individual ions as concentration becomes less than CMC.
11. Electron deficient species is,
(1) $\mathrm{B}_{2} \mathrm{H}_{6}$
(2) LiH
(3) CCl_{4}
(4) PH_{3}

Answer (1)

Sol.

$\mathrm{B}_{2} \mathrm{H}_{6}$ is electron deficient as it has (3c-2e) bond.
12. Effect of Eutrophication is
(1) BOD of water decreases
(2) Biodiversity of living organism decreases
(3) Oxygen concentration of water increases
(4) None of these

Answer (2)

Sol. The process in which nutrient enriched water bodies support a dense plant population, which kills animal life by depriving it of oxygen and results in subsequent loss of biodiversity is known as eutrophication.
13. Which among the following has highest ionic mobility in solution?
(1) Be^{2+}
(2) Mg^{2+}
(3) Ca^{2+}
(4) Sr^{2+}

Answer (4)

Sol. Among the given cations, ionic mobility of Sr^{2+} ion in water will be highest due to lower charge density.
14. Complex " X " is formed by leaching of Au. After reaction with Zn , complex " Y " is formed. Identify X and Y
(1) $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-},\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{--}$
(2) $[\mathrm{Au}(\mathrm{CN}) 4]^{-},[\mathrm{Zn}(\mathrm{CN}) 4]^{2-}$
(3) $\left[\mathrm{Au}(\mathrm{CN})_{3}\right],\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
(4) None of these

Answer (1)

Sol. $4 \mathrm{Au}(\mathrm{s})+8 \mathrm{CN}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})$

$$
\longrightarrow 4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}(\mathrm{aq})+4 \mathrm{OH}^{-}(\mathrm{aq})
$$

$2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}(\mathrm{aq})+\mathrm{Zn}(\mathrm{s})$

$$
\longrightarrow 2 \mathrm{Au}(\mathrm{~s})+\left(\mathrm{Zn}(\mathrm{CN})_{4}\right)^{2-}(\mathrm{aq})
$$

15.

Products are
(1)

(2)

(3)

(4)

Answer (1)

Sol.

16. Which of the following is incorrect about Tyndall Effect?
(1) Density difference must be minimum
(2) λ difference must be maximum
(3) Refractive index difference must be maximum
(4) None of these

Answer (3)

Sol. Tyndall effect is observed only when
(i) Diameter of the dispersed particle is not much smaller than the wavelength of the light used.
(ii) The refractive indices of the dispersed phase and the dispersion medium differ greatly in magnitude.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. For He^{+}and H in $3^{\text {rd }}$ orbit ratio of de Broglie wavelength is?

Answer ($\frac{1}{2}$)
Sol. $\frac{\lambda_{\mathrm{He}^{+}}}{\lambda_{\mathrm{H}}}=\frac{\mathrm{h}}{\frac{\mathrm{mV} \mathrm{He}^{+}}{\frac{\mathrm{h}}{\mathrm{mV}}}}=\frac{\mathrm{V}_{\mathrm{H}}}{\mathrm{V}_{\mathrm{He}^{+}}}=\frac{\mathrm{Z}_{\mathrm{H}} /(3)}{\mathrm{Z}_{\mathrm{He}^{+}} /(3)}=\frac{1}{2}=0.5$
22. Density of NaCl is $43.1 \mathrm{~g} / \mathrm{cc}$. Find the distance between Na^{+}and Cl^{-}ions?

Answer (1.04)

Sol. Density of $\mathrm{NaCl}=43.1 \mathrm{~g} / \mathrm{cc}$
NaCl has FCC unit cell with 4 NaCl units per unit cell. If "a" is the edge length, then density (d) of NaCl is given by,
$\mathrm{d}=\frac{4 \times \mathrm{M}_{\mathrm{NaCl}}}{\mathrm{N}_{\mathrm{A}}(\mathrm{a})^{3}}$
$(\mathrm{a})^{3}=\frac{4 \times 58.5}{6 \times 10^{23} \times 43.1}=9.049 \times 10^{-24}$
$\mathrm{a}=2.08 \times 10^{-8} \mathrm{~cm}$
Distance between Na^{+}and Cl^{-}ion $=1.04 \AA$
23. 0.01 m moles, $1 \mathrm{~L} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is given 50% of this solution is taken out and 500 ml water is added to make 1 L solution. Further, 0.01 m moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to this solution. Find out the final m moles $\mathrm{H}_{2} \mathrm{SO}_{4}$ in terms of $10^{-3} \mathrm{~m} \mathrm{~mol}$.

Answer (15)

Sol. In $1 \mathrm{~L} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution, m moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.01$ 50% of this solution contains 0.005 m moles $\mathrm{H}_{2} \mathrm{SO}_{4}$. After addition of 500 ml water, m moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (Solute) remains constant.

Since, 0.01 m moles of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added.
Total m moles of $\mathrm{H}_{2} \mathrm{SO}_{4}=0.01+.0005 \mathrm{~m}$ moles

$$
\begin{aligned}
& =0.015 \mathrm{~m} \text { moles } \\
& =15 \times 10^{-3} \mathrm{~m} \text { moles } .
\end{aligned}
$$

24.
25.
26.
27.
28.
29.
30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let $\frac{a+b}{7}=\frac{b+c}{8}=\frac{c+a}{9}$, where (a, b, c) are the sides of $\triangle A B C$, then find $\frac{R}{r}$ (where R is circumradius and r is inradius)
(1) $\frac{5}{2}$
(2) 3
(3) 1
(4) $\frac{1}{2}$

Answer (1)

Sol. Let $a+b=7 k, b+c=8 k$ and $c+a=9 k$
So, $a=4 k, b=3 k$ and $c=5 k$ and $s=6 k$

$$
\begin{aligned}
& \because \quad \frac{r}{R}=4 \sin \frac{A}{2} \cdot \sin \frac{B}{2} \cdot \sin \frac{C}{2} \\
& =4 \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{(s-a)(s-c)}{a c}} \sqrt{\frac{(s-a)(s-b)}{a b}} \\
& =4 \frac{(s-a)(s-b)(s-c)}{a b c} \\
& =\frac{4 \cdot(2 k)(3 k)(k)}{(4 k)(3 k)(5 k)}=\frac{2}{5} \\
& \Rightarrow \frac{R}{r}=\frac{5}{2}=2.5
\end{aligned}
$$

2. Circle C touches the line $L_{1}=4 x-3 y+k_{1}=0, L_{2}=$ $4 x-3 y+k_{2}=0, k_{1} k_{2} \in R$. If a line passing through the centre of circle intersects L_{1} at $(-1,2)$ and L_{2} at $(3,-6)$ then equation of circle is
(1) $x^{2}+y^{2}-2 x+4 y-11=0$
(2) $x^{2}+y^{2}+2 x-4 y-11=0$
(3) $x^{2}+y^{2}-2 x+6 y-11=0$
(4) $x^{2}+y^{2}-2 x-4 y+11=0$

Answer (1)

Sol. $L_{1}: 4 x-3 y+k_{1}=0$

$\because(-1,2)$ lies on line $L_{1}=0$
$\therefore \quad k_{1}=10$
and $(3,-6)$ lies on line $L_{2}=0$
$\therefore \quad k_{2}=-30$
Distance between lines L_{1} and L_{2}

$$
=\frac{\left|k_{1}-k_{2}\right|}{\sqrt{4^{2}+(-3)^{2}}}=8
$$

$\therefore \quad$ Radius of circle $=4$ units
Centre of circle $=$ midpoint of $A B=(1,-2)$
Equation of circle is $(x-1)^{2}+(y+2)^{2}=4^{2}$

$$
x^{2}+y^{2}-2 x+4 y-11=0
$$

3. If $g(0, \infty) \rightarrow R$ is a differentiable function and

$$
\int\left[x\left(\frac{\cos x-\sin x}{e^{x}+1}\right)+g(x)\left(\frac{e^{x}+1-x e^{x}}{\left(e^{x}+1\right)^{2}}\right)\right] d x=\frac{x g(x)}{e^{x}+1}+c
$$

for all $x>0$, here $c=$ constant then
(1) g is decreasing in $(0, \pi / 4)$
(2) g is increasing in $\left(0, \frac{\pi}{4}\right)$
(3) $g+g^{\prime}$ is increasing in $\left(0, \frac{\pi}{2}\right)$
(4) $g-g^{\prime}$ is decreasing in $\left(0, \frac{\pi}{2}\right)$

Answer (2)

Sol. Differentiating w.r.t. x, we get

$$
\begin{aligned}
& \frac{x(\cos x-\sin x)}{1+e^{x}}+\frac{g(x)}{1+e^{x}}-\frac{x e^{x} g(x)}{\left(1+e^{x}\right)^{2}} \\
& =\frac{g(x)+x g^{\prime}(x)}{1+e^{x}}-\frac{x e^{x} g(x)}{\left(1+e^{x}\right)^{2}}
\end{aligned}
$$

Clearly $g^{\prime}(x)=\cos x-\sin x=\sqrt{2} \cos \left(x+\frac{\pi}{4}\right)$
$\because \quad g^{\prime}(x)>0 \forall x \in\left(0, \frac{\pi}{4}\right) \Rightarrow g$ is increasing

$$
\text { also } g^{\prime \prime}(x)=-(\sin x+\cos x)=-\sqrt{2} \sin \left(x+\frac{\pi}{4}\right)
$$

$$
g^{\prime}(x)+g^{\prime \prime}(x)=-2 \sin x<0 \forall x \in\left(0, \frac{\pi}{2}\right)
$$

So $g(x)+g^{\prime}(x)$ is decreasing in $\left(0, \frac{\pi}{2}\right)$
Similarly, $g^{\prime}(x)-g^{\prime \prime}(x)=2 \cos x>0 \forall x \in\left(0, \frac{\pi}{2}\right)$
So $g(x)-g^{\prime}(x)$ is increasing in $\left(0, \frac{\pi}{2}\right)$.
4. Let $f(x)$ be a polynomial function such that $f(x)+$
$f^{\prime}(x)+f^{\prime \prime}(x)=x^{5}+64$. Value of $\lim _{x \rightarrow 1} \frac{f(x)}{x-1}$ is
(1) -15
(2) 15
(3) 60
(4) -60

Answer (1)

Sol. $\because f(x)+f^{\prime}(x)+f^{\prime \prime}(x)=x^{5}+64$
let $f(x)=x^{5}+a x^{4}+b x^{3}+c x^{2}+d x+e$
So $x^{5}+(a+5) x^{4}+(20+4 a+b) x^{3}+(12 a+3 b+c) x^{2}$

$$
+(2 c+d) x+(2 c+d+e)=x^{5}+64
$$

Clearly $a=-5, b=0, c=60, d=-120, e=64$
Hence $f(x)=x^{5}-5 x^{4}+60 x^{2}-120 x+64$

$$
\Rightarrow \quad \lim _{x \rightarrow 1} \frac{f(x)}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{4}-4 x^{3}-4 x^{2}+56 x-64\right)}{x-1}
$$

5. If $y=y(x)$ be the solution of given equation $y^{2} d x+$ $\left(x^{2}-x y+y^{2}\right) d y=0$ and this curve also passes through (1, 1). Line $y=\sqrt{3} x$ intersects it at $(\alpha, \sqrt{3} \alpha)$ then find the value of $\log _{e}(\sqrt{3} x)$.
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{12}$

Answer (4)

Sol. $y^{2} d x+\left(x^{2}-x y+y^{2}\right) d y=0$

$$
\frac{d y}{d x}=\frac{-y^{2}}{x^{2}-x y+y^{2}}
$$

Let $y=v x$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \\
& \Rightarrow v+x \frac{d v}{d x}=\frac{-v^{2}}{1-v+v^{2}} \\
& \Rightarrow \frac{1-v+v^{2}}{v\left(1+v^{2}\right)} d v=-\int \frac{1}{x} d x \\
& \Rightarrow \int \frac{1}{v} d v-\int \frac{1}{1+v^{2}} d v=-\int \frac{1}{x} d x
\end{aligned}
$$

$$
\Rightarrow \ln v+\ln x=\tan ^{-1} v+c
$$

$$
\Rightarrow \ln y=\tan ^{-1}\left(\frac{y}{x}\right)+c
$$

As this curve passes through $(1,1)$
$\therefore \quad c=\frac{-\pi}{4}$
\therefore Equation of curve is

$$
\begin{gathered}
\ln y=\tan ^{-1}\left(\frac{y}{x}\right)-\frac{\pi}{4} \\
\Rightarrow \quad \log _{e}(\sqrt{3} \alpha)=\frac{\pi}{3}-\frac{\pi}{4}=\frac{\pi}{12}
\end{gathered}
$$

6. Let $f: R \rightarrow R, g: R \rightarrow R$ be two function defined by $f(x)=\log _{e}\left(x^{2}+1\right)-e^{-x}+1 \& g(x)=\frac{1-2 e^{2 x}}{e^{x}}$. Range of α, if the inequality $f\left(g \frac{(\alpha-1)^{2}}{3}\right)>f\left(g\left(\alpha-\frac{5}{3}\right)\right)$ holds is
(1) $\alpha \in(0,2)$
(2) $\alpha \in(2,3)$
(3) $\alpha \in(3,4)$
(4) $\alpha \in R$

Answer (2)

Sol. $f(x)=\ln \left(x^{2}+1\right)-e^{-x}+1$
$\Rightarrow f^{\prime}(x)=\frac{1}{1+x^{2}}+e^{-x}>0 \quad \forall x \in R$
So $f(x)$ is increasing
$g(x)=e^{-x}-2 e^{x}$
$\Rightarrow g^{\prime}(x)=-e^{-x}-2 e^{x}<0 \quad \forall x \in R$
So $g(x)$ is decreasing
Clearly $f(g(x))$ will be a decreasing function.
So $f\left(g\left(\frac{(\alpha-1)^{2}}{3}\right)\right)>f\left(g\left(\alpha-\frac{5}{3}\right)\right)$
$\Rightarrow \frac{(\alpha-1)^{2}}{3}<\alpha-\frac{5}{3}$
$\Rightarrow \alpha^{2}-5 \alpha+6<0$
$\Rightarrow \alpha \in(2,3)$
7. If $E_{1} \& E_{2}$ are two conditional probability events such that $P\left(\frac{E_{1}}{E_{2}}\right)=\frac{1}{2}, P\left(\frac{E_{2}}{E_{1}}\right)=\frac{3}{4}, P\left(E_{1} \cap E_{2}\right)=\frac{1}{8}$, then
(1) $P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)$
(2) $P\left(E_{1} \cap E_{2}{ }^{\prime}\right)=P\left(E_{1}^{\prime}\right) \cdot P\left(E_{2}\right)$
(3) $P\left(E_{1}^{\prime} \cap E_{2}^{\prime}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)$
(4) $P\left(E_{1} \cap E_{2}^{\prime}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)$

Answer (4)
Sol. $P\left(\frac{E_{1}}{E_{2}}\right)=\frac{1}{2}, P\left(\frac{E_{2}}{E_{1}}\right)=\frac{3}{4}$ and $P\left(E_{1} \cap E_{2}\right)=\frac{1}{8}$
$\because \quad P\left(\frac{E_{1}}{E_{2}}\right)=\frac{P\left(E_{1} \cap E_{2}\right)}{P\left(E_{2}\right)}$
$\Rightarrow P\left(E_{2}\right)=\frac{1}{4}$
Similarly, $P\left(E_{1}\right)=\frac{1}{6}$
Now $P\left(E_{1} \cup E_{2}\right)=\frac{1}{4}+\frac{1}{6}-\frac{1}{8}=\frac{7}{24}$
So, $P\left(E_{1}^{\prime} \cap E_{2}^{\prime}\right)=1-P\left(E_{1} \cup E_{2}\right)=\frac{17}{24}$
Now $P\left(E_{1}^{\prime} \cap E_{2}\right)=P\left(E_{2}\right)-P\left(E_{1} \cap E_{2}\right)=\frac{1}{4}-\frac{1}{8}=\frac{1}{8}$
and $P\left(E_{1} \cap E_{2}^{\prime}\right)=P\left(E_{1}\right)-P\left(E_{1} \cap E_{2}\right)=\frac{1}{6}-\frac{1}{8}=\frac{1}{24}$

$$
=P\left(E_{1}\right) \cdot\left(E_{2}\right)
$$

8. $\int_{0}^{\pi} \frac{\sin x \cdot e^{\cos x}}{\left(1+\cos ^{2} x\right)\left(e^{\cos x}+e^{-\cos x}\right)} d x$ equals
(1) $\frac{\pi}{2}$
(2) π
(3) $\frac{\pi}{4}$
(4) None of these

Answer (3)

Sol. Let $I=\int_{0}^{\pi} \frac{\sin x \cdot e^{\cos x}}{\left(1+\cos ^{2} x\right)\left(e^{\cos x}+e^{-\cos x}\right)} \mathrm{dx}$
Using $\int_{a}^{b} f(x) \mathrm{dx}=\int_{a}^{b} f(a+b-x) \mathrm{dx}$, we get
$I=\int_{0}^{\pi} \frac{\sin x \cdot e^{-\cos x}}{\left(1+\cos ^{2} x\right)\left(e^{\cos x}+e^{-\cos x}\right)} \mathrm{dx}$
Adding (1) and (2) we get
$2 I=\int_{0}^{\pi} \frac{\sin x d x}{1+\cos ^{2} x}$
let $\cos x=t$
$\sin x d x=-d t$
$\Rightarrow 2 I=-\int_{1}^{-1} \frac{d t}{1+t^{2}}=\tan ^{-1} t \int_{-1}^{1}=\frac{\pi}{2}$
$\Rightarrow \quad 1=\frac{\pi}{4}$
9. Let $f(x)=x^{3}+x-5$ and $f(g(x))=x$, find $g^{\prime}(63)$
(1) $\frac{1}{49}$
(2) $\frac{1}{48}$
(3) $\frac{1}{17}$
(4) $\frac{1}{16}$

Answer (1)

Sol. $f(x)=x^{3}+x-5$
$f(g(x))=x$
As f and g are inverse to each other.
$\therefore \quad g(f(x))=x$
$\therefore \quad g^{\prime}(f(x)) \times f^{\prime}(x)=1$
Put $x=4$

$$
g^{\prime}(63)=\frac{1}{\left(3 x^{2}+1\right)_{\text {at } x=4}}=\frac{1}{49}
$$

10. $y=y(x)$ be the solution $\rightarrow(x+1) y^{\prime}-y=e^{3 x}(x+1)^{2}$, $y(0)=\frac{1}{3}$, then $y\left(-\frac{4}{3}\right)$ for the curve $y=y(x)$ is
(1) $\frac{1}{9 e^{4}}$
(2) $-\frac{1}{9 e^{4}}$
(3) $\frac{e^{4}}{9}$
(4) $-\frac{e^{4}}{9}$

Answer (2)

Sol. Differential equation
$(x+1) \frac{d y}{d x}-y=e^{3 x}(x+1)^{2}, \quad y(0)=\frac{1}{3}$
$\Rightarrow \frac{d y}{d x}-\frac{1}{(x+1)} y=e^{3 x}(x+1)$
I.F $=e^{\int-\frac{1}{(x+1)} d x}=\frac{1}{x+1}$
\therefore Solution of D.E
$\frac{1}{x+1} \cdot y(x)=\int e^{3 x}(x+1) \frac{1}{(x+1)} d x+c$
$\Rightarrow y(x)=\frac{(x+1)}{3} e^{3 x}+c(x+1)$
Now, $y(0)=\frac{1}{3} \Rightarrow c=0$
$\therefore y\left(-\frac{4}{3}\right)=-\frac{1}{9 e^{4}}$.
11. If \vec{a} and \vec{b} are unit vectors and acute angle between them is θ, then
(1) $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}| \tan \left(\frac{\theta}{2}\right)$
(2) $|\vec{a}-\vec{b}|=|\vec{a}+\vec{b}| \tan \frac{\theta}{2}$
(3) $|\vec{a}+\vec{b}|=|\vec{a}-\vec{b}|$
(4) $|\vec{a}-\vec{b}|=|\vec{a}+\vec{b}| \tan \theta$

Answer (2)

Sol. $|\vec{a}|=|\vec{b}|=1$
$\therefore|\vec{a}+\vec{b}|^{2}=1+1+2 \cos \theta$
and $|\vec{a}-\vec{b}|^{2}=2-2 \cos \theta$
$\therefore \frac{|\vec{a}-\vec{b}|}{|\vec{a}+\vec{b}|}=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}=\tan \frac{\theta}{2}$
12. Consider :

$$
\begin{aligned}
& P_{1}: \sim(p \rightarrow \sim q) \\
& P_{2}:(p \wedge \sim q) \wedge((\sim p) \vee q)
\end{aligned}
$$

If $p \rightarrow((\sim p) \vee q)$ is false then
(1) P_{1} is true, P_{2} is false
(2) P_{1} is false, P_{2} is true
(3) Both P_{1} and P_{2} are true
(4) Both P_{1} and P_{2} are false

Answer (4)

Sol. $P_{1}: \sim(p \rightarrow \sim q)$
$P_{2}:(p \wedge \sim q) \wedge((\sim p) \vee q)$
If $p \rightarrow((\sim p) \vee q)$ is false
Then p is true and $\sim p \vee q$ is false
$\therefore q$ is false
$\Rightarrow p_{1}$ is false and p_{2} is also false
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a
NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Let $f: N \rightarrow R$ be a function, $f(x+y)=2 f(x) \cdot f(y)$ for natural numbers x and y, if $f(1)=2$ and $\sum_{k=1}^{10} f(a+k)$
$=\frac{512}{3}\left(2^{20}-1\right)$, then the value of ' a ' is \qquad .

Answer (04)
Sol. $f(x+y)=2 f(x) f(y), x, y \in N$
and $f(1)=2$
$f(2)=2^{3}$
$f(3)=2^{5}$

Now, $\sum_{k=1}^{10} f(a+k)=2 f(a) \sum_{k=1}^{10} f(k)=\frac{512}{3}\left(2^{20}-1\right)$
$=2 f(a)\left[\frac{2\left(2^{20}-1\right)}{3}\right]=\frac{512}{3}\left(2^{20}-1\right)$
$\Rightarrow f(a)=128$
$\Rightarrow \quad a=4$
22. If $\frac{1}{2 \cdot 3^{10}}+\frac{1}{2^{2} \cdot 3^{9}}+\ldots \ldots \ldots+\frac{1}{2^{10} \cdot 3}=\frac{k}{2^{10} \cdot 3^{10}}$, then find the remainder when k is divisible by 6 .
Answer (5)
Sol. Given series
$\frac{1}{2 \cdot 3^{10}}+\frac{1}{2^{2} \cdot 3^{9}}+\frac{1}{2^{3} \cdot 3^{8}}+\ldots \ldots \ldots+\frac{1}{2^{10} \cdot 3}=\frac{k}{2^{10} \cdot 3^{10}}$
Series in LHS is a G.P with common ratio $\frac{3}{2}$
and $T_{n}=\frac{1}{2^{10} \cdot 3}=\frac{1}{2 \cdot 3^{10}}\left(\frac{3}{2}\right)^{n-1}$
$\Rightarrow n=10$
\therefore First term of G.P $=\frac{1}{2 \cdot 3^{10}}$,
Number of terms $=10$
and common ratio $=\frac{3}{2}$
Hence sum is $=\frac{\frac{1}{2 \cdot 3^{10}}\left(1-\left(\frac{3}{2}\right)^{10}\right)}{1-\frac{3}{2}}=\frac{\left(3^{10}-2^{10}\right)}{2^{10} \cdot 3^{10}}$
$\therefore \quad k=3^{10}-2^{10}$
Remainder when $3^{10}-2^{10}$ divided by 6 is
(Remainder when 3^{10} divided by 6) - (Remainder when 2^{10} divided by 6)
$=3-4=-1$ (i.e., 5)
23. For $f(x)=x^{3}+3 x^{2}+2 x+9$, point of inflection is $P(\alpha, \beta)$ calculate $\left(\alpha^{2}+\beta\right) / 5$.

Answer (2)

Sol. $\because f^{\prime}(x)=3 x^{2}+6 x+2, f^{\prime \prime}(x)=6 x+6=0 \Rightarrow x=-1$
And $f(-1)=9$
So $\alpha=-1$ and $\beta=9$
Clearly $\frac{\alpha^{2}+\beta}{5}=2$
24. Let $y=m_{1} x+c_{1}, y=m_{2} x+c_{2}, m_{1} \neq m_{2}$ are two common tangents of $x^{2}+y^{2}=2$ \& parabola $y^{2}=x$ then find the value of $\left|8 m_{1} m_{2}\right|$.

Answer (0.24)

Sol. Given curves: $y^{2}=x$ and $x^{2}+y^{2}=2$
Let the tangent of parabola

$$
\begin{aligned}
& \quad y=m x+\frac{1}{4 m} \text { if it touches to circle } \\
& \text { then }\left|\frac{\frac{1}{4 m}}{\sqrt{1+m^{2}}}\right|=\sqrt{2} \\
& \Rightarrow 32 m^{4}+32 m^{2}-1=0 \\
& \therefore \quad m^{2}=\frac{-32 \pm \sqrt{(32)^{2}+4 \times 32}}{64} \\
& \therefore \quad\left|m_{1} m_{2}\right|=\frac{-4+3 \sqrt{2}}{8} \\
& \therefore \quad 8\left|m_{1} m_{2}\right|=0.24
\end{aligned}
$$

25. Let the series $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81} \ldots . .100$ terms and S is the sum of this series, then find the value of $[S]$. (where [$]$] is greatest integer function)

Answer (98)

Sol. Let $S=\frac{1}{3}+\frac{5}{9}+\frac{19}{27}+\frac{65}{81}+\ldots . .100$ terms

$$
\begin{aligned}
\Rightarrow S=\sum_{r=1}^{100}\left(\frac{3^{r}-2^{r}}{3^{r}}\right) & =\sum_{r=1}^{100} 1-\sum_{r=1}^{100}\left(\frac{2}{3}\right)^{r} \\
& =100-\frac{\frac{2}{3}\left(1-\left(\frac{2}{3}\right)^{100}\right)}{\frac{1}{3}} \\
& =98+2\left(\frac{2}{3}\right)^{100}
\end{aligned}
$$

So $[S]=98$
26.
27.
28.
29.
30.

