27/06/2022 Evening

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers & Solutions

Time : 3 hrs.

for

M.M.: 300

JEE (Main)-2022 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
 - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **-1 mark** for wrong answer.
 - (ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

Six capacitor plates are arranged as shown. The area of each of the plates is *A*. The capacitance of the arrangement is _____.

- (1) $\frac{15}{28} \frac{\varepsilon_0 A}{d}$
- $(2) \quad \frac{23}{15} \frac{\varepsilon_0 A}{b}$
- $(3) \quad \frac{15}{22} \frac{\varepsilon_0 A}{d}$
- $(4) \quad \frac{17}{23} \frac{\varepsilon_0 A}{d}$

Answer (2)

2. Deuteron and proton enter a magnetic field perpendicularly having equal kinetic energy.

Find $\frac{R_d}{R_p}$ (R_d radius of circular trajectories.)

(1)
$$\sqrt{2}$$

(2) $\frac{1}{\sqrt{2}}$
(3) 2

(4) $\frac{1}{2}$

Answer (1)

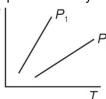
Sol.
$$R = \frac{\sqrt{2mKE}}{qB}$$

or $R \propto \frac{\sqrt{m}}{q}$

So
$$\frac{R_d}{R_p} = \sqrt{\frac{m_d}{m_p}} \times \frac{q_d}{q_p}$$

3. A thin lens of focal length *f* (in metres) is cut into two parts symmetrically as shown:

Then the power of part A is


(1)
$$\frac{1}{f}$$

(2) $\frac{1}{2f}$
(3) $\frac{2}{f}$
(4) $\frac{1}{3f}$

Answer (1)

Sol. As the radius of surfaces and refractive index has not changed focal length will also not change. So

$$P=\frac{1}{f}$$
.

- (1) $P_1 < P_2$
- (2) $P_1 > P_2$
- (3) $P_1 = P_2$
- (4) No relationship can be obtained

Answer (1)

Sol. From PV = nRT

$$V = \frac{nR}{P}T$$

So, higher the pressure lesser the slope.

So, $P_2 > P_1$

- 5. An ideal diatomic gas is expanded isobarically and work done in the process is 400 J. Find the heat given to the gas in this process.
 - (1) 160 J
 - (2) 700 J
 - (3) 320 J
 - (4) 1400 J

Answer (4)

Sol. $W = nR \Delta T$ for isobaric process.

$$\Rightarrow 400 = nR\Delta T$$

And, $Q = nC_p\Delta T$
 $= n \times \left(\frac{7R}{2}\right) \cdot \Delta T$; $C_p = \frac{7}{2}$ for diatomic gas
 $= \frac{7}{2} \times (400)$
 $= 1400 \text{ J}$

- 6. A wave propagates from one medium to another medium. Out of the parameters: wavelength, frequency and speed of the wave, the parameters that change are
 - (1) Wavelength and frequency
 - (2) Frequency and speed
 - (3) Wavelength and speed
 - (4) All the three

Answer (3)

Sol. In refraction from one medium to another, the speed and wavelength get changed. The frequency remains unchanged. 7. A spring with spring constant k and length l was attached to mass m and rotated about its axis at other end with ω . Find elongation

(1)
$$\frac{k - m\omega_0^2 l}{m\omega_0^2}$$

(2)
$$\frac{k + m\omega_0^2 l}{m\omega_0^2}$$

(3)
$$\frac{m\omega_0^2 l}{k - m\omega_0^2}$$

(4)
$$\frac{m\omega_0^2 l}{k + m\omega_0^2}$$

Answer (3)

Sol. Spring force is providing centrepetal acceleration thus

$$k\mathbf{x} = \mathbf{m}\omega_0^2 \left(\mathbf{I} + \mathbf{x} \right)$$

$$\Rightarrow x = \frac{m\omega_0^2 l}{k - m\omega_0^2}$$

8. Non conducting hemisphere with a charge q at centre flux through curved surface is

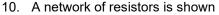
(1)
$$\frac{q}{\varepsilon_0}$$

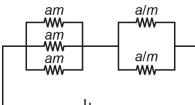
(2) $\frac{q}{2\varepsilon_0}$
(3) $\frac{2q}{\varepsilon_0}$
(4) $\frac{\pi q}{4\varepsilon_0}$
nswer (2)
ol.
Flux through hemis

Flux through hemispherical surface =
$$\frac{1}{2} \times \left(\frac{q}{\varepsilon_0}\right)$$

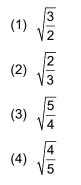
$$=\frac{q}{2\epsilon}$$

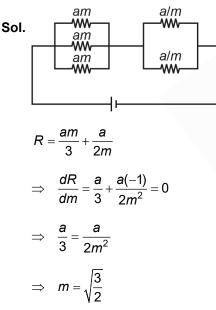
- 9. When does a transistor act as a switch.
 - (1) Saturation only
 - (2) Cut off
 - (3) Active
 - (4) Cut off + Saturation

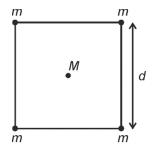

Answer (4)


Sol. Transistor acts as a switch in cut off and saturation condition.

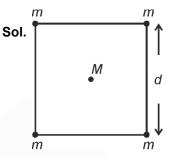
S






Find the value of m for minimum resistance of the network.

Answer (1)



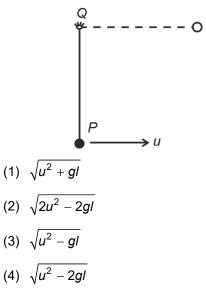
11. Four point masses each of mass "m" are placed at the corners of square at side "d" and a mass 'M' is placed at the centre. The gravitational potential energy of system is

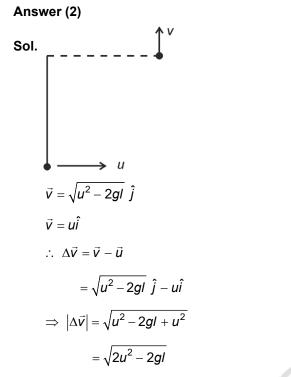
(1)
$$-\frac{Gm}{d} \Big[4\sqrt{2}M + \Big(4 + \sqrt{2}\Big)m \Big]$$

(2)
$$-\frac{Gm}{d} \Big[4\sqrt{2}m + \Big(4 + \sqrt{2}\Big)M \Big]$$

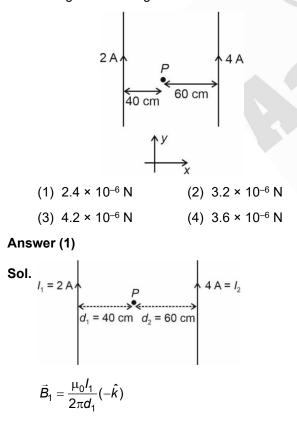
(3)
$$-\frac{GM}{d} \Big[4\sqrt{2}M + \Big(4 + \sqrt{2}\Big)m \Big]$$

(4)
$$-\frac{GM}{d} \Big[4\sqrt{2}m + \Big(4 + \sqrt{2}\Big)M \Big]$$


Answer (1)



Gravitational PE of system


$$= 4 \times \frac{-GMm}{\left(\frac{d}{\sqrt{2}}\right)} + 4 \times \frac{-Gm^2}{d} + 2 \times \frac{-Gm^2}{\sqrt{2}d}$$
$$= -\frac{GMm}{d} \times \left(4\sqrt{2}\right) - \left(4 + \sqrt{2}\right)\frac{Gm^2}{d}$$
$$= -\frac{Gm}{d} \left[4\sqrt{2}M + \left(4 + \sqrt{2}\right)m\right]$$

12. A bob *P* is suspended by the means of a thread from point *Q*. Length of thread is *I*. Bob is given a velocity *u* as shown. The change in velocity of bob till thread becomes horizontal

13. A point charge q = 2C is projected with the velocity of $\vec{v} = 2\hat{i} + 3\hat{j}$ from point *P*. The magnetic force acting on the charge at this moment is

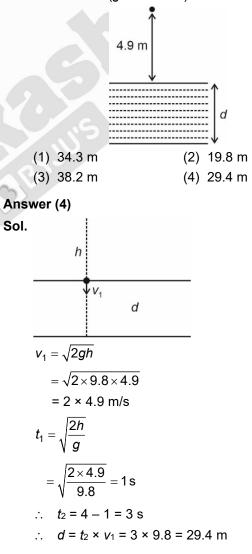
 $\vec{B}_2 = \frac{\mu_0 I_2}{2\pi d_2} (\hat{k})$

$$\vec{B}_{P} = \vec{B}_{1} + \vec{B}_{2}$$

$$= \frac{\mu_{0}}{2\pi} \left(\frac{l_{2}}{d_{2}} - \frac{l_{1}}{d_{1}} \right) \hat{k}$$

$$= 2 \times 10^{-7} \left(\frac{4}{0.6} - \frac{2}{0.4} \right) = \frac{10}{3} \times 10^{-7} \text{ T}$$

$$\vec{F}_{m} = qvB \text{ as } \vec{v} \perp \vec{B}$$


$$= 2 \times \sqrt{4 + 9} \times \frac{10}{3} \times 10^{-7}$$

$$= 2 \times \sqrt{13} \times \frac{10}{3} \times 10^{-7}$$

$$= 2.4 \times 10^{-6} \text{ N}$$

=

14. A particle is released from a height of 4.9 m above the surface of water as shown. The particle enters the water and moves with constant velocity and reaches bottom of tank in 4 sec after the release the value of d is $(g = 9.8 \text{ m/s}^2)$

15. **Statement-1** : An electron jumps from lower energy state E_1 to higher energy state E_2 then the photon absorbed is given as $h_V = E_1 - E_2$.

Statement-2: An electron jumps from higher energy state E_2 to lower energy state E_2 then the photon released is given by $h_V = E_2 - E_1$.

- (1) Both statements are true
- (2) Statement-1 is true, Statement-2 is false
- (3) Statement-1 is false, Statement-2 is true
- (4) Both statements are false

Answer (3)

Sol. For statement-1, $h_V = E_2 - E_1$, but given one is $h_V = E_1 - E_2$.

So, it is incorrect.

Statement-2 is true.

16. For a particle, position is given by

$$x = 1 \sin \left[\pi \left(t + \frac{1}{3} \right) \right]$$

Then find the velocity of the particle at t = 1.

(1)
$$\frac{1}{2}$$
 units

(2)
$$-\frac{1}{2}$$
 units

(3)
$$\frac{\pi}{2}$$
 units

(4)
$$-\frac{\pi}{2}$$
 units

Answer (4)

Sol. ::
$$x = 1 \sin \left[\pi \left(t + \frac{1}{3} \right) \right]$$

 $\Rightarrow v = \frac{dx}{dt} = 1 \cos \left[\pi \left(t + \frac{1}{3} \right) \right] \times \pi$
:. At $t = 1$,
 $v = 1 \times \cos \left(\pi \times \frac{4}{3} \right) \times \pi$
 $= -\frac{\pi}{2}$ units

JEE (Main)-2022 : Phase-1 (27-06-2022)-Evening

- 17. Time period of oscillation is t = 6 sec when the amplitude A = x. The time period, when $A = \frac{x}{2}$ is
 - (1) $\sqrt{6}$ sec
 - (2) 3 sec
 - (3) 6 sec
 - (4) 9 sec

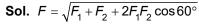
Answer (3)

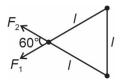
- **Sol.** ∴ Time period of oscillation is independent of amplitude.
 - \Rightarrow $T_2 = T_1$

 \Rightarrow T_2 = 6 s

- Which of the following expressions does not have the dimension of [M⁰L⁰T¹]?
 - (1) $\frac{L}{C}$
 - (2) √*LC*
 - (3) RC
 - (4) $\frac{L}{R}$

Answer (1)


Sol.
$$\because$$
 [*RC*] = [Time] = $\left[\frac{L}{R}\right] = [LC]$
 $\Rightarrow \left[\frac{L}{C}\right] \neq [Time]$


 Three charged particle having change q each are suspended by the means of thread from a common point. In equilibrium they make an equilateral triangle of edge *l*. The electrostatic force on one of the charge is

(1)
$$\frac{2\sqrt{3}q^2}{4\pi\epsilon_0 l^2}$$

(2)
$$\frac{2q^2}{4\pi\epsilon_0 l^2}$$

(3)
$$\frac{q^2}{8\pi\epsilon_0 l^2}$$

(4)
$$\frac{\sqrt{3}q^2}{4\pi\epsilon_0 l^2}$$

Answer (4)

and,
$$F_1 = F_2 = \frac{q^2}{4\pi\varepsilon_0 l^2}$$

$$\Rightarrow F = \sqrt{3} \times \frac{q^2}{4\pi\varepsilon_0 l^2}$$

- 20. Which of the following statements is true about kinetic theory of gases?
 - (1) Mean free path increases with increase in density
 - (2) Mean free path decreases with decrease in temperature, keeping volume constant
 - (3) Average kinetic energy per degree of freedom
 - $=\frac{3}{2}k_{b}T$
 - (4) Average kinetic energy per degree of freedom

$$=\frac{1}{2}k_{b}T$$

Answer (4)

Sol. From KTG, average kinetic energy per degree of

freedom is $\frac{1}{2}k_bT$.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. A block of mass 5 kg is hanging vertically with the help of a rope. A force 15 N is applied at the centre of the rope horizontally as shown. The angle made by the upper portion of the rope with the vertical in

equilibrium is given by $\tan^{-1}\left(\frac{x}{10}\right)$. The value of x

Answer (3)
Sol.
$$F = 15 \text{ N}$$

Sol.
 $P \rightarrow 15 \text{ N}$
 5 kg
At point *P* FBD will look like
 $T \rightarrow 0$
 50 N

$$\Rightarrow$$
 $T\cos\theta = 50$ and $T\sin\theta = 15$

$$\Rightarrow \tan \theta = \frac{3}{10}$$
$$\Rightarrow \theta = \tan^{-1} \left(\frac{3}{10} \right)$$

22.

- 23.
- 24.

25.

- 26.
- 27. 28.
- 29.

is___

CHEMISTRY

SECTION – A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

- 1. Arrange the following species in increasing order of their radii.
 - (1) $Na^+ < Mg^{2+} < F^- < O^{2-} < N^{3-}$
 - (2) $Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$
 - (3) $Mg^{2+} < F^- < Na^+ < O^{2-} < N^{3-}$
 - (4) $F^- < Na^+ < Mg^{2+} < O^{2-} < N^{3-}$

Answer (2)

Sol. For isoelectronic species, more the number of protons, less the size of the species.

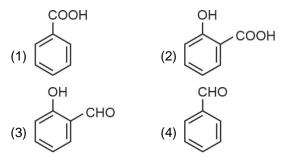
Hence, correct order is

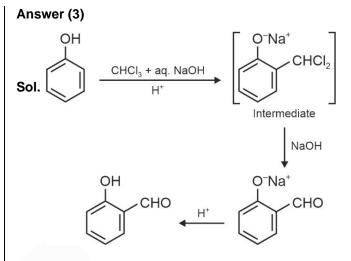
 $Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$

- Chlorine nitrate on hydrolysis produces X along with HNO₃ and chlorine nitrate on reaction with HCl produces Y along with HNO₃. X and Y are respectively
 - (1) HOCI, $HCIO_2$ (2) HOCI, CI_2
 - (3) HCl, Cl₂ (4) HOCl, HClO₃

Answer (2)

Sol. The reactions are


 $CIONO_2(g) + H_2O(g) \longrightarrow HOCI(g) + HNO_3(g)$


$$\mathsf{CIONO}_2(g) + \mathsf{HCI}(g) \longrightarrow \mathsf{Cl}_2(g) + \mathsf{HNO}_3(g)$$

So, X and Y are HOCI and Cl₂.

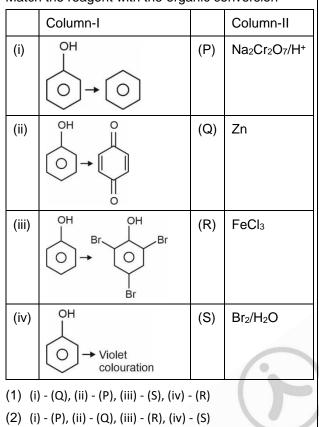
3. Consider the following reaction :

The major product formed in the above reaction is

4. Match the acidic radicals present in Column-I with their characteristic observations in Column-II

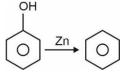
	Column-I		Column-II
(i)	CO ₃ ²⁻	(P)	Brisk Effervescence
(ii)	NO ₃	(Q)	White precipitate
(iii)	SO ₄ ²⁻	(R)	Brown Ring
(iv)	S ²⁻	(S)	Rotten egg smell

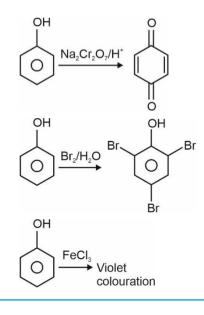
(4) (i) - (P), (ii) - (R), (iii) - (S), (iv) - (Q)


Answer (3)

- Sol. CO_3^{2-} Produces Brisk Effervescence due to evolution of CO_2 gas on treatment with dil. H_2SO_4
 - NO₃⁻ Brown Ring formation during confirmatory Test
 - SO_4^{2-} White precipitate on addition of BaCl₂
 - S²⁻ Produces Rotten Egg smell due to evolution of H₂S gas on addition of dil. acid.

- 8 -


Match the reagent with the organic conversion 5.



- (3) (i) (Q), (ii) (R), (iii) (S), (iv) (P)
- (4) (i) (R), (ii) (S), (iii) (P), (iv) (Q)

Answer (1)

JEE (Main)-2022 : Phase-1 (27-06-2022)-Evening

6. Arrange the following coordination complexes in increasing order of their magnetic moments

I	= [Fe(CN) ₆] ³⁻		
II	$= [Fe(F)_6]^{3-}$		
III	= [Mn(Cl) ₆] ³⁻		
IV	= [Mn(CN) ₆] ³⁻		
(1)	< $ $ < $ $ < $ V$	(2)	I < IV < III < II
(3)	IV < II < I < III	(4)	< < V <
Answer (2)			

Sol. $[Fe(CN)_6]^{3-}$: Fe^{3+} : $3d^5$; $n = 1 \ \mu = \sqrt{3} \ BM$ $[Fe F_6]^{3-}$: Fe^{3+} : $3a^6$; $n = 5 \mu = \sqrt{35} BM$ $[Mn Cl_6]^{3-}$: Mn^{3+} : $3d^4$; $n = 4 \mu = \sqrt{24} BM$ $[Mn (CN)_6]^{3-}$: Mn^{3+} : $3d^4$; $n = 2 \mu = \sqrt{8} BM$

Increasing order of magnetic moment | < |V < ||| < ||.

7. Statement 1 : In extraction of gold, the oxidation state of gold in the cyanide complex formed is +3

Statement 2: When the cyanide complex is treated with zinc, Zn gets oxidised to +2 state

- (1) Statement 1 and 2 both are correct
- (2) Statement 1 is correct but statement 2 is wrong
- (3) Statement 1 wrong but statement 2 is correct
- (4) Statement 1 and 2 both are wrong

Answer (3)

Sol. $4Au(s) + 8C\overline{N} + 2H_2O(aq) + O_2 \longrightarrow$

 $4[Au(CN)_2]^-(aq) + 4O\overline{H}(aq)$

 $2[Au(CN)_2]^-(aq.) + Zn(s) \longrightarrow$

$$2Au_{(s)} + [Zn(CN)_4]^{2-}(aq)$$

8. Arrange the following compounds in increasing order of H-Bonding

HCN, NH₃, CH₄

- (1) $CH_4 < NH_3 < HCN$
- (2) $HCN < NH_3 < CH_4$
- (3) $NH_3 < CH_4 < HCN$
- (4) $CH_4 < HCN < NH_3$

Answer (1)

Sol. The correct order of H-bonding is

 $CH_4 < NH_3 < HCN$

The degree of H-Bonding is highest in HCN as N atom is *sp* hybridised resulting in higher polarity

- However, CH₄ does not show H-Bonding
- 9. Match column I with column II
 - Column I Column II
 - (i) Tranquilizers (a) Relieve pain
 - (ii) Analgesics (b) Lowers body temperature
 - (iii) Antipyretic (c) Control acidity
 - (iv) Antacids (d) Reduce stress

Choose the correct option

- (1) (i)-d, (ii)-a, (iii)-b, (iv)-c
- (2) (i)-b, (ii)-c, (iii)-d, (iv)-a
- (3) (i)-c, (ii)-d, (iii)-b, (iv)-a
- (4) (i)-b, (ii)-d, (iii)-a, (iv)-c

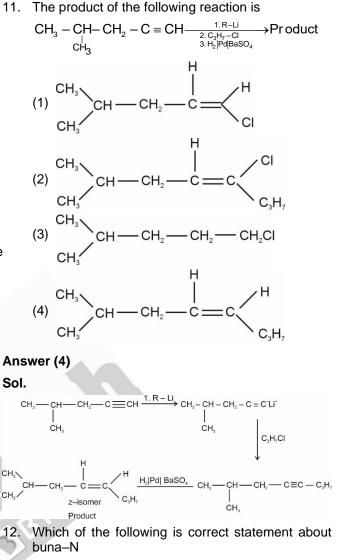
Answer (1)

Sol. Tranquilizers are a class of chemical compound used for the treatment of stress, and mild or even severe mental diseases. Example-chlordiazepoxide Analgesics reduce or abolish pain without causing impairment of consciousness, mental confusion or

some other disturbances of nervous system.

Antipyretics are used to reduce body temperature

Example : Paracetamol


Antacids control acidity in the stomach Ex-Ranitidine

- 10. The gas releases in the following reaction is $PCI_5 + NH_4CI \rightarrow Gas + side product$
 - (1) NCl₃ (2) PCl₃
 - (3) HCI (4) N₂

Answer (3)

Sol.
$$3PCI_5 + 2NH_4CI \xrightarrow{\Delta} [CI_3P = N - PCI_2 = N - PCI_3]^+$$

$$CI^{-} + 8HCI(g)$$

- (1) Monomer of Buna–N are styrene and Butadiene
- (2) Monomers of Buna–N are Butadiene and vinyl cyanide
- (3) Buna–N is a condensation polymer
- (4) Buna-N is natural rubber

Answer (2)

Sol. Buna–N is formed by the polymerisation of butadiene and vinyl cyanide

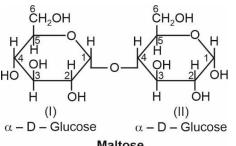
$$nCH_2 = CH - CH = CH_2 + nCH_2 = CH - CN \xrightarrow{Polymerisation}$$

$$+CH_2 - CH = CH - CH_2 - CH_2 - CH_1$$

 Assertion (A) : Fluorine forms only one oxoacid known as Hypofluorous acid Reason (R) : Fluorine has small size and high electronegativity

- Both (A) and (R) are true and (R) is the correct explanation of (A)
- (2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) (A) is false but (R) is true

Answer (1)


- Sol. Due to high electronegativity and small size fluorine forms only one oxoacid, HOF known as fluoric acid (1) or hypofluorous acid. Other halogens form several oxoacids
- 14. Statement-I : Maltose is composed of two α -D-glucose units in which C-1 of one glucose is linked to C-4 of another glucose unit

Statement-II : Maltose is composed of α -D-glucose and β -D-glucose in which C-1 of α -D-glucose is linked to C-6 of β -D-glucose

- Statement-(I) is correct and Statement-(II) is incorrect
- (2) Statement-(I) is incorrect and Statement-(II) is correct
- (3) Both the statements are correct
- (4) Both the statements are incorrect

Answer (1)

Sol. Maltose is composed of two α-D-glucose units in which C-1 of one glucose is linked to C-4 of another glucose.

Maltose

Therefore, statement-I is correct and statement-II is incorrect

15. Calculate the pH of 0.001 M NaOH

(1) 11	(2) 10
(3) 9	(4) 6

Answer (1)

Sol.
$$pOH = -log[OH^{-}]$$

= $-log10^{-3}$
= $3log10$
 $pOH = 3$
 $\therefore pH + pOH = 14$
 $pH = 14 - 3$
 $pH = 11$

16. Among the following most stable species is

Answer (4)

Sol.
$$\longrightarrow$$
 Aromatic, so most stable

- 17. Correct statement about PCI₅ is/are
 - a. PCI₅ has TBP geometry
 - b. Axial bonds are stronger than equatorial bond
 - c. All equatorial bonds are in same plane
 - d. PCl₅ shows sp³d hybridisation
 - (1) a, b, c (2) a, b, d
 - (3) a, c, d (4) b, c, d

Answer (3)

sp³d hybridization

Axial bonds are longer than equatorial bonds.

18. Which of the following elements has the highest value of $E^{\circ}_{M^{+2}/M}$?

(1)	Ni	(2)	Mn
(3)	Cu	(4)	Fe

Answer (3)

Sol.
$$E^{\circ}_{Cu^{+2}/Cu} = + 0.34 \text{ V}$$
 $E^{\circ}_{Fe^{+2}/Fe} = -0.44 \text{ V}$
 $E^{\circ}_{Ni^{+2}/Ni} = -0.25 \text{ V}$
 $E^{\circ}_{Mn^{+2}/Mn} = -1.18 \text{ V}$

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

 When BeO reacts with HF in the presence of ammonia, a compound A is formed. On heating, a compound B is formed along with ammonium fluoride. The oxidation state of Be in compound B is

Answer (02.00)

Sol. BeO + 2NH₃ + 4HF
$$\longrightarrow$$
 (NH₄)₂[BeF₄] $\xrightarrow{\text{Heat}}$
(A)
BeF₂ + 2NH₄F

In BeF₂, oxidation of Be is +2.

 Among the elements with atomic number 57 to 70, the number of elements with half filled configuration are x and fully filled configuration are y. The sum of x and y is,

Answer (04.00)

Sol. The elements with half filled and fully filled configurations are,

 $\mathsf{Eu} = 4f^7 \, 6s^2$

 $Gd = 4f^7 5d^1 6s^2$

 $Yb = 4f^{14} 6s^2$

- $Lu = 4f^{14} 5d^1 6s^2$
- 23. In Carious method of estimation of halogen, 0.25 g of an organic compound gave 0.40 g of AgCl. Find out the percentage of chlorine in the compound.

Answer (39.58)

Sol. Mass of organic compound = 0.25 gm

Mass of AgCI formed = 0.40 gm

Mass of CI in the organic compound = $\frac{0.40}{143}$.

Percentage of CI in the organic compound

$$= \frac{0.40 \times 35.5 \times 100}{143.5 \times 0.25}$$
$$= 39.58\%$$

24. Consider an electrochemical cell

 $Pt, H_2 | H^+ || Ag^+ | Ag$

Given, $E_{Aq^+|Aq}^{\circ} = +0.80 \text{ V}$

the value of ΔG° for the cell represented above is -x kJ, then the value of x in nearest integer is

Answer (77)

```
Sol. \Delta G^{\circ} = -nFE^{\circ}
= - 1 × 96500 × 0.80
= -77200 J
= -77.2 kJ
\approx -77 kJ
```

25. How many of the following set of quantum numbers possible?

	n	Ι	m
(i)	3	3	3
(ii)	2	1	1
(iii)	3	2	2
(iv)	2	2	2
	and the second		· ·

Answer (02.00)

Sol. Only those quantum numbers are possible in which n > 1

Therefore, only set (ii) and (iii) are possible

26. The boiling point of pure water is 373.15 K. It changes to 373.535 K, when 2.5×10^{-3} kg of a non-volatile and non-electrolyte solute has been added to 75 $\times 10^{-3}$ kg water. Find the molecular mass of solute in g/mol. K_b(H₂O) = 0.52 K kg mol⁻¹

[Round off to the nearest integer]

Answer (45)

Sol. Since,

$$\Delta T_{b} = ik_{b}m$$

$$m = \frac{2.5}{M} \times \frac{1000}{75}$$

$$\Delta T_{b} = 373.535 - 373.15 = 0.385 \text{ K}$$

$$0.385 = 1 \times 0.52 \times \frac{2.5 \times 1000}{M \times 75}$$

$$M = 45 \text{ g/mol}$$
27.
28.
29.

30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

1.	The value of $\cot\left(\sum_{n=1}^{50} t\right)$	$\operatorname{an}^{-1}\left(\frac{1}{1+n+n^2}\right)$ is equal to
	(1) $\frac{25}{26}$	(2) $\frac{3}{25}$
	(3) $\frac{26}{25}$	(4) $\frac{3}{26}$

Answer (3)

Sol. ::
$$\sum_{n=1}^{50} \tan^{-1} \left(\frac{1}{1+n+n^2} \right) = \sum_{n=1}^{50} \tan^{-1} \left(\frac{(n+1)-n}{1+n-(n+1)} \right)$$
$$= \sum_{n=1}^{50} \left(\tan^{-1} (n+1) - \tan^{-1} n \right)$$
$$= \tan^{-1} 51 - \tan^{-1} 1$$
$$= \tan^{-1} \left(\frac{51-1}{1+51\cdot 1} \right)$$
$$= \tan^{-1} \left(\frac{50}{52} \right)$$
$$= \tan^{-1} \left(\frac{25}{26} \right) = \cot^{-1} \left(\frac{26}{25} \right)$$
$$\therefore \quad \cot \left(\sum_{n=1}^{50} \tan^{-1} \left(\frac{1}{1+n+n^2} \right) \right) = \frac{26}{25}$$
2. If $S = 2 + \frac{6}{7} + \frac{12}{7^2} + \frac{20}{7^3} + \dots \infty$, then find 4S
$$(1) \quad \left(\frac{7}{2} \right)^2 \qquad (2) \quad \left(\frac{7}{3} \right)^3$$
$$(3) \quad \frac{7}{3} \qquad (4) \quad \left(\frac{7}{3} \right)^4$$
Answer (2)

Sol.

$$S = 2 + \frac{6}{7} + \frac{12}{7^2} + \frac{20}{7^3} + \dots \infty$$

$$\frac{1}{7}S = \frac{2}{7} + \frac{6}{7^2} + \frac{12}{7^3} + \frac{20}{7^4} + \dots \infty$$

$$\frac{6}{7}S = 2 + \frac{4}{7} + \frac{6}{7^2} + \frac{8}{7^3} + \dots \infty$$

$$\frac{6}{49}S = +\frac{2}{7} + \frac{4}{7^2} + \frac{6}{7^3} + \dots \infty$$

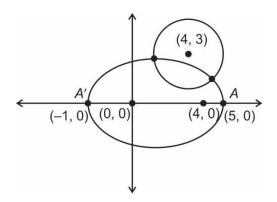
$$\frac{6}{49}S = 2 + \frac{2}{7} + \frac{2}{7^2} + \frac{2}{7^3} + \dots \infty$$

$$\frac{36}{49}S = 2 \left(1 + \frac{1}{7} + \frac{1}{7^2} + \dots \infty\right)$$

$$S = 2 \cdot \frac{1}{1 - \frac{1}{7}} \cdot \frac{49}{36}$$

$$4S = \left(\frac{7}{7}\right)^3$$

3. The number of complex numbers z satisfying |z - (4 + 3i)| = 2 and |z| + |z - 4| = 6 is


(1) 1 5	(2) 2

-(3)

(3) 3 (4) 4

Answer (2)

Sol. |z - (4 + 3i)| = 2 it represents a circle with centre (4, 3) and radius 2 and |z| + |z - 4| = 6 it represents an ellipse with foci (0, 0) and (4, 0) and length of its major axis is 6

So, by graphs of the curves, here exist two complex numbers which satisfy both the given curves.

- 13 -

4. If *f* is differentiable function such that

 $\int_{\cos x}^{1} t^{2} f(t) dt = \sin^{3} x + \cos x.$ Then the value of $\frac{1}{\sqrt{3}} f'\left(\frac{1}{\sqrt{3}}\right)$ is

(1)
$$6 - \frac{21}{\sqrt{2}}$$
 (2) $6 + \frac{9}{\sqrt{2}}$
(3) $6 - \frac{9}{\sqrt{2}}$ (4) $3 - \sqrt{21}$

Answer (3)

Sol.
$$\therefore \int_{\cos x}^{1} t^2 f(t) dt = \sin^3 + \cos x \qquad \dots (i)$$

On differentiating both sides w.r.t. x we get :

 $\sin x$. $\cos^2 x f(\cos x) = 3\sin^2 x$. $\cos x - \sin x$

 $\therefore \cos^2 x.f(\cos x) = 3\sin x.\cos x - 1 \qquad \dots (ii)$

When
$$\cos x = \frac{1}{\sqrt{3}}$$
 then $\sin x = \frac{\sqrt{2}}{\sqrt{3}}$, if $x \in \left(0, \frac{\pi}{2}\right)$
 $\therefore f\left(\frac{1}{\sqrt{3}}\right) = 3\left(\sqrt{2} - 1\right) \qquad \dots (iii)$

Again on differentiating both sides of equation (ii) w.r.t. *x* we get

 $-2\sin x. \cos x. f(\cos x) + \cos^2 x f(\cos x) (-\sin x) = 3\cos 2x$

On replacing the values we get :

$$-2\sqrt{2}\left(\sqrt{2}-1\right) - \frac{\sqrt{2}}{3\sqrt{3}}f'\left(\frac{1}{\sqrt{3}}\right) = -1$$

$$\therefore \quad \frac{1}{\sqrt{3}}f'\left(\frac{1}{\sqrt{3}}\right) = \frac{3}{\sqrt{2}}\left(2\sqrt{2}-3\right)$$
$$= 6 - \frac{9}{\sqrt{2}}$$

5. Which of the following is a tautology?

(1)
$$(\neg p \land q) \lor (p \lor \neg p)$$
 (2) $(p \to q) \lor q$

(3)
$$(p \leftrightarrow q) \lor (p \land q)$$
 (4) $p \lor (p \leftrightarrow q)$

Answer (1)

Sol. : $p \lor \sim p$ is a tautology.

So $(\sim p \land q) \lor (p \lor \sim p)$ will be a tautology.

- JEE (Main)-2022 : Phase-1 (27-06-2022)-Evening 6. The equation of parabola whose vertex is (5, 4) and equation of directrix is 3x + y - 29 = 0 is $x^2 + ay^2 + bxy + cx + dy + e = 0$. The value of (a + b + c + d + e) is (1) 711 (2) -711
 - (3) 576 (4) -576

Answer (4)

Sol. Let focus be (α, β)

Foot of perpendicular from (5, 4) on 3x + y - 29 = 0 is (8, 5)

$$\Rightarrow \quad \frac{\alpha+8}{2} = 5, \frac{\beta+5}{2} = 4 \quad \Rightarrow \quad (\alpha, \beta) = (2, 3)$$

: focus is (2, 3) & directrix 3x + y - 29 = 0

Applying *PS* = *PL* we get

$$(x-2)^{2} + (y-3)^{2} = \frac{(3x+y-29)^{2}}{10}$$

$$\Rightarrow x^{2} + 9y^{2} - 6xy + 134x - 2y - 711 = 0$$

Comparing we get

$$\frac{x-1}{4} = \frac{y-2}{2} = \frac{z-3}{3} \text{ and } \frac{x-5}{5} = \frac{y-3}{6} = \frac{z-2}{7} \text{ is}$$
(1) $\sqrt{43}$ (2) $\frac{43}{\sqrt{381}}$

(3)
$$\frac{43}{\sqrt{391}}$$
 (4) $\sqrt{381}$

Answer (2)

7

Sol.
$$L_1: \frac{x-1}{4} = \frac{y-2}{2} = \frac{z-3}{3}$$

 $L_2: \frac{x-5}{5} = \frac{y-3}{6} = \frac{z-2}{7}$
 $\vec{a_1} = \hat{i} + 2\hat{j} + 3\hat{k}, \quad \vec{p} = 4\hat{i} + 2\hat{j} + 3\hat{k}$
 $\vec{a_2} = 5\hat{i} + 3\hat{j} + 2\hat{k}, \quad \vec{q} = 5\hat{i} + 6\hat{j} + 7\hat{k}$
Now, $\vec{a_2} - \vec{a_1} = 4\hat{i} + \hat{j} - \hat{k}$
 $\vec{p} \times \vec{q} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 2 & 3 \\ 5 & 6 & 7 \end{vmatrix} = -4\hat{i} - 13\hat{j} + 14\hat{k}$

 \therefore Shortest distance between L_1 and L_2

$$= \left| \frac{(\vec{a}_2 - \vec{a}_1) \cdot (\vec{p} \times \vec{q})}{\vec{p} \times \vec{q}} \right|$$
$$= \left| \frac{43}{\sqrt{381}} \right|$$

The value of $\int_{0}^{1} \frac{dx}{\sqrt{1}}$ is (where [·] denotes the 8.

greatest integer function)

(1)
$$1 - 6\ln\left(\frac{6}{7}\right)$$

(2)
$$1 + 6\ln\left(\frac{6}{7}\right)$$

(3)
$$1 - 7\ln\left(\frac{6}{7}\right)$$

(4)
$$1 + 7\ln\left(\frac{6}{7}\right)$$

Answer (1)

Sol.
$$I = \int_{0}^{1} \frac{dx}{7\left[\frac{1}{x}\right]}$$
 let $x = \frac{1}{t}$

$$I = \int_{1}^{\infty} \frac{dt}{7^{[t]} \cdot t^2}$$

Let
$$I_n = \int_{n}^{n+1} \frac{dt}{7^{[t]} \cdot t^2} = \frac{1}{7^n} \left[-\frac{1}{t} \right]_{n}^{n+1} = \frac{1}{7^n} \left[\frac{1}{n} - \frac{1}{n+1} \right]$$

= $\frac{1}{n \cdot 7^n} - \frac{7}{(n+1)7^{n+1}}$
So, $I = \sum_{n=1}^{\infty} \left(\frac{1}{n \cdot 7^n} - \frac{7}{(n+1)7^{n+1}} \right)$

$$\frac{1}{\sqrt{7^{n}}} - \frac{7}{(n+1)7^{n+1}}$$
$$= -\ln\left(1 - \frac{1}{7}\right) + 7\left[\ln\left(1 - \frac{1}{7}\right) + \frac{1}{7}\right]$$

 $= -\ln\left(\frac{6}{7}\right) + 7\ln\left(\frac{6}{7}\right) + 1$

 $= 1 - 6 \ln \left(\frac{6}{7}\right)$

(1)
$$\frac{27}{28}$$
 (2) $\frac{28}{27}$
(3) $\frac{9}{16}$ (4) $\frac{16}{9}$

Answer (2)

Sol. Let a_1 , a_2 , a_3 a_{10} are in A.P. with common difference d_1

So
$$9d_1 = a_{10} - a_1 = 1 \implies d_1 = \frac{1}{9}$$

Hence
$$a_4 = a_1 + 3d_1 = 2 + \frac{3}{9} = \frac{7}{3}$$

Let b_1 , b_2 , b_3 ,...., b_{10} are in A.P. with common difference d_2 . Here, $b_1 = \frac{1}{2}$ and $b_{10} = \frac{1}{3}$

So,
$$9d_2 = b_{10} - b_1 = -\frac{1}{6} \Rightarrow d_2 = -\frac{1}{54}$$

 $b_4 = b_2 + 3d_2 = \frac{1}{2} - \frac{1}{2} = \frac{4}{2}$

So,
$$a_4 \cdot b_4 = \frac{28}{27}$$
.

10. A and B are two 3×3 matrices such that AB = I, $|A| = \frac{1}{8}$, then find |adj (B adj 2A)|(1) 128 (2) 32

Answer (3)

Sol.
$$\therefore AB = I \text{ and } |A| = \frac{1}{8}$$

 $|AB| = |I| \Rightarrow |A| |B| = 1$
 $\therefore |B| = 8$
Now, $|\operatorname{adj}B\operatorname{adj}(2A)| = |B\operatorname{adj}(2A)|^2$
 $= |B|^2 |\operatorname{adj}(2A)|^2$
 $= |B|^2 |2^2 (\operatorname{adj}A)|^2$
 $= 4^6 \cdot |B|^2 |A|^4$
 $= 2^{12} \cdot 8^2 \cdot \left(\frac{1}{8}\right)^4$
 $= 2^6$
 $= 64$

	JEE (Main)-2022 : Phase-1 (27-06-2022)-Evening
11. If the curve satisfying the differential equation $(t = t^{-1}) + (t = t^{-1$	15.
$(\tan^{-1} y - x)dy = (1 + y^2)dx$ passes through (1, 0),	16. 17.
then find x at $y = 1$.	17.
$(1) \ \left(\frac{\pi}{4}-1\right)$	19.
(2) $e^{-\frac{\pi}{4}}$	20.
(3) $\left(\frac{\pi}{4}-1\right)+2e^{-\frac{\pi}{4}}$	SECTION - B
(4) $\left(\frac{\pi}{4} + 1\right) + 2e^{\frac{\pi}{4}}$	Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the
Answer (3)	correct numerical value (in decimal notation,
ol. $(\tan^{-1} y - x) dy = (1 + y^2) dx$	truncated/rounded-off to the second decimal place; e.g.
$\therefore \frac{dx}{dy} + \frac{x}{1+y^2} = \frac{\tan^{-1}y}{1+y^2}$	06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
$I.f = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$	21. Let A be a 2 × 2 matrix, whose entries are taken
∴ Solution	from the set {0, 1, 2, 3, 4, 5, 6} such that sum of all entries is a prime number between 2 and 6 (both
$xe^{\tan^{-1}y} = \int \frac{\tan^{-1}y}{1+y^2} \cdot e^{\tan^{-1}y} dy$	excluded). Find number of possible matrices A.
. 1	Answer (76)
Let $\tan^{-1} y = t \Rightarrow \frac{1}{1+y^2} dy = dt$	Sol. There will be two cases.
$\therefore xe^{\tan^{-1}y} = \int te^t dt$	Case I : When sum of entries is 3 Entries will be (3, 0, 0, 0) or (2, 1, 0, 0)
	or (1, 1, 1, 0)
$xe^{\tan^{-1}y} = te^{t} - e^{t} + C$ $x = (\tan^{-1}y - 1) + Ce^{-\tan^{-1}y} \dots (i)$	Number of matrices formed $=$ $\frac{ 4 }{ 3 } + \frac{ 4 }{ 2 } + \frac{ 4 }{ 3 }$
∵ (i) passes (1, 0), ∴ <i>C</i> = 2	= 20
:. $x = (\tan^{-1} y - 1) + 2e^{-\tan^{-1} y}$	Case II : When sum of entries is 5
Now, put $y = 1$	Entries will be (5, 0, 0, 0), (4, 1, 0, 0), (3, 2, 0, 0), (3, 1, 1, 0), (2, 2, 1, 0), (2, 1, 1, 1)
$x(1) = \left(\frac{\pi}{4} - 1\right) + 2e^{-\frac{\pi}{4}}$	Number of matrices formed
2.	$=\frac{ 4 }{ 3 }+\frac{ 4 }{ 2 }+\frac{ 4 }{ 2 }+\frac{ 4 }{ 2 }+\frac{ 4 }{ 2 }+\frac{ 4 }{ 3 }=56$
3.	

14.

- 16 -

Total number of matrices formed = 76

JEE (Main)-2022 : Phase-1 (27-06-2022)-Evening			
22. Consider elements 4, 5, 6, 6, 7, 8, <i>x</i> , <i>y</i> . If mean = 6 and variance $=\frac{9}{4}$. Find $x^2 + y^2$.	$\therefore x^2 + y^2 + 226 = \frac{153}{4} \times 8$		
4	$\therefore x^2 + y^2 = 80$		
Answer (80)	23.		
Sol. Given data : 4, 5, 6, 6, 7, 8, <i>x</i> , <i>y</i>	24.		
Mean $(\overline{x}) = 6$, variance $= \frac{9}{4}$	25.		
4	26.		
\therefore Variance = $\frac{\sum x_i^2}{n} - (\overline{x})^2$	27.		
n (X)	28.		
$\frac{9}{4} = \frac{226 + x^2 + y^2}{8} - 36$	29.		
$\frac{1}{4} = \frac{1}{8} = \frac{1}{30}$	30.		

Aakash

