12/04/2023
Morning

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Memory Based Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2023 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If a planet has mass equal to 16 times the mass of earth, and radius equal to 4 times that of earth. The ratio of escape speed of planet to that of earth is
(1) $2: 1$
(2) $1: 2$
(3) $\sqrt{2}: 1$
(4) $4: 1$

Answer (1)
Sol. $\frac{V_{P}}{V_{e}}=\sqrt{\frac{2 G M_{P}}{R_{P}}} \times \sqrt{\frac{R_{e}}{2 G M_{e}}}$
$=\sqrt{\frac{16}{4}}=2$
2. Find ratio of de-Broglie wavelength of a proton and an α-particle, when accelerated through a potential difference of 2 V and 4 V respectively.
(1) $4: 1$
(2) $2: 1$
(3) $1: 8$
(4) $16: 1$

Answer (1)

Sol. $\frac{\lambda_{p}}{\lambda_{\alpha}}=\frac{\sqrt{2 q_{\alpha} V_{\alpha} m_{\alpha}}}{\sqrt{2 q_{p} V_{p} m_{p}}}=\sqrt{\frac{2 \times 4 \times 4}{1 \times 2 \times 1}}=\frac{4}{1}$
3. If a body of mass 5 kg is in equilibrium due to forces F_{1}, F_{2} and $F_{3} . F_{2}$ and F_{3} are perpendicular to each other. If F_{1} is removed then find the acceleration of body. Given : $F_{2}=6 \mathrm{~N}$ and $F_{3}=8 \mathrm{~N}$
(1) $2 \mathrm{~m} / \mathrm{s}^{2}$
(2) $3 \mathrm{~m} / \mathrm{s}^{2}$
(3) $4 \mathrm{~m} / \mathrm{s}^{2}$
(4) $5 \mathrm{~m} / \mathrm{s}^{2}$

Answer (1)
Sol. $F_{\text {net }}=\sqrt{6^{2}+8^{2}}=10 \mathrm{~N}$
$a=\frac{10}{5}=2 \mathrm{~m} / \mathrm{s}^{2}$
4. If an object cools down from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 5 minutes in a surrounding of temperature $20^{\circ} \mathrm{C}$. The time taken to cool from $60^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ will be (assume Newton's law of cooling to be valid)
(1) $\frac{25}{3}$ minutes
(2) 5 minutes
(3) $\frac{25}{4}$ minutes
(4) 9 minutes

Answer (1)

Sol. $\frac{20}{5}=K(70-20)$
also $\frac{20}{t}=K(50-20)$
from (1) and (2)
$t=\frac{25}{3}$ minutes
5. Ratio between rms speed of Ar to the most probable speed of O_{2} at $27^{\circ} \mathrm{C}$ is
(1) $\sqrt{\frac{8}{\pi}}$
(2) $\sqrt{\frac{8}{3}}$
(3) $\sqrt{\frac{4}{\pi}}$
(4) $\sqrt{\frac{4}{3}}$

Answer (2)

Sol. $v_{\text {rms Ar }}=\sqrt{\frac{3 R T}{M}}=\sqrt{\frac{3 R T}{18}}$
$v_{\mathrm{mpO}_{2}}=\sqrt{\frac{2 R T}{M}}=\sqrt{\frac{2 R T}{32}}$
$\frac{v_{\mathrm{rms} \mathrm{Ar}}}{v_{\mathrm{mpO}_{2}}}=\sqrt{\frac{3}{18} \times \frac{32}{2}}=\sqrt{\frac{16}{6}}=\sqrt{\frac{8}{3}}$
6. A dipole having dipole moment \vec{M} is placed in two magnetic field of strength B_{1} and B_{2} respectively. If dipole oscillates 60 time in 20 seconds in B_{1} magnetic field and 60 oscillations in 30 seconds in B_{2} magnetic field. Then find the $\left(\frac{B_{1}}{B_{2}}\right)$.
(1) $\frac{3}{2}$
(2) $\frac{2}{3}$
(3) $\frac{4}{9}$
(4) $\frac{9}{4}$

Answer (4)
Sol. $\tau=\vec{M} \times \vec{B}$
$l \alpha=-M B \theta$
$\alpha=-\left(\frac{M B}{I}\right) \theta$
$T=2 \pi \sqrt{\frac{I}{M B}}$
$\frac{T_{1}}{T_{2}}=\sqrt{\frac{B_{2}}{B_{1}}}$
$\Rightarrow \frac{20}{30}=\sqrt{\frac{B_{2}}{B_{1}}}$
$\Rightarrow \frac{B_{1}}{B_{2}}=\frac{9}{4}$
7. Mass of body $=500 \mathrm{~kg}, \mu=0.7$. Find work to move 4 km distance when the body moves with velocity $10 \mathrm{~m} / \mathrm{s}$.
(1) $3.5 \times 10^{6} \mathrm{~J}$
(2) $28 \times 10^{6} \mathrm{~J}$
(3) $7 \times 10^{6} \mathrm{~J}$
(4) $14 \times 10^{6} \mathrm{~J}$

Answer (4)

Sol. Since $v=$ const. $\Rightarrow F=\mu m g=0.7 \times 500 \times 10$
$=3500 \mathrm{~N}$
$W=F S=3.5 \times 10^{3} \times 4 \times 10^{3}=14 \times 10^{6} \mathrm{~J}$
8. Suppose a situation in which two planet orbits around the sun in same orbit. If the mass of planet 1 is twice the mass of planet 2 , then what do they have same?
(1) Potential energy
(2) Kinetic energy
(3) Total energy
(4) Velocity

Answer (4)
Sol. $v=\sqrt{\frac{G M}{r}} ; M=$ mass of sun
P.E. $=-\frac{G M m}{r} \quad m$, different so different P.E.
K.E. $=\frac{1}{2} m v^{2} \quad m$, different so different K.E.
T.E. will be different.
9. In a ice cube of thickness 24 cm , has bubble trapped in it as shown in figure. If apparent side are 12 cm and 4 cm from side (1) and side (2) respectively then refractive index of ice cube is

(1) $\frac{4}{3}$
(2) $\frac{3}{2}$
(3) 2
(4) 2.4

Answer (2)
Sol. $\frac{l}{\mu}=12+4=16 \mathrm{~cm}$
$\frac{24}{16}=\mu$
$\Rightarrow \mu=\frac{3}{2}$
10. Statement (1): A truck and a car moving with equal kinetic energy are stopped by equal retarding force. Both will cover equal distance to stop.
Statement (2): A car moving towards east suddenly changes its direction towards north with same speed. Its acceleration is zero.
(1) Both (1) and (2) are true
(2) Both (1) and (2) are false
(3) (1) is true, (2) is false
(4) (1) is false, (2) is true

Answer (3)
Sol. For (1) $v \propto \frac{1}{\sqrt{m}}, a \propto \frac{1}{m}$
$\because s=\frac{v^{2}}{2 a} \rightarrow$ independent of mass
For (2) direction is changed, $\therefore a \neq 0$
11. Match the physical quantity in column-I with the respective dimension in column-II and choose the correct option

	Column-I		Column-II
I.	Spring constant	(P)	$\left[\mathrm{ML}^{2} \mathrm{~T}^{0}\right]$
II.	Moment of inertia	(Q)	$\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{-1}\right]$
III.	Angular momentum	(R)	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$
IV.	Angular speed	(S)	$\left[\mathrm{MLT}^{-1}\right]$

(1) $I(P), I I(Q), I I I(R), I V(S)$
(2) $I(R), I I(P), I I(Q), I V(S)$
(3) $I(R), I I(S), I I I(Q), I V(P)$
(4) $\mathrm{I}(\mathrm{R}), \mathrm{II}(\mathrm{P}), \mathrm{III}(\mathrm{S}), \mathrm{IV}(\mathrm{Q})$

Answer (4)
Sol. Theoretical
12. The length of a conductor having resistance 160Ω, is compressed to 25% of its initial value. The new resistance will be
(1) 10Ω
(2) 20Ω
(3) 15Ω
(4) 17Ω

Answer (1)
Sol. At constant volume, $R \propto \ell^{2}$
$\therefore \quad \frac{160}{R^{\prime}}=\frac{\ell^{2}}{\frac{\ell^{2}}{16}}$
$R^{\prime}=10 \Omega$
13. Statement I : In LCR circuit, by increasing frequency current increases first then decreases Statement II : Power factor of LCR circuit is one. Choose the correct option
(1) Statement I is correct and statement II is incorrect
(2) Statement I is incorrect and statement I is correct
(3) Both Statement I and statement II are correct
(4) Both Statement I and statement II are incorrect

Answer (1)
Sol. $I=\frac{V}{Z}$
As ω increases, Z decreases first then increases

$$
\cos \phi=\left(\frac{R}{Z}\right)
$$

14. Assertion (A): An electrical dipole is enclosed in a closed gaussian surface. The total flux through the enclosed surface is zero.
Reason (R): Net charge inside the enclosed surface is zero.
(1) Both (A) and (R) are correct and (R) is correct explanation of (A)
(2) Both (A) and (R) are correct and (R) is not the correct explanation of (A)
(3) (A) is true, but (R) is false
(4) (A) and (R) both are false

Answer (1)
Sol. $\phi=\frac{q_{\text {in }}}{\epsilon_{0}}$ and $q_{\text {in }}=0$ inside surface
15. A circular ring is placed in magnetic field of 0.4 T . Suddenly its radius starts shrinking at the rate of $1 \mathrm{~mm} / \mathrm{s}$. Find the induced emf in the ring at $r=2 \mathrm{~cm}$.
(1) $16 \pi \mu \mathrm{~V}$
(2) $8 \pi \mu \mathrm{~V}$
(3) $16 \pi \mathrm{mV}$
(4) $8 \pi \mathrm{mV}$

Answer (1)
Sol. $\phi=B A$
$\varepsilon=\frac{d \phi}{d t}=\frac{B d A}{d t}=\frac{2 \pi r B d r}{d t}$
at $r=2 \mathrm{~cm}$
$\varepsilon_{\text {induced }}=\frac{2 \pi \times 2}{100} \times 0.4 \times \frac{.1}{1000}$
$=\frac{16 \pi}{10^{6}}=16 \pi \times 10^{-6} \mathrm{~V}$
16. A body is doing SHM with amplitude A. When it is at $x=+\frac{A}{2}$, find ratio of kinetic energy to potential energy
(1) $1: 1$
(2) $3: 1$
(3) $2: 1$
(4) $4: 1$

Answer (2)

Sol. $\frac{K}{U}=\frac{\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)}{\frac{1}{2} m \omega^{2} x^{2}}$
$=\frac{A^{2}-x^{2}}{x^{2}}=\frac{\frac{3 A^{2}}{4}}{\frac{A^{2}}{4}}=\frac{3}{1}$
17. Current flowing in a conductor at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ is 2 A and 1.2 A respectively. The current at $80^{\circ} \mathrm{C}$ is
(1) 1.3 A
(2) 1.5 A
(3) 1.6 A
(4) 1.8 A

Answer (1)

Sol. $\because R \propto \frac{1}{i}$
Let $R=\frac{x}{i}$
also $\frac{\frac{x}{1.2}-\frac{x}{2}}{100-0}=\frac{\frac{x}{i}-\frac{x}{2}}{80-0}$
$i=\frac{30}{23} \approx 1.3 \mathrm{~A}$
18. Which of the following is more energetic between Infrared wave and microwave?
(1) IR wave
(2) Microwaves
(3) Both are same energetic
(4) Cannot predict

Answer (1)

Sol. $\because \quad f_{R}>f_{\text {micro }}$
$\therefore \quad E_{\text {IR }}>E_{\text {micro }}$
IR waves are more energetic.
19. If carnot engines works between freezing point and boiling point of water then the efficiency of carnot engine is
(1) 35%
(2) 27%
(3) 22%
(4) 17%

Answer (2)
Sol. $\eta=1-\frac{T_{L}}{T_{H}}=1-\left(\frac{273}{373}\right)=\left(\frac{100}{373}\right) \approx 0.27$
20. In closed organ pipe, the resonance consecutive frequencies are in ratio $1: 3: 5 \ldots$ and $5^{\text {th }}$ harmonic frequency is 405 Hz . Velocity of sound $=345 \mathrm{~m} / \mathrm{s}$. Find length of organ pipe.
(1) $\frac{108}{115} \mathrm{~m}$
(2) $\frac{81}{115} \mathrm{~m}$
(3) $\frac{115}{108} \mathrm{~m}$
(4) $\frac{115}{81} \mathrm{~m}$

Answer (3)

Sol. For $5^{\text {th }}$ harmonic, $f=5 f_{0}=405$

$$
\begin{aligned}
& \text { or } 5 \frac{v}{\lambda}=405 \Rightarrow 5\left(\frac{345}{4 I}\right)=405 \\
& \Rightarrow \quad I=\frac{5 \times 345}{4 \times 405}
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. A particle is thrown vertically upward with initial velocity of $150 \mathrm{~m} / \mathrm{s}$. Find the ratio of its speed at $t=3$ seconds and $t=5$ seconds. (take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Answer (01.20)

Sol. $\frac{v_{3}}{v_{5}}=\left(\frac{u-g \times 3}{u-g \times 5}\right)=\left(\frac{150-30}{150-50}\right)=\frac{120}{100}=1.2$
22. 64 identical balls made of conducting material each having potential of 10 mV are joined to form a bigger ball. The potential of bigger ball is \qquad V.

Answer (00.16)

Sol. $64\left(\frac{4}{3} \pi r^{3}\right)=\frac{4}{3}=\pi R^{3} \Rightarrow R=4 r$
Also $Q^{\prime}=64 Q$
$\because \quad \frac{K Q}{r}=10 \mathrm{mV}$ then $V^{\prime}=\frac{K(64 Q)}{4 r}=16 \times 10 \mathrm{mV}$
$=160 \mathrm{mV}$
23. An object placed at very large distance from lens L. The distance of final image formed from L_{1} will be
\qquad m.

Answer (01.00)
Sol. ${ }^{\text {st }}$ image is formed at focus of L_{1} which is at $2 f_{2}$ from lens L_{2}.
24. A photon of energy 12.75 eV falls a H -atom. Find out no. of spectral lines observed?

Answer (6)

Sol. $\because \Delta E=13.6\left[1-\frac{1}{n^{2}}\right] \mathrm{eV}$
For $n=4, \Delta E=12.75 \mathrm{eV}$
In 4 energy level,

no. of spectral lines $={ }^{4} \mathrm{C}_{2}=6$
25. A uniform solid sphere is rolling without slipping on a horizontal surface. The ratio of translational kinetic energy to the total kinetic energy is $5 / x$. Find the value of x.

Answer (7)

Sol. $\frac{\mathrm{K} . \mathrm{E}_{\text {Trans. }}}{\mathrm{K} \cdot \mathrm{E}_{\text {Total }}}=\frac{\frac{1}{2} m R^{2} \omega^{2}}{\frac{1}{2}\left(\frac{2}{5}+1\right) m R^{2} \omega^{2}}=\frac{5}{7}$
26.
27.
28.
29.
30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Consider the following reaction sequence:

	$+\mathrm{Na}_{2} \mathrm{CO}$	$X+Y$	
	Z		
	X	Y	Z
(1)	CaCO_{3}	NaCl	HCl
(2)	CaO	NaCl	KCI
		$+\mathrm{CO}_{2}$	
(3)	CaO	NaCl	NaCl
		$+\mathrm{CO}_{2}$	
(4)	CaCO_{3}	NaCl	KCI

Answer (1)

Sol. $\mathrm{CaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{NaCl}$
$\mathrm{CaCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{CaCl}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
2. Hex-2-ene $\xrightarrow[\mathrm{H}_{2} \mathrm{O}_{2}]{\mathrm{O}_{3}} A+B$

Product A and B are
(1)

(2)

(3)

(4)

Answer (4)

Sol.

3. Match the columns.

	$\|c\|$ Column-I (Type of hydride)		Column-II (Formula)
(A)	Electron deficient	(1)	MgH_{2}
(B)	Electron precise	(2)	HF
(C)	Electron rich	(3)	CH_{4}
(D)	Saline hydride	(4)	$\mathrm{B}_{2} \mathrm{H}_{6}$

(1) $\mathrm{A} \rightarrow 4 ; \mathrm{B} \rightarrow 3 ; \mathrm{C} \rightarrow 1 ; \mathrm{D} \rightarrow 2$
(2) $\mathrm{A} \rightarrow 4 ; \mathrm{B} \rightarrow 1 ; \mathrm{C} \rightarrow 3 ; \mathrm{D} \rightarrow 2$
(3) $\mathrm{A} \rightarrow 4 ; \mathrm{B} \rightarrow 3$; $\mathrm{C} \rightarrow 2 ; \mathrm{D} \rightarrow 1$
(4) $\mathrm{A} \rightarrow 1 ; \mathrm{B} \rightarrow 2 ; \mathrm{C} \rightarrow 3$; $\mathrm{D} \rightarrow 4$

Answer (3)

Sol. Electron deficient $\rightarrow \mathrm{B}_{2} \mathrm{H}_{6}$
Electron precise $\rightarrow \mathrm{CH}_{4}$
Electron rich $\rightarrow \mathrm{HF}$
Saline hydride $\rightarrow \mathrm{MgH}_{2}$
4. Match the Columns

Column-I		Column-II	
A	Biodegradable	P	Polyacronitrile
B	Synthetic	Q	PHBV
C	Natural	R	Dacron
D	Polyester	S	Rubber

(1) $A-Q ; B-P ; C-S ; D-R$
(2) $A-Q ; B-P ; C-R ; D-S$
(3) $A-P ; B-Q ; C-S ; D-R$
(4) $A-Q ; B-R ; C-S ; D-P$

Answer (1)
Sol. PHBV is Biodegradable Dacron is Polyester
5. Assertion (A) : $5 f$ electrons can participate in bonding to a greater extent as compared to $4 f$ electrons.
Reason (R): Both resemble in their angular part of wave function, but $5 f$ is not as buried as $4 f$ orbitals.
(1) (A) is correct, (R) is correct and (R) is the correct explanation of (A)
(2) (A) is correct, (R) is correct and (R) is incorrect explanation of (A)
(3) (A) is correct, (R) is incorrect
(4) Both (A) and (R) are incorrect

Answer (1)

Sol. Both statements are correct and Reason is correct [For explanation refer NCERT d \& f block Elements]
6. Density of group-1 metal follows the order:
(1) $\mathrm{Li}>\mathrm{Na}>\mathrm{K}>\mathrm{Rb}$
(2) $\mathrm{Li}>\mathrm{K}>\mathrm{Na}>\mathrm{Rb}$
(3) $\mathrm{Rb}>\mathrm{K}>\mathrm{Na}>\mathrm{Li}$
(4) $\mathrm{Rb}>\mathrm{Na}>\mathrm{K}>\mathrm{Li}$

Answer (4)
$\mathrm{Li}=0.53$
Sol. $\left.\begin{array}{l}\begin{array}{l}\mathrm{Na}=0.97 \\ \mathrm{~K}=0.86 \\ \mathrm{Rb}=1.53\end{array}\end{array}\right\}$ all in gm/cc
7. Critical temperature of $A, B, C \& D$ are $5.3,20.3$, 128.5, 166.5. Then order of adsorption is
(1) A $>$ B $>$ C $>$ D
(2) D $>$ C $>$ B $>$ A
(3) C $>$ D $>$ A $>$ B
(4) B $>$ A $>$ C $>$ D

Answer (2)

Sol. Higher is critical temperature more readily gas is liquified, means more are forces of attraction. Thus more readily gas will be adsorbed.
8. Molality of MgCl_{2} is $1 \mathrm{~m}(\alpha=80 \%)$

Calculate vapour pressure of solution (in torr), if vapour pressure of pure solvent is 100 torr.
(1) 95.53
(2) 78.23
(3) 68.12
(4) 98.26

Answer (1)
Sol. $\frac{P^{\circ}-P_{s}}{P_{s}}=\frac{i . n_{A}}{n_{B}}$

$$
\begin{aligned}
& \frac{100-P_{\mathrm{s}}}{\mathrm{P}_{\mathrm{s}}}=(1+2 \alpha) \times \frac{18}{1000} \\
& \quad=\frac{2.6 \times 18}{1000} \\
& 100-\mathrm{P}_{\mathrm{s}}=0.0468 \mathrm{P}_{\mathrm{s}} \\
& \Rightarrow \mathrm{P}_{\mathrm{s}}=95.53 \text { torr }
\end{aligned}
$$

9. Assertion A: Boron is hardest element in group-13.

Reason R : High lattice enthalpy due to strong crystalline lattice.
(1) Both A and R are correct and R is correct explanation of Assertion
(2) Both A and R are correct but R is not correct explanation
(3) A is correct but R is wrong statement
(4) Both A and R are correct

Answer (1)

Sol. Due to very strong crystalline lattice Boron has unusually high M.P.
10. Bond order and magnetic property of acetylide is similar to
(1) NO^{+}
(2) NO^{-}
(3) O_{2}^{+}
(4) O_{2}^{-}

Answer (1)

Sol. $\mathrm{HC} \equiv \mathrm{C} \ominus \quad$ Bond order $=3$
NO^{+}also have bond order equal to 3 .
11. Statement 1: In Ellingham diagram the change in slope for Mg to MgO reaction occurs at $1120^{\circ} \mathrm{C}$.
Statement 2: Sudden change in entropy also occurs at $1120^{\circ} \mathrm{C}$.
(1) Both statements are correct
(2) Both statements are incorrect
(3) Statement 1 is correct but statement 2 is incorrect
(4) Statement 1 is incorrect but statement 2 is correct
Answer (1)
Sol. Both statements are correct.
Reference: NCERT
12. A gas with MW $=42$ AMU will have same RMS velocity (at $27^{\circ} \mathrm{C}$) as that of $\mathrm{V}_{\text {mps }}$ of which gas at $27^{\circ} \mathrm{C}$
(1) CO_{2}
(2) CO
(3) $\mathrm{N}_{2} \mathrm{O}$
(4) NO_{2}

Answer (2)
Sol. $\sqrt{\frac{3}{42}}=\sqrt{\frac{2}{M W}}$
$\Rightarrow \mathrm{MW}=28 \Rightarrow \mathrm{CO}$ gas
13. A 12.5 eV electron beam is used to bombard gaseous hydrogen at room temperature. Calculate the total no. of spectral lines when electrons return to ground state
(1) 3
(2) 2
(3) 4
(4) 1

Answer (1)

Sol. $E_{3}=\frac{-13.6}{9}=-1.5 \mathrm{eV}$
$E_{1}=-13.6 \mathrm{eV}$
$E_{3}-E_{1}=12.09 \mathrm{eV}$
Hence, total spectral lines. $=\frac{2(3)}{2}=3$
14. Following reaction is taking place :
$2 \mathrm{NO}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{NOBr}$
Step-01: $\mathrm{NO}+\mathrm{Br}_{2} \rightleftharpoons \mathrm{NOBr}_{2}$ (fast)
Step-02: $\mathrm{NOBr}_{2}+\mathrm{NO} \rightarrow 2 \mathrm{NOBr}$ (slow)
(1) 01
(2) 02
(3) 03
(4) 04

Answer (3)

Sol. $r=k_{3}\left[\mathrm{NOBr}_{2}\right][\mathrm{NO}]$
$\left[\mathrm{NOBr}_{2}\right]=\mathrm{k}_{\text {eq. }}[\mathrm{NO}]\left[\mathrm{Br}_{2}\right]$
$\left.r=\mathrm{k}_{3}[\mathrm{NO}] \mathrm{Br}_{2}\right] \mathrm{keq}$. [NO]
$r=\mathrm{k}_{3} . \mathrm{K}_{\mathrm{eq}} \cdot[\mathrm{NO}]^{2}\left[\mathrm{Br}_{2}\right]^{1}$
order $=3$
15. Consider the following reaction

A is
(1)

(2)

(3)

(4)

Answer (2)

Sol.

16. Select correct statements about lead storage battery:
(1) PbSO_{4} converts into PbO_{2} at anode during discharging
(2) PbSO_{4} converts into PbO_{2} at cathode during discharge
(3) $38 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is taken as the electrolyte
(4) $\mathrm{H}_{2} \mathrm{SO}_{4}$ is produced during discharging

Answer (3)

Sol.
Anode $: \rightarrow \mathrm{Pb} \longrightarrow \mathrm{Pb}^{+2}+2 \mathrm{e}^{-}$

$$
\frac{\mathrm{Pb}^{+2}+\mathrm{SO}_{4}^{-2} \longrightarrow \mathrm{PbSO}_{4}}{\mathrm{~Pb}+\mathrm{SO}_{4}^{-2} \longrightarrow \mathrm{PbSO}_{4}+2 \mathrm{e}^{\ominus}}
$$

Cathode: $\rightarrow 4 \mathrm{H}^{\oplus}+2 \mathrm{e}^{\ominus}+\mathrm{PbO}_{2} \rightarrow \mathrm{~Pb}^{+2}+2 \mathrm{H}_{2} \mathrm{O}$

$$
\frac{\mathrm{Pb}^{+2}+\mathrm{SO}_{4}^{-2} \rightarrow \mathrm{PbSO}_{4}}{2 \mathrm{e}^{\ominus}+\mathrm{PbO}_{2}+4 \mathrm{H}^{\oplus}+\mathrm{SO}_{4}^{-2} \rightarrow \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}}
$$

net reaction during discharging:-
$\mathrm{Pb}+\mathrm{PbO}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow 2 \mathrm{PbSO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
17.

Calculate mass of Tollen's Reagent Required?
(1) 18.70 kg
(2) 37.40 kg
(3) 9.35 kg
(4) 55.10 kg

Answer (1)
Sol. The balanced equation is

No. of moles of NH_{3} formed $=\frac{4 \times 10^{3}}{17}$
\therefore No. of moles of tollen's reagent consumed $=\frac{2 \times 10^{3}}{17}$

So mass of tollen's reagent $=\frac{2 \times 10^{3}}{17} \times 159$
$=18.70 \mathrm{~kg}$
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. pH of 1 litre HCl solution is 1.0 . How much water is added to make pH 2.

Answer (09.00)
Sol. $\left(10^{-1}\right)(1)=\left(10^{-2}\right)\left(V_{2}\right)$

$$
\mathrm{V}_{2}=10 \mathrm{lit}
$$

Water added $=(10-1)$

$$
\text { = } 9 \text { lit }
$$

22. Given $\mathrm{P}_{\mathrm{i}}=3 \mathrm{~atm}$
$V_{\text {initial }}=2 L$
$V_{\text {final }}=3 \mathrm{~L}$
$\mathrm{T}=350 \mathrm{~K}$
If isothermal reversible process is carried out, calculate ΔS for system (in Joules)
Answer (0.72)
Sol. $\Delta S=1 \times \operatorname{Rln}\left(\frac{V_{2}}{V_{1}}\right)$

$$
=\mathrm{R} \ln \frac{3}{2}
$$

$$
\begin{aligned}
& =\frac{P_{i} V_{i}}{T} \ln \frac{3}{2} \\
& =\frac{6}{350} \ln \frac{3}{2} \\
& =4 \times(0.48-0.30) \\
& =0.72 \mathrm{~J}
\end{aligned}
$$

23. The number of $s p^{2}$ hybridized carbon atoms in the following peptide is
Ala - Phe - Gly - Ala - Phe - Ley

Answer (18)
Sol.

24. How many of the given metals will show photoelectric effect when light of 400 nm falls on below metal?

Metal	Li	Na	K	Mg	Cu	Ag
$\mathrm{W}(\mathrm{eV})$	2.42	2.3	2.25	3.7	4.8	4.3

Answer (03.00)
Sol. Ephoton $=\frac{12400}{4000}=3.1 \mathrm{eV}$
Metals Li; Na; K will show photoelectric effect.
25. A metal chloride contains 55% by mass of chlorine. 100 mL of vapours gives 0.57 gm of chlorine at STP. Calculate the molecular mass of metal chloride. (Nearest integer)
Answer (232.00)
Sol. $\frac{(1) \times M W}{(R) \times(273)}=\frac{.57}{(.1)} \times \frac{100}{55}$
$M W=232.28(\approx 232)$
26.
27.
28.
29.
30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Two circles having radius r_{1} and r_{2} touch both the coordinate axes. Line $x+y=2$ makes intercept as 2 on both the circles. The value of $r_{1}^{2}+r_{2}^{2}-r_{1} \cdot r_{2}$ is
(1) $\frac{9}{2}$
(2) 6
(3) 7
(4) 8

Answer (3)

Sol.

$A B=1$
$O A=\sqrt{r^{2}-1}$
$\Rightarrow\left|\frac{2 r-2}{\sqrt{2}}\right|=\sqrt{r^{2}-1}$
$\Rightarrow \sqrt{2}(r-1)=\sqrt{r^{2}-1}$
$\Rightarrow 2(r-1)^{2}=r^{2}-1$
$\Rightarrow 2 r^{2}-4 r+2=r^{2}-1$
$\Rightarrow r^{2}-4 r+3=0$
$\Rightarrow(r-1)(r-3)=0$
$\Rightarrow r=1,3$
$\therefore \quad r_{1}=1$ and $r_{2}=3$
$\therefore \quad r_{1}^{2}+r_{2}^{2}-r_{1} \cdot r_{2}$
$=1+9-3$
$=7$
2. Area of region enclosed by curve $y=x^{3}$ and its tangent at $(-1,-1)$
(1) 4
(2) 27
(3) $\frac{4}{27}$
(4) $\frac{27}{4}$

Answer (4)

Sol. $y=x^{3}$
$y^{\prime}=3 x^{2}$
$y_{(-1,-1)}^{\prime}=3$
$T: y+1=3(x+1)$
$T: 3 x-y+2=0$

Area $=\int_{-1}^{2}(3 x+2)-x^{3} d x$

$$
\begin{aligned}
& \left.=\frac{3 x^{2}}{2}+2 x-\frac{x^{4}}{4}\right]_{-1}^{2} \\
& =\left|\frac{3}{2} \times 3+2 \times 3-\frac{1}{4} \times 15\right| \\
& =\frac{9}{2}+6-\frac{15}{4} \\
& =\frac{27}{4} \text { sq. units }
\end{aligned}
$$

3. If $\left(1+x^{2}\right) d y=y(y-x) d x$ and $y(1)=1$. Then $y(2 \sqrt{2})$ is
(1) $\frac{4}{\sqrt{2}}$
(2) $\frac{3}{\sqrt{2}}$
(3) $\frac{1}{\sqrt{2}}$
(4) $\sqrt{2}$

Answer (3)

Sol. $\frac{d y}{d x}+\frac{x}{1+x^{2}} y=\frac{y^{2}}{1+x^{2}}$
$\frac{1}{y^{2}} \frac{d y}{d x}+\frac{x}{1+x^{2}} \times \frac{1}{y}=\frac{1}{1+x^{2}}$
Let $\frac{1}{y}=t$
$-\frac{1}{y^{2}} \frac{d y}{d x}=\frac{d t}{d x}$
$\frac{-d t}{d x}+\left(\frac{x}{1+x^{2}}\right) d t=\frac{1}{1+x^{2}}$
$\frac{d t}{d x}-\left(\frac{x}{1+x^{2}}\right) d t=-\frac{1}{1+x^{2}}$
$\mathrm{IF}=e^{-\int \frac{x}{1+x^{2}} d x}=e^{-\frac{1}{2} \log \left|1+x^{2}\right|}=\frac{1}{\sqrt{1+x^{2}}}$
$\frac{t}{\sqrt{1+x^{2}}}=-\int \underbrace{\frac{1}{\left(1+x^{2}\right) \sqrt{1+x^{2}}}}_{1} d x$
Let $x=\tan \theta$
$d x=\sec ^{2} \theta d \theta$
$I=\int \frac{\sec ^{2} \theta}{\sec ^{2} \theta \cdot \sec \theta} d \theta=\int \cos \theta=\sin \theta+C$
$\therefore \frac{1}{y \sqrt{1+x^{2}}}=-\frac{x}{\sqrt{1+x^{2}}}+C$
$\because \quad y(1)=1$
$\Rightarrow \quad C=\sqrt{2}$
$\therefore \frac{1}{y \sqrt{1+x^{2}}}+\frac{x}{\sqrt{1+x^{2}}}=\sqrt{2}$
$1+x y=\sqrt{2} y \sqrt{1+x^{2}}$
Now
$y(2 \sqrt{2})$
$1+2 \sqrt{2} y=3 \sqrt{2} y$
$\sqrt{2} y=1$
$y=\frac{1}{\sqrt{2}}$
4. For the expression $(1-x)^{100}$. Then sum of coefficient of first 50 terms is
(1) ${ }^{99} C_{49}$
(2) $-\frac{{ }^{100} C_{50}}{2}$
(3) $-{ }^{99} C_{49}$
(4) $-{ }^{101} C_{50}$

Answer (2)

Sol. Sum of coefficient of first 50 terms
$(t)={ }^{100} C_{0}-{ }^{100} C_{1}+\ldots+{ }^{100} C_{49}$
Now
${ }^{100} C_{0}-{ }^{100} C_{1}+\ldots+{ }^{100} C_{100}=0$
$2\left[{ }^{100} C_{0}-{ }^{100} C_{1}+\ldots\right]+{ }^{100} C_{50}=0$
$\therefore \quad t=-\frac{1}{2}{ }^{100} C_{50}$
5. Positive numbers $a_{1}, a_{2}, \ldots . a_{5}$ are in geometric progression. Their mean and variance are $\frac{31}{10}$ and $\frac{m}{n}$ respectively. The mean of the reciprocals is $\frac{31}{40}$, then $m+n$ is
(1) 209
(2) 211
(3) 113
(4) 429

Answer (2)

Sol. $a\left(\frac{1}{r^{2}}+\frac{1}{r}+1+r+r^{2}\right)=\frac{31}{2}$
$\frac{1}{a}\left(\frac{1}{r^{2}}+\frac{1}{r}+1+r+r^{2}\right)=\frac{31}{8}$
$\Rightarrow a^{2}=4$
$\Rightarrow a=2$
$\Rightarrow \frac{1}{r^{2}}+\frac{1}{r}+1+r+r^{2}=\frac{31}{4}$
$\Rightarrow\left(r+\frac{1}{r}\right)^{2}+\left(r+\frac{1}{r}\right)=\frac{31}{4}+1=\frac{35}{4}$
$4 t^{2}+4 t-35=0$
$\Rightarrow \quad t=\frac{5}{2}$
$\Rightarrow \quad r=2$
\therefore numbers are $=\frac{1}{2}, 1,2,4,8$

$$
\begin{aligned}
\therefore \quad \sigma^{2} & =\frac{\frac{1}{4}+1+4+16+64}{5}-\left(\frac{31}{10}\right)^{2} \\
& =\frac{341}{20}-\frac{961}{100} \\
& =\frac{1705-961}{100} \\
& =\frac{744}{100}=\frac{186}{25}
\end{aligned}
$$

$$
\therefore \quad m+n=186+25
$$

$$
=211
$$

6. If $\Delta(k)=\left|\begin{array}{ccc}1 & 2 k-1 & 2 k \\ n & n^{2} & n(n+1) \\ \cos ^{2} n & \cos ^{2}(n+1) & (n+2)\end{array}\right|$, then $\sum_{k=1}^{n} \Delta(k)=$
(1) n
(2) 1
(3) $\frac{n^{2}}{2}$
(4) 0

Answer (4)

Sol. $\sum_{k=1}^{n} \Delta(k)=\left|\begin{array}{ccc}n & n^{2} & n(n+1) \\ n & n^{2} & n(n+1) \\ \cos ^{2} n & \cos ^{2}(n+1) & (n+2)\end{array}\right|=0$
7. Given A, B, C represents angles of a $\triangle A B$ and $\cos A+2 \cos B+\cos C=2$ and $A B=3$ and $B C=7$ then $\cos A-\cos C$ is
(1) $-\frac{10}{7}$
(2) $\frac{10}{7}$
(3) $\frac{5}{7}$
(4) $-\frac{5}{7}$

Answer (1)

Sol.

$$
\cos A+2 \cos B+\cos C=2 .
$$

$\frac{9+b^{2}-49}{6 b}+2\left(\frac{49+9-b^{2}}{42}\right)+\left(\frac{49+b^{2}-9}{14 b}\right)=2$
$\frac{b^{2}-40}{6 b}+\frac{58-b^{2}}{21}+\frac{40+b^{2}}{14 b}=2$
$\Rightarrow b=-4$ or 4 or 5
b cannot be -4 and 4
$\Rightarrow b=5$.
Now,

$$
\begin{aligned}
& \cos A-\cos C \\
& \frac{9+25-49}{2 \times 3 \times 5}-\frac{49+25-9}{2 \times 7 \times 5} \\
& -\frac{1}{2}-\frac{13}{14}=\frac{-20}{14}=\frac{-10}{7}
\end{aligned}
$$

8. Let $x^{2}+\sqrt{6 x}+4=0$ be any quadratic equation and α, β are the roots of that equation then
$\frac{\alpha^{34} \beta^{24}+\alpha^{32} \beta^{26}+2 \alpha^{33} \beta^{25}}{\alpha^{31} \beta^{20}+\alpha^{28} \beta^{23}+3 \alpha^{30} \beta^{21}+3 \alpha^{29} \beta^{22}}$ is
(1) $\frac{-2^{7}}{3} \sqrt{6}$
(2) $\frac{2^{7}}{3} \sqrt{6}$
(3) $\frac{-2^{8}}{3} \sqrt{6}$
(4) $\frac{2^{8}}{3} \sqrt{6}$

Answer (1)

Sol.

$$
\alpha+\beta=-\sqrt{6}, \quad \alpha \beta=4
$$

Now $\frac{\alpha^{34} \beta^{24}+\alpha^{32} \beta^{26}+2 \alpha^{33} \beta^{25}}{\alpha^{31} \beta^{20}+\alpha^{28} \beta^{23}+3 \alpha^{30} \beta^{21}+3 \alpha^{29} \beta^{22}}$
$=\frac{\alpha^{32} \beta^{24}\left[\alpha^{2}+\beta^{2}+2 \alpha \beta\right]}{\alpha^{28} \beta^{20}\left[\alpha^{3}+\beta^{3}+3 \alpha^{2} \beta+3 \alpha \beta^{2}\right]}$
$=(\alpha \beta)^{4} \frac{\left[(\alpha+\beta)^{2}\right]}{(\alpha+\beta)^{3}}=\frac{4^{4}}{-\sqrt{6}}=\frac{-2^{7}}{3} \sqrt{6}$
9. If a plane $4 x-3 y+z=2$ is rotated by an angle of $\frac{\pi}{2}$ at intersection point of another plane $3 x+11 z-4 y=12$, then $P(2,3,4)$ is at what distance from resultant plane?
(1) $\frac{250}{\sqrt{63245}}$
(2) $\frac{885}{\sqrt{66345}}$
(3) $\frac{925}{\sqrt{66215}}$
(4) $\frac{24}{\sqrt{11235}}$

Answer (2)

Sol : Equation of required plane:
$4 x-3 y+z-2+\lambda(3 x-4 y+11 z-12)=0$
If is perpendicular to $4 x-3 y+z=2$
$\therefore \quad(4+3 \lambda) \cdot 4+(-3-4 \lambda)(-3)+(1+11 \cdot \lambda) 1=0$
$\Rightarrow 16+12 \lambda+9+12 \lambda+1+11 \lambda=0$
$\Rightarrow 35 \lambda+26=0$
$\Rightarrow \lambda=-\frac{26}{35}$
$\therefore \quad x(4+3 \lambda)-y(3+4 \lambda)+z(1+11 \lambda)-2-12 \lambda=0$
$\Rightarrow \frac{-62 x}{35}-y\left(\frac{1}{35}\right)+z\left(\frac{-250}{35}\right)+\left(\frac{242}{35}\right)=0$
$\Rightarrow 62 x+y+250 z=242$
Distance from ($2,3,4$)
$=\frac{124+3+1000-242}{\sqrt{66345}}$
$=\frac{885}{\sqrt{66345}}$
10. A circle with centre $z_{0}=\frac{1}{2}+\frac{3 i}{2}$ exist in an argand plane. A point $z_{1}=1+i$ and z_{2} lies outside the circle, such that $\left|z_{0}-z_{1}\right|\left|z_{0}-z_{2}\right|=1$. Then the largest value of $\left|z_{2}\right|$ is
(1) $\sqrt{5}-\sqrt{2}$
(2) $\sqrt{\frac{5}{2}}-\sqrt{2}$
(3) $\sqrt{\frac{5}{2}}$
(4) $\sqrt{\frac{5}{2}}+\sqrt{2}$

Answer (4)

Sol. $\left|z-\frac{1}{2}-\frac{3 i}{2}\right|=r \rightarrow$ Circle
Now,

$$
\begin{aligned}
& \left|z_{0}-z_{1}\right|\left|z_{0}-z_{2}\right|=1 \\
& \frac{1}{\sqrt{2}}\left|z_{0}-z_{2}\right|=1 \\
& \left|z_{0}-z_{2}\right|=\sqrt{2}
\end{aligned}
$$

$\operatorname{Max}\left|z_{2}\right|=\sqrt{\frac{1}{4}+\frac{9}{4}}+\sqrt{2}$

$$
=\sqrt{\frac{10}{4}}+\sqrt{2}
$$

$$
=\left(\sqrt{\frac{5}{2}}+\sqrt{2}\right) \text { unit }
$$

11. Let $\vec{a}=\lambda \hat{i}+\hat{j}-\hat{k}, \vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$ and \vec{c} is a vector such that $(\vec{a}+\vec{b}+\vec{c}) \times \vec{c}=0 \quad$ and $\vec{a} \cdot \vec{c}=-17, \vec{b} \cdot \vec{c}=-20$. Find $|\vec{c} \times(\lambda \hat{i}+\hat{j}+\hat{k})|^{2}$ given ($\lambda>0$)
(1) 46
(2) 61
(3) 48
(4) 51

Answer (1)
Sol. $k(\vec{a}+\vec{b})=\vec{c}$
$\vec{a} \cdot \vec{c}=-17, \vec{b} \cdot \vec{c}=-20$
$k\left(\lambda^{2}+3 \lambda-1\right)=-17, k(3 \lambda+11)=-20$
$\Rightarrow \lambda=-\frac{69}{20}, 3$
$\lambda=3, k=-1$
$\vec{c}=-1(\vec{a}+\vec{b})$
$=-((\lambda+3) \hat{i}+\hat{k})=-6 \hat{i}-\hat{k}$
$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -6 & 0 & -1 \\ 3 & 1 & 0\end{array}\right|=\hat{i}(1)-\hat{j}(3)+\hat{k}(-6)$
$=\hat{i}-3 \hat{j}-6 \hat{k}$
$|\vec{c} \times(\lambda \hat{i}+\hat{j}+\hat{k})|^{2}=46$
12.
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. If $\frac{{ }^{n} C_{n}}{n+1}+\frac{{ }^{n} C_{n-1}}{n}+$ \qquad $+\frac{1}{2}{ }^{n} C_{1}+{ }^{n} C_{0}=\frac{255}{8}$. Then value of n is

Answer (07)

Sol. $\int_{0}^{1}(1+x)^{n}=\int_{0}^{1}\left({ }^{n} C_{0}+{ }^{n} C_{1} x+{ }^{n} C_{2} x^{2}+\right.$ \qquad
$\left.\left.\frac{(1+x)^{n+1}}{n+1}\right]_{0}^{1}={ }^{n} C_{0} x+{ }^{n} C_{1} \frac{x^{2}}{2}+{ }^{n} C_{2} \frac{x^{3}}{3}+\ldots \ldots \ldots+\frac{{ }^{n} C_{n} x^{n+1}}{n+1}\right]_{0}^{1}$
$\frac{2^{n+1}}{n+1}-\frac{1}{n+1}={ }^{n} C_{0}+\frac{{ }^{n} C_{1}}{2}+\frac{{ }^{n} C_{2}}{3}+$

Now

$$
\begin{aligned}
& \frac{2^{n+1}-1}{n+1}=\frac{255}{8} \\
& \Rightarrow \quad n=7
\end{aligned}
$$

22. If the value of $\int_{-0.15}^{0.15}\left|100 x^{2}-1\right| d x=\frac{k}{3000}$, then the value of k is \qquad .

Answer (575)

Sol. $I=2 \int_{0}^{0.15}\left|100 x^{2}-1\right| d x$
$=2\left[\int_{0}^{0.1}-\left(100 x^{2}-1\right) d x+\int_{0.1}^{0.15}\left(100 x^{2}-1\right) d x\right]$
$=2\left[\left[x-\frac{100 x^{3}}{3}\right]_{0}^{0.1}+\left[\frac{100 x^{3}}{3}-x\right]_{0.1}^{0.15}\right]$
$=\frac{575}{3000}$
$\Rightarrow k=575$
23. $N>40000$, where N is divisible by 5 . How many such 5 digits numbers using $0,1,3,5,7,9$?
Answer (120)

Sol. Case I : Number starts with 5

Case II : Number starts with 7
7

Case III: Number starts with 9
9

Total ways $=120$
24. Three numbers a, b, c are in A.P. and they are used to make a 9 -digits number using each digit thrice, such that at least 3 consecutive digits are in A.P. then number of such numbers is

Answer (1260)

Sol. \square
So, total number $\frac{{ }^{7} C_{1} \times 2 \times 6!}{2!2!2!}=\frac{7!}{4}$
$=7 \times 6 \times 5 \times 3 \times 2=1260$

$$
a \hat{i}+\hat{j}+k
$$

25. If $\hat{i}+b \hat{j}+k$ are co-planar then the value of

$$
\begin{aligned}
& \hat{i}+\hat{j}+c k \\
& \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c} \text { is }
\end{aligned}
$$

Answer (01)

Sol. $\left|\begin{array}{lll}a & 1 & 1 \\ 1 & b & 1 \\ 1 & 1 & c\end{array}\right|=0$
$R_{1} \rightarrow R_{1}-R_{2}, R_{2} \rightarrow R_{2}-R_{3}$
$\left|\begin{array}{ccc}a-1 & 1-b & 0 \\ 0 & b-1 & 1-c \\ 1 & 1 & c\end{array}\right|=0$
$(a-1)[c(b-1)-(1-c)]+1[(1-b)(1-c)]=0$
$c(a-1)(b-1)-(a-1)(1-c)+(1-b)(1-c)=0$
Multiply and divide by $(1-a)(1-b)(1-c)$

$$
\begin{aligned}
& -\frac{1-c-1}{1-c}+\frac{1}{1-b}+\frac{1}{1-a}=0 \\
& -1+\frac{1}{1-c}+\frac{1}{1-b}+\frac{1}{1-a}=0 \\
\therefore & \frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}=1
\end{aligned}
$$

26. $f(x)=|[x]|+\sqrt{x-[x]}$. The number of points of discontinuity of $f(x)$ in $[-2,1]$ is.

Answer (2)

Sol. $f(x)=|[x]|+\sqrt{\{x\}}$

$$
\begin{aligned}
& x=-2 \\
& \quad f(-2)=2 \\
& f\left(-2^{+}\right)=2+0=2 \\
& x=-1 \\
& \\
& f(-1)=1+0=1 \\
& f\left(-1^{-}\right)=2+1=3
\end{aligned}
$$

\therefore discontinuous at $x=-1$
$x=0$

$$
\begin{aligned}
& f(0)=0 \\
& f\left(0^{-}\right)=1+1=2
\end{aligned}
$$

\therefore discontinuous at $x=0$
$x=1$

$$
\begin{aligned}
& f(1)=1 \\
& f\left(1^{-}\right)=0+1=1
\end{aligned}
$$

\therefore discontinuous at $x=-1$ and at $x=0$
$\therefore 2$ points of discontinuity
27. Given $9 x^{2}+4 y^{2}=36$ and a point $P\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right)$ lie on ellipse. $P Q$ is a diameter of ellipse and $R S$ is a diameter which is perpendicular to $P Q$. If $\frac{1}{P Q^{2}}+\frac{1}{R S^{2}}=\frac{p}{m}$ in simplest form then $p+m$ is

Answer (157)

Sol. $r_{1}=\sqrt{\frac{48}{7}}$

$$
\begin{align*}
& \frac{r_{1}^{2} \cos ^{2} \theta}{4}+\frac{r_{1}^{2} \sin ^{2} \theta}{9}=1 \\
& \frac{\cos ^{2} \theta}{4}+\frac{\sin ^{2} \theta}{9}=\frac{7}{48} \tag{i}
\end{align*}
$$

$\frac{r_{2}^{2} \sin ^{2} \theta}{4}+\frac{r_{2}^{2} \cos ^{2} \theta}{9}=1$

$$
\frac{\sin ^{2} \theta}{4}+\frac{\cos ^{2} \theta}{9}=\frac{1}{r_{2}^{2}}
$$

From (i), $\frac{1}{r_{2}^{2}}=\frac{1}{4}+\frac{1}{9}-\frac{7}{48}=\frac{31}{144}$
$\frac{1}{P Q^{2}}+\frac{1}{R S^{2}}=\frac{1}{4}\left(\frac{1}{r_{1}^{2}}+\frac{1}{r_{2}^{2}}\right)$

$$
=\frac{1}{4}\left(\frac{7}{48}+\frac{31}{144}\right)=\frac{13}{144}
$$

28.
29.
30.
