24/06/2022

Morning

Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2022 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The bulk modulus of a liquid is $3 \times 10^{10} \mathrm{Nm}^{-2}$. The pressure required to reduce the volume of liquid by 2% is
(A) $3 \times 10^{8} \mathrm{Nm}^{-2}$
(B) $9 \times 10^{8} \mathrm{Nm}^{-2}$
(C) $6 \times 10^{8} \mathrm{Nm}^{-2}$
(D) $12 \times 10^{8} \mathrm{Nm}^{-2}$

Answer (C)

Sol. $\because B=\frac{\Delta P}{\left(-\frac{\Delta V}{V}\right)}$

$$
\Rightarrow \quad \Delta P=3 \times 10^{10} \times(0.02)
$$

$$
=6 \times 10^{8} \mathrm{~N} / \mathrm{m}^{2}
$$

2. Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): In an uniform magnetic field, speed and energy remains the same for a moving charged particle.

Reason (R): Moving charged particle experiences magnetic force perpendicular to its direction of motion.
(A) Both (A) and (R) true and (R) is the correct explanation of (A).
(B) Both (A) and (R) are true but (R) is NOT the correct explanation of (A).
(C) (A) is true but (R) is false.
(D) (A) is false but (R) is true.

Answer (A)

Sol. Magnetic force $\vec{F} \perp \vec{v}$
$\Rightarrow W_{b}=0$
$\Rightarrow \Delta \mathrm{KE}=0$ and speed remains constant.
3. Two identical cells each of emf 1.5 V are connected in parallel across a parallel combination of two resistors each of resistance 20Ω. A voltmeter connected in the circuit measures 1.2 V . The internal resistance of each cell is
(A) 2.5Ω
(B) 4Ω
(C) 5Ω
(D) 10Ω

Answer (C)

Sol.

$\frac{1.5 \times 10}{10+\frac{r}{2}}=1.2$
$\Rightarrow r=5 \Omega$
4. Identify the pair of physical quantities which have different dimensions.
(A) Wave number and Rydberg's constant
(B) Stress and Coefficient of elasticity
(C) Coercivity and Magnetisation
(D) Specific heat capacity and Latent heat

Answer (D)
Sol. $[S]=\frac{[C]}{[m] \times[\Delta T]}$
and, $[L]=\frac{[Q]}{[m]}$
\Rightarrow They have different dimensions
5. A projectile is projected with velocity of $25 \mathrm{~m} / \mathrm{s}$ at an angle θ with the horizontal. After t seconds its inclination with horizontal becomes zero. If R represents horizontal range of the projectile, the value of θ will be
[use $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
(A) $\frac{1}{2} \sin ^{-1}\left[\frac{5 t^{2}}{4 R}\right]$
(B) $\frac{1}{2} \sin ^{-1}\left[\frac{4 R}{5 t^{2}}\right]$
(C) $\tan ^{-1}\left[\frac{4 t^{2}}{5 R}\right]$
(D) $\cot ^{-1}\left[\frac{R}{20 t^{2}}\right]$

Answer (D)

Sol.

$t=\frac{25 \sin \theta}{g}$
and, $R=\frac{(25)^{2}(2 \sin \theta \cos \theta)}{g}$
$\Rightarrow \quad R=\frac{25 \times 25 \times 2}{g} \times \frac{g t}{25} \times \cos \theta$
$\Rightarrow R=50 t \cos \theta$
$\therefore \quad \tan \theta=\frac{g t}{25} \times \frac{50 t}{R}$

$$
=\frac{20 t^{2}}{R}
$$

$$
\Rightarrow \quad \theta=\cot ^{-1}\left(\frac{R}{20 t^{2}}\right)
$$

6. A block of mass 10 kg starts sliding on a surface with an initial velocity of $9.8 \mathrm{~ms}^{-1}$. The coefficient of friction between the surface and block is 0.5 . The distance covered by the block before coming to rest is
[use $g=9.8 \mathrm{~ms}^{-2}$]
(A) 4.9 m
(B) 9.8 m
(C) 12.5 m
(D) 19.6 m

Answer (B)

Sol. $S=\frac{u^{2}}{2 a}=\frac{u^{2}}{2(\mu g)}$
$=\frac{(9.8)^{2}}{2 \times 0.5 \times(9.8)}$
$=\frac{9.8}{1}$
$=9.8 \mathrm{~m}$
7. A boy ties a stone of mass 100 g to the end of a 2 m long string and whirls it around in a horizontal plane. The string can withstand the maximum tension of 80 N . If the maximum speed with which the stone can revolve is $\frac{K}{\pi} \mathrm{rev} . / \mathrm{min}$. The value of K is
(Assume the string is massless and unstretchable)
(A) 400
(B) 300
(C) 600
(D) 800

Answer (C)

Sol. $T=m \omega^{2} r$

$$
\begin{aligned}
& \Rightarrow \quad 80=0.1 \times\left(2 \pi \times \frac{K}{\pi} \times \frac{1}{60}\right)^{2} \times 2 \\
& \Rightarrow \quad \frac{800}{2}=\frac{K^{2}}{900} \\
& \Rightarrow K=30 \times 20=600
\end{aligned}
$$

8. A vertical electric field of magnitude $4.9 \times 10^{5} \mathrm{~N} / \mathrm{C}$ just prevents a water droplet of a mass 0.1 g from falling. The value charge on the droplet will be
(Given $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(A) $1.6 \times 10^{-9} \mathrm{C}$
(B) $2.0 \times 10^{-9} \mathrm{C}$
(C) $3.2 \times 10^{-9} \mathrm{C}$
(D) $0.5 \times 10^{-9} \mathrm{C}$

Answer (B)

Sol. Since the droplet is at rest

$$
\begin{aligned}
& \Rightarrow \text { Net force }=0 \\
& \Rightarrow \quad m g=q E \\
& \Rightarrow q=\frac{m g}{E}=2 \times 10^{-9} \mathrm{C}
\end{aligned}
$$

9. A particle experiences a variable force $\vec{F}=\left(4 x \hat{i}+3 y^{2} \hat{j}\right)$ in a horizontal $x-y$ plane. Assume distance in meters and force is newton. If the particle moves from point $(1,2)$ to point $(2,3)$ in the $x-y$ plane; then Kinetic Energy changes by
(A) 50.0 J
(B) 12.5 J
(C) 25.0 J
(D) 0 J

Answer (C)
Sol. $W=\int \vec{F} \cdot d \vec{r}$

$$
\begin{aligned}
& =\int_{1}^{2} 4 x d x+\int_{2}^{3} 3 y^{2} d y \\
& =\left[2 x^{2}\right]_{1}^{2}+\left[y^{3}\right]_{2}^{3} \\
& =2 \times 3+(27-8) \\
& =25 \mathrm{~J}
\end{aligned}
$$

10. The approximate height from the surface of earth at which the weight of the body becomes $\frac{1}{3}$ of its weight on the surface of earth is
[Radius of earth $R=6400 \mathrm{~km}$ and $\sqrt{3}=1.732$]
(A) 3840 km
(B) 4685 km
(C) 2133 km
(D) 4267 km

Answer (B)

Sol. According to the given information
$\frac{G M}{(R+h)^{2}}=\frac{1}{3} \times \frac{G M}{R^{2}}$
$\Rightarrow \quad R+h=\sqrt{3} R$
$\Rightarrow h=(\sqrt{3}-1) R \simeq 4685 \mathrm{~km}$
11. A resistance of 40Ω is connected to a source of alternating current rated $220 \mathrm{~V}, 50 \mathrm{~Hz}$. Find the time taken by the current to change from its maximum value to the rms value :
(A) 2.5 ms
(B) 1.25 ms
(C) 2.5 s
(D) 0.25 s

Answer (A)

Sol. $I=I o \cos (\omega t)$ say
\Rightarrow At maximum $\omega t_{1}=0$ or $t_{1}=0$
Then at rms value $I=I_{0} / \sqrt{2}$
$\Rightarrow \omega t_{2}=\pi / 4$
$\Rightarrow \omega\left(t_{2}-t_{1}\right)=\pi / 4$
$\Delta t=\frac{\pi}{4 \omega}=\frac{\pi T}{4 \times 2 \pi}$
$=\frac{1}{400} \mathrm{~s}$ or 2.5 ms
\Rightarrow Option A is right answer
12. The equations of two waves are given by:
$y_{1}=5 \sin 2 \pi(x-v t) \mathrm{cm}$
$y_{2}=3 \sin 2 \pi(x-v t+1.5) \mathrm{cm}$
These waves are simultaneously passing through a string. The amplitude of the resulting wave is :
(A) 2 cm
(B) 4 cm
(C) 5.8 cm
(D) 8 cm

Answer (A)

Sol. $y_{1}=5 \sin (2 \pi x-2 \pi v t)$
$y_{2}=3 \sin (2 \pi x-2 \pi v t+3 \pi)$
\Rightarrow Phase difference $=3 \pi$
$\Rightarrow \quad A_{\text {net }}=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos (3 \pi)}$
$\Rightarrow A_{\text {net }}=2 \mathrm{~cm}$
13. A plane electromagnetic waves travels in a medium of relative permeability 1.61 and relative permittivity 6.44. If magnitude of magnetic intensity is $4.5 \times 10^{-2} \mathrm{Am}^{-1}$ at a point, what will be the approximate magnitude of electric field intensity at that point?
(Given : Permeability of free space $\mu_{0}=4 \pi \times 10^{-7}$ NA^{-2}, speed of light in vacuum $c=3 \times 10^{8} \mathrm{~ms}^{-1}$)
(A) $16.96 \mathrm{Vm}^{-1}$
(B) $2.25 \times 10^{-2} \mathrm{Vm}^{-1}$
(C) $8.48 \mathrm{Vm}^{-1}$
(D) $6.75 \times 10^{6} \mathrm{Vm}^{-1}$

Answer (C)

Sol. $H=4.5 \times 10^{-2}$
So $B=\mu_{0} \mu H$
Thus $E=\frac{c}{n} B \quad$ (where $n \Rightarrow$ refractive index)
So $E=\frac{3 \times 10^{8} \times 4 \pi \times 10^{-7} \times 1.61 \times 4.5 \times 10^{-2}}{\sqrt{1.61 \times 6.44}}$
$E=8.48$
14. Choose the correct option from the following options given below :
(A) In the ground state of Rutherford's model electrons are in stable equilibrium. While in Thomson's model electrons always experience a net-force
(B) An atom has a nearly continuous mass distribution in a Rutherford's model but has a highly non-uniform mass distribution in Thomson's model
(C) A classical atom based on Rutherford's model is doomed to collapse.
(D) The positively charged part of the atom possesses most of the mass in Rutherford's model but not in Thomson's model.

Answer (C)

Sol. An atom based on classical theory of Rutherford's model should collapse as the electrons in continuous circular motion that is a continuously accelerated charge should emit EM waves and so should lose energy. These electrons losing energy should soon fall into heavy nucleus collapsing the whole atom.
15. Nucleus A is having mass number 220 and its binding energy per nucleon is 5.6 MeV . It splits in two fragments ' B ' and ' C ' of mass numbers 105 and 115. The binding energy of nucleons in ' B ' and ' C ' is 6.4 MeV per nucleon. The energy Q released per fission will be :
(A) 0.8 MeV
(B) 275 MeV
(C) 220 MeV
(D) 176 MeV

Answer (D)

Sol. ${ }^{220} A \rightarrow{ }^{105} B+{ }^{115} C$
$\Rightarrow Q=[105 \times 6.4+115 \times 6.4]-[220 \times 5.6] \mathrm{MeV}$
$\Rightarrow Q=176 \mathrm{MeV}$
16. A baseband signal of 3.5 MHz frequency is modulated with a carrier signal of 3.5 GHz frequency using amplitude modulation method. What should be the minimum size of antenna required to transmit the modulated signal?
(A) 42.8 m
(B) 42.8 mm
(C) 21.4 mm
(D) 21.4 m

Answer (C)

Sol. $v_{c}=3.5 \times 10^{9} \mathrm{~Hz}$
$\therefore \quad \lambda=\frac{c}{v_{c}}=\frac{3 \times 10^{8}}{3.5 \times 10^{9}}$
\therefore Size of antenna $=\frac{\lambda}{4}$

$$
\begin{aligned}
& =\frac{8.57 \times 10^{-2}}{4} \\
& =21.4 \mathrm{~mm}
\end{aligned}
$$

17. A Carnot engine whose heat sinks at $27^{\circ} \mathrm{C}$, has an efficiency of 25%. By how many degrees should the temperature of the source be changed to increase the efficiency by 100% of the original efficiency?
(A) Increases by $18^{\circ} \mathrm{C}$
(B) Increases by $200^{\circ} \mathrm{C}$
(C) Increases by $120^{\circ} \mathrm{C}$
(D) Increases by $73^{\circ} \mathrm{C}$

Sol. Initially : $\frac{1}{4}=1-\frac{300}{T_{H}}$
$\Rightarrow \quad T_{H}=400 \mathrm{~K}$
Finally: Efficiency becomes $\frac{1}{2}$
$\Rightarrow \quad \frac{1}{2}=1-\frac{300}{T_{H}^{\prime}}$
$\Rightarrow \quad T_{H}^{\prime}=600 \mathrm{~K}$
\Rightarrow Temperature of the source increases by $200^{\circ} \mathrm{C}$.
18. A parallel plate capacitor is formed by two plates each of area $30 \pi \mathrm{~cm}^{2}$ separated by 1 mm . A material of dielectric strength $3.6 \times 10^{7} \mathrm{Vm}^{-1}$ is filled between the plates. If the maximum charge that can be stored on the capacitor without causing any dielectric breakdown is $7 \times 10^{-6} \mathrm{C}$, the value of dielectric constant of the material is :
[Use $\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$]
(A) 1.66
(B) 1.75
(C) 2.25
(D) 2.33

Answer (D)

Sol. Field inside the dielectric $=\frac{\sigma}{k \varepsilon_{0}}$
According to the given information,
$\frac{\sigma}{k \varepsilon_{0}}=3.6 \times 10^{7}$

$$
\begin{aligned}
& \frac{Q}{A} \\
k \varepsilon_{0} & =3.6 \times 10^{7} \\
\Rightarrow & k=2.33
\end{aligned}
$$

19. The magnetic field at the centre of a circular coil of radius r, due to current $/ f$ flowing through it, is B. The magnetic field at a point along the axis at a distance $\frac{r}{2}$ from the centre is :
(A) $\frac{B}{2}$
(B) $2 B$
(C) $\left(\frac{2}{\sqrt{5}}\right)^{3} B$
(D) $\left(\frac{2}{\sqrt{3}}\right)^{3} B$

Answer (C)

Answer (B)

Sol. $B=\frac{\mu_{0} I}{2 r}$

$$
\begin{aligned}
& B_{a}=\frac{\mu_{0} I r^{2}}{2\left(r^{2}+\frac{r^{2}}{4}\right)} \\
& \Rightarrow \frac{B_{a}}{B}=\left(\frac{2}{\sqrt{5}}\right)^{3} \\
& \Rightarrow B_{a}=\left(\frac{2}{\sqrt{5}}\right)^{3} B
\end{aligned}
$$

20. Two metallic blocks M_{1} and M_{2} of same area of cross-section are connected to each other (as shown in figure). If the thermal conductivity of M_{2} is K then the thermal conductivity of M_{1} will be :
[Assume steady state heat conduction]

(A) 10 K
(B) $8 K$
(C) 12.5 K
(D) $2 K$

Answer (B)

Sol. Thermal current is same so

$$
\begin{aligned}
& \frac{d Q}{d t}=\frac{\Delta T_{1}}{\frac{I_{1}}{K_{1} A}}=\frac{\Delta T_{2}}{\frac{I_{2}}{K_{2} A}} \\
& \text { or } \frac{20}{16} \times K^{\prime}=\frac{80}{8} \times K \\
& \Rightarrow K^{\prime}=8 K
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. 0.056 kg of Nitrogen is enclosed in a vessel at a temperature of $127^{\circ} \mathrm{C}$. The amount of heat required to double the speed of its molecules is \qquad k cal. (Take $\mathrm{R}=2 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$)
Answer (12)
Sol. Because the vessel is closed, it will be an isochoric process.

To double the speed, temperature must be 4 times ($v \alpha \sqrt{T}$)

So $T_{\mathrm{f}}=1600 \mathrm{~K}, T_{\mathrm{i}}=400 \mathrm{~K}$
number of moles are $\frac{56}{28}=2$
so $Q=n C v \Delta T=2 \times \frac{5}{2} \times 2 \times 1200$

$$
=12000 \mathrm{cal}=12 \mathrm{~K} \mathrm{cal}
$$

2. Two identical thin biconvex lenses of focal length 15 cm and refractive index 1.5 are in contact with each other. The space between the lenses is filled with a liquid of refractive index 1.25 . The focal length of the combination is \qquad cm.

Answer (10)
Sol. $\frac{1}{f_{l}}=\left(\frac{\mu_{\mathrm{e}}}{\mu_{\mathrm{m}}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
here $\left|R_{1}\right|=\left|R_{2}\right|=R$
$\Rightarrow \frac{1}{f_{f_{1}}}=(1.5-1)\left(\frac{2}{R}\right)=\frac{1}{15}$
$\Rightarrow \frac{1}{R}=\frac{1}{15}$ or $R=15 \mathrm{~cm}$
for the concave lens made up of liquid
$\frac{1}{f_{l_{2}}}=(1.25-1)\left(-\frac{2}{R}\right)=-\frac{1}{30} \mathrm{~cm}$
now for equivalent lens

$$
\begin{aligned}
\frac{1}{f_{e}} & =\frac{2}{f_{l_{1}}}+\frac{1}{f_{l_{2}}} \\
& =\frac{2}{15}-\frac{1}{30}=\frac{3}{30}=\frac{1}{10}
\end{aligned}
$$

or $f_{e}=10 \mathrm{~cm}$
3. A transistor is used in common-emitter mode in an amplifier circuit. When a signal of 10 mV is added to the base-emitter voltage, the base current changes by $10 \mu \mathrm{~A}$ and the collector current changes by 1.5 mA . The load resistance is $5 \mathrm{k} \Omega$. The voltage gain of the transistor will be \qquad _.
Answer (750)
Sol. $R_{\mathrm{B}}=\frac{10 \times 10^{-3}}{10 \times 10^{-6}}$

$$
=10^{3} \Omega
$$

$$
\begin{aligned}
\therefore \quad A_{V} & =\left(\frac{\Delta I_{C}}{\Delta I_{B}}\right) \times\left(\frac{R_{\mathrm{C}}}{R_{\mathrm{B}}}\right) \\
& =\frac{1.5 \times 10^{-3}}{10 \times 10^{-6}} \times \frac{5 \times 10^{3}}{1 \times 10^{3}} \\
& =\frac{1.5 \times 5}{10} \times(1000) \\
& =750
\end{aligned}
$$

4. As shown in the figure an inductor of inductance 200 mH is connected to an AC source of emf 220 V and frequency 50 Hz . The instantaneous voltage of the source is 0 V when the peak value of current is $\frac{\sqrt{a}}{\pi} A$. The value of a is \qquad -.

Answer (242)

Sol. $I_{\mathrm{rms}}=\frac{V_{\mathrm{rms}}}{z}$

$$
z=X_{2}=\omega_{2}
$$

$$
=2 \pi \times 50 \times \frac{200}{1000}
$$

$$
=20 \pi
$$

$$
\therefore \quad I_{\mathrm{rms}}=\frac{220}{20 \pi}=\frac{11}{\pi}
$$

$$
\therefore \quad I_{\text {peak }}=\sqrt{2} \times \frac{11}{\pi}
$$

$$
=\frac{\sqrt{2 \times 121}}{\pi}
$$

$$
=\frac{\sqrt{242}}{\pi}
$$

5. Sodium light of wavelengths 650 nm and 655 nm is used to study diffraction at a single slit of aperture 0.5 mm . The distance between the slit and the screen is 2.0 m . The separation between the positions of the first maxima of diffraction pattern obtained in the two cases is \qquad $\times 10^{-5} \mathrm{~m}$.

Answer (3)
Sol. Position of $1^{\text {st }}$ maxima is $\frac{3}{2} \frac{\lambda D}{a}$
\Rightarrow According to given values, required separation
$=\frac{3}{2} \times(655 \mathrm{~nm}-650 \mathrm{~nm}) \times \frac{2 \mathrm{~m}}{0.5 \mathrm{~mm}}$
\Rightarrow Required separation $=3 \times 10^{-5} \mathrm{~m}$.
6. When light of frequency twice the threshold frequency is incident on the metal plate, the maximum velocity of emitted electron is v_{1}. When the frequency of incident radiation is increased to five times the threshold value, the maximum velocity of emitted electron becomes v_{2}. If $v_{2}=x v_{1}$, the value of x will be \qquad .

Answer (2)

Sol. Let us say the work function is ϕ

$$
\begin{equation*}
\Rightarrow \quad 2 \phi=\phi+\frac{1}{2} m v_{1}^{2} \tag{1}
\end{equation*}
$$

and $5 \phi=\phi+\frac{1}{2} m v_{2}^{2}$
From (1) and (2)
$\frac{v_{2}^{2}}{v_{1}^{2}}=\frac{4}{1}$ or $\frac{v_{2}}{v_{1}}=2$
7. From the top of a tower, a ball is thrown vertically upward which reaches the ground in 6 s . A second ball thrown vertically downward from the same position with the same speed reaches the ground in 1.5 s . A third ball released, from the rest from the same location, will reach the ground in \qquad s .

Answer (3)

Sol. Based on the situation
$h=-u t_{1}+\frac{1}{2} g t_{1}^{2} \quad \rightarrow$ throwing up.
$h=u t_{2}+\frac{1}{2} g t_{2}^{2} \quad \rightarrow$ throwing down
$h=\frac{1}{2} g t^{2}$
\rightarrow dropping
and $0=u\left(t_{1}-t_{2}\right)-\frac{1}{2} g\left(t_{1}-t_{2}\right)^{2}$
solving above equations
$t=\sqrt{t_{1} t_{2}}$
$\Rightarrow t=\sqrt{6 \times 1.5}=3 \mathrm{~s}$
8. A ball of mass 100 g is dropped from a height $h=10 \mathrm{~cm}$ on a platform fixed at the top of a vertical spring (as shown in figure). The ball stays on the platform and the platform is depressed by a distance $\frac{h}{2}$. The spring constant is \qquad Nm^{-1}.
(Use $g=10 \mathrm{~ms}^{-2}$)

Answer (120)

Sol. $m g\left(h+\frac{h}{2}\right)=\frac{1}{2} k\left(\frac{h}{2}\right)^{2}$
$\Rightarrow 0.1 \times 10 \times(0.15)=\frac{1}{2} k(0.05)^{2}$
$\Rightarrow k=120 \mathrm{~N} / \mathrm{m}$
9. In a potentiometer arrangement, a cell gives a balancing point at 75 cm length of wire. This cell is now replaced by another cell of unknown emf. If the ratio of the emf's of two cells respectively is $3: 2$, the difference in the balancing length of the potentiometer wire in above two cases will be \qquad cm.

Answer (25)

Sol. At balancing point, we know that emf is proportional to the balancing length. i.e.,
emf \propto balancing length

Now, let the emf's be 3ε and 2ε.
$\Rightarrow 3 \varepsilon=k(75)$
and $2 \varepsilon=k(I)$
$\Rightarrow I=50 \mathrm{~cm}$
\Rightarrow Difference is $(75-50) \mathrm{cm}=25 \mathrm{~cm}$.
10. A metre scale is balanced on a knife edge at its centre. When two coins, each of mass 10 g are put one on the top of the other at the 10.0 cm mark the scale is found to be balanced at 40.0 cm mark. The mass of the metre scale is found to be $x \times 10^{-2} \mathrm{~kg}$. The value of x is \qquad _.

Answer (6)

Sol.

If λ is the mass per unit length of the scale then
$0.02 \times(30) \times 10+\lambda 40 \times 20 \times 10=\lambda 60 \times 30 \times 10$
$0.006=\lambda 10$

Or $100 \lambda=0.06 \mathrm{~kg}$

$$
=6 \times 10^{-2} \mathrm{~kg}
$$

$\Rightarrow x=6$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. If a rocket runs on a fuel $\left(\mathrm{C}_{15} \mathrm{H}_{30}\right)$ and liquid oxygen, the weight of oxygen required and CO_{2} released for every litre of fuel respectively are :
(Given : density of the fuel is $0.756 \mathrm{~g} / \mathrm{mL}$)
(A) 1188 g and 1296 g
(B) 2376 g and 2592 g
(C) 2592 g and 2376 g
(D) 3429 g and 3142 g

Answer (C)

Sol. $\mathrm{C}_{15} \mathrm{H}_{30}+\frac{45}{2} \mathrm{O}_{2} \rightarrow 15 \mathrm{CO}_{2}+15 \mathrm{H}_{2} \mathrm{O}$
One litre of fuel has a mass $(0.756) \times 1000 \mathrm{~g}$.
\therefore moles of $\mathrm{C}_{15} \mathrm{H}_{30}=\frac{756}{210}$
Moles of O_{2} required $=\frac{45}{2} \times \frac{756}{210}$
Mass of O_{2} required $=\frac{45}{2} \times \frac{756}{210} \times 32 \mathrm{~g}=2592 \mathrm{~g}$
Mass of CO_{2} formed $=15 \times \frac{756}{210} \times 44=2376 \mathrm{~g}$
2. Consider the following pairs of electrons
(A) (a) $\mathrm{n}=3, \mathrm{I}=1, \mathrm{~m}_{1}=1, \mathrm{~m}_{\mathrm{s}}=+\frac{1}{2}$
(b) $n=3, l=2, m_{1}=1, m_{s}=+\frac{1}{2}$
(B) (a) $\mathrm{n}=3, \mathrm{I}=2, \mathrm{~m}_{1}=-2, \mathrm{~m}_{\mathrm{s}}=-\frac{1}{2}$
(b) $\mathrm{n}=3, \mathrm{I}=2, \mathrm{~m}_{1}=-1, \mathrm{~m}_{\mathrm{s}}=-\frac{1}{2}$
(C) (a) $n=4, I=2, m_{1}=2, m_{s}=+\frac{1}{2}$
(b) $n=3, I=2, m_{1}=2, m_{s}=+\frac{1}{2}$

The pairs of electrons present in degenerate orbitals is /are:
(A) Only (A)
(B) Only (B)
(C) Only (C)
(D) (B) and (C)

Answer (B)

Sol. For degenerate orbitals, only the value of m must be different. The value of ' n ' and ' I ' must be the same.

Hence, the pair of electrons with quantum numbers given in (B) are degenerate.
3. Match List-I with List-II :

List-I

(A) $\left[\mathrm{PtCl}_{4}\right]^{2-}$
(I) $s p^{3} d$
(B) BrF_{5}
(II) $d^{2} s p^{3}$
(C) PCl_{5}
(III) $d s p^{2}$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(IV) $s p^{3} d^{R}$

Choose the most appropriate answer from the options given below.
(A) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
(B) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(C) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(D) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Answer (B)

Sol. Complex/compound
(A) $\left[\mathrm{PtCl}_{4}\right]^{-2}$
(III) $d s p^{2}$
(B) BrF_{5}
(IV) $s p^{3} d^{R}$
(C) PCl_{5}
(I) $s p^{3} d$
(D) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{+3}$
(II) $d^{2} s p^{3}$

Hence, the most appropriate answer is given in option (B)
4. For a reaction at equilibrium

$$
\mathrm{A}(\mathrm{~g}) \rightleftharpoons \mathrm{B}(\mathrm{~g})+\frac{1}{2} \mathrm{C}(\mathrm{~g})
$$

the relation between dissociation constant (K), degree of dissociation (α) and equilibrium pressure (p) is given by :
(A) $K=\frac{\alpha^{\frac{1}{2}} p^{\frac{3}{2}}}{\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)}$
(B) $K=\frac{\alpha^{\frac{3}{2}} p^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$
(C) $K=\frac{(\alpha p)^{\frac{3}{2}}}{1}$

$$
\left(1+\frac{3}{2} \alpha\right)^{\frac{1}{2}}(1-\alpha)
$$

(D) $K=\frac{(\alpha p)^{\frac{3}{2}}}{(1+\alpha)(1-\alpha)^{\frac{1}{2}}}$

Answer (B)

Sol.

$$
\begin{array}{ccccc}
& A(g) & \rightleftharpoons & B(g) & + \\
t=0 & p_{i} & & - & - \\
\substack{t \\
\text { (eq. m conditions) }} & p_{i}-p_{i} \alpha & & p_{i} \alpha & \frac{p_{i} \alpha}{2}
\end{array}
$$

$$
\therefore P(\text { equilibrium pressure })=p_{i}-p_{i} \alpha+p_{i} \alpha+\frac{p_{i} \alpha}{2}
$$

$$
=\mathrm{p}_{\mathrm{i}}\left(1+\frac{\alpha}{2}\right)
$$

$$
\therefore \quad p_{i}=\frac{p}{\left(1+\frac{\alpha}{2}\right)}
$$

$$
K_{p}=\frac{\left(p_{i} \frac{\alpha}{2}\right)^{\frac{1}{2}} \times p_{i} \alpha}{p_{i}(1-\alpha)}=\frac{p^{\frac{1}{2}} \alpha^{\frac{3}{2}}}{\left(1+\frac{\alpha}{2}\right)^{\frac{1}{2}}(1-\alpha)} \times \frac{1}{2^{\frac{1}{2}}}
$$

$$
=\frac{\mathrm{p}^{\frac{1}{2}} \alpha^{\frac{3}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}
$$

Hence the correct option is (B)
5. Given below are two statements:

Statement I: Emulsion of oil in water are unstable and sometimes they separate into two layers on standing.
Statement II : For stabilisation of an emulsion, excess of electrolyte is added.

In the light of the above statements, choose the most appropriate answer from the options given below:
(A) Both Statement I and Statement II are correct
(B) Both Statement I and Statement II are incorrect.
(C) Statement I is correct but Statement II is incorrect.
(D) Statement I is incorrect but Statement II is correct.

Answer (C)

Sol. Oil in water emulsions can sometimes separate into two layers on standing.

The most relevant example for the above case is milk, which can separate into two layers on standing for a longer time. Therefore, statement (I) is correct.

On adding excess of electrolyte, coagulation occurs and emulsion is further destabilised.
Therefore, statement (II) is incorrect.
6. Given below are the oxides:
$\mathrm{Na}_{2} \mathrm{O}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{NO}$ and $\mathrm{Cl}_{2} \mathrm{O}_{7}$
Number of amphoteric oxides is:
(A) 0
(B) 1
(C) 2
(D) 3

Answer (B)
Sol. Oxides
$\mathrm{Na}_{2} \mathrm{O} \longrightarrow$ Basic
$\mathrm{As}_{2} \mathrm{O}_{3} \longrightarrow$ Amphoteric
$\mathrm{N}_{2} \mathrm{O} \longrightarrow$ Neutral
$\mathrm{NO} \longrightarrow$ Neutral
$\mathrm{Cl}_{2} \mathrm{O}_{7} \longrightarrow$ Acidic
Hence, only one amphoteric oxide is present.
7. Match List-I with List -II :

List-I

(A) Sphalerite
(I) FeCO_{3}
(B) Calamine
(II) PbS
(C) Galena
(III) ZnCO_{3}
(D) Siderite
(IV) ZnS

Choose the most appropriate answer from the options given below:
(A) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(B) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
(C) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
(D) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

Answer (A)

Sol. Ores

Formula

(A) Sphalerite
(IV) ZnS
(B) Calamine
(III) ZnCO_{3}
(C) Galena
(II) PbS
(D) Siderite
(I) FeCO_{3}

Hence, the most appropriate option is (A).
8. The highest industrial consumption of molecular hydrogen is to produce compounds of element:
(A) Carbon
(B) Nitrogen
(C) Oxygen
(D) Chlorine

Answer (B)
Sol. Hydrogen combines with nitrogen to produce Ammonia in Haber's process.
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
In this process, iron oxide is used with small amounts of $\mathrm{K}_{2} \mathrm{O}$ and $\mathrm{Al}_{2} \mathrm{O}_{3}$ to increase the rate of attainment of equilibrium.
Optimum conditions for the production of ammonia are a pressure of 200 atm and a temperature of 700K.
Earlier, iron was used as a catalyst with molybdenum as promoter in this reaction.
9. Which of the following statements are correct?
(A) Both LiCl and MgCl_{2} are soluble in ethanol.
(B) The oxides $\mathrm{Li}_{2} \mathrm{O}$ and MgO combine with excess of oxygen to give superoxide.
(C) LiF is less soluble in water than other alkali metal fluorides.
(D) $\mathrm{Li}_{2} \mathrm{O}$ is more soluble in water than other alkali metal oxides.

Choose the most appropriate answer from the options given below:
(A) (A) and (C) only
(B) (A), (C) and (D) only
(C) (B) and (C) only
(D) (A) and (D) only

Answer (A)

Sol. (A) Both LiCl and MgCl_{2} are covalent in nature due to high polarizing power of Li^{+}and Mg^{+2} ions. Hence, they are soluble in ethanol.
(A) Oxides of $\mathrm{Li}_{2} \mathrm{O}$ and MgO do not form superoxide
(B) LiF is least soluble among all other alkali metal fluorides due to high lattice energy of LiF
(C) $\mathrm{Li}_{2} \mathrm{O}$ is least soluble among all other alkali metal oxides.

Hence, Statements (A) and (C) are correct.
10. Identify the correct statement for $\mathrm{B}_{2} \mathrm{H}_{6}$ from those given below:
(A) In $\mathrm{B}_{2} \mathrm{H}_{6}$, all $\mathrm{B}-\mathrm{H}$ bonds are equivalent.
(B) In $\mathrm{B}_{2} \mathrm{H}_{6}$, there are four 3-centre-2-electron bonds.
(C) $\mathrm{B}_{2} \mathrm{H}_{6}$ is a Lewis acid.
(D) $\mathrm{B}_{2} \mathrm{H}_{6}$ can be synthesized from both BF_{3} and NaBH_{4}.
(E) $\mathrm{B}_{2} \mathrm{H}_{6}$ is a planar molecule.

Choose the most appropriate answer from the options given below:
(A) (A) and (E) only
(B) (B), (C) and (E) only
(C) (C) and (D) only
(D) (C) and (E) only

Answer (C)

Sol. Structure of $\mathrm{B}_{2} \mathrm{H}_{6}$

It has two 3 -centre-2-electron bonds and four 2-centre-2-electron bonds.

Hence, all B-H bonds are not equivalent.
It is an electron deficient compound as the octet of boron is incomplete.
Hence, it can behave as a Lewis acid.
It can be synthesized from both BF_{3} and NaBH_{4}
$2 \mathrm{BF}_{3}+6 \mathrm{NaH} \xrightarrow{450 \mathrm{~K}} \mathrm{~B}_{2} \mathrm{H}_{6}+6 \mathrm{NaF}$
$2 \mathrm{NaBH}_{4}+\mathrm{I}_{2} \longrightarrow \mathrm{~B}_{2} \mathrm{H}_{6}+2 \mathrm{NaI}+\mathrm{H}_{2}$
It is a non-planar molecule.
Hence, only Statements (C) and (D) are correct.
11. The most stable trihalide of nitrogen is:
(A) NF_{3}
(B) NCl_{3}
(C) NBr_{3}
(D) Nl_{3}

Answer (A)

Sol. The most stable trihalide is NF_{3}
Order of stability: $\mathrm{NF}_{3}>\mathrm{NCl}_{3}>\mathrm{NBr}_{3}>\mathrm{NI}_{3}$
NCl_{3} is explosive is nature.
NBr_{3} and Nl_{3} are known only as ammoniates. The stability of trihalides decreases down the group due to weakening of $\mathrm{N}-\mathrm{X}$ bond and inability of N to accommodate large sized halogen atoms ($\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) around it.
12. Which one of the following elemental forms is not present in the enamel of the teeth?
(A) Ca^{2+}
(B) P^{3+}
(C) F^{-}
(D) P^{5+}

Answer (B)

Sol. P^{+3} is not present is enamel of teeth.
Th compound present is $\left[3 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot \mathrm{CaF}_{2}\right.$]
Which contains $\mathrm{Ca}^{+2}, \mathrm{P}^{+5} \& \mathrm{~F}^{-}$
13. In the given reaction sequence, the major product ' C ' is:
$\mathrm{C}_{8} \mathrm{H}_{10} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \mathrm{~A} \xrightarrow[\Delta]{\mathrm{Br}_{2}} \mathrm{~B} \xrightarrow[\mathrm{KOH}]{\text { alcoholic }} C$
(A)

(B)

(C)

(D)

Answer (B)

Sol.

(A)

14. Two statements are given below:

Statement I: The melting point of monocarboxylic acid with even number of carbon atoms is higher than that of with odd number of carbon atoms acid immediately below and above it in the series.

Statement II: The solubility of monocarboxylic acids in water decreases with increase in molar mass.

Choose the most appropriate option:
(A) Both Statement I and Statement II are correct.
(B) Both Statement I and Statement II are incorrect.
(C) Statement I is correct but Statement II is incorrect.
(D) Statement I is incorrect but Statement II is correct.

Answer (A)

Sol. Statement (I) is correct as monocarboxylic acids with even number of carbon atoms show better packing efficiency in solid state, statement (II) is also correct as the solubility of carboxylic acids decreases with increase in molar mass due to increase in the hydrophobic portion with increase in the number of carbon atoms.
15. Which of the following is an example of conjugated diketone?
(A)

(B)

(C)

(D)

Answer (C)

Sol.

In rest of the diketones given in the question, the two $(\mathrm{C}=\mathrm{O})$ groups are not in conjugation with each other.
16.

(i) NaCN
(iv) $\mathrm{H}_{2}, \mathrm{Ni}$

The major product of the above reactions is :

(B)

(C)

(D)

Answer (D)

Sol.

$\xrightarrow{\mathrm{H}_{2} / \mathrm{Ni}}$

Hence, the correct option is (D).
17. Which of the following is an example of polyester?
(A) Butadiene-styrene copolymer
(B) Melamine polymer
(C) Neoprene
(D) Poly- β-hydroxybutyrate-co- β-hydroxy valerate

Answer (D)

Sol. Polyesters are formed by condensation reaction between alcohols and carboxylic acid.

Poly- β-hydroxybutyrate-co- β-hydroxy valerate (PHBV) is a polymer obtained by condensation reaction of 3-hydroxybutanoic acid with 3-hydroxypentanoic acid.

Hence, PHBV is a polyester.
18. A polysaccharide ' X ' on boiling with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 393 K under 2-3 atm pressure yields ' Y '. ' Y ' on treatment with bromine water gives gluconic acid. ' X ' contains β-glycosidic linkages only. Compound ' X ' is:
(A) starch
(B) cellulose
(C) amylose
(D) amylopectin

Answer (B)

Sol. Cellulose contains β-glycosidic linkages only.
Structure of cellulose

On boiling with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 393 K under 2-3 atm, ' X ' forms glucose, which given gluconic acid on treatment with bromine water.
19. Which of the following is not a broad-spectrum antibiotic?
(A) Vancomycin
(B) Ampicillin
(C) Ofloxacin
(D) Penicillin G

Answer (D)

Sol. Penicillin G is a narrow spectrum antibiotic. (Based on fact)
20. During the qualitative analysis of salt with cation y^{2+}, addition of a reagent (X) to alkaline solution of the salt gives a bright red precipitate. The reagent (X) and the cation (y^{2+}) present respectively are:
(A) Dimethylglyoxime and Ni^{2+}
(B) Dimethylglyoxime and Co^{2+}
(C) Nessler's reagent and Hg^{2+}
(D) Nessler's reagent and Ni^{2+}

Answer (A)

Sol. On addition of dimethylglyoxime to alkaline solution of Ni^{+2}, a bright red ppt. is obtained.
$\mathrm{Ni}^{+2}+2 \mathrm{dmg} \rightarrow\left[\mathrm{Ni}(\mathrm{dmg})_{2}\right]^{+2}$ (Bright red ppt)

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Atoms of element X form hcp lattice and those of element Y occupy $\frac{2}{3}$ of its tetrahedral voids. The percentage of element X in the lattice is \qquad . (Nearest integer)

Answer (43)

Sol. Since X occupies hcp lattice,
Number of particles of type X in a unit cell $=6$
Number of particles of type $\mathrm{Y}=\frac{2}{3} \times 12=8$
$\therefore \quad$ Percentage of element $\mathrm{X}=\frac{6}{14} \times 100$

$$
\begin{aligned}
& =\frac{300}{7} \\
& =42.85 \\
& \simeq 43 \%
\end{aligned}
$$

2. $\quad 2 \mathrm{O}_{3}(\mathrm{~g}) \rightleftharpoons 3 \mathrm{O}_{2}(\mathrm{~g})$

At 300 K , ozone is fifty percent dissociated. The standard free energy change at this temperature and 1 atm pressure is $(-)$ \qquad $\mathrm{J} \mathrm{mol}^{-1}$. (Nearest integer)
[Given: $\ln 1.35=0.3$ and $R=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]

Answer (747)

Sol. $\underset{1-\mathrm{x}}{2 \mathrm{O}_{3}(\mathrm{~g})} \rightleftharpoons \underset{\frac{3 \mathrm{x}}{2}}{3 \mathrm{O}_{2}(\mathrm{~g})}$
Given, $x=0.5$

$$
\begin{aligned}
& \therefore \mathrm{k}_{\mathrm{p}}=\frac{[3(0.5)]^{3} \times 1}{[2]^{3} \times(0.5)^{2} \times 1.25} \\
& \therefore \mathrm{k}_{\mathrm{p}}=\frac{27}{8} \times \frac{0.5}{1.25}=1.35 \\
& \Delta \mathrm{G}^{\circ}
\end{aligned}=-2.303 \mathrm{RT} \log \mathrm{k}_{\mathrm{p}} \mathrm{l} .
$$

3. The osmotic pressure of blood is 7.47 bar at 300 K . To inject glucose to a patient intravenously, it has to be isotonic with blood. The concentration of glucose solution in gL^{-1} is \qquad . (Molar mass of glucose $=180 \mathrm{~g} \mathrm{~mol}^{-1}$
$R=0.083 \mathrm{~L} \mathrm{bar} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$) (Nearest integer)

Answer (54)

Sol. $7.47=\mathrm{C} \times 0.083 \times 300$
($\pi=$ CRT)
(Where C represents the concentration of glucose solution and π represents osmotic pressure)
$C=\frac{7.47}{0.083 \times 300}\left(\mathrm{~mol} \mathrm{~L}^{-1}\right)$
which in $\mathrm{gm} / \mathrm{L}=\frac{7.47}{0.083 \times 300} \times 180$
$=54 \mathrm{gm} / \mathrm{l}$
4. The cell potential for the following cell
$\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq}) \| \mathrm{Cu}^{2+}(0.01 \mathrm{M}) \mid \mathrm{Cu}(\mathrm{s})$
is 0.576 V at 298 K . The pH of the solution is \qquad . (Nearest integer)
(Given: $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{0}=0.34 \mathrm{~V}$ and $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{~V}$)

Answer (5)

Sol. $E_{\text {cell }}=E_{\text {cell }}^{0}-\frac{0.06}{2} \log \frac{\left[\mathrm{H}^{\oplus}\right]^{2}}{\left[\mathrm{Cu}^{+2}\right]}$
$0.576=0.34-0.03 \log \frac{\left[\mathrm{H}^{\oplus}\right]^{2}}{[0.01]}$

$$
\begin{aligned}
0.576-0.34 & =-0.03 \log \left[\mathrm{H}^{\oplus}\right]^{2}+0.03 \log (0.01) \\
& =0.06 \mathrm{pH}-0.06
\end{aligned}
$$

$\mathrm{pH} \simeq 4.93 \simeq 5$
5. The rate constants for decomposition of acetaldehyde have been measured over the temperature range $700-1000 \mathrm{~K}$. The data has been analysed by plotting In k vs $\frac{10^{3}}{\mathrm{~T}}$ graph. The value of activation energy for the reaction is \qquad $\mathrm{kJ} \mathrm{mol}{ }^{-1}$. (Nearest integer)
(Given : R $=8.31 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

Answer (154)

Sol.

$$
\ln k=\ln A-\frac{E_{a}}{R T}
$$

\therefore Slope of the graph $=-\frac{E_{a}}{R \times 10^{3}}=-18.5$
$\therefore E_{a}=18.5 \times 8.31 \times 1000 \simeq 154 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6. The difference in oxidation state of chromium in chromate and dichromate salts is \qquad

Answer (0)

Sol. Chromate ion $\rightarrow \mathrm{CrO}_{4}^{2-}$, oxidation state of $\mathrm{Cr}=+6$
Dichromate ion $\rightarrow \mathrm{CrO}_{4}^{2-}$, oxidation state of $\mathrm{Cr}=+6$
$\therefore \quad$ Difference in oxidation state $=$ zero
7. In the cobalt-carbonyl complex: $\left[\mathrm{Co}_{2}\left(\mathrm{CO}_{8}\right)_{8}\right.$, number of Co-Co bonds is " X " and terminal CO ligands is " Y ". $\mathrm{X}+\mathrm{Y}=$ \qquad .

Answer (7)

Sol. Structure of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$

Number of $\mathrm{Co}-\mathrm{Co}$ bonds $=1=\mathrm{X}$
Number of terminal CO ligands $=6=Y$
$\therefore \quad X+Y=1+6=7$
8. A 0.166 g sample of an organic compound was digested with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and then distilled with NaOH . The ammonia gas evolved was passed through 50.0 mL of $0.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. The used acid required 30.0 mL of 0.25 N NaOH for complete neutralisation. The mass percentage of nitrogen in the organic compound is \qquad .
Answer (63)
Sol. Millimoles of used acid $=\frac{30 \times 0.25}{2}$
Millimoles of $\mathrm{NH}_{3}=30 \times 0.25=7.5$
Mass $\%$ of nitrogen $=\frac{7.5}{0.166} \times 10^{-3} \times 14 \times 100 \simeq 63 \%$
9. Number of electrophilic centres in the given compound is \qquad -.

Answer (3)
Sol. Given compounds :

Number of electrophilic centres $=3$
10. The major product ' A ' of the following given reaction has \qquad $s p^{2}$ hybridized carbon atoms.

2, 7-Dimethyl-2, 6-octadiene $\xrightarrow{\mathrm{H}^{+}} \underset{\text { Major Product }}{A}$

Answer (2)

Sol.

Number of $s p^{2}$ hybridised carbon atoms $=2$

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let $A=\{z \in \mathbf{C}: 1 \leq|z-(1+i)| \leq 2\}$ and $B=\{z \in A$ $:|z-(1-i)|=1\}$. Then, B :
(A) Is an empty set
(B) Contains exactly two elements
(C) Contains exactly three elements
(D) Is an infinite set

Answer (D)

Sol.

Set A represents region 1 i.e. R_{1} and clearly set B has infinite points in it.
2. The remainder when 3^{2022} is divided by 5 is :
(A) 1
(B) 2
(C) 3
(D) 4

Answer (D)
Sol. $3^{2022}=(10-1)^{1011}={ }^{1011} C_{0}(10)^{1011}(-1)^{0}+$ ${ }^{1011} C_{1}(10)^{1010}(-1)^{1}+\ldots . .+{ }^{1011} C_{1010}(10)^{1}(-1)^{1010}+$ ${ }^{1011} C_{1011}(10)^{0}(-1)^{1011}$
$=5 k-1$, where $k \in I$
So when divided by 5 , it leaves remainder 4 .
3. The surface area of a balloon of spherical shape being inflated, increases at a constant rate. If initially, the radius of balloon is 3 units and after 5 seconds, it becomes 7 units, then its radius after 9 seconds is :
(A) 9
(B) 10
(C) 11
(D) 12

Answer (A)

Sol. $S=4 \pi r^{2}$

$$
\begin{aligned}
& \frac{d S}{d t}=8 \pi r \frac{d r}{d t} \\
& \frac{d S}{d t}=\text { constant so } \Rightarrow r \frac{d r}{d t}=k \text { (Let) } \\
& r d r=k d t \Rightarrow \frac{r^{2}}{2}=k t+C \\
& \text { at } t=0, r=3 \\
& \frac{9}{2}=C \\
& \text { at } t=5, \\
& \frac{49}{2}=k \cdot 5+\frac{9}{2} \Rightarrow k=4 \\
& \text { At } t=9, \frac{r^{2}}{2}=\frac{81}{2} \\
& \text { So, } r=9
\end{aligned}
$$

4. Bag A contains 2 white, 1 black and 3 red balls and bas B contains 3 black, 2 red and n white balls. One bag is chosen at random and 2 balls drawn from it at random, are found to be 1 red and 1 black. If the probability that both balls come from Bag A is $\frac{6}{11}$, then n is equal to \qquad -.
(A) 13
(B) 6
(C) 4
(D) 3

Answer (C)

Sol.

$P(1 R$ and $1 B)=P(A) \cdot P\left(\frac{1 R 1 B}{A}\right)+P(B) \cdot P\left(\frac{1 R 1 B}{B}\right)$ $=\frac{1}{2} \cdot \frac{{ }^{3} C_{1} \cdot{ }^{1} C_{1}}{{ }^{6} C_{2}}+\frac{1}{2} \cdot \frac{{ }^{2} C_{1} \cdot{ }^{3} C_{1}}{{ }^{n+5} C_{2}}$
$P\left(\frac{1 R 1 B}{A}\right)=\frac{\frac{1}{2} \cdot \frac{3}{15}}{\frac{1}{2} \cdot \frac{3}{15}+\frac{1}{2} \cdot \frac{6 \cdot 2}{(n+5)(n+4)}}=\frac{6}{11}$
$\Rightarrow \frac{\frac{1}{10}}{\frac{1}{10}+\frac{6}{(n+5)(n+4)}}=\frac{6}{11}$
$\Rightarrow \quad \frac{11}{10}=\frac{6}{10}+\frac{36}{(n+5)(n+4)}$
$\Rightarrow \quad \frac{5}{10 \times 36}=\frac{1}{(n+5)(n+4)}$
$\Rightarrow n^{2}+9 n-52=0$
$\Rightarrow n=4$ is only possible value
5. Let $x^{2}+y^{2}+A x+B y+C=0$ be a circle passing through $(0,6)$ and touching the parabola $y=x^{2}$ at $(2,4)$. Then $A+C$ is equal to \qquad _.
(A) 16
(B) $\frac{88}{5}$
(C) 72
(D) -8

Answer (A)

Sol. For tangent to parabola $y=x^{2}$ at $(2,4)$

$$
\left.\frac{d y}{d x}\right|_{(2,4)}=4
$$

Equation of tangent is
$y-4=4(x-2)$
$\Rightarrow 4 x-y-4=0$
Family of circle can be given by
$(x-2)^{2}+(y-4)^{2}+\lambda(4 x-y-4)=0$
As it passes through $(0,6)$
$2^{2}+2^{2}+\lambda(-10)=0$
$\Rightarrow \lambda=\frac{4}{5}$
Equation of circle is

$$
\begin{aligned}
& (x-2)^{2}+(y-4)^{2}+\frac{4}{5}(4 x-y-4)=0 \\
& \Rightarrow \quad\left(x^{2}+y^{2}-4 x-8 y+20\right)+\left(\frac{16}{5} x-\frac{4}{5} y-\frac{16}{5}\right)=0 \\
& \quad A=-4+\frac{16}{5}, C=20-\frac{16}{5}
\end{aligned}
$$

So, $A+C=16$
6. The number of values of α for which the system of equations:
$x+y+z=\alpha$
$\alpha x+2 \alpha y+3 z=-1$
$x+3 \alpha y+5 z=4$
is inconsistent, is
(A) 0
(B) 1
(C) 2
(D) 3

Answer (B)
Sol. $\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ \alpha & 2 \alpha & 3 \\ 1 & 3 \alpha & 5\end{array}\right|$
$=1(10 \alpha-9 \alpha)-1(5 \alpha-3)+1\left(3 \alpha^{2}-2 \alpha\right)$
$=\alpha-5 \alpha+3+3 \alpha^{2}-2 \alpha$
$=3 \alpha^{2}-6 \alpha+3$
For inconsistency $\Delta=0$ i.e. $\alpha=1$
Now check for $\alpha=1$
$x+y+z=1$
$x+2 y+3 z=-1$
$x+3 y+5 z=4$
By (ii) $\times 2-$ (i) $\times 1$
$x+3 y+5 z=-3$
so equations are
inconsistent for $\alpha=1$
7. If the sum of the squares of the reciprocals of the roots α and β of the equation $3 x^{2}+\lambda x-1=0$ is 15 , then $6\left(\alpha^{3}+\beta^{3}\right)^{2}$ is equal to :
(A) 18
(B) 24
(C) 36
(D) 96

Answer (B)
Sol. $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=15 \Rightarrow \frac{(\alpha+\beta)^{2}-2 \alpha \beta}{\alpha^{2} \beta^{2}}=15$

$$
\begin{aligned}
& \Rightarrow \frac{\frac{\lambda^{2}}{9}+\frac{2}{3}}{\frac{1}{9}}=15 \\
& \Rightarrow \frac{\lambda^{2}}{9}=1 \Rightarrow \lambda^{2}=9 \\
& \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}+\beta^{2}-\alpha \beta\right) \\
& =\left(\frac{-\lambda}{3}\right)\left(\frac{\lambda^{2}}{9}-3\left(\frac{-1}{3}\right)\right)=\left(\frac{-\lambda}{3}\right)\left(\frac{\lambda^{2}}{9}+1\right)=\frac{-2 \lambda}{3} \\
& 6\left(\alpha^{3}+\beta^{3}\right)^{2}=6 \cdot \frac{4 \lambda^{2}}{9}=24
\end{aligned}
$$

8. The set of all values of k for which $\left(\tan ^{-1} x\right)^{3}+\left(\cot ^{-1} x\right)^{3}=k \pi^{3}, x \in \mathrm{R}, \quad$ is the interval:
(A) $\left[\frac{1}{32}, \frac{7}{8}\right)$
(B) $\left(\frac{1}{24}, \frac{13}{16}\right)$
(C) $\left[\frac{1}{48}, \frac{13}{16}\right]$
(D) $\left[\frac{1}{32}, \frac{9}{8}\right)$

Answer (A)

Sol. Let $\tan ^{-1} x=t \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$

$$
\cot ^{-1} x=\frac{\pi}{2}-t
$$

$f(t)=t^{3}+\left(\frac{\pi}{2}-t\right)^{3} \Rightarrow f^{\prime}(t)=3 t^{2}-3\left(\frac{\pi}{2}-t\right)^{2}$
$f^{\prime}(t)=0$ at $t=\frac{\pi}{4}$
$\left.f(t)\right|_{\min }=\frac{\pi^{3}}{64}+\frac{\pi^{3}}{64}=\frac{\pi^{3}}{32}$
Max will occur around $t=-\frac{\pi}{2}$
Range of $f(t)=\left[\frac{\pi^{3}}{32}, \frac{7 \pi^{3}}{8}\right)$
$k \in\left[\frac{1}{32}, \frac{7}{8}\right)$
9. Let $S=\{\sqrt{n}: 1 \leq n \leq 50$ and n is odd $\}$.

Let $a \in S$ and $A=\left[\begin{array}{ccc}1 & 0 & a \\ -1 & 1 & 0 \\ -a & 0 & 1\end{array}\right]$
If $\sum_{a \in S} \operatorname{det}(\operatorname{adj} A)=100 \lambda$, then λ is equal to :
(A) 218
(B) 221
(C) 663
(D) 1717

Answer (B)

Sol. $|A|=a^{2}+1$

$$
\begin{aligned}
& |\operatorname{adj} A|=\left(a^{2}+1\right)^{2} \\
& \quad S=\{1, \sqrt{3}, \sqrt{5}, \sqrt{7}, \ldots, \sqrt{49}\}
\end{aligned}
$$

$\sum_{a \in S} \operatorname{det}(\operatorname{adj} A)=\left(1^{2}+1\right)^{2}+(3+1)^{2}+(5+1)^{2}+\ldots+$ $(49+1)^{2}$

$$
\begin{aligned}
& =2^{2}\left(1^{2}+2^{2}+3^{2}+\ldots+25^{2}\right) \\
& =4 \cdot \frac{25 \cdot 26 \cdot 51}{6}=100 \cdot 221
\end{aligned}
$$

$\lambda=221$
10. For the function
$f(x)=4 \log _{\mathrm{e}}(x-1)-2 x^{2}+4 x+5, x>1$, which one of the following is NOT correct?
(A) f is increasing in $(1,2)$ and decreasing in $(2, \infty)$
(B) $f(x)=-1$ has exactly two solutions
(C) $f(e)-f^{\prime}(2)<0$
(D) $f(x)=0$ has a root in the interval $(e, e+1)$

Answer (C)

Sol. $f(x)=\frac{4}{x-1}-4 x+4=\frac{4\left(2 x-x^{2}\right)}{x-1}$

So maxima occurs at $x=2$
$f(2)=4 \cdot 0-2 \cdot 2^{2}+4 \cdot 2+5=5$
so clearly $f(x)=-1$ has
exactly 2 solutions
$f^{\prime \prime}(x)=\frac{4(2-2 x)(x-1)}{(x-1)^{2}}-\left(2 x-x^{2}\right)$
so $f^{\prime}(e)-f^{\prime \prime}(2)>0$
so option c is not correct
11. If the tangent at the point $\left(x_{1}, y_{1}\right)$ on the curve $y=x^{3}$ $+3 x^{2}+5$ passes through the origin, then $\left(x_{1}, y_{1}\right)$ does NOT lie on the curve :
(A) $x^{2}+\frac{y^{2}}{81}=2$
(B) $\frac{y^{2}}{9}-x^{2}=8$
(C) $y=4 x^{2}+5$
(D) $\frac{x}{3}-y^{2}=2$

Answer (D)

Sol. $m_{0 p}-m_{\text {Tangent }}$

$$
\begin{aligned}
& \frac{y_{1}}{x_{1}}=3 x_{1}^{2}+6 x_{1} \\
& \Rightarrow \frac{x_{1}^{3}+3 x_{1}^{2}+5}{x_{1}}=3 x_{1}^{2}+6 x_{1} \\
& \Rightarrow x_{1}^{3}+3 x_{1}^{2}+5=3 x_{1}^{3}+6 x_{1}^{2} \\
& \Rightarrow 2 x_{1}^{3}+3 x_{1}^{2}-5=0 \\
& \Rightarrow\left(x_{1}-1\right)\left(2 x_{1}^{2}+5 x_{1}+5\right)=0
\end{aligned}
$$

So, $\left(x_{1}, y_{1}\right)=(1,9)$
12. The sum of absolute maximum and absolute minimum values of the function $f(x)=\left|2 x^{2}+3 x-2\right|$ $+\sin x \cos x$ in the interval $[0,1]$ is :
(A) $3+\frac{\sin (1) \cos ^{2}\left(\frac{1}{2}\right)}{2}$
(B) $3+\frac{1}{2}(1+2 \cos (1)) \sin (1)$
(C) $5+\frac{1}{2}(\sin (1)+\sin (2))$
(D) $2+\sin \left(\frac{1}{2}\right) \cos \left(\frac{1}{2}\right)$

Answer (B)

Sol. $f(x)=|(2 x-1)(x+2)|+\frac{\sin 2 x}{2}$
$0 \leq x<\frac{1}{2} \quad f(x)=(1-2 x)(x+2)+\frac{\sin 2 x}{2}$
$f^{\prime}(x)=-4 x-3+\cos 2 x<0$
For $x \geq \frac{1}{2}: \quad f^{\prime}(x)=4 x+3+\cos 2 x>0$
So, minima occurs at $x=\frac{1}{2}$

$$
\begin{aligned}
\left.f(x)\right|_{\min } & =\left|2\left(\frac{1}{2}\right)^{2}+\frac{3}{2}-2\right|+\sin \left(\frac{1}{2}\right) \cdot \cos \left(\frac{1}{2}\right) \\
& =\frac{1}{2} \sin 1
\end{aligned}
$$

So, maxima is possible at $x=0$ or $x=1$
Now checking for $x=0$ and $x=1$, we can see it attains its maximum value at $x=1$

$$
\begin{aligned}
\left.f(x)\right|_{\max } & =|2+3-2|+\frac{\sin 2}{2} \\
& =3+\frac{1}{2} \sin 2
\end{aligned}
$$

Sum of absolute maximum and minimum value $=3+\frac{1}{2}(\sin 1+\sin 2)$
13. If $\left\{a_{i}\right\}_{i=1}^{n}$, where n is an even integer, is an arithmetic progression with common difference 1 , and $\sum_{i=1}^{n} a_{i}=192, \sum_{i=1}^{n / 2} a_{2 i}=120$, then n is equal to :
(A) 48
(B) 96
(C) 92
(D) 104

Answer (B)

Sol. $a_{1}+a_{2}+\ldots+a_{n}=192 \Rightarrow \frac{n}{2}\left(a_{1}+a_{n}\right)=192$
$a_{2}+a_{4}+a_{6}+\ldots+a_{n}=120$
$\Rightarrow \frac{n}{4}\left(a_{1}+1+a_{n}\right)=120$
From (2) \& (1)
$\frac{480}{n}-\frac{384}{n}=1 \Rightarrow n=96$
14. If $x=x(y)$ is the solution of the differential equation $y \frac{d x}{d y}=2 x+y^{3}(y+1) e^{y}, x(1)=0$; then $x(e)$ is equal to :
(A) $e^{3}\left(e^{e}-1\right)$
(B) $e^{e}\left(e^{3}-1\right)$
(C) $e^{2}\left(e^{e}+1\right)$
(D) $e^{e}\left(e^{2}-1\right)$

Answer (A)

Sol. $\frac{d x}{d y}-\frac{2 x}{y}=y^{2}(y+1) e^{y}$

$$
\text { If }=e^{\int-\frac{2}{y} d y}=e^{-2 \ln y}=\frac{1}{y^{2}}
$$

Solution is given by

$$
\begin{aligned}
& x \cdot \frac{1}{y^{2}}=\int y^{2}(y+1) e^{y} \cdot \frac{1}{y^{2}} d y \\
\Rightarrow & \frac{x}{y^{2}}=\int(y+1) e^{y} d y \\
\Rightarrow & \frac{x}{y^{2}}=y e^{y}+c
\end{aligned}
$$

$\Rightarrow \quad x=y^{2}\left(y e^{y}+c\right)$
at, $y=1, x=0$
$\Rightarrow 0=1\left(1 . e^{1}+c\right) \Rightarrow c=-e$
at $y=e$,

$$
x=e^{2}\left(e . e^{e}-e\right)
$$

15. Let $\lambda x-2 y=\mu$ be a tangent to the hyperbola $a^{2} x^{2}$ $-y^{2}=b^{2}$. Then $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ is equal to:
(A) -2
(B) -4
(C) 2
(D) 4

Answer (D)

Sol. $\frac{x^{2}}{\left(\frac{b^{2}}{a^{2}}\right)}-\frac{y^{2}}{b^{2}}=1$
Tangent in slope form $\Rightarrow y=m x \pm \sqrt{\frac{b^{2}}{a^{2}} m^{2}-b^{2}}$
i.e., same as $y=\frac{\lambda x}{2}-\frac{\mu}{2}$

Comparing coefficients,

$$
m=\frac{\lambda}{2}, \frac{b^{2}}{a^{2}} m^{2}-b^{2}=\frac{\mu^{2}}{4}
$$

Eliminating $m, \frac{b^{2}}{a^{2}} \cdot \frac{\lambda^{2}}{4}-b^{2}=\frac{\mu^{2}}{4}$

$$
\Rightarrow \frac{\lambda^{2}}{a^{2}}-\frac{\mu^{2}}{b^{2}}=4
$$

16. Let \hat{a}, \hat{b} be unit vectors. If \vec{c} be a vector such that the angle between \hat{a} and \vec{c} is $\frac{\pi}{12}$, and $\hat{b}=\vec{c}+2(\vec{c} \times \hat{a})$, then $|6 \vec{c}|^{2}$ is equal to:
(A) $6(3-\sqrt{3})$
(B) $3+\sqrt{3}$
(C) $6(3+\sqrt{3})$
(D) $6(\sqrt{3}+1)$

Answer (C)

Sol. $\because \quad \hat{b}=\vec{c}+2(\vec{c} \times \hat{a})$

$$
\begin{equation*}
\Rightarrow \quad \hat{b} \cdot \vec{c}=|\vec{c}|^{2} \tag{i}
\end{equation*}
$$

$\therefore \quad \hat{b}-\vec{c}=2(\vec{c} \times \vec{a})$

$$
\begin{aligned}
& \Rightarrow|\hat{b}|^{2}+|\vec{c}|^{2}-2 \hat{b} \cdot \vec{c}=4|\vec{c}|^{2}|\vec{a}|^{2} \sin ^{2} \frac{\pi}{12} \\
& \Rightarrow \quad 1+|\dot{c}|^{2}-2|\dot{c}|^{2}=4|\dot{c}|^{2}\left(\frac{\sqrt{3}-1}{2 \sqrt{2}}\right)^{2} \\
& \Rightarrow \quad 1=|\vec{c}|^{2}(3-\sqrt{3}) \\
& \Rightarrow \quad 36|\vec{c}|^{2}=\frac{36}{3-\sqrt{3}}=6(3+\sqrt{3})
\end{aligned}
$$

17. If a random variable X follows the Binomial distribution $B(33, p)$ such that $3 P(X=0)=P(X=1)$, then the value of $\frac{P(X=15)}{P(X=18)}-\frac{P(X=16)}{P(X=17)}$ is equal to:
(A) 1320
(B) 1088
(C) $\frac{120}{1331}$
(D) $\frac{1088}{1089}$

Answer (A)

Sol. $3 P(X=0)=P(X=1)$

$$
\begin{aligned}
& 3 \cdot{ }^{n} C_{0} P^{0}(1-P)^{n}={ }^{n} C_{1} P^{1}(1-P)^{n-1} \\
& \frac{3}{n}= \frac{P}{1-P} \Rightarrow \frac{1}{11}=\frac{P}{1-P} \\
& \Rightarrow 1-P=11 P \\
& \Rightarrow P=\frac{1}{12} \\
& \frac{P(X=15)}{P(X=18)}-\frac{P(X=16)}{P(X=17)} \\
& \Rightarrow \frac{{ }^{33} C_{15} P^{15}(1-P)^{18}}{{ }^{33} C_{18} P^{18}(1-P)^{15}}-\frac{{ }^{33} C_{16} P^{16}(1-P)^{17}}{{ }^{33} C_{17} P^{17}(1-P)^{16}} \\
& \Rightarrow\left(\frac{1-P}{P}\right)^{3}-\left(\frac{1-P}{P}\right) \\
& \Rightarrow 11^{3}-11=1320
\end{aligned}
$$

18. The domain of the function $f(x)=\frac{\cos ^{-1}\left(\frac{x^{2}-5 x+6}{x^{2}-9}\right)}{\log _{e}\left(x^{2}-3 x+2\right)}$ is:
(A) $(-\infty, 1) \cup(2, \infty)$
(B) $(2, \infty)$
(C) $\left[-\frac{1}{2}, 1\right) \cup(2, \infty)$
(D) $\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3+\sqrt{5}}{2}, \frac{3-\sqrt{5}}{2}\right\}$

Answer (D)

Sol. $-1 \leq \frac{x^{2}-5 x+6}{x^{2}-9} \leq 1$ and $x^{2}-3 x+2>0, \neq 1$
$\left.\frac{(x-3)(2 x+1)}{x^{2}-9} \geq 0 \right\rvert\, \frac{5(x-3)}{x^{2}-9} \geq 0$
Solution to this inequality is
$x \in\left[\frac{-1}{2}, \infty\right)-\{3\}$
for $x^{2}-3 x+2>0$ and $\neq 1$
$x \in(-\infty, 1) \cup(2, \infty)-\left\{\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right\}$
Combining the two solution sets (taking intersection)

$$
x \in\left[-\frac{1}{2}, 1\right) \cup(2, \infty)-\left\{\frac{3-\sqrt{5}}{2}, \frac{3+\sqrt{5}}{2}\right\}
$$

19. Let $S=\left\{\theta \in[-\pi, \pi]-\left\{ \pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\}$. If $T=\sum_{\theta \in S} \cos 2 \theta$, then $T+n(S)$ is equal to:
(A) $7+\sqrt{3}$
(B) 9
(C) $8+\sqrt{3}$
(D) 10

Answer (B)

Sol. $\tan \theta(\sin \theta+1)-\sin 2 \theta=0$

$$
\begin{aligned}
& \tan \theta\left(\sin \theta+1-2 \cos ^{2} \theta\right)=0 \\
& \Rightarrow \tan \theta=0 \text { or } 2 \sin ^{2} \theta+\sin \theta-1=0 \\
& \Rightarrow(2 \sin \theta+1)(\sin \theta-1)=0 \\
& \Rightarrow \sin \theta=\frac{-1}{2} \text { or } 1
\end{aligned}
$$

But, $\sin \theta=1$ not possible
$\theta=0, \pi,-\pi,-\frac{\pi}{6}, \frac{-5 \pi}{6}$
$\mathrm{n}(\mathrm{S})=5$
$T=\sum \cos 2 \theta=\cos 0^{\circ}+\cos 2 \pi+\cos (-2 \pi)$

$$
+\cos \left(-\frac{5 \pi}{3}\right)+\cos \left(-\frac{\pi}{3}\right)
$$

$=4$
20. The number of choices for $\Delta \in\{\wedge, \vee, \Rightarrow, \Leftrightarrow\}$, such that $(p \Delta q) \Rightarrow((p \Delta \sim q) \vee((\sim p) \Delta q))$ is a tautology, is
(A) 1
(B) 2
(C) 3
(D) 4

Answer (B)

Sol. Let $x:(p \Delta q) \Rightarrow(p \Delta \sim q) \vee(\sim p \Delta q)$

Case-I

When Δ is same as v
Then $(p \Delta \sim q) \vee(\sim p \Delta q)$ becomes
$(p \vee \sim q) \vee(\sim p \vee q)$ which is always true, so x becomes a tautology.

Case-II

When Δ is same as \wedge
Then $(p \wedge q) \Rightarrow(p \wedge \sim q) \vee(\sim p \wedge q)$
If $p \wedge q$ is T, then $(p \wedge \sim q) \vee(\sim p \wedge q)$ is F so x cannot be a tautology.

Case-III

When Δ is same as \Rightarrow
Then $(p \Rightarrow \sim q) \vee(\sim p \Rightarrow q)$ is same at $(\sim p \vee \sim q) \vee$ $(p \vee q)$, which is always true, so x becomes a tautology.

Case-IV

When Δ is same as \Leftrightarrow
Then $(p \Leftrightarrow q) \Rightarrow(p \Leftrightarrow \sim q) \vee(\sim p \Leftrightarrow q)$
$p \Leftrightarrow q$ is true when p and q have same truth values, then $p \Leftrightarrow \sim q$ and $\sim p \Leftrightarrow q$ both are false. Hence x cannot be a tautology.

So finally x can be \vee or \Rightarrow.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse andw the on-screen virtual numeric keypad in the place designated to enter the answer.

1. The number of one-one functions $f:\{a, b, c, d\} \rightarrow$ $\{0,1,2, \ldots, 10\}$ such that $2 f(a)-f(b)+3 f(c)+f(d)$ $=0$ is \qquad -.
Answer (31)
Sol. $\because 3 f(c)+2 f(a)+f(d)=f(b)$

Value of $f(c)$	Value of $f(a)$	Number of functions
0	1	7
	2	5
	3	3
	4	2
1	0	6
	2	2
	3	1
2	0	3
	1	1

2. In an examination, there are 5 multiple choice questions with 3 choices, out of which exactly one is correct. There are 3 marks for each correct answer, - 2 marks for each wrong answer and 0 mark if the question is not attempted. Then, the number of ways a student appearing in the examination gets 5 marks is \qquad .

Answer (40)

Sol. Let student marks x correct answers and y incorrect. So
$3 x-2 y=5$ and $x+y \leq 5$ where $x, y \in \mathrm{~W}$
Only possible solution is $(x, y)=(3,2)$
Student can mark correct answer by only one choice but for incorrect answer, there are two choices. So total number of ways of scoring 5 marks $={ }^{5} C_{3}(1)^{3} .(2)^{2}=40$
3. Let $A\left(\frac{3}{\sqrt{a}}, \sqrt{a}\right), a>0$, be a fixed point in the $x y$ plane, The image of A in y-axis be B and the image of B in x-axis be C. If $D(3 \cos \theta, a \sin \theta)$ is a point in the fourth quadrant such that the maximum area of $\triangle A C D$ is 12 square units, then a is equal to \qquad .

Answer (8)

Sol. Clearly B is $\left(-\frac{3}{\sqrt{a}},+\sqrt{a}\right)$ and C is $\left(-\frac{3}{\sqrt{a}},-\sqrt{a}\right)$

Area of $\triangle A C D=\frac{1}{2}\left|\begin{array}{ccc}\frac{3}{\sqrt{a}} & \sqrt{a} & 1 \\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\ 3 \cos \theta & a \sin \theta & 1\end{array}\right|$
$\Rightarrow \Delta=\left|\begin{array}{ccc}0 & 0 & 1 \\ -\frac{3}{\sqrt{a}} & -\sqrt{a} & 1 \\ 3 \cos \theta & a \sin \theta & 1\end{array}\right|$
$\Rightarrow \Delta=|3 \sqrt{a} \sin \theta+3 \sqrt{a} \cos \theta|=3 \sqrt{a}|\sin \theta+\cos \theta|$
$\Rightarrow \quad \Delta_{\text {max }}=3 \sqrt{a} \cdot \sqrt{2}=12 \Rightarrow a=(2 \sqrt{2})^{2}=8$
4. Let a line having direction ratios $1,-4,2$ intersect the lines $\frac{x-7}{3}=\frac{y-1}{-1}=\frac{z+2}{1}$ and $\frac{x}{2}=\frac{y-7}{3}=\frac{z}{1}$ at the points A and B. Then $(A B)^{2}$ is equal to

Answer (84)

Sol. Let $A(3 \lambda+7,-\lambda+1, \lambda-2)$ and $B(2 \mu, 3 \mu+7, \mu)$
So, DR's of $A B \propto 3 \lambda-2 \mu+7,-(\lambda+3 \mu+6), \lambda-\mu$ -2
Clearly $\frac{3 \lambda-2 \mu+7}{1}=\frac{\lambda+3 \mu+6}{4}=\frac{\lambda-\mu-2}{2}$
$\Rightarrow 5 \lambda-3 \mu=-16$
And $\lambda-5 \mu=10$
From (i) and (ii) we get $\lambda=-5, \mu=-3$
So, A is $(-8,6,-7)$ and B is $(-6,-2,-3)$

$$
A B=\sqrt{4+64+16} \Rightarrow(A B)^{2}=84
$$

5. The number of points where the function
$f(x)=\left\{\begin{array}{ccc}\left|2 x^{2}-3 x-7\right| & \text { if } & x \leq-1 \\ {\left[4 x^{2}-1\right]} & \text { if } & -1<x<1 \\ |x+1|+|x-2| & \text { if } & x \geq 1,\end{array}\right.$
$[t]$ denotes the greatest integer $\leq t$, is discontinuous is \qquad -.

Answer (7)
Sol. $\because \quad f(-1)=2$ and $f(1)=3$
For $x \in(-1,1),\left(4 x^{2}-1\right) \in[-1,3)$
hence $f(x)$ will be discontinuous at $x=1$ and also
whenever $4 x^{2}-1=0,1$ or 2
$\Rightarrow \quad x= \pm \frac{1}{2}, \pm \frac{1}{\sqrt{2}}$ and $\pm \frac{\sqrt{3}}{2}$
So there are total 7 points of discontinuity.
6. Let $f(\theta)=\sin \theta+\int_{-\pi / 2}^{\pi / 2}(\sin \theta+t \cos \theta) f(t) d t$. Then the value of $\left|\int_{0}^{\pi / 2} f(\theta) d \theta\right|$ is \qquad -

Answer (1)

Sol. $f(\theta)=\sin \theta\left(1+\int_{-\pi / 2}^{\pi / 2} f(t) d t\right)+\cos \theta\left(\int_{-\pi / 2}^{\pi / 2} t f(t) d t\right)$
Clearly $f(\theta)=a \sin \theta+b \cos \theta$
Where $a=1+\int_{-\pi / 2}^{\pi / 2}(a \sin t+b \cos t) d t \Rightarrow a=1+2 b$
and $b=\int_{-\pi / 2}^{\pi / 2}(a t \sin t+b t \cos t) d t \Rightarrow b=2 a$
from (1) and (2) we get
$a=-\frac{1}{3}$ and $b=-\frac{2}{3}$
So $f(\theta)=-\frac{1}{3}(\sin \theta+2 \cos \theta)$
$\Rightarrow \quad\left|\int_{0}^{\pi / 2} f(\theta) d \theta\right|=\frac{1}{3}(1+2 \times 1)=1$
7. Let $\operatorname{Max}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\alpha$ and $\operatorname{Min}_{0 \leq x \leq 2}\left\{\frac{9-x^{2}}{5-x}\right\}=\beta$.

If $\int_{\beta-\frac{8}{3}}^{2 \alpha-1} \operatorname{Max}\left\{\frac{9-x^{2}}{5-x}, x\right\} d x=\alpha_{1}+\alpha_{2} \log _{e}\left(\frac{8}{15}\right)$ then
$\alpha_{1}+\alpha_{2}$ is equal to \qquad -

Answer (34)

Sol. Let $f(x)=\frac{x^{2}-9}{x-5} \Rightarrow f^{\prime}(x)=\frac{(x-1)(x-9)}{(x-5)^{2}}$
So, $\alpha=f(1)=2$ and $\beta=\min (f(0), f(2))=\frac{5}{3}$
Now, $\int_{-1}^{3} \max \left\{\frac{x^{2}-9}{x-5}, x\right\} d x=\int_{-1}^{9 / 5} \frac{x^{2}-9}{x-5} d x+\int_{9 / 5}^{3} x d x$
$=\int_{-1}^{9 / 5}\left(x+5+\frac{16}{x-5}\right) d x+\left.\frac{x^{2}}{2}\right|_{9 / 5} ^{3}$
$=\frac{28}{25}+14+16 \ln \left(\frac{8}{15}\right)+\frac{72}{25}=18+16 \ln \left(\frac{8}{15}\right)$
Clearly $\alpha_{1}=18$ and $\alpha_{2}=16$, so $\alpha_{1}+\alpha_{2}=34$.
8. If two tangents drawn from a point (α, β) lying on the ellipse $25 x^{2}+4 y^{2}=1$ to the parabola $y^{2}=4 x$ are such that the slope of one tangent is four times the other, then the value of $(10 \alpha+5)^{2}+\left(16 \beta^{2}\right.$ $+50)^{2}$ equals \qquad -.

Answer (2929)

Sol. $\because(\alpha, \beta)$ lies on the given ellipse, $25 \alpha^{2}+4 \beta^{2}=1$

Tangent to the parabola, $y=m x+\frac{1}{m}$ passes through (α, β). So, $\alpha m^{2}-\beta m+1=0$ has roots m_{1} and $4 m_{1}$,
$m_{1}+4 m_{1}=\frac{\beta}{\alpha}$ and $m_{1} \cdot 4 m_{1}=\frac{1}{\alpha}$
Gives that $4 \beta^{2}=25 \alpha$
from (1) and (2)
$25\left(\alpha^{2}+\alpha\right)=1$
Now, $(10 \alpha+5)^{2}+\left(16 \beta^{2}+50\right)^{2}$
$=25(2 \alpha+1)^{2}+2500(2 \alpha+1)^{2}$
$=2525\left(4 \alpha^{2}+4 \alpha+1\right)$ from equation (3)
$=2525\left(\frac{4}{25}+1\right)$
$=2929$
9. Let S be the region bounded by the curves $y=x^{3}$ and $y^{2}=x$. The curve $y=2|x|$ divides S into two regions of areas R_{1} and R_{2}.
If $\max \left\{R_{1}, R_{2}\right\}=R_{2}$, then $\frac{R_{2}}{R_{1}}$ is equal to \qquad -

Answer (19)
Sol.

$C_{1}: y=x^{3}$
$C_{2}: y^{2}=x$
and $C_{3}=y=2|x|$
C_{1} and C_{2} intersect at $(1,1)$
C_{2} and C_{3} intersect at $\left(\frac{1}{4}, \frac{1}{2}\right)$
Clearly $R_{1}=\int_{0}^{1 / 4}(\sqrt{x}-2 x) d x=\frac{2}{3}\left(\frac{1}{8}\right)-\frac{1}{16}=\frac{1}{48}$
and $R_{1}+R_{2}=\int_{0}^{1}\left(\sqrt{x}-x^{3}\right) d x=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}$

So, $\frac{R_{1}+R_{2}}{R_{1}}=\frac{5 / 12}{1 / 48} \Rightarrow 1+\frac{R_{2}}{R_{1}}=20$
$\Rightarrow \frac{R_{2}}{R_{1}}=19$
10. If the shortest distance between the lines $\vec{r}=(-\hat{i}+3 \hat{k})+\lambda(\hat{i}-a \hat{j})$ and $\vec{r}=(-\hat{j}+2 \hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ is $\sqrt{\frac{2}{3}}$, then the integral value of a is equal to

Answer (2)
Sol. $\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -a & 0 \\ 1 & -1 & 1\end{array}\right|=-a \hat{i}-\hat{j}+(a-1) \hat{k}$
$\vec{a}_{1}-\vec{a}_{2}=-\hat{i}+\hat{j}+\hat{k}$
Shortest distance $=\left|\frac{\left(\vec{a}_{1}-\vec{a}_{2}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|$
$\Rightarrow \sqrt{\frac{2}{3}}=\frac{2(a-1)}{\sqrt{a^{2}+1+(a-1)^{2}}}$
$\Rightarrow 6\left(a^{2}-2 a+1\right)=2 a^{2}-2 a+2$
$\Rightarrow(a-2)(2 a-1)=0 \Rightarrow a=2$ because $a \in z$.

