Memory Based Answers \& Solutions

Time : $\mathbf{3}$ hrs.

JEE (Main)-2022 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1.

Find current through cell?
(1) 2 A
(2) 4 A
(3) 5 A
(4) 10 A

Answer (3)
Sol. The circuit can be redrawn as

The circuit is a balanced Wheatstone bridge
$R_{e q(A B)}=4 \Omega$
\Rightarrow Current through cell $=\frac{20}{4} \mathrm{~A}=5 \mathrm{~A}$
2. Assume all surfaces are friction less. Find value of force required such that 20 kg block moves with acceleration $2 \mathrm{~m} / \mathrm{s}^{2}$

(1) 2080 N
(2) 3360 N
(3) 2420 N
(4) 2820 N

Answer (2)

Sol.

If T is the tension in thread and a be the acceleration of 100 kg block
$10 a-T=2 \times 10$
$T-20 \times 10=20 \times 2$
$\Rightarrow 10 a=3 \times 20+20 \times 10=260$

$$
\begin{aligned}
& a=26 \mathrm{~m} / \mathrm{s}^{2} \\
& F-T=120 a
\end{aligned}
$$

$$
F=3360 \mathrm{~N}
$$

3. A charged particle moving in a uniform magnetic field $B=2 \hat{i}+3 \hat{j}$ has acceleration $a=(\alpha \hat{i}-4 \hat{j})$.

The value of α is equal to
(1) 6
(2) 2
(3) $-\frac{8}{3}$
(4) $\frac{4}{5}$

Answer (1)

Sol. As magnetic force is perpendicular to the magnetic field so
$\bar{a} \cdot \bar{B}=0$
$(\alpha \hat{i}-4 \hat{j}) \cdot(2 \hat{i}+3 \hat{j})=0$
$\Rightarrow \quad 2 \alpha=12$
$\Rightarrow \alpha=6$
4. In S.H.M. v - x graph will be
(1)

(2)

(3)

(4)

Answer (1)
Sol. $x=A \sin (\omega t+\phi)$
$v=\omega A \cos (\omega t+\phi)$
$\Rightarrow \frac{x^{2}}{A^{2}}+\frac{v^{2}}{\omega^{2} A^{2}}=1$
Or v vs x graph would be elliptical
5. In an $L R$ circuit if $X_{L}=R$ then power factor is P_{1}. In another $L C R$ series circuit if $X_{L}=X_{C}$ then power factor is P_{2}. Then value of $\frac{P_{1}}{P_{2}}$ is equal is
(1) $1: 1$
(2) $1: 2$
(3) $1: \sqrt{2}$
(4) $\sqrt{2}: 1$

Answer (3)
Sol. $P_{1}=\frac{R}{Z}=\frac{R}{\sqrt{2} R}=\frac{1}{\sqrt{2}}$
$P_{2}=\frac{R}{Z}=\frac{R}{R}=1$
$\frac{P_{1}}{P_{2}}=\frac{1}{\sqrt{2}}$
6. A coil of 200 turns and another coil of 400 turns have same length 20 cm . Find ratio of magnetic field at centre.
(1) $1: 2$
(2) $2: 1$
(3) $1: 4$
(4) $4: 1$

Answer (3)

Sol. $B=\frac{N \mu_{0} I}{2 r}$

$$
\begin{aligned}
& =\frac{N^{2} \mu_{0} l \pi}{(2 \pi r) N}=\frac{N^{2} \pi \mu_{0} l}{\ell} \\
\Rightarrow & \frac{B_{1}}{B_{2}}=\frac{N_{1}^{2}}{N_{2}^{2}}=\frac{1}{4}
\end{aligned}
$$

7. A monkey climbs rope with $4 \mathrm{~m} / \mathrm{s}^{2}$ acceleration and when it climbs down his acceleration is $5 \mathrm{~m} / \mathrm{s}^{2}$. Weight of monkey is 50 kg and maximum tension is 350 N.
Find correct option.
(1) $T=700 \mathrm{~N}$, when climbs upwards
(2) $T=350 \mathrm{~N}$, when climbs downwards
(3) Rope will break when climbs upward
(4) Rope will break when climbs downward

Answer (3)

Sol. Assuming the rope doesn't break
$T_{\text {up }}=50 \times(14)=700 \mathrm{~N}$
but $T_{\text {max }}=350$
\Rightarrow Rope breaks if the monkey climbs up with acceleration $4 \mathrm{~m} / \mathrm{s}^{2}$
$T_{\text {down }}=50(10-5)=250 \mathrm{~N}$
8. Wave equation is given.
$y=2 \times 10^{-8} \sin (k x+\omega t+\phi)(\mathrm{cm})$ Find amplitude?
(1) $2 \times 10^{-8} \mathrm{~cm}$
(2) $5 \times 10^{-6} \mathrm{~cm}$
(3) $4 \times 10^{-6} \mathrm{~cm}$
(4) $8 \times 10^{-6} \mathrm{~cm}$

Answer (1)
Sol. Comparing with standard equation of a wave
$y=A \sin (k x+\omega t+\phi)$
$A=2 \times 10^{-8} \mathrm{~cm}$
9. In YDSE experiment fringe width $\beta=12 \mathrm{~cm}$ is given, if the setup is dipped in medium having refractive index $\mu=\frac{4}{3}$ find new fringe width.
(1) 6
(2) 9
(3) 12
(4) 16

Answer (2)
Sol. $\beta=\frac{\lambda D}{d}$
$\beta^{\prime}=\frac{\lambda D}{\mu d}=\frac{\beta}{\mu}=\frac{12}{\frac{4}{3}}$
$\beta^{\prime}=9 \mathrm{~cm}$
10.

With spring at its natural length two blocks are given velocity $v=1 \mathrm{~m} / \mathrm{s}$. The maximum extension in the spring is equal to
(1) 5 cm
(2) 0.5 m
(3) 0.25 m
(4) 0.1 m

Answer (2)
Sol. $\frac{1}{2} k x^{2}=2 \times \frac{1}{2} \times 25(v)^{2}$
$\Rightarrow \quad x=\sqrt{0.25}=0.5$
11.

After closer of the switch S find the total charge flown through the switch.
(1) $100 \mu \mathrm{C}$
(2) $50 \mu \mathrm{C}$
(3) $45 \mu \mathrm{C}$
(4) $200 \mu \mathrm{C}$

Answer (4)

Sol. $C_{e q}=10 \mu \mathrm{~F}$

$$
\begin{aligned}
Q & =20 \mathrm{~V} \times 10 \mu \mathrm{~F} \\
& =200 \mu \mathrm{C}
\end{aligned}
$$

12. For the two projectiles shown below:

Find $\frac{u_{1}}{u_{2}}$ if time to reach maximum height is same
(1) $\sqrt{2}: 1$
(2) $1: \sqrt{2}$
(3) $1: 2$
(4) $\sqrt{3}: 2$

Answer (1)

Sol. As time of flight is same

$$
\begin{aligned}
& \Rightarrow \frac{2 u_{1} \sin \theta_{1}}{g}=\frac{2 u_{2} \sin \theta_{2}}{g} \\
& \Rightarrow \frac{u_{1}}{u_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{\frac{1}{\sqrt{2}}}{\frac{1}{2}}=\sqrt{2}: 1
\end{aligned}
$$

13. The decrease in weight of a rocket when it in 32 km above surface of earth.
(1) 1%
(2) 2%
(3) 3%
(4) 4%

Answer (1)

Sol. $g^{\prime}=\frac{g(R)^{2}}{(R+h)^{2}}$
$\Rightarrow \frac{\Delta W}{W}=\frac{2 \Delta r}{r}$
$\Rightarrow \frac{\Delta W}{W}=\frac{2 \times 32}{6400}$
\Rightarrow Decrease in weight $=1 \%$
14. If velocity of electron is x times than neutron and de-Broglie wavelengths are same then find x.
(1) 2531
(2) 2000
(3) 1835
(4) 729

Answer (3)

Sol. $\lambda_{e}=\lambda_{n}$
$\Rightarrow m_{e} V_{e}=m_{n} v_{n}$
$\Rightarrow v_{e}=\left(\frac{m_{n}}{m_{e}}\right) v_{n}$
$\Rightarrow x=\frac{m_{n}}{m_{e}}$
$x \cong 1835$
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21.

In the circuit shown the potential drop across the diode is 60 V then current through diode is \qquad mA.

Answer (05)

Sol. $I_{60 \mathrm{k} \Omega}=\frac{60 \mathrm{~V}}{60 \times 10^{3} \Omega}=10^{-3} \mathrm{~A}$

$$
\Rightarrow \quad I_{10 \mathrm{k} \Omega}=\frac{60 \mathrm{~V}}{10 \times 10^{3} \Omega}=6 \times 10^{-3} \mathrm{~A}
$$

\Rightarrow Current through diode $=6 \times 10^{-3} \mathrm{~A}-10^{-3} \mathrm{~A}$

$$
\begin{aligned}
& =5 \times 10^{-3} \mathrm{~A} \\
& =5 \mathrm{~mA}
\end{aligned}
$$

22. A drop breaks in 729 smaller identical droplets. It T is the surface tension and R is the radius of bigger drop then change in the surface potential energy is $n \pi R^{2} T$. The value of n is \qquad _.

Answer (32)

Sol. $E_{i}=4 \pi(R)^{2} T$

$$
\begin{aligned}
E_{f} & =729 \times 4 \pi\left(\frac{R}{9}\right)^{2} T \\
& =36 \pi R^{2} T \\
\Delta E & =E_{f}-E_{i}=32 \pi R^{2} T
\end{aligned}
$$

JEE (Main)-2022 : Phase-2 (26-07-2022)-Morning
23. In an EM wave if amplitude of magnetic field component is $2 \times 10^{-8} \mathrm{~T}$ then the value amplitude of electric field component is \qquad V / m.

Answer (6)

Sol. $E_{0}=c B_{0}$

$$
\begin{aligned}
& =3 \times 10^{8} \times 2 \times 10^{-8} \\
& =6 \mathrm{~V} / \mathrm{m}
\end{aligned}
$$

24.

In a meter bridge experiment balance point is $\mu_{1}=40 \mathrm{~cm}$ away from point A. Now if an unknown resistance of $x \Omega$ is added to 4Ω resistance in series then balance point is 80 cm from point A. Then value of x is \qquad -.

Answer (20)

Sol. $\frac{4}{40}=\frac{Q}{60}$
$\Rightarrow Q=6 \Omega$
Now $\frac{4+x}{80}=\frac{6}{20}$
$\Rightarrow 4+x=24$
$\Rightarrow x=20 \Omega$
25. Temperature of 7 moles of a monoatomic gas is raised by 40 K . The change in internal energy of the sample is equal to \qquad R. R is universal gas constant)

Answer (420)

Sol. $\Delta U=\frac{f}{2} n R \Delta T$
$=\frac{3}{2} \times 7 \times 40 \times R$
$=420 \mathrm{R}$
26. Find the number of photons coming out per unit time of a source that emits a light of wavelength 900 nm of intensity $100 \mathrm{~W} / \mathrm{m}^{2}$ through its surface area of $1 \mathrm{~m}^{2}$. (In multiple of 10^{19})
Answer (45)

Sol. $P=I A$
$=100 \mathrm{~W}$
Energy of one photon $=\frac{h C}{\lambda}$
Number of photons coming out per unit time
$=\frac{100 \times \lambda}{h C}=\frac{100 \times 9 \times 10^{-7}}{6.625 \times 10^{-34} \times 3 \times 10^{8}}$
$=45 \times 10^{19}$
27. Trajectory of a projectile is $5 y=5 x\left(1-\frac{x}{10}\right)$. Find initial velocity

Answer (10)

Sol. Comparing with standard equation
$y=x \tan \theta\left(1-\frac{x}{R}\right)$
$\tan \theta=1$ or $\theta=45^{\circ}$
and $R=10$
$\Rightarrow \frac{u^{2} \sin 2 \theta}{g}=10$
or $u^{2}=100$
$\Rightarrow u=10$
28. In a biconvex lens graph between $\frac{1}{v}$ and $-\frac{1}{u}$ is as shown. The focal length of lens is equal to
\qquad cm

Answer (10)
Sol. $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
from graph
$\frac{1}{10}=\frac{1}{f}$ or $f=10 \mathrm{~cm}$
29.
30.

CHEMSTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Which of the following is not an aromatic compound?
(1)

(2)

(3)

(4)

Answer (4)

Sol.
 is not an aromatic compound as it is not planar.
2. Which of the following can be used as a stabilizer to preserve $\mathrm{H}_{2} \mathrm{O}_{2}$?
(1) Urea
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(3) HCHO
(4) HCOOH

Answer (1)

Sol. Urea can be added as a stabilizer to preserve $\mathrm{H}_{2} \mathrm{O}_{2}$.
3. Products formed in the given reaction are

$$
\mathrm{BeCl}_{2}+\mathrm{LiAlH}_{4} \longrightarrow
$$

(1) $\mathrm{BeH}_{2}, \mathrm{LiCl}$ and AlCl_{3} (2) $\mathrm{LiH}, \mathrm{BeCl}_{2}, \mathrm{AlH}_{3}$
(3) $\mathrm{LiH}, \mathrm{BeH}_{2}, \mathrm{AlCl}_{3}$
(4) $\mathrm{LiCl}, \mathrm{BeH}_{2}, \mathrm{AlH}_{3}$

Answer (1)
Sol. $\mathrm{BeCl}_{2}+\mathrm{LiAlH}_{4} \longrightarrow 2 \mathrm{BeH}_{2}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
LiAlH_{4} reacts with BeCl_{2} to give BeH_{2}, LiCl and AlCl_{3}.
4. Column-I contains molecules and Column-II contains their corresponding shapes.

Column-I

(A) PCl_{5}
(B) BrF_{5}
(C) O_{3} The correct match is

Column-II

(i) Bent
(ii) Square pyramidal
(iii) Trigonal bipyramidal
(1) (A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (i)
(2) (A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii)
(3) (A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (i)
(4) (A) \rightarrow (i), (B) \rightarrow (iii), (C) \rightarrow (ii)

Answer (1)

Sol. Molecules
PCl_{5}
BrF_{5}
O_{3}

Correct shapes

Trigonal bipyramidal
Square pyramidal
Bent
5. Which type of Detergent or soap is formed when polyethylene glycol reacts with stearic acid
(1) Soap
(2) Cationic Detergent
(3) Anionic Detergent
(4) Non Ionic Detergent

Answer (4)

Sol. Non ionic detergents do not contain any ion in their constitution.
When stearic acid reacts with polyethylene glycol it forms non ionic detergent
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COOH}+\mathrm{HO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{COO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right)_{n} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
Non-ionic Detergent

6. (i)

(ii)

(iii)

(iv)

Correct order of stability of the given species is
(1) (i) $>$ (ii) $>$ (iii) $>$ (iv)
(2) (ii) $>$ (i) $>$ (iii) $>$ (iv)
(3) (iii) $>$ (i) $>$ (ii) $>$ (iv)
(4) (iv) $>$ (iii) $>$ (ii) $>$ (i)

Answer (1)
Sol.

$+R$

The -I and -R effect of $-\mathrm{NO}_{2}$ is greater than that of -CN . Hence the correct order of stability is (i) $>$ (ii) $>$ (iii) $>$ (iv)
7. Match the matrix
(A) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
(I) Pt
(B) $4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
(II) Fe
(C) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
(III) $\mathrm{V}_{2} \mathrm{O}_{5}$
(1) (A) - (I); (B) - (III); (C) - (II)
(2) (A) - (II); (B) - (I); (C) - (III)
(3) (A) - (I); (B) - (II); (C) - (III)
(4) (A) - (III); (B) - (I); (C) - (II)

Answer (2)

Sol. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \xrightarrow{\mathrm{Fe}} 2 \mathrm{NH}_{3}$
$4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \xrightarrow{\mathrm{Pt}} 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{SO}_{2}+\mathrm{O}_{2} \xrightarrow{\mathrm{~V}_{2} \mathrm{O}_{5}} 2 \mathrm{SO}_{3}$
Correct match is
(A) - (ii); (B) - (I); (C) - (III)
8. The major product formed in the given reaction is,

(1)

(2)

(3)

(4)

Answer (3)

Sol. $\mathrm{Na}+(\mathrm{x}+\mathrm{y}) \mathrm{NH}_{3} \rightarrow \mathrm{Na}\left(\mathrm{NH}_{3}\right)_{\mathrm{x}}^{+}+\mathrm{e}\left(\mathrm{NH}_{3}\right)_{y}^{-}$or $\mathrm{e}_{\mathrm{s}}^{-}$

9. Which of the following is a non-reducing sugar
(1) Sucrose
(2) Maltase
(3) Lactose
(4) Glucose

Answer (1)
Sol. The carbohydrates which reduce Fehling solution and Tollen's reagent are referred as reducing sugars.
The reducing groups of glucose and fructose are involved in glycosidic bond formation thus sucrose is a non-reducing sugar
10. Consider the following reactions:

$$
\begin{aligned}
& \mathrm{Cu}_{(\mathrm{aq})}^{+2}+2 \mathrm{Ag}(\mathrm{~s}) \rightleftharpoons \mathrm{Cu}(\mathrm{~s})+2 \mathrm{Ag}_{(\mathrm{aq})}^{\oplus}, \mathrm{K}_{1}=2 \times 10^{15} \\
& \mathrm{Ag}_{(\mathrm{aq})}^{\oplus}+\frac{1}{2} \mathrm{Cu}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}(\mathrm{~s})+\frac{1}{2} \mathrm{Cu}_{(\mathrm{aq})}^{+2}, \mathrm{~K}_{2}=?
\end{aligned}
$$

Equilibrium constant, K_{2} is
(1) 1.14×10^{-7}
(2) 2.23×10^{-8}
(3) 3.24×10^{-8}
(4) 2.56×10^{-7}

Answer (2)
Sol. $\mathrm{K}_{2}=\frac{1}{\sqrt{\mathrm{~K}_{1}}}$
[As $2^{\text {nd }}$ equation is reverse of $1^{\text {st }}$ equation, further multiplied by $\frac{1}{2}$]
$K_{2}=\frac{1}{\sqrt{2 \times 10^{15}}}$
$=0.223 \times 10^{-7}$
$=2.23 \times 10^{-8}$
11. Which of the following reaction will give borazine?
(A) $\mathrm{NH}_{3}+\mathrm{B}_{2} \mathrm{H}_{6}$
(B) $\mathrm{HN}_{3}+\mathrm{B}(\mathrm{OH})_{3}$
(C) $\mathrm{N}_{2}+\mathrm{B}_{2} \mathrm{H}_{6}$
(D) $\mathrm{NH}_{3}+\mathrm{B}(\mathrm{OH})_{3}$
(1) (D)
(2) (B)
(3) (C)
(4) (A)

Answer (4)
Sol. $2 \mathrm{NH}_{3}+\mathrm{B}_{2} \mathrm{H}_{6} \rightarrow\left[\mathrm{H}_{3} \mathrm{~N}-\mathrm{BH}_{2}-\mathrm{NH}_{3}\right]^{+}\left[\mathrm{BH}_{4}\right]^{-}$

(Borazine)
12. In summer season, methane reacts with chlorine atoms forming chlorine sink preventing ozone depletion. The products formed in the reaction are:
(1) $\dot{\mathrm{C}} \mathrm{H}_{3}, \mathrm{HCl}$
(2) $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{HCl}$
(3) $\mathrm{Cl}_{2}, \mathrm{CH}_{3}$
(4) $\mathrm{H}_{2}, \mathrm{Cl}_{2}$

Answer (1)

Sol. $\dot{\mathrm{C}}(\mathrm{g})+\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \dot{\mathrm{C}} \mathrm{H}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
This reaction is usually observed in summer season.
13.

S_{1} : Ortho and para substituted products are not formed as major product.
S_{2} : Aniline reacts with AlCl_{3} (Lewis acid base reaction) meta substituted product is formed. Which of the following option is correct?
(1) Both S_{1} and S_{2} are correct
(2) Both S_{1} and S_{2} are wrong
(3) Only S_{1} is correct
(4) Only S_{2} is correct

Answer (3)

Sol. Friedel-craft's reaction is not possible in aniline because $-\mathrm{NH}_{2}$ group forms complex with Lewis acid and deactivates the ring.

14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a
NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21.

Number of hydrogen atoms in the compound are

Answer (06.00)

Sol.

B. H. C

Benzene reacts with Cl_{2} in presence of sunlight to give benzene hexachloride (B.H.C.).
Number of H -atoms in the product $=6$.
22. If wavelength of first line in Lyman series of H spectrum is λ_{L} and wavelength difference between second transition of Balmer and third transition of Paschen series of line spectrum of H atom is $\alpha \lambda_{L}$. Find the value of α ?

Answer (05.00)

Sol. $\frac{1}{\lambda_{\mathrm{L}}}=R z^{2}\left(1-\frac{1}{4}\right)$

$$
=R(z)^{2} \times \frac{3}{4} \Rightarrow \lambda_{L}=\frac{4}{3 R} \quad(\text { for } z=1)
$$

$\frac{1}{\lambda_{B}}=R\left(\frac{1}{4}-\frac{1}{16}\right)=\frac{3 R}{16} \Rightarrow \lambda_{B}=\frac{16}{3 R}$
$\frac{1}{\lambda_{\mathrm{P}}}=\mathrm{R}\left(\frac{1}{9}-\frac{1}{36}\right)=\frac{\mathrm{R}}{9}\left(\frac{3}{4}\right)=\frac{\mathrm{R}}{12} \Rightarrow \lambda_{\mathrm{P}}=\frac{12}{\mathrm{R}}$
$\left|\lambda_{B}-\lambda_{P}\right|=\left(\frac{16}{3 R}-\frac{12}{R}\right)=\frac{20}{3 R}$
$=5 \times \frac{4}{3} \mathrm{R}=5 \lambda_{\mathrm{L}}$
$\Rightarrow \quad \alpha=5$
23. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$

Find the difference between the spin only magnetic moment of the given compounds. (Round off to the nearest integer).

Answer (04.00)

Sol. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{2}$
$\mathrm{C}_{0}{ }^{2+}: 3 \mathrm{~d}^{7}$
Hybridisation of $\mathrm{C}_{0}{ }^{2+}: \mathrm{sp}^{3} \mathrm{~d}^{2}$ No. of unpaired electrons $=3$ $\mu_{1}=\sqrt{15} B M \simeq 4 B M$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$
Co^{3+} : $3 \mathrm{~d}^{6}$

> Hybridisation of $\mathrm{Co}^{3+}: \mathrm{d}^{2} \mathrm{sp}^{3}$
> No. of unpaired electrons $=0$ $\mu_{2}=0 \mathrm{BM}$

Difference in spin only magnetic moment $=4 \mathrm{BM}$
24. The velocity of electron is x times the velocity of a neutron.
If the wavelength of electron is equal to the wavelength of neutron, find the value of x.
\{Given mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$ \}
\{mass of neutron $=1.6 \times 10^{-27} \mathrm{~kg}$ \}
(Round off to nearest integer)
Answer (1758.00)
Sol. $\lambda_{\mathrm{e}}=\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{e}} \mathrm{v}_{\mathrm{e}}}$
$\lambda_{\mathrm{n}}=\frac{\mathrm{h}}{\mathrm{m}_{\mathrm{n}} \mathrm{v}_{\mathrm{n}}}$
Given, $\lambda_{\mathrm{e}}=\lambda_{\mathrm{n}}$
$m_{e} v_{e}=m_{n} v_{n}$
$\left(9.1 \times 10^{-31}\right) \times v_{e}=\left(1.6 \times 10^{-27}\right) v_{n}$
$\mathrm{x}=\frac{1.6 \times 10^{-27}}{9.1 \times 10^{-31}}=1758.24$
$x \simeq 1758$
25. Consider a reaction
$\mathrm{A} \rightarrow 2 \mathrm{~B}+\mathrm{C}$
It is given that $t_{\frac{1}{2}}=100 \mathrm{sec}$ when initial amount of A is 0.5 mol and t_{1} is 50 seconds when initial amount of A is 1 mol .
Find the order of the reaction.
Answer (02.00)
Sol. $\mathrm{t}_{\frac{1}{2}} \propto \frac{1}{(\mathrm{~A})_{0}^{n-1}}$
$\frac{\left(t_{\frac{1}{2}}^{2}\right)_{I}}{\left(t_{\frac{1}{2}}^{2}\right)_{I I}}=\left(\frac{(A)_{0 I}}{(A)_{0 I I}}\right)^{1-n}$
$\frac{100}{50}=\left(\frac{1}{2}\right)^{1-n}$
$2=(2)^{n-1}$
$n-1=1$
$\mathrm{n}=2$
26. 800 ml of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ is heated. The volume of the solution reduces to half of the initial value and mass of HNO_{3} remaining is 11.5 g . Find the molarity of the final solution.

Answer (00.46)

Sol. Molarity of $\mathrm{HNO}_{3}=\frac{11.5 \times 1000}{63 \times 400}$

$$
\approx 0.46 \mathrm{M}
$$

27. On titration of acidic KMnO 4 with sodium oxalate, the change in oxidation state of manganese is

Answer (05.00)

Sol. $\mathrm{MnO}_{4}^{+7}+5 \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}+16 \mathrm{H}^{+}$ \qquad Oxidation state of Mn changed from +7 to +2 .
28. A mixture of H_{2} and O_{2} contains 40% of H_{2} by mass. If total pressure is 2.2 atm , then calculate the partial pressure of O_{2} (in atm)?
Answer (00.19)
Sol. $\frac{W_{H_{2}}}{W_{\mathrm{O}_{2}}}=\frac{40}{60}=\frac{2}{3}$
$\mathrm{P}_{\mathrm{O}_{2}}=\mathrm{X}_{\mathrm{O}_{2}} \times \mathrm{P}_{\text {Total }}$

$$
\begin{aligned}
& =\frac{n_{\mathrm{O}_{2}}}{n_{\mathrm{O}_{2}}+\mathrm{n}_{\mathrm{H}_{2}}} \times 2.2 \\
& =\frac{\left(\mathrm{W}_{\mathrm{O}_{2}} / 32\right) \times 2.2}{\frac{\mathrm{~W}_{\mathrm{O}_{2}}}{32}+\frac{\mathrm{W}_{\mathrm{H}_{2}}}{2}}=\frac{\left(\mathrm{W}_{\mathrm{O}_{2}} / 32\right) \times 2.2}{\frac{\mathrm{~W}_{\mathrm{O}_{2}}}{32}+\frac{\mathrm{W}_{\mathrm{O}_{2}}}{3}} \\
& =\frac{3}{35} \times 2.2 \simeq 0.19 \mathrm{~atm}
\end{aligned}
$$

29. Chlorophyll is extracted from a leaf. The amount of Mg was 48 ppm . The number of millimoles of Mg in 2 litre of solution is \qquad .
[Consider density of solution as $1 \mathrm{gm} / \mathrm{ml}$ \& molar mass of $\mathrm{Mg}=24 \mathrm{gm} / \mathrm{mol}]$
Answer (04.00)
Sol. $\frac{\mathrm{W}_{\mathrm{Mg}}}{\mathrm{W}_{\text {solution }}} \times 10^{6}=48$
$\frac{\mathrm{W}_{\mathrm{Mg}}}{2000} \times 10^{6}=48$
$W_{M g}=\frac{48 \times 2000}{10^{6}}=96 \times 10^{-3}$
Moles of $\mathrm{Mg}=\frac{96 \times 10^{-3}}{24}=4 \times 10^{-3}$
Millimoles of $\mathrm{Mg}=4$

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. If $\frac{d y}{d x}+2 y \tan x=\sin x, y\left(\frac{\pi}{3}\right)=0$ then maximum value of $y(x)$ is
(1) $\frac{1}{8}$
(2) $-\frac{1}{2}$
(3) 1
(4) 2

Answer (1)
Sol. $\frac{d y}{d x}+(2 \tan x) y=\sin x$
I.F. $=e^{\int 2 \tan x d x}=e^{2 \ln \sec x}=\sec ^{2} x$
$\Rightarrow \quad y \cdot \sec ^{2} x=\int \sin x \cdot \sec ^{2} x d x+C$
$\Rightarrow \quad y \sec ^{2} x=\sec x+C$
$\because y\left(\frac{\pi}{3}\right)=0 \Rightarrow C=-2$
$\Rightarrow \quad y=\cos x-2 \cos ^{2} x=\frac{1}{8}-2\left(\cos x-\frac{1}{4}\right)^{2}$
So maximum value of $y(x)$ is $\frac{1}{8}$.
2. Area bounded by the curves
$y=1, y=3, y^{a}=x,(x>0)$ and $x=0$ is $\frac{364}{3}$ then a is equal to
(1) 4
(2) 5
(3) 6
(4) 7

Answer (2)

Sol.

Area of shaded region $=\frac{364}{3}$
$\Rightarrow \int_{1}^{3} y^{\mathrm{a}} d y=\frac{364}{3}$
$\Rightarrow \frac{y^{a+1}}{a+1} \int_{1}^{3}=\frac{364}{3}$
$\Rightarrow \frac{3^{a+1}-1}{a+1}=\frac{364}{3}$
$a=5$
3. If the line $\frac{x+1}{4}=\frac{y-2}{3}=\frac{z-1}{4}$ intersects the plane $x+y-z=0$ at point P, then distance of P from $Q(2,4,-1)$ is
(1) $\sqrt{13}$
(2) $\sqrt{17}$
(3) $\sqrt{15}$
(4) $\sqrt{11}$

Answer (2)
Sol. $\mathrm{L}: \frac{x+1}{4}=\frac{y-2}{3}=\frac{z-1}{4}=t$
Let $P(4 t-1,3 t+2,4 t+1)$
Since P also lies in $x+y-z=0$
$\therefore 3 t=0 \quad \Rightarrow t=0$
$\therefore \quad P(-1,2,1)$ and $Q(2,4,-1)$
$\therefore \quad P Q=\sqrt{3^{2}+2^{2}+(-2)^{2}}$

$$
=\sqrt{9+4+4}=\sqrt{17} \text { units }
$$

4. If $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{2 n}{n^{2}+k^{2}}\right)=a$ and $f(x)=\sqrt{\frac{1-\cos x}{1+\cos x}}$, then $f^{\prime}\left(\frac{a}{2}\right)$ is equal to
(1) $2+\sqrt{2}$
(2) $\sqrt{2}+1$
(3) $2-\sqrt{2}$
(4) $\sqrt{2}-1$

Answer (3)
Sol. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{2 n}{n^{2}+k^{2}}\right)=a$

$$
\begin{aligned}
& \Rightarrow \lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{n}\left(\frac{2}{1+\frac{k^{2}}{n^{2}}}\right)=a \\
& \Rightarrow \int_{0}^{1} \frac{2}{1+x^{2}} d x=a \Rightarrow a=\frac{\pi}{2}
\end{aligned}
$$

Now, $f(x)=\sqrt{\frac{1-\cos x}{1+\cos x}}=\left|\tan \frac{x}{2}\right|$

$$
\begin{aligned}
\therefore \quad f^{\prime}\left(\frac{a}{2}\right) & =\left(\frac{1}{2} \sec ^{2} \frac{x}{2}\right) \text { at } x=\frac{\pi}{4} \\
& =\frac{1}{2} \sec ^{2} \frac{\pi}{8} \\
& =\frac{\sqrt{2}}{\sqrt{2}+1}=2-\sqrt{2}
\end{aligned}
$$

5. A tangent is drawn to $y^{2}=24 x$ at (α, β) which is perpendicular to $2 x+2 y=7$. Then the equation of normal to hyperbola $\frac{x^{2}}{\alpha^{2}}-\frac{y^{2}}{\beta^{2}}=1$ at $(\alpha+4, \beta+4)$ is
(1) $2 x+5 y=100$
(2) $2 x-5 y=100$
(3) $2 x+5 y=10$
(4) $2 x-5 y=10$

Answer (1)
Sol. $\because \quad \beta^{2}=24 \alpha$ and slope of tangent $=\frac{d y}{d x(\alpha, \beta)}$

$$
=\frac{12}{\beta}=1
$$

$\Rightarrow \quad \beta=12$ and $\alpha=6$
Now normal to hyperbola $\frac{x^{2}}{36}-\frac{y^{2}}{144}=1$ at $(10,16)$ is
$2 x+5 y=100$
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a
NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. If p, q, r are positive real numbers such that $\left(p^{2}+q^{2}\right) x^{2}-2 q(p+r) x+q^{2}+r^{2}=0$ and $x^{2}-2 x-8=0$ has one root common then $\frac{q^{2}+r^{2}}{p^{2}}$ is equal to
Answer (272)
Sol. $\because \quad(p x-q)^{2}+(q x-r)^{2}=0$
$\Rightarrow \quad x=\frac{q}{p}=\frac{r}{q}=4$,
because roots of second equation are 4 or -2 .
As p, q, r are positive so x must be 4
$q=4 p$ and $r=4 q=16 p$
So, $\frac{q^{2}+r^{2}}{p^{2}}=16+256=272$
22. $\tan \left(2 \tan ^{-1}\left(\frac{1}{8}\right)+\sec ^{-1}\left(\frac{\sqrt{5}}{2}\right)+2 \tan ^{-1}\left(\frac{1}{5}\right)\right)$ is equal to
Answer (2)

Sol. $2\left(\tan ^{-1}\left(\frac{1}{8}\right)+\tan ^{-1}\left(\frac{1}{5}\right)\right)=2 \tan ^{-1}\left(\frac{\frac{1}{8}+\frac{1}{5}}{1-\frac{1}{40}}\right)$

$$
\begin{aligned}
& =2 \tan ^{-1} \frac{1}{3} \\
& =\tan ^{-1} \frac{\frac{2}{3}}{1-\frac{1}{9}}=\tan ^{-1} \frac{3}{4}
\end{aligned}
$$

\therefore Given term reduces to

$$
\tan \left(\tan ^{-1} \frac{3}{4}+\tan ^{-1} \frac{1}{2}\right)
$$

$$
=\left(\frac{\frac{3}{4}+\frac{1}{2}}{1-\frac{3}{8}}\right)=2
$$

23. Let $\{3\},\{6,9,12\},\{15,18,21,24,27\}$,
be any sequence, then find the sum of elements in the $11^{\text {th }}$ set of this sequence.

Answer (6993)

Sol. $\{3\},\{3.2,3.3,3.4\},\{3.5,3.6$ \qquad 3.7\}
$\therefore \quad 11^{\text {th }}$ set will be having $=1+(10) 2=21$ elements
Number of elements up to set 10 will be

$$
\begin{aligned}
& =1+3+\ldots .10 \text { terms } \\
& =5[2+18]=100 \text { elements }
\end{aligned}
$$

$\therefore \quad$ Set $11=\{3.101,3.102, \ldots .3 .121\}$
Sum of these elements $=3(101+102+\ldots \ldots+121)$

$$
=3 \cdot\left(\frac{21}{2}\right) \cdot(222)=6993
$$

24. The number of 5 digit number's whose product of the digits is 36 is

Answer (180)

Sol. Let the five digit number be $\overline{a b c d e}$.
$\because \quad$ a.b. c. d. $\mathrm{e}=2^{2} .3^{2}$
We will solve this in three cases,
Case I: When exactly one digit is 1 .
So (a, b, c, d, e) are permutations of (2, 2, 3, 3, 1)
No. of numbers $=\frac{\underline{5}}{\underline{2 L 2}}=30$
Case II : When exactly two digits are 1.

So (a, b, c, d, e) are permutations of $(4,3,3,1,1)$, $(6,2,3,1,1)$, or $(9,2,2,1,1)$

Number of numbers $=\frac{\underline{5}}{\underline{2} \underline{2}}+\frac{\underline{5}}{\underline{2}}+\frac{\underline{5}}{\underline{2 L 2}}=120$
Case III: When exactly three digits are 1
So (a, b, c, d, e) are permutations of $(4,9,1,1,1)$ or $(6,6,1,1,1)$
Number of numbers $=\frac{\underline{5}}{\underline{3}}+\frac{\underline{5}}{\underline{3} \underline{2}}=30$
Total number of five digit numbers $=180$
25. If $[A]_{2 \times 2}$ and $|A|=-1$ and $|(A+\Lambda)(\operatorname{adj} A+\Lambda)|=4$, then $|\operatorname{trace}(A)|$ is equal to

Answer (2)

Sol. $\because \quad \operatorname{adj} A=|A| \cdot A^{-1}=-A^{-1}$
Now, $|(I+A)(I+\operatorname{adj} A)|=4$
$\Rightarrow\left|(I+A)\left(I-A^{-1}\right)\right|=4$
$\Rightarrow\left|A-A^{-1}\right|=4$
Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \Rightarrow A^{-1}=-\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
$\Rightarrow\left|\begin{array}{cc}a+d & 0 \\ 0 & a+d\end{array}\right|=4$
$\Rightarrow(a+d)^{2}=4 \Rightarrow a+d= \pm 2$
Trace $(A)= \pm 2$
$|\operatorname{Trace}(A)|=2$
26. Let f be a continuous function such that $f(3 x)-f(x)$ $=x$ and $f(8)=7$ then (14) equals

Answer (10)

Sol. $\because \quad f(3 x)-f(x)=x$
So $f(x)-f\left(\frac{x}{3}\right)=\frac{x}{3}$
$f\left(\frac{x}{3}\right)-f\left(\frac{x}{3^{2}}\right)=\frac{x}{3^{2}}$
\qquad
\longrightarrow

On adding we get

$$
f(x)-\lim _{n \rightarrow \infty} f\left(\frac{x}{3^{n}}\right)=x\left(\frac{1}{3}+\frac{1}{3^{2}}+\ldots \infty\right)
$$

$\Rightarrow f(x)-f(0)=\frac{x}{2}$
$\because f(8)=7$, so $f(0)=3$
Hence $f(x)=\frac{x}{2}+3$
And $f(14)=10$
27. Given two G.P.s

$$
2,2^{2}, 2^{3}, \ldots 2^{60}
$$

\& $4,4^{2}, \ldots 4^{n}$.
If G.M. of there $(60+n)$ numbers is $2^{225 / 8}$ then n equals

Answer (20)

Sol. G.M. of all these $=\left(2^{1+2+3+\ldots+60} \cdot 4^{1+2+3+\ldots+n}\right)^{\frac{1}{60+n}}$

$$
=\left(2^{30 \times 61+n(n+1)}\right)^{\frac{1}{60+n}}
$$

JEE (Main)-2022 : Phase-2 (26-07-2022)-Morning

$$
\begin{aligned}
& \because \quad \frac{30 \times 61+n(n+1)}{n+60}=\frac{225}{8} \\
& \Rightarrow 8 n^{2}-217 n+1140=0 \\
& \Rightarrow n=20
\end{aligned}
$$

28. From a group of 10 boys $B_{1}, B_{2}, \ldots B_{10}$ and 5 girls $G_{1}, G_{2}, \ldots G_{5}$ three boys \& 3 girls are selected such that $B_{1} \& B_{2}$ are not together in that group. The number of ways of doing this is

Answer (1120)

Sol. No. of ways of selecting 3 Girls $={ }^{5} \mathrm{C}_{3}=10$
No. of ways of selecting 3 Boys $={ }^{10} \mathrm{C}_{3}-{ }^{8} \mathrm{C}_{1}=112$
Number of such selections $=10 \times 112$

$$
=1120
$$

29.
30.
