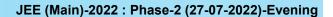


Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456


Memory Based Answers & Solutions

JEE (Main)-2022 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) The Test Booklet consists of 90 questions. The maximum marks are 300.
- (3) There are **three** parts in the question paper consisting of **Physics, Chemistry** and **Mathematics** having 30 questions in each part of equal weightage. Each part (subject) has two sections.
 - (i) **Section-A:** This section contains 20 multiple choice questions which have only one correct answer. Each question carries **4 marks** for correct answer and **-1 mark** for wrong answer.
 - (ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. The activity of radioactive material be 6.4×10^{-4} curie. Its half life is 5 days, then the activity is 5×10^{-6} curie after
 - (1) 7 days
- (2) 15 days
- (3) 25 days
- (4) 35 days

Answer (4)

Sol. $A_0 = 6.4 \times 10^{-4}$

$$A = 5 \times 10^{-6}$$

$$A = \left(\frac{1}{2}\right)^{\frac{n}{t_{1/2}}} A_0$$

$$\Rightarrow \frac{5}{640} = \left(\frac{1}{2}\right)^{\frac{n}{t_{1/2}}}$$

$$\frac{n}{t_{1/2}} = 7$$

or $x = 5 \times 7 = 35 \text{ days}$

2. Potential energy density *U* can be given as

$$U = \frac{\alpha}{\beta} \sin \frac{\alpha x}{kt}$$

Where $x \Rightarrow$ length, $t \Rightarrow$ temperature, $k \Rightarrow$ Boltzmann constant, α and β are constant. Then the dimension of β is

- (1) $M^0L^0T^0$
- (2) $M^0L^2T^{-2}$
- (3) $ML^2T^{-2}\theta^{-1}$
- (4) M⁰L²T⁰

Answer (4)

Sol. Dimensions of αx and kt should be same

$$\Rightarrow$$
 [α] [x]= [k] [t]

Now
$$[U] = \frac{[\alpha]}{[\beta]}$$

$$\Rightarrow [\beta] = \frac{[\alpha]}{[U]} = \frac{[k][t]}{[x][U]}$$

$$=\frac{[L^3]}{[L]}=[L^2]$$

 $[\beta] = [M^0L^2T^0]$

- 3. Block moves down an inclined rough plane with constant velocity. The contact force experienced by the block is. (Mass of block is *M*)
 - (1) Mg
- (2) $Mg\sin\theta$
- (3) $Mg(\sin\theta + \cos\theta)$
- (4) \sqrt{Mg}

Answer (1)

- **Sol.** As the block moves with constant velocity so forces on the block should be balanced. That is the contact force from the incline should balance the weight of the block.
 - \Rightarrow contact force = Mg
- 4. If a charge $4\mu C$ is divided into two and kept apart at some distance. The magnitude of charges so that the force between them is maximum is
 - (1) 1μC and 3μC
- (2) 2μC and 2μC
- (3) 0μ C and 4μ C
- (4) 1.5μC and 2.5μC

Answer (2)

Sol.
$$F = \frac{K(4-x)(x)}{a^2}$$

For F to be maximum

$$\Rightarrow \frac{dF}{dx} = 0$$

$$\Rightarrow$$
 4 – 2x = 0

or
$$x = 2$$

$$\Rightarrow$$
 4 –x = x = 2 μ C

5. An object is thrown vertically upwards with velocity equal to $\lambda v_e(\lambda < 1)$ from the surface of earth. Maximum height achieved by the object from surface of earth is

$$(1) \ \frac{R_{\rm e}}{1-\lambda^2}$$

(2)
$$\frac{(1+\lambda^2)R_e}{1-\lambda^2}$$

$$(3) \frac{\lambda^2 R_e}{1-\lambda^2}$$

(4)
$$(1 - \lambda^2)R_e$$

Answer (3)

Sol. Using energy conservation

$$\frac{1}{2}m\left(\lambda\sqrt{\frac{2GM_e}{R_e}}\right)^2 - \frac{GM_em}{R_e} = \frac{-GM_em}{R_e+h}$$

$$\lambda^2 \frac{GM_e m}{R_e} - \frac{GM_e m}{R_e} = \frac{-GM_e m}{R_e + h}$$

$$(R_e + h) = \frac{R_e}{1 - \lambda^2}$$

$$h = \frac{R_e \lambda^2}{1 - \lambda^2}$$

JEE (Main)-2022: Phase-2 (27-07-2022)-Evening

- A proton ($m = 1.6 \times 10^{-27}$ kg) moves in a circle of radius 60 cm in uniform magnetic field 1T in transverse direction. Kinetic energy of the proton (in MeV) is equal to
 - (1) 18

(2) 12

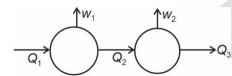
(3) 10

(4) 6

Answer (1)

Sol.
$$R = \frac{\sqrt{2mK}}{9B}$$

$$0.6 = \frac{\sqrt{2 \times 1.6 \times 10^{-27} K}}{1.6 \times 10^{-19} \times 1}$$


$$\Rightarrow K = 18 \text{ MeV}$$

- A Carnot engine works between temperature 300 K 7. and 100 K. Now another Carnot engine is put in series to the earlier one such that first engine works between temperatures 300 K and 200 K while the second works between 200 K and 100 K. It n₁ is the efficiency in first case and η_2 is efficiency in second case then relation in η_1 and η_2 is

 - (1) $\eta_2 = \eta_1 = \frac{1}{3}$ (2) $\eta_2 = \eta_1 = \frac{2}{3}$
 - (3) $\eta_2 = 2\eta_1$
- (4) $2\eta_2 = \eta_1$

Answer (2)

Sol.
$$\eta_1 = \left(1 - \frac{1}{3}\right) = \frac{2}{3}$$

$$\eta_2 = \left(1 - \frac{Q_3}{Q_1}\right) = \left(1 - \frac{Q_3}{Q_2} \times \frac{Q_2}{Q_1}\right)$$

$$1-\eta_2 = (1-\eta_b)(1-\eta_a)$$

$$1 - \eta_2 = \frac{200}{300} \times \frac{100}{200} = \frac{1}{3}$$

$$\Rightarrow \eta_2 = \frac{2}{3}$$

- In an amplitude modulation, amplitude of carrier 8. wave is 5 V while amplitude of modulating signal is 1V. The modulation index of the message signal is
 - (1) 10%
- (2) 20%
- (3) 15%
- (4) 30%

Answer (2)

Sol. In amplitude modulation

$$\mu = \frac{A_m}{A_c} = \frac{1}{5}$$

- 9. Two waves of same frequency having intensity k and 4k interfere with each other. The ratio of maximum to minimum intensity in interference pattern is
 - (1) 9:1
- (2) 3:1
- (3) 5:1
- (4) 5:3

Answer (1)

Sol.
$$\frac{I_{\text{max}}}{I_{\text{min}}} = \frac{\left(\sqrt{I_1} + \sqrt{I_2}\right)^2}{\left(\sqrt{I_1} - \sqrt{I_2}\right)^2}$$

$$=\frac{9}{1}$$

- 10. In common-emitter configuration when base current is varied from 20 µA to 25 µA the collector current varies from 6 mA to 8 mA. The current gain factor is equal to
 - (1) 150
- (2) 200
- (3) 400
- (4) 40

Answer (3)

Sol.
$$\beta = \frac{\Delta I_C}{\Delta I_B} = \frac{2 \text{ mA}}{5 \text{ } \mu \text{ A}}$$

$$=\frac{2000}{5}=400$$

- 11. A dielectric $(\varepsilon_r = k)$ is used to fill the space between plates of a capacitor of capacitance C. The new capacitance of capacitor is
 - (1) $\frac{C}{k}$

(2) (k-1)C

(3) kC

(4) k^2C

Answer (3)

Sol.
$$C_0 = \frac{\varepsilon_0 \varepsilon_r A}{d}$$

When $\varepsilon_r = 1$

$$C_0 = \frac{\epsilon_0 A}{d} = C$$

When $\varepsilon_r = k$

$$C_0' = \frac{\varepsilon_0 A}{d} k = kC$$

- 12. For An EM wave chose the correct option regarding following statements (ε denotes the electric field component. B denotes the magnetic field component and C denotes the velocity of EM wave at a point
 - (a) $\vec{E} \perp \vec{B}, \vec{E} \parallel \vec{c}$
- (b) $\vec{E} \perp \vec{B}$
- (c) $\vec{E} \parallel \vec{c}$
- (d) $\hat{E} = \hat{c} \times \hat{B}$
- (1) Only a and c are
- (2) Only b, c, d are true
- (3) Only a and b are true
- (4) Only b and c are true

Answer (4)

- **Sol.** \vec{E} , \vec{B} and \vec{c} are mutually perpendicular such that $\hat{B} \times \hat{c} = \hat{E}$ so only B and C are correct.
- 13. in photoelectric effect
 - (a) Photoelectric current increases by increasing the incident frequency.
 - (b) Photoelectric current increases by increasing incident intensity.
 - (c) Stopping potential increases in magnitude by increasing incident frequency.
 - (d) Stopping potential increases in magnitude by increasing incident intensity.
 - (1) Only (a) and (b) are true
 - (2) Only (a) and (c) are true
 - (3) Only (b) and (d) are true
 - (4) Only (b) and (c) are true

Answer (3)

- Sol. In photoelectric effect stopping potential depends on frequency of light used and saturation current depends on intensity of light so (b) and (d) are correct.
- 14. Two wires having length ℓ_1 , ℓ_2 , and their young's modules Y₁, Y₂ of same cross-sectional area A, are connected end to end and hanged with a load of some mass m suspended at lower end. If total elongation is $\Delta \ell$. Find load suspended.

(1)
$$\frac{A\Delta \ell Y_1 Y_2}{g(\ell_1 Y_2 + Y_1 \ell_2)}$$

(1)
$$\frac{A\Delta \ell Y_1 Y_2}{g(\ell_1 Y_2 + Y_1 \ell_2)}$$
 (2) $\frac{\Delta \ell Y_1 Y_2 A}{g(\ell_1 Y_1 + \ell_2 Y_2)}$

(3)
$$\frac{\Delta \ell Y_1 Y_2 A}{g(\ell_1 Y_2 - \ell_2 Y_1)}$$
 (4) $\frac{\Delta \ell Y_1 Y_2 \ell_1 \ell_2}{Ag(Y_2 - Y_1)}$

(4)
$$\frac{\Delta \ell Y_1 Y_2 \ell_1 \ell_2}{Ag(Y_2 - Y_1)}$$

Answer (1)

Sol.
$$\Delta \ell = \Delta \ell_1 + \Delta \ell_2$$

$$\Delta \ell = \frac{mg\ell_1}{Y_1A} + \frac{mg\ell_2}{Y_2A}$$

$$\Rightarrow m = \frac{\Delta \ell A}{g\left(\frac{\ell_1}{Y_1} + \frac{\ell_2}{Y_2}\right)}$$

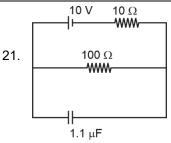
$$\Rightarrow m = \frac{\Delta \ell A Y_1 Y_2}{g\left(\ell_1 Y_2 + Y_1 \ell_2\right)}$$

- 15. If frequency of n^{th} and $(n + 1)^{th}$ mode of string are 400 Hz and 450 Hz and length of string is 1 m then find is linear mass density with tension in string equal to 2700 N
 - (1) 0.125 kg/m
- (2) 0.27 kg/m
- (3) 0.055 kg/m
- (4) 0.0675 kg/m

Answer (2)

Sol.
$$\frac{V}{2\ell} = 50$$

$$\frac{\sqrt{\frac{T}{\mu}}}{2\ell} = 50$$


$$\Rightarrow \frac{T}{\mu} = 100 \times 100$$

$$\Rightarrow \mu = \frac{2700}{10^4} = 0.27 \text{ kg/m}$$

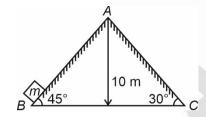
- 16.
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

For the given circuit. The charge on capacitor in steady state is N \times 10⁻⁶ C. The value of N is

Answer (10)


JEE (Main)-2022 : Phase-2 (27-07-2022)-Evening

At steady state potential difference across capacitor $=\frac{10\times100}{110}\,\text{V}$

$$\Rightarrow$$
 Charge on capacitor = $\frac{10^3}{110} \times 1.1 \times 10^{-6}$ C = 10 μC

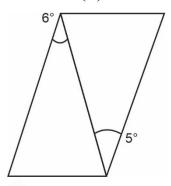
22. A block of mass m is pushed above the plane from B such that it just crossed A and moves to C. Ignore friction everywhere if time taken to move from B to A then to C is $t(\sqrt{2}+1)$ s, then the value of t is

Answer (2)

Sol. By energy conservation

$$v_B^2 = v_C^2$$

$$v_B = \sqrt{2 \times 10\sqrt{2} \times 10 \times \frac{1}{\sqrt{2}}} = 10\sqrt{2}$$


$$t_{BA} = \frac{10\sqrt{2}}{10\sqrt{2}} = 2 \text{ s}$$

$$t_{AC} = \frac{10\sqrt{2}}{5} = 2\sqrt{2}$$

$$\Rightarrow$$
 Total time = $2\sqrt{2} + 2 = 2(\sqrt{2} + 1)$ s

$$\Rightarrow t = 2$$

23. A prism of angle 6° and refractive index 1.5 and another prism of angle 5° and refractive index 1.55 are merged together as shown. It the angle of deviation is $\left(\frac{1}{x}\right)^{\circ}$ then the value of x is ____

Answer (4)

Sol.
$$\delta_1 = 6(\mu - 1)$$

= 3°
 $\delta_1 = -5(0.55)$
= -2.75°
 $\Rightarrow \delta_{net} = 3^\circ - 2.75^\circ$
= 0.25°
= $\frac{1}{4}^\circ$
 $\Rightarrow x = 4$

24. Soap bubble 6 cm is enclosing another bubble of radius 3 cm. The inside bubble is experiencing an internal pressure. The same internal pressure is experienced by another bubble of radius *R* inside. Find the value of *R* in cm.

Answer (2)

Sol.
$$P_0 + \frac{4T}{6} + \frac{4T}{3} = P_0 + \frac{4T}{R}$$

$$\Rightarrow \frac{1}{R} = \frac{1}{6} + \frac{1}{3}$$

$$= R = 2 \text{ cm}$$

- 25.
- 26.
- 27.
- 28.
- 29.
- 30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

Assertion: Boron is unable to form BF_6^{3-} . 1.

Reason: Boron is very small in size.

- (1) Both Assertion and Reason are correct and Reason is correct explanation of Assertion
- (2) Both Assertion and Reason are correct but Reason is not correct explanation of Assertion
- (3) Assertion is correct and Reason is incorrect
- (4) Assertion is incorrect and Reason is correct

Answer (2)

Sol. The outermost shell of boron is 2 and its maximum covalency is 4. Therefore, boron cannot form BF₆³⁻. Hence, Assertion is true.

Boron is the first element of Group-13 of modern periodic table. It is very small in size. But it does not provide correct explanation of assertion.

- KMnO₄ reacts in alkaline medium with $S_2O_3^{-2}$ to 2. form which of the following ionic species:
 - (1) SO_4^{-2}
- (2) SO_3^{-2}
- (3) $S_2O_7^{-2}$
- (4) $S_2O_8^{-2}$

Answer (1)

Sol. $H_2O + 8MnO_4^{\odot} + 3S_2O_3^{-2} \rightarrow 8MnO_2 + 6SO_4^{-2} + 2OH^{\odot}$

Polymer 3.

Monomer

- (A) Neoprene
- (1) Acrylonitrile
- (B) Natural rubber
- (2) Chloroprene
- (C) Teflon
- (3) Isoprene
- (D) Orlon
- (4) Tetrafluoroethene
- (1) A(2); B(3); C(4); D(1)
- (2) A(1); B(2); C(3); D(4)
- (3) A(4); B(3); C(1); D(2)
- (4) A(3); B(1); C(4); D(2)

Answer (1)

- Sol. Neoprene is the polymer of chloroprene. Natural rubber is the polymer of isoprene. Teflon is the polymer of tetrafluoroethene. Orlon is the polymer of acrylonitrile.
- Consider the following orbitals (A to D) containing 4. electron with following set of quantum numbers (n, l, m, s).
 - A. 3, 2, 1, $\frac{1}{2}$ B. 3, 1, 1, $\frac{1}{2}$
 - C. $4, 0, 0, \frac{-1}{2}$ D. $3, 0, 0, \frac{1}{2}$

The highest energy orbital among the above set of orbitals for a multielectron atom will be

(1) A

(2) B

(3) C

(4) D

Answer (1)

Sol. A has highest energy as (n + I) value for this orbital has the maximum value.

$$n + I$$
 for $A = 5$

$$n + I$$
 for $B = 4$

$$n + I$$
 for $C = 4$

$$n + I$$
 for $D = 3$

5. Column-I

Column-II

- $\Psi_{AB} = \Psi_{A} + \Psi_{B}$
- (P) Bonding Molecular orbital (LCAO)
- II. $\mu = q \times d$
- (Q) Antibonding

Molecular orbital (LCAO)

- III. $\Psi_{AB}^* = \Psi_A \Psi_B$
- (R) dipole moment
- IV. $\frac{1}{2}$ (Number of bonding (S)Bond order

e-- number of anti

bonding e-)

- (1) I-(P); II-(R); III-Q; IV-S
- (2) I-(P); II-(Q); III-R; IV-S
- (3) I-(Q); II-(P); III-R; IV-S
- (4) I-(R); II-(P); III-Q; IV-S

Answer (1)

Sol. $\Psi_{AB} = \Psi_{A} + \Psi_{B}$ — Bonding molecular orbital

 $\Psi_{AB}^* = \Psi_A - \Psi_B$ — Antibonding molecular orbital

 $\mu = q \times d$ — dipole moment

 $\frac{n_b - n_a}{2}$ — Bond order, where n_b

represents number of bonding electrons and n_a represents number of antibonding electrons

6. $R - COCH_3 \frac{NaOH}{EtBr}$ Final product (P) . The final product P is

(2)
$$0 - Et$$

$$R - C = CH_2$$

Answer (1)

Sol.

- 7. Lathering property of soap is due to which of the following?
 - (1) Sodium stearate
- (2) Sodium carbonate
- (3) Sodium rosinate
- (4) Glycerol

Answer (3)

Sol. Due to formation of sodium rosinate soap lathers well

8. Consider the following statements:

Statement I: on dilution, molar conductivity for KI (aqueous) increase steeply

Statement II: On dilution, molar conductivity for carbonic acid (aqueous) slowly increases till infinite dilution.

- (1) Statement I is correct & statement II is incorrect
- (2) Both statement (I) and (II) are correct
- (3) Statement (I) is incorrect and statement (II) is correct
- (4) Both statement (I) and (II) are incorrect

Answer (4)

Sol. On dilution, molar conductivity for strong electrolyte increases gradually till infinite dilution.

As KI is a strong electrolyte, molar conductivity increases gradually.

Carbonic acid is a weak electrolyte. So, molar conductivity increases steeply on excess dilution.

∴, statement (I) and statement (II) are incorrect.

9.
$$CH_3 - C = CH - CH_3 \xrightarrow{Br_2} A \xrightarrow{HI} B \text{ (Major)}$$
 CH_3

The product B is

Answer (1)

Sol.
$$CH_3 - C = CH - CH_3 \xrightarrow{Br_2} CH_3 - C - CH - CH_3$$

 $CH_3 - CH_3 - CH_$

10. Match column-I with column-II.

Colum-I

Column-II

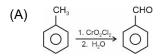
- (A) Impure Aniline + water (P)Crystallisation
- (B) Aniline + Chloroform (Q) Steam distillation followed by use of separating funnel
- (C) Benzoic acid + (R) Sublimation naphthalene
- (D) Naphthalene + (S) Distillation nonvolatile salts
- (1) A(Q), B(S), C(P), D(R)
- (2) A(P), B(Q), C(R), D(S)
- (3) A(S), B(R), C(Q), D(P)
- (4) A(Q), B(P), C(R), D(S)

Answer (1)

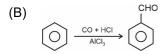
Sol. Chloroform (B.P. = 334 K) and Aniline (B.P. = 457)

– Distillation

Imp Aniline and water – Steam distillation to purify water and aniline are separated by using separating funnel


Benzoic acid and Naphthalene – Crystallisation

Naphthalene and non volatile impurities – sublimation since naphthalene sublime while impure is non volatile


 Match the reactions given in Column-I with their corresponding names in Column-II.

Column-I

Column-II

(P) Etard's Reaction

(Q) Gattermann Koch reaction

(C)
$$R - CN \xrightarrow{SnCl_2 + HCl} H_2O$$
 $R - CHO$

(R) Stephen's reduction

(D)
$$R-COCI \xrightarrow{H_2} R-CHO$$

(S) Rosenmund reduction

The correct match is:

- (1) A(P); B(Q); C(R); D(S)
- (2) A(Q); B(P); C(R); D(S)
- (3) A(Q); B(R); C(P); D(S)
- (4) A(R); B(Q); C(P); D(S)

Answer (1)

Sol. The correct match is:

(A)
$$\overset{\text{CH}_3}{\bigcirc}$$
 $\overset{\text{CHO}}{\bigcirc}$ $\overset{\text{CHO}}{\bigcirc}$ $\xrightarrow{\text{1. CrO}_2\text{Cl}_3}$ $\overset{\text{CHO}}{\bigcirc}$ Reaction

B)
$$\xrightarrow{\text{CO} + \text{HCI}} \xrightarrow{\text{CHO}} \rightarrow \text{(Q)}$$
 Gattermann Koch reaction

(C)
$$R - CN \xrightarrow{SnCl_2 + HCl} \rightarrow (R)$$
 Stephen's $R - CHO$ reduction

(D)
$$R-COCI \xrightarrow{H_2} \rightarrow (S)$$
 Rosenmund $R-CHO$ reduction

12. Consider the following Reaction:

Which of the following represents A?

- (1) A is [Fe(CN)₆]⁻⁴
- (2) A is $[Fe(CN)_6]^{-3}$
- (3) A is [FeCl₂][⊖]
- (4) A is FeSO₄

Answer (1)

Sol.
$$4 \operatorname{Fe}^{+3} + 3 \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]^{-4} \longrightarrow \operatorname{Fe}_{4} \left[\operatorname{Fe}(\operatorname{CN})_{6} \right]_{3}$$

Hence A is $\left[\text{Fe}(\text{CN})_{6} \right]^{-4}$

- 13. Correct order of first ionisation energy for the elements with given electronic configuration.
 - (i) $3s^2$
 - (ii) $3s^2 3p^1$
 - (iii) $3s^2 3p^3$
 - (iv) $3s^2 3p^4$
 - (1) (iii) > (iv) > (i) > (ii)
 - (2) (iv) > (iii) > (ii) > (i)
 - (3) (i) > (ii) > (iii) > (iv)
 - (4) (ii) > (iii) > (i) > (iv)

Answer (1)

- Sol. Orbitals with fully filled and half filled are stable, and require more energy for ionisation.
 - Elements with greater electronegativity require more energy for ionisation.
 - Hence, the correct order is (iii) > (iv) > (i) > (ii).
- 14. Group-1 element (A) with maximum hydration enthalpy, shows similarity with group-2 element (B). A and B respectively are
 - (1) Li, Mg
 - (2) Be, Mg
 - (3) Na, Ca
 - (4) K, Be

Answer (1)

- **Sol.** Among group-1 elements lithium has maximum hydration enthalpy and shows diagonal relationship with Mg.
- 15. Statement I: Parchment paper can be used to separate true solution from colloid.
 - Statement II: When we use parchment paper the particles of true solution cannot pass but colloids can pass.
 - (1) Both statement I and II are correct
 - (2) Statement I is correct but statement II is incorrect
 - (3) Statement I is incorrect, Statement II is correct
 - (4) Neither statement I, nor statement II is correct

Answer (2)

- Sol. Colloidal particles cannot pass through parchment paper but they can pass through ordinary filter paper.
 - Particles of true solution can pass through ordinary filter paper as well as parchment paper. Hence, parchment paper can be used for separation.
 - Statement I is correct and statement II is incorrect.

Match the following:

Column-I

Column-II

(Reactions)

(Product formed)

- A. Glucose + Br₂ water
- (1) n-Hexane
- B. Glucose + conc. HNO₃ (2) Gluconic acid
- C. Glucose + acetic
- (3) Saccharic acid
- anhydride
- (4) Glucose

pentaacetate

(1) A(3); B(2); C(4); D(1)

D. Glucose + HI/red P₄

- (2) A(2); B(3); C(4); D(1)
- (3) A(4); B(2); C(1); D(3)
- (4) A(1); B(2); C(3); D(4)

Answer (2)

- **Sol.** Glucose + Br₂ water \rightarrow Gluconic acid
 - Glucose + conc. HNO₃ → Saccharic acid
 - Glucose + acetic anhydride
 - → Glucose pentaacetate
 - Glucose + HI/red P₄ → n-hexane
 - Correct match is A(2); B(3); C(4); D(1).
- 17.
- 18.
- 19.
- 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. 100 ml of 0.1 M H₂SO₄ is reacted with 50 ml of 0.1 M NaOH. What is the normality of H₂SO₄ left in the solution?

Answer (00.10)

Sol.

$$H_2SO_4$$
 + $2NaOH$ $\rightarrow Na_2SO_4$ + $2H_2O$
Initial \rightarrow 10 millimoles 5 millimoles - - - Final \rightarrow 7.5 millimoles - 2.5 mm - \rightarrow
 \therefore Normality of $H_2SO_4 = \frac{7.5}{150} \times 2 = \frac{7.5}{75} = 0.1 \text{ N}$

 $A \rightarrow B$

The concentration of A after 70 minutes becomes half. If the rate constant of the reaction is 'x' × 10^{-6} seconds⁻¹, then find x. [Take ln2 = 0.693]

Answer (165.00)

Sol.
$$t_{1/2} = \frac{0.693}{k}$$

$$\therefore k = \frac{0.693}{70 \times 60} = 0.000165 \text{ s}^{-1}$$
$$= 165 \times 10^{-6} \text{ s}^{-1}$$

Hence, x = 165

23. How many among the following are primary ores of Fe (iron)?

Siderite, Malachite, Magnetite, Haematite, Cryolite, Cuprite, Limonite, Kaolinite, Sphalerite, Bauxite, Chalcopyrite

Answer (04)

Sol. Primary ores of iron are,

Magnetite (Fe₃O₄), Haematite (Fe₂O₃), Siderite (FeCO₃) and Limonite (FeO(OH)·nH₂O)

24. 5.0 gm of toluene is subjected to controlled oxidation to get benzaldehyde. The percentage yield of the product formed in the above reaction is 92%. Find the mass of benzaldehyde formed in gm.

Answer (5.30)

Sol. Mass of toluene (molar mass = 92) given = 5.0 gm

Number of moles of benzaldehyde formed

= 0.92 × Number of moles of toluene

Mass of benzaldehyde formed

$$= 0.92 \times \frac{5}{92} \times 106 = 5.30 \text{ gm}$$

25. How many of the following molecules species are non planar?

$$BF_3,NO_3^-,SF_4,XeF_4,XeO_3^-,PH_4^+,PCI_3,AI\left(OH\right)_4^-$$
 and H_2O_2

Answer (6)

Sol. Among the given molecules/species, the following species

are non planar.

SF₄ see-saw
XeO₃ Pyramidal
PH₄⁺ Tetrahedral

PCl₃ Pyramidal

H₂O₂ Open book

∴ No. of non planar species = 6.

26. When MnO_4^{\bigcirc} reacts with H_2O_2 in alkaline medium, the oxidation state of Mn in the product containing Mn will be:

Tetrahedral

Answer (04.00)

 $AI(OH)_{\Lambda}^{-}$

Sol.
$$2MnO_4^{\Theta} + 3H_2O_2 \longrightarrow 2MnO_2 + 3O_2 + 2OH + 2H_2O$$

Oxidation state of Mn in MnO₂ is (+4)

27.

28.

29.

30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. Let sum of an infinite G.P. be 5, let the sum of first five terms be $\frac{98}{25}$. Then what is the sum of first 21 terms of an A.P. whose first term is 10ar, common

difference is $10ar^2$ and n^{th} term is a_n

- (1) 22*a*₁₁
- (2) 21a₁₁
- (3) 14a₁₆
- (4) 15a₁₆

Answer (2)

Sol. Given $\frac{a}{1-r} = 5$ and $a(1-r^5) = \frac{98}{25}$

Let sum of 21-terms of A.P. = S_{21}

$$S_{21} = \frac{21}{2} \Big[2(10ar) + 20(10ar^2) \Big]$$
$$= 21(ar + 10ar^2)$$
$$= 21a_{11}$$

- 2. Let $A = \begin{bmatrix} 4 & -2 \\ \alpha & \beta \end{bmatrix}$, If $A^2 + \gamma A + 18I = 0$ then det(A) equals
 - (1) 18
- (2) 18
- (3) 50
- (4) 50

Answer (2)

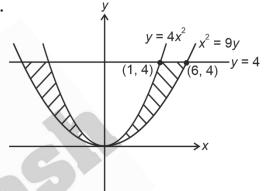
Sol. Characteristic equation of matrix

$$\begin{vmatrix} 4 - \lambda & -2 \\ \alpha & \beta - \lambda \end{vmatrix} = 0$$

$$\Rightarrow$$
 $4\beta + \lambda^2 - (\beta + 4)\lambda + 2\alpha = 0$

$$A^2 - (\beta + 4)A + (2\alpha + 4\beta)I = 0$$

$$\Rightarrow \gamma = -\beta + 4$$
 and $2\alpha + 4\beta = 18$


$$det(A) = 4\beta + 2\alpha = 18$$

- 3. The area of region enclosed by $y \le 4x^2$, $x^2 \le 9y$, $y \le 4$ is equal to
 - $\frac{40}{3}$

- (2) $\frac{56}{3}$
- (3) $\frac{112}{3}$
- (4) $\frac{80}{3}$

Answer (1)

Sol.

:. Required area

$$= \int_{0}^{1} \left(4x^{2} - \frac{x^{2}}{9} \right) dx + \int_{1}^{6} \left(4 - \frac{x^{2}}{9} \right) dx$$

$$= \frac{4x^{3}}{3} - \frac{x^{3}}{27} \Big|_{0}^{1} + 4x - \frac{x^{3}}{27} \Big|_{1}^{6}$$

$$= \left(\frac{4}{3} - \frac{1}{27} \right) + \left((24 - 8) - \left(4 - \frac{1}{27} \right) \right)$$

$$= \frac{35}{27} + \left(16 - \frac{107}{27} \right) = \frac{360}{27} = \frac{40}{3}$$

- 4. If the length of the latus rectum of a parabola whose focus is (a, a) and tangent at its vertex is x + y = a is 16, then |a| is equal to
 - (1) $2\sqrt{3}$
 - (2) $2\sqrt{2}$
 - (3) $4\sqrt{2}$
 - (4) 4

Answer (3)

JEE (Main)-2022 : Phase-2 (27-07-2022)-Evening

Sol. Length of perpendicular from focus to tangent at vertex,

$$I = \left| \frac{a}{\sqrt{2}} \right|$$

So, length of latus rectum will be, 4I = 16

$$\Rightarrow 2\sqrt{2}|a|=16$$

$$\Rightarrow |a| = 4\sqrt{2}$$

5. Let
$$f(x) = \frac{(729p(1+x))^{\frac{1}{7}} - 3}{(729(1+qx))^{\frac{1}{3}} - 9}$$
, and $f(x)$ is

continuous at x = 0, then

(1)
$$21qf(0) - p = 0$$

(2)
$$21q^2 \cdot f(0) - p^3 = 0$$

(3)
$$21p^2f(0) - q^3 = 0$$
 (4) $p^2f(0) - 7q^2 = 0$

(4)
$$p^2 f(0) - 7q^2 = 0$$

Answer (1)

Sol. $\lim f(x)$ exist if numerator of f(x) is zero at x = 0

Clearly p = 3

Now
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{3\left[(x+1)^{\frac{1}{7}} - 1\right]}{9\left[(1+qx)^{\frac{1}{3}} - 1\right]}$$

$$= \frac{1}{3} \left(\frac{\frac{1}{7}}{\frac{q}{3}} \right) = \frac{1}{7q} = f(0)$$

So
$$21qf(0) = 3 = p$$

Let $f(x) = \min\{[x], [x-1], [x-2], ... [x-10]\}$, where [] denotes greatest integer function, then

$$\int_{0}^{10} (f(x) + |f(x)| + f^{2}(x)) dx$$
 is equal to

(1) 55

- (2) 385
- (3) 5050
- (4) 270

Answer (2)

Sol. Clearly f(x) = [x-10]

Here, $f(x) \le 0 \ \forall x \in (0, 10)$

So,
$$\int_{0}^{10} (f(x) + |f(x)|) dx = 0$$

Now,
$$\int_{0}^{10} f^{2}(x)dx = \int_{0}^{10} ([x] - 10)^{2} dx$$

$$= \int_{0}^{1} 100 \, dx + \int_{1}^{2} 81 \, dx + \int_{2}^{3} 64 \, dx + \dots + \int_{9}^{10} 1 \cdot dx$$
$$= \left(1^{2} + 2^{2} + 3^{2} + \dots + 10^{2}\right) = \frac{10 \times 11 \times 21}{6} = 385$$

7. The value of $\int_0^2 \left(\left| 2x^3 - 3x \right| + \left| x - \frac{1}{2} \right| \right) dx$, where $[\cdot]$ is greatest integer function, is

(1) $\frac{7}{2}$

- (2) $\frac{19}{12}$
- (3) $\frac{17}{4}$
- (4) $\frac{3}{2}$

Answer (3)

Sol.
$$\int_{0}^{2} |2x^{3} - 3x| dx + \int_{0}^{2} \left[x - \frac{1}{2} \right] dx$$

$$\int_{0}^{\sqrt{\frac{3}{2}}} (3x - 2x^{3}) dx + \int_{\sqrt{\frac{3}{2}}}^{2} (2x^{3} - 3x) dx$$

$$+ \int_{0}^{\frac{1}{2}} \left[x - \frac{1}{2} \right] dx + \int_{1/2}^{3/2} \left[x - \frac{1}{2} \right] dx + \int_{3/2}^{2} \left[x - \frac{1}{2} \right] dx$$

$$= \frac{3x^{2} - x^{4}}{2} \Big|_{0}^{\sqrt{\frac{3}{2}}} + \frac{x^{4} - 3x^{2}}{2} \Big|_{\sqrt{\frac{3}{2}}}^{2} + \left(-\frac{1}{2} \right) + 0 + \left(\frac{1}{2} \right)$$

 $=\frac{9}{8}+2+\frac{9}{8}=\frac{17}{4}$

$$f(x) = \sin^{-1}[2x^2 - 3] + \log_2\left(\log_{\frac{1}{2}}(x^2 - 5x + 5)\right)$$
 is

- (1) $\left(1, \frac{5-\sqrt{5}}{2}\right)$
 - (2) $\left(1, \frac{\sqrt{5}}{2}\right)$
- (3) $\left(-\sqrt{\frac{5}{2}}, \sqrt{\frac{5}{2}}\right)$ (4) (1, 4)

Answer (1)

Sol. :
$$[2x^2 - 3] = -1$$
, 0 or 1

$$\Rightarrow 2x^2 - 3 \in [-1, 2) \Rightarrow 2x^2 \in [2, 5) \Rightarrow x^2 \in \left[1, \frac{5}{2}\right]$$

$$\Rightarrow x \in \left(-\sqrt{\frac{5}{2}}, -1\right] \cup \left[1, \frac{5}{2}\right]$$

JEE (Main)-2022: Phase-2 (27-07-2022)-Evening

Also,
$$\log_{\frac{1}{2}} (x^2 - 5x + 5) > 0$$

$$\Rightarrow 0 < x^2 - 5x + 5 < 1$$

$$\Rightarrow x \in \left(1, \frac{5 - \sqrt{5}}{2}\right) \cup \left(\frac{5 + \sqrt{5}}{2}, 4\right)$$

Finally
$$x \in \left(1, \frac{5 - \sqrt{5}}{2}\right)$$

If the line of intersection of the planes ax + by = 3and ax + by + cz = 0 makes an angle 30° with the plane y - z + 2 = 0, then the direction cosines of the line are

(1)
$$\frac{1}{\sqrt{2}}$$
, 0, $\frac{1}{\sqrt{2}}$

(1)
$$\frac{1}{\sqrt{2}}$$
, 0, $\frac{1}{\sqrt{2}}$ (2) $\frac{1}{\sqrt{2}}$, $\frac{-1}{\sqrt{2}}$, 0

(3)
$$\frac{1}{\sqrt{5}}, \frac{-2}{\sqrt{5}}, 0$$

(4)
$$\frac{1}{2}, \frac{-\sqrt{3}}{2}, 0$$

Answer (2)

Sol. Direction ratios of line of intersection < bc, -ac, 0> As angle between this line & y - z + 2 = 0 is 30°

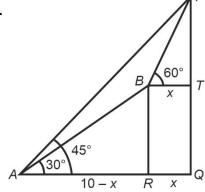
$$\therefore \sin \theta = \left| \frac{a}{\sqrt{a^2 + b^2} \cdot \sqrt{2}} \right|$$

$$\Rightarrow a^2 = b^2$$

$$\therefore$$
 Possible combination is $\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0$

10. Let PQ be a building of height 10 m and angle of elevation of point P from a point A on the ground is 45°. Let B be another point from where foot of perpendicular on ground is R and angle of elevation of B from A is 30°. If angle of elevation of P from B is 60°. Then area of trapezium PQRB and length AB is

(1) 25,
$$\frac{15(\sqrt{3}-1)}{2}$$


(2)
$$15(\sqrt{3}+1)$$
, $\frac{5(\sqrt{3}+1)}{2}$

(3) 25,
$$\frac{5(\sqrt{3}+1)}{2}$$

(4)
$$15(\sqrt{3}+1)$$
, $\frac{5(\sqrt{3}-1)}{2}$

Answer (1)

Sol.

$$\therefore$$
 AQ = PQ cot 45° = 10

Let
$$QR = x$$

So
$$AR = 10 - x$$

Now
$$BR = AR \tan 30^\circ = \frac{10 - x}{\sqrt{3}} = QT$$

Also
$$PT = x \tan 60^\circ = \sqrt{3}x$$

$$\therefore$$
 QT + PT = 10

$$\Rightarrow \frac{10-x}{\sqrt{3}} + \sqrt{3}x = 10 \Rightarrow x = 5(\sqrt{3}-1)$$

Now
$$BR = 5(\sqrt{3} - 1)$$

Hence area of trapezium

$$PQRB = \frac{1}{2} \left(5 \left(\sqrt{3} - 1 \right) \right) \left(10 + 5 \left(\sqrt{3} + 1 \right) \right)$$
= 25

$$AB = AR\cos 30^{\circ} = \frac{15\left(\sqrt{3} - 1\right)}{2}$$

- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.

JEE (Main)-2022 : Phase-2 (27-07-2022)-Evening

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. If
$$A = \begin{bmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \alpha + \gamma & \alpha + \beta \end{bmatrix}$$
 and

$$\frac{\left|adj(adj(adj(adj(A))))\right|}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}=2^{32}.3^{16}$$

where α , β , γ are distinct natural number, then number of triplets of (α, β, γ) is

Answer (55)

Sol.
$$A = \begin{bmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \alpha + \gamma & \alpha + \beta \end{bmatrix}$$
 $R_3 \rightarrow R_3 + R_1$

$$R_3 \rightarrow R_3 + R_1$$

$$\Rightarrow |A| = (\alpha + \beta + \gamma) \begin{vmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$= (\alpha + \beta + \gamma)(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$$

$$\therefore |adj(adj(adj(adjA)))| = |A|^{24} = |A|^{16}$$

Clearly
$$(\alpha + \beta + \gamma)^{16} = 2^{32} \cdot 3^{16}$$

$$\Rightarrow \alpha + \beta + \gamma = 12$$

Number of positive integral solutions = ${}^{11}C_2 = 55$

22. Let nth term of any sequence is given by

$$T_n = \frac{-1^3 + 2^3 - 3^3 + 4^3 \dots + (2n)^3}{n(4n+3)}$$
 then

$$\sum_{n=1}^{15} T_n$$
 is equal to

Sol.
$$T_n = \frac{2[2^3 + 4^3 + ... + (2n)^3] - [1^3 + 2^3 + 3^3 + ... + (2n)^3]}{n(4n+3)}$$

$$\Rightarrow T_n = \frac{16\left(\frac{n(n+1)}{2}\right)^2 - \left(\frac{2n(2n+1)}{2}\right)^2}{n(4n+3)} = \frac{n^2(4n+3)}{n(4n+3)} = n$$

So,
$$\sum_{n=1}^{15} T_n = \frac{15 \times 16}{2} = 120$$

23. Let $\frac{1+i\sin\alpha}{1-2i\sin\alpha}$ is purely imaginary and $\frac{1+i\cos\beta}{1-2i\cos\beta}$ is purely real, where α , $\beta \in [\pi, 2\pi]$ and $z = \sin 2\alpha + i \cos 2\beta$, then $\sum \left(iz + \frac{1}{i z} \right)$ is equal

to Answer (1)

Sol. : $\frac{1+i\sin\alpha}{1-2i\sin\alpha}$ is purely imaginary, so

$$1-2\sin^2\alpha=0 \implies \sin^2\alpha=\frac{1}{2} \implies \alpha=\frac{5\pi}{4}$$
 and $\frac{7\pi}{4}$

Similarity $\frac{1+i\cos\beta}{1-2i\cos\beta}$ is purely real, so

$$\cos\beta = 0 \implies \beta = \frac{3\pi}{2}$$

Now $z = \sin 2\alpha + i \cos 2\beta \Rightarrow z = 1 - i \text{ or } -1 - i$

$$\therefore \quad \frac{1}{iz} = \frac{-iz}{|z|^2} = -\frac{iz}{2}$$

So
$$\sum \left(iz + \frac{1}{iz}\right) = \sum \frac{iz}{2} = \frac{i}{2} \Sigma z = \frac{i}{2} (-2i) = 1$$

24. Let \vec{a} , \vec{b} , \vec{c} be any three vectors such that $\vec{a} \times \vec{b} = 4\vec{c}$, $\vec{b} \times \vec{c} = 9\vec{a}$, $\vec{c} \times \vec{a} = \alpha \vec{b}$ and $|\vec{a}| + |\vec{b}| + |\vec{c}| = 36$, then α is equal to

Answer (36)

Sol. Let a, b, c be the modulus of \bar{a} , \bar{b} and \bar{c} respectively.

 \therefore \bar{a} , \bar{b} , \bar{c} are mutually perpendicular vectors.

Then $c = 3\sqrt{\alpha}$, $a = 2\sqrt{\alpha}$ and b = 6

$$\therefore a+b+c=36$$

$$\Rightarrow$$
 $5\sqrt{\alpha} + 6 = 36$

$$\Rightarrow \alpha = 36$$

25.

26.

27.

28.

29.

30.