Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005|Ph.: 011-47623456

Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2022 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Consider the efficiency of carnot's engine is given by $\eta=\frac{\alpha \beta}{\sin \theta} \log e \frac{\beta x}{k T}$, where α and β are constants. If T is temperature, k is Boltzmann constant, θ is angular displacement and x has the dimensions of length. Then, choose the incorrect option
(A) Dimensions of β is same as that of force.
(B) Dimensions of $\alpha^{-1} x$ is same as that of energy.
(C) Dimensions of $\eta^{-1} \sin \theta$ is same as that of $\alpha \beta$.
(D) Dimensions of α is same as that of β.

Answer (D)

Sol. (A) $[\beta]=\left[\frac{k T}{x}\right]=\left[\frac{E}{x}\right]=\left[\mathrm{MLT}^{-2}\right]$

$$
=[F]
$$

(B) $[\alpha \beta]=\left[M^{0} L^{0} T^{0}\right]$
$[\alpha]^{-1}=[\beta]=\left[\frac{k T}{x}\right]$
So $[\alpha]^{-1}[x]=[k T]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(C) $\eta \sin \theta=\alpha \beta$

So $[\eta \sin \theta]=[\alpha \beta]$
$[\eta]=\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0}\right]$ it is dimensionless quantity
(D) $[\alpha] \neq[\beta]$
2. At time $t=0$ a particle starts travelling from a height $7 \hat{z} \mathrm{~cm}$ in a plane keeping z coordinate constant. At any instant of time it's position along the \hat{x} and \hat{y} directions are defined at $3 t$ and $5 t^{3}$ respectively. At $t=1 \mathrm{~s}$ acceleration of the particle will be
(A) $-30 \hat{y}$
(B) $30 \hat{y}$
(C) $3 \hat{x}+15 \hat{y}$
(D) $3 \hat{x}+15 \hat{y}+7 \hat{z}$

Answer (B)

Sol. $x=3 t \Rightarrow a_{x}=0$
$y=5 t^{3} \Rightarrow a_{y}=30 t$
$\vec{a}(t=1)=30 \hat{y}$
3. A pressure-pump has a horizontal tube of cross sectional area $10 \mathrm{~cm}^{2}$ for the outflow of water at a speed of $20 \mathrm{~m} / \mathrm{s}$. The force exerted on the vertical wall just in front of the tube which stops water horizontally flowing out of the tube, is
[given: density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$]
(A) 300 N
(B) 500 N
(C) 250 N
(D) 400 N

Answer (D)

Sol. $F_{w}=\rho A v^{2}$

$$
\begin{aligned}
& =10^{3} \times 10 \times 10^{-4} \times 20 \times 20 \\
& =400 \mathrm{~N}
\end{aligned}
$$

4. A uniform metal chain of mass m and length ' L ' passes over a massless and frictionless pully. It is released from rest with a part of its length ' γ is hanging on one side and rest of its length ' $L-l$ ' is hanging on the other side of the pully. At a certain point of time, when $I=\frac{L}{x}$, the acceleration of the chain is $\frac{g}{2}$. The value of x is \qquad .

(A) 6
(B) 2
(C) 1.5
(D) 4

Answer (D)

Sol.

$a=\frac{m_{2}-m_{1}}{m_{1}+m} g=\frac{g}{2}$
$\Rightarrow m_{2}=3 m_{1}$
$(L-I)=3 I$
$L=41$
$I=\frac{L}{4}$
5. A bullet of mass 200 g having initial kinetic energy 90 J is shot inside a long swimming pool as shown in the figure. If it's kinetic energy reduces to 40 J within 1 s , the minimum length of the pool, the bullet has to travel so that it completely comes to rest is

(A) 45 m
(B) 90 m
(C) 125 m
(D) 25 m

Answer (A)

Sol. $\frac{1}{2} m x^{2}=90$

$$
\begin{aligned}
& \Rightarrow \frac{1}{2} \times 0.2 \times x^{2}=90, \\
& x^{2}=900 \\
& x=30 \mathrm{~m} / \mathrm{s} \\
& \frac{1}{2} m v^{2}=40 \Rightarrow v=\frac{2}{3} \times 30=20 \mathrm{~m} / \mathrm{s} \\
& 20=30-a \times 1 \Rightarrow a=-10 \mathrm{~m} / \mathrm{s}^{2} \\
& 0-x^{2}=2 \text { as }
\end{aligned}
$$

$$
s=\frac{x^{2}}{-2 a}=\frac{30 \times 30}{2 \times 10}
$$

$$
=45 \mathrm{~m}
$$

6. Assume there are two identical simple pendulum clocks. Clock - 1 is placed on the earth and Clock 2 is placed on a space station located at a height h above the earth surface. Clock -1 and Clock - 2 operate at time periods 4 s and 6 s respectively. Then the value of h is-
(consider radius of earth $R_{E}=6400 \mathrm{~km}$ and g on earth $10 \mathrm{~m} / \mathrm{s}^{2}$)
(A) 1200 km
(B) 1600 km
(C) 3200 km
(D) 4800 km

Answer (C)
$T \propto \sqrt{1 / g}$
$\Rightarrow \frac{T_{1}}{T_{2}}=\sqrt{\frac{g_{2}}{g_{1}}}=\frac{R}{R+h}$
$\frac{4}{6}=\frac{R}{R+h}$
$\Rightarrow h=R / 2$
$=3200 \mathrm{~km}$
7. Consider a cylindrical tank of radius 1 m is filled with water. The top surface of water is at 15 m from the bottom of the cylinder. There is a hole on the wall of cylinder at a height of 5 m from the bottom. A force of $5 \times 10^{5} \mathrm{~N}$ is applied an the top surface of water using a piston. The speed of ifflux from the hole will be:
(given atmosphere pressure $P_{A}=1.01 \times 10^{5} \mathrm{~Pa}$, density of water $\rho_{w}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravitational acceleration $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

(A) $11.6 \mathrm{~m} / \mathrm{s}$
(B) $10.8 \mathrm{~m} / \mathrm{s}$
(C) $17.8 \mathrm{~m} / \mathrm{s}$
(D) $14.4 \mathrm{~m} / \mathrm{s}$

Answer (C)

Sol. By Bernoulli's theorem,
$\frac{5 \times 10^{5}}{\pi(1)^{2}}+\rho g(10)=1.01 \times 10^{5}+\frac{1}{2} \rho(v)^{2}$
$\Rightarrow v^{2}=200+\frac{10^{6}}{1000 \pi}-202$
$\Rightarrow v \simeq 17.8 \mathrm{~m} / \mathrm{s}$
8. A vessel contains 14 g of nitrogen gas at a temperature of $27^{\circ} \mathrm{C}$. The amount of heat to be transferred to the gas to double the r.m.s speed of its molecules will be:
Take $R=8.32 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$.
(A) 2229 J
(B) 5616 J
(C) 9360 J
(D) $13,104 \mathrm{~J}$

Answer (C)
Sol. $n=0.5$
$T=300$
For v_{rms} to be doubled $T^{\prime}=4 \times 300=1200$
\Rightarrow Heat transferred
$=(0.5)\left(\frac{5}{2}\right)(8.32)(900)$
$=9360 \mathrm{~J}$
9. A slab of dielectric constant K has the same crosssectional area as the plates of a parallel plate capacitor and thickness $\frac{3}{4} d$, where d is the separation of the plates. The capacitance of the capacitor when the slab is inserted between the plates will be:
(Given $C_{0}=$ capacitance of capacitor with air as medium between plates.)
(A) $\frac{4 K C_{0}}{3+K}$
(B) $\frac{3 K C_{0}}{3+K}$
(C) $\frac{3+K}{4 K C_{0}}$
(D) $\frac{K}{4+K}$

Answer (A)

Sol. $C_{0}=\frac{\varepsilon_{0} A}{d}$

$$
\begin{aligned}
& C=\frac{\varepsilon_{0} A}{d-\frac{3 d}{4}+\frac{3 d}{4 K}}=\frac{4 \varepsilon_{0} A K}{3 d+K d} \\
& =\frac{4 K C_{o}}{3+K}
\end{aligned}
$$

10. A uniform electric field $E=(8 \mathrm{~m} / \mathrm{e}) \mathrm{V} / \mathrm{m}$ is created between two parallel plates of length 1 m as shown in figure, (where $m=$ mass of electron and $e=$ charge of electron). An electron enters the field symmetrically between the plates with a speed of 2 m / s. The angle of the deviation (θ) of the path of the electron as it comes out of the field will be \qquad .

(A) $\tan ^{-1}(4)$
(B) $\tan ^{-1}(2)$
(C) $\tan ^{-1}\left(\frac{1}{3}\right)$
(D) $\tan ^{-1}(3)$

Answer (B)

Sol. $E=\frac{8 \mathrm{~m}}{e} \mathrm{~V} / \mathrm{m}$

$$
\begin{aligned}
& I=1 \mathrm{~m} \\
& v_{x}=2 \mathrm{~m} / \mathrm{s} \\
& a_{y}=-8 \mathrm{~m} / \mathrm{s}^{2} \\
& t=\frac{I}{v_{x}}=\frac{1}{2} \mathrm{~s} \\
& \Rightarrow\left|v_{y}\right|=4 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow \text { angle of deviation }=\theta \\
& \tan \theta=\frac{v_{y}}{v_{x}} \\
& \theta=\tan ^{-1}\left(\frac{4}{2}\right)=\tan ^{-1}(2)
\end{aligned}
$$

11. Given below are two statements:

Statement I : A uniform wire of resistance 80Ω is cut into four equal parts. These parts are now connected in parallel. The equivalent resistance of the combination will be 5Ω.
Statement II: Two resistances $2 R$ and $3 R$ are connected in parallel in a electric circuit. The value of thermal energy developed in $3 R$ and $2 R$ will be in the ratio $3: 2$.
In the light of the above statements, choose the most appropriate answer from the option given below.
(A) Both statement I and statement II are correct
(B) Both statement I and statement II are incorrect
(C) Statement I is correct but statement II is incorrect
(D) Statement I is incorrect but statement II is correct

Answer (C)

Sol. Statement I : $R_{1 \text { part }}=\frac{80}{4}=20 \Omega$

$$
\Rightarrow \quad R_{\text {eff }}=\frac{20}{4}=5 \Omega
$$

Statement II: Ratio $=\frac{\frac{(\Delta V)^{2}}{3 R}}{\frac{(\Delta V)^{2}}{2 R}}$

$$
=\frac{2}{3}
$$

12. A triangular shaped wire carrying 10 A current is placed in a uniform magnetic field of 0.5 T , as shown in figure. The magnetic force on segment $C D$ is (Given $B C=C D=B D=5 \mathrm{~cm}$).

(A) 0.126 N
(B) 0.312 N
(C) 0.216 N
(D) 0.245 N

Answer (C)

Sol. $\vec{F}=\overrightarrow{i \ell} \times \vec{B}$

$$
=i \ell B \sin 60^{\circ}
$$

$$
\begin{aligned}
& =10 \times \frac{5}{100} \times 0.5 \times \frac{\sqrt{3}}{2} \\
& =0.2165 \mathrm{~N}
\end{aligned}
$$

13. The magnetic field at the center of current carrying circular loop is B_{1}. The magnetic field at a distance of $\sqrt{3}$ times radius of the given circular loop from the center on its axis is B_{2}. The value of B_{1} / B_{2} will be
(A) $9: 4$
(B) $12: \sqrt{5}$
(C) $8: 1$
(D) $5: \sqrt{3}$

Answer (C)

Sol. $B_{1}=\frac{\mu_{0} i}{2 R}$

$$
\begin{aligned}
& B_{2}=\frac{\mu_{0} i R^{2}}{2\left(R^{2}+x^{2}\right)^{\frac{3}{2}}} \\
& \Rightarrow \frac{B_{1}}{B_{2}}=\frac{1}{R^{3}}\left(R^{2}+x^{2}\right)^{\frac{3}{2}} \\
& \quad=\frac{1}{R^{3}}\left(8 R^{3}\right) \\
& =8
\end{aligned}
$$

14. A transformer operating at primary voltage 8 kV and secondary voltage 160 V serves a load of 80 kW . Assuming the transformer to be ideal with purely resistive load and working on unity power factor, the loads in the primary and secondary circuit would be
(A) 800Ω and 1.06Ω
(B) 10Ω and 500Ω
(C) 800Ω and 0.32Ω
(D) 1.06Ω and 500Ω

Answer (C)
Sol. $V_{1} i_{1}=V_{2} i_{2}=80 \mathrm{~kW}$

$$
\begin{aligned}
& \Rightarrow i_{1}=10 \mathrm{~A} \text { and } i_{2}=\frac{80 \times 1000}{160}=500 \mathrm{~A} \\
& \Rightarrow R_{1}=\frac{V_{1}}{i_{1}}=800 \Omega \text { and } R_{2}=\frac{160}{500}=0.32 \Omega
\end{aligned}
$$

15. Sun light falls normally on a surface of area $36 \mathrm{~cm}^{2}$ and exerts an average force of $7.2 \times 10^{-9} \mathrm{~N}$ within a time period of 20 minutes. Considering a case of complete absorption, the energy flux of incident light is
(A) $25.92 \times 10^{2} \mathrm{~W} / \mathrm{cm}^{2}$
(B) $8.64 \times 10^{-6} \mathrm{~W} / \mathrm{cm}^{2}$
(C) $6.0 \mathrm{~W} / \mathrm{cm}^{2}$
(D) $0.06 \mathrm{~W} / \mathrm{cm}^{2}$

Answer (D)
Sol. Pressure $=\frac{l}{c}$

$$
\begin{aligned}
& \Rightarrow \frac{F}{A}=\frac{I}{c} \\
& \Rightarrow \quad I=\frac{7.2 \times 10^{-9} \times 3 \times 10^{8}}{36 \times 10^{-4}} \mathrm{~W} / \mathrm{m}^{2} \\
&=600 \mathrm{~W} / \mathrm{m}^{2} \\
& \Rightarrow \quad I=0.06 \mathrm{~W} / \mathrm{cm}^{2}
\end{aligned}
$$

16. The power of a lens (biconvex) is $1.25 \mathrm{~m}^{-1}$ in particular medium. Refractive index of the lens is 1.5 and radii of curvature are 20 cm and 40 cm respectively. The refractive index of surrounding medium
(A) 1.0
(B) $\frac{9}{7}$
(C) $\frac{3}{2}$
(D) $\frac{4}{3}$

Answer (B)

Sol. $\because \frac{1}{f}=\left(\frac{\mu_{2}}{\mu_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$\Rightarrow \frac{1.25}{100}=\left(\frac{1.5}{\mu_{1}}-1\right)\left(\frac{1}{20}+\frac{1}{40}\right)$
$\Rightarrow \frac{1}{80}=\left(\frac{1.5}{\mu_{1}}-1\right) \times \frac{(4+2)}{80}$
$\Rightarrow \frac{1.5}{\mu_{1}}-1=\frac{1}{6}$
$\Rightarrow \frac{1.5}{\mu_{1}}=\frac{7}{6}$
$\Rightarrow \mu_{1}=\frac{1.5 \times 6}{7}=\frac{9}{7}$
17. Two streams of photons, possessing energies equal to five and ten times the work function of metal are incident on the metal surface successively. The ratio of maximum velocities of the photoelectron emitted, in the two cases respectively, will be
(A) $1: 2$
(B) $1: 3$
(C) $2: 3$
(D) $3: 2$

Answer (C)

Sol. $\frac{1}{2} m v_{1}^{2}=5 \phi-\phi$
And, $\frac{1}{2} m v_{2}^{2}=10 \phi-\phi$
$\Rightarrow\left(\frac{v_{1}}{v_{2}}\right)^{2}=\frac{4}{9}$
$\Rightarrow \frac{v_{1}}{v_{2}}=\frac{2}{3}$
18. A radioactive sample decays $\frac{7}{8}$ times its original quantity in 15 minutes. The half-life of the sample is
(A) 5 min
(B) 7.5 min
(C) 15 min
(D) 30 min

Answer (A)
Sol. $N=\frac{N_{0}}{2^{\frac{t}{T_{1 / 2}}}}$
$\Rightarrow 2^{\frac{t}{T_{1 / 2}}}=\frac{N_{0}}{N}=\frac{N_{0}}{\left(\frac{N_{0}}{8}\right)}=8$
$\Rightarrow \frac{t}{T_{1 / 2}}=3$
$\Rightarrow T_{1 / 2}=\frac{15}{3}=5 \mathrm{~min}$
19. An n.p.n. transistor with current gain $\beta=100$ in common emitter configuration is shown in figure. The output voltage of the amplifier will be

(A) 0.1 V
(B) 1.0 V
(C) 10 V
(D) 100 V

Answer (B)
Sol. $\frac{V_{o}}{V_{i}}=\beta \times\left(\frac{R_{C}}{R_{B}}\right)$
$\Rightarrow V_{o}=100 \times\left(\frac{10}{1}\right) \times 10^{-3}$

$$
=1.0 \mathrm{~V}
$$

20. A FM Broad cast transmitter, using modulating signal of frequency 20 kHz has a deviation ratio of 10. The Bandwidth required for transmission is
(A) 220 kHz
(B) 180 kHz
(C) 360 kHz
(D) 440 kHz

Answer (D)
Sol. Band width of FM wave $=2\left(\Delta f+f_{m}\right)$
$\frac{\Delta f}{f_{m}}=10$
(Given)
$\Delta f=f_{m}(10)=20 \times 10=200 \mathrm{kHz}$
$B W=2(200+20) \mathrm{kHz}$
$=440 \mathrm{kHz}$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. A ball is thrown vertically upwards with a velocity of $19.6 \mathrm{~ms}^{-1}$ from the top of a tower. The ball strikes the ground after 6 s . The height from the ground up to which the ball can rise will be $\left(\frac{k}{5}\right) \mathrm{m}$. The value of k is \qquad (use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
Answer (392)
Sol. $v=19.6 \mathrm{~m} / \mathrm{s}$
$t=6 \mathrm{~s}$
Time taken in upward motion above tower $=2 \mathrm{~s}$
\Rightarrow Time taken from top most point to ground $=4 \mathrm{~s}$
$\Rightarrow \sqrt{\frac{2 h}{g}}=4$

$$
h=\frac{16 \times 9.8}{2}=8 \times 9.8
$$

$\Rightarrow k=8 \times 9.8 \times 5=392$
2. The distance of centre of mass from end A of a one dimensional rod $(A B)$ having mass density $\rho=\rho_{0}\left(1-\frac{x^{2}}{L^{2}}\right) \mathrm{kg} / \mathrm{m}$ and length L (in meter) is $\frac{3 L}{\alpha} \mathrm{~m}$. The value of α is \qquad . (where x is the distance from end A)

Answer (8)

Sol. $\rho=\rho_{0}\left(1-\frac{x^{2}}{L^{2}}\right) \mathrm{kg} / \mathrm{m}$
$x_{\mathrm{cm}}=\frac{A \int_{0}^{L} \rho_{0}\left(1-\frac{x^{2}}{L^{2}}\right) x d x}{A \int_{0}^{L} \rho_{0}\left(1-\frac{x^{2}}{L^{2}}\right) d x}$
$x_{\mathrm{cm}}=\frac{\frac{L^{2}}{2}-\frac{L^{2}}{4}}{L-\frac{L}{3}}=\frac{\frac{L^{2}}{4}}{\frac{2 L}{3}}=\frac{3 L}{8}$
$\Rightarrow \quad \alpha=8$
3. A string of area of cross-section $4 \mathrm{~mm}^{2}$ and length 0.5 m is connected with a rigid body of mass 2 kg . The body is rotated in a vertical circular path of radius 0.5 m . The body acquires a speed of $5 \mathrm{~m} / \mathrm{s}$ at the bottom of the circular path. Strain produced in the string when the body is at the bottom of the circle is \qquad $\times 10^{-5}$.
(use young's modulus $10^{11} \mathrm{~N} / \mathrm{m}^{2}$ and $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Answer (30)

Sol. $A=4 \times 10^{-6} \mathrm{~m}^{2}$
$I=0.5 \mathrm{~m}$
$m=2 \mathrm{~kg}$
$v_{b}=5 \mathrm{~m} / \mathrm{s}$
$T_{b}=m g+m\left(\frac{V_{b}^{2}}{I}\right)$

$$
=20+2 \times \frac{25}{\frac{1}{2}}=120 \mathrm{~N}
$$

$\frac{\Delta I}{I}=\frac{T_{b}}{A} \times \frac{1}{Y}=\frac{120}{4 \times 10^{-6}} \times 10^{-11}=30 \times 10^{-5}$
4. At a certain temperature, the degrees of freedom per molecule for gas is 8 . The gas performs 150 J of work when it expands under constant pressure. The amount of heat absorbed by the gas will be
\qquad J.

Answer (750)

Sol. $f=8$

$$
\begin{aligned}
W & =P d V=150 \\
Q & =W+\Delta U \\
& =P d V+\frac{f}{2} P d V \\
Q & =5 \times 150=750 \mathrm{~J}
\end{aligned}
$$

5. The potential energy of a particle of mass 4 kg in motion along the x-axis is given by $U=4(1-\cos 4 x) \mathrm{J}$. The time period of the particle for small oscillation
$(\sin \theta \simeq \theta)$ is $\left(\frac{\pi}{K}\right) s$. The value of K is \qquad -

Answer (2)

Sol. $U=4(1-\cos 4 x)$
$\Rightarrow F=-\frac{d U}{d x}=-(4)(4 \sin 4 x)$

$$
=-16 \sin 4 x
$$

as small x
$F=-16(4 x)=-64 x \equiv-k x$
$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{4}{64}}=\frac{\pi}{2}$
$\Rightarrow K=2$
6. An electrical bulb rated $220 \mathrm{~V}, 100 \mathrm{~W}$, is connected in series with another bulb rated $220 \mathrm{~V}, 60 \mathrm{~W}$. If the voltage across combination is 220 V , the power consumed by the 100 W bulb will be about \qquad W.

Answer (14)

Sol. $P_{100}=\frac{V^{2}}{R_{100}} \Rightarrow R_{100}=\frac{V^{2}}{P_{100}}$
$P_{60}=\frac{V^{2}}{R_{60}} \Rightarrow R_{60}=\frac{V^{2}}{P_{60}}$
$P_{\text {net }}=\frac{V^{2}}{R_{60}+R_{100}}=\frac{P_{60} P_{100}}{P_{60}+P_{100}}=\frac{60 \times 100}{160}=37.5$
This power developed is proportional to resistance.
So, $P_{60}^{\prime}=P_{\text {net }} \times \frac{60}{160}=37.5 \times \frac{60}{160} \simeq 14 \mathrm{~W}$
7. For the given circuit the current through battery of 6 V just after closing the switch S will be \qquad A.

Answer (1)

Sol. Just after closing the switch, $i=\frac{6}{4+2}=1 \mathrm{~A}$
8. An object O is placed at a distance of 100 cm in front of a concave mirror of radius of curvature 200 cm as shown in the figure. The object starts moving towards the mirror at a speed $2 \mathrm{~cm} / \mathrm{s}$. The position of the image from the mirror after 10 s will be at
\qquad cm .

Answer (400)

Sol. The object after 10 second will be at $u=-80 \mathrm{~cm}$.
So $\frac{1}{v}-\frac{1}{80}=-\frac{1}{100} \Rightarrow v=\frac{8000}{+20}=400 \mathrm{~cm}$
9. In an experiment with a convex lens, the plot of the image distance (v^{\prime}) against the object distance (μ^{\prime}) measured from the focus gives a curve $v^{\prime} \mu^{\prime}=225$. If all the distances are measured in cm . The magnitude of the focal length of the lens is \qquad cm.

Answer (15)

Sol. Using Newton's formula for lenses,

$$
v^{\prime} \mu^{\prime}=f^{2}=225 \Rightarrow f=15
$$

10. In an experiment to find acceleration due to gravity (g) using simple pendulum, time period of 0.5 s is measured from time of 100 oscillations with a watch of 1 s resolution. If measured value of length is 10 cm known to 1 mm accuracy, the accuracy in the determination of g is found to be $x \%$. The value of x is \qquad

Answer (5)

Sol. $T=2 \pi \sqrt{\frac{1}{g}}$

$$
\begin{aligned}
\frac{d g}{g} \times 100 & =\frac{2 d T}{T} \times 100+\frac{d \ell}{\ell} \times 100 \\
& =2 \times \frac{1}{50} \times 100+\frac{1}{100} \times 100=5 \%
\end{aligned}
$$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason \mathbf{R} Assertion A: Zero orbital overlap is an out of phase overlap.

Reason R: It results due to different orientation/direction of approach of orbitals.
In the light of the above statements, choose the correct answer from the options given below
(A) Both A and R are true and R is the correct explanation of A
(B) Both A and R are true but R is NOT the correct explanation of A
(C) A is true but R is false
(D) A is false but R is true

Answer (A)

Zero overlapping is something in which there is no overlapping between two orbitals. The first condition is that the two orbitals should not be symmetrical and the second condition is that both orbitals should be in different planes.
2. The correct decreasing order for metallic character is
(A) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Be}>\mathrm{Si}>\mathrm{P}$
(B) $\mathrm{P}>\mathrm{Si}>\mathrm{Be}>\mathrm{Mg}>\mathrm{Na}$
(C) $\mathrm{Si}>\mathrm{P}>\mathrm{Be}>\mathrm{Na}>\mathrm{Mg}$
(D) $\mathrm{Be}>\mathrm{Na}>\mathrm{Mg}>\mathrm{Si}>\mathrm{P}$

Answer (A)

Metallic character increases top to bottom in group and decreases left to right in a period.
Mg is from second group it will be less metallic than
Na . Be comes above Mg hence less metallic than
Mg . Si is more metallic than phosphorous.
3. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason \mathbf{R} Assertion A: The reduction of a metal oxide is easier if the metal formed is in liquid state than solid state.

Reason R: The value of ΔG^{\ominus} becomes more on negative side as entropy is higher in liquid state than solid state.

In the light of the above statements, choose the most appropriate answer from the options given below
(A) Both A and R are correct and R is the correct explanation of A
(B) Both A and R are correct but R is not the correct explanation of A
(C) A is correct but R is not correct
(D) A is not correct but R is correct

Answer (A)

Reduction of a metal oxide is easier if the metal is formed in a liquid state at the temperature of reduction because the entropy is higher if the metal is in a liquid state.
4. The products obtained during treatment of hard water using Clark's method are:
(A) CaCO_{3} and MgCO_{3}
(B) $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{Mg}(\mathrm{OH})_{2}$
(C) CaCO_{3} and $\mathrm{Mg}(\mathrm{OH})_{2}$
(D) $\mathrm{Ca}(\mathrm{OH})_{2}$ and MgCO_{3}

Answer (C)

Clark's method:

$$
\begin{aligned}
\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow & 2 \mathrm{CaCO}_{3} \downarrow \\
& +\mathrm{Mg}\left(\mathrm{OH}_{2}\right) \downarrow+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

5. Statement-I: An alloy of lithium and magnesium is used to make aircraft plates.

Statement-II: The magnesium ions are important for cell-membrane integrity.

In the light of the above statements, choose the correct answer from the options given below:
(A) Both Statement-I and Statement-II are true
(B) Both Statement-I and Statement-II are false
(C) Statement-I is true but Statement-II is false
(D) Statement-I is false but Statement-II is true

Answer (B)

Magnesium alloys are used to make body of aircraft which is lightweight and resistant to corrosion. Calcium is responsible for cell membrane integrity.
6. White phosphorus reacts with thionyl chloride to give
(A) $\mathrm{PCl}_{5}, \mathrm{SO}_{2}$ and $\mathrm{S}_{2} \mathrm{Cl}_{2}$
(B) $\mathrm{PCl}_{3}, \mathrm{SO}_{2}$ and $\mathrm{S}_{2} \mathrm{Cl}_{2}$
(C) $\mathrm{PCl}_{3}, \mathrm{SO}_{2}$ and Cl_{2}
(D) $\mathrm{PCl}_{5}, \mathrm{SO}_{2}$ and Cl_{2}

Answer (B)

Sol $\underset{\text { White phosphorous }}{\mathrm{P}_{4}}+\underset{\text { Thionyl chloride }}{8 \mathrm{SOCl}_{2}} \longrightarrow 4 \mathrm{PCl}_{3}+4 \mathrm{SO}_{2}+2 \mathrm{~S}_{2} \mathrm{Cl}_{2}$
7. Concentrated HNO_{3} reacts with lodine to give
(A) $\mathrm{HI}, \mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{HIO}_{2}, \mathrm{~N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{HIO}_{3}, \mathrm{NO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
(D) $\mathrm{HIO}_{4}, \mathrm{~N}_{2} \mathrm{O}$ and $\mathrm{H}_{2} \mathrm{O}$

Answer (C)

Sol $\mathrm{I}_{2}+10 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{HIO}_{3}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
8. Which of the following pair is not isoelectronic species?
(At. no. Sm, 62; Er, 68; Yb, 70; Lu, 71; Eu, 63; Tb, 65; Tm, 69)
(A) Sm^{2+} and Er^{3+}
(B) Yb^{2+} and Lu^{3+}
(C) Eu^{2+} and Tb^{4+}
(D) Tb^{2+} and Tm^{4+}

Answer (A, D)

Sol Species having same number of electrons are isoelectronic

$\left.\begin{array}{l}\mathrm{Sm}^{+2} \longrightarrow 60 \text { electrons } \\ \mathrm{Er}^{+3} \longrightarrow 65 \text { electrons }\end{array}\right\}$ not isoelectronic
9. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason \mathbf{R}.

Assertion A: Permanganate titrations are not performed in presence of hydrochloric acid.

Reason R: Chlorine is formed as a consequence of oxidation of hydrochloric acid.

In the light of the above statements, choose the correct answer from the options given below.
(A) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(B) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(C) \mathbf{A} is true but \mathbf{R} is false
(D) \mathbf{A} is false but \mathbf{R} is true

Answer (A)

Sol HCl is not used in the process of titration because it reacts with the $\left(\mathrm{KMnO}_{4}\right)$ that is used in the process and gets oxidized.
10. Match List-I with List-II

List I (Complex)	List II (Hybridization)
A. $\mathrm{Ni}(\mathrm{CO})_{4}$	I. sp ${ }^{3}$
B. $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$	II. sp ${ }^{3} \mathrm{~d}^{2}$
C. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}$	III. d ${ }^{2}$ sp 3
D. $\left[\mathrm{CoF}_{6}\right]^{3-}$	IV. dsp ${ }^{2}$

Choose the correct answer from the options given below:
(A) A-IV, B-I, C-III, D-II
(B) A-I, B-IV, C-III, D-II
(C) A-I, B-IV, C-II, D-III
(D) A-IV, B-I, C-II, D-III

Answer (B)

Sol A. $\mathrm{Ni}(\mathrm{CO})_{4} \rightarrow \mathrm{sp}^{3}$
B $\quad\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2} \rightarrow \mathrm{dsp}^{2}$
C. $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-3} \rightarrow \mathrm{~d}^{2} \mathrm{sp}^{3}$
D. $\left[\mathrm{CoF}_{6}\right]^{-3} \rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$
11. Dinitrogen and dioxygen, the main constituents of air do not react with each other in atmosphere to form oxides of nitrogen because
(A) N_{2} is unreactive in the condition of atmosphere
(B) Oxides of nitrogen are unstable
(C) Reaction between them can occur in the presence of a catalyst
(D) The reaction is endothermic and require very high temperature

Answer (D)

Sol. N_{2} is unreactive, its reaction with oxides is endothermic and require very high temperature.
12. The major product in the given reaction is

(A)

(B)

(C)

(D)

Answer (C)

Sol.

13. Arrange the following in increasing order of reactivity towards nitration
A. p-xylene
B. bromobenzene
C. mesitylene
D. nitrobenzene
E. benzene
(A) C $<$ D $<$ E $<$ A $<$ B
(B) D $<$ B $<$ E $<$ A $<$ C
(C) D $<$ C $<$ E $<$ A $<$ B
(D) C $<$ D $<$ E $<$ B $<$ A

Answer (B)

Sol. The correct order of reactivity towards nitration is

as electron releasing groups on benzene ring facilitate the nitration at benzene ring.
14. Compound I is heated with Conc. HI to give a hydroxy compound A which is further heated with Zn dust to give compound B . Identify A and B .

(A) $\mathrm{A}=$

B =
(B) $\mathrm{A}=$
 , $\mathrm{B}=$

(C) $\mathrm{A}=$
 $B=$

(D) $\mathrm{A}=$
 , B

Answer (D)

Sol.

(B)
15. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R

Assertion A : Aniline on nitration yields ortho, meta \& para nitro derivatives of aniline.

Reason R : Nitrating mixture is a strong acidic mixture.

In the light of the above statements, choose the correct answer from the options given below.
(A) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}
(B) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(C) \mathbf{A} is true but \mathbf{R} is false
(D) \mathbf{A} is false but \mathbf{R} is true

Sol.

Nitrating mixture

Similarly
 and

16. Match List I with List II

List I (Polymer)	List II (Nature)
A.	I. Thermosetting polymer
	II. Fibers
C.	III. Elastomer
D.	IV. Thermoplastic polymer

Choose the correct answer from the options given below:
(A) A-II, B-III, C-IV, D-I
(B) A-III, B-II, C-IV, D-I
(C) A-III, B-I, C-IV, D-II
(D) A-I, B-III, C-IV, D-II

Answer (B)

Sol. (A)

(B)

(C) $\left[\begin{array}{c}\mathrm{Cl} \\ 1 \\ \mathrm{CH}_{2}-\mathrm{CH}\end{array}\right]_{\mathrm{n}}$ - Thermoplastic polymer
(D)

17. Two statements in respect of drug-enzyme interaction are given below
Statement I: Action of an enzyme can be blocked only when an inhibitor blocks the active site of the enzyme.
Statement II: An inhibitor can form a strong covalent bond with the enzyme.
In the light of the above statements, choose the correct answer from the options given below
(A) Both Statement I and Statement II are true
(B) Both Statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Answer (D)
Sol. Action of an enzyme can be altered by a number of factors like temperature, pH , presence of activators and coenzymes and presence of inhibitors and poisons.
Inhibitors or poisons interact with the active functional groups on the enzyme surface and often reduce or completely destroy the catalytic activity of the enzymes.
18. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.
Assertion A: Thin layer chromatography is an adsorption chromatography.
Reason R: A thin layer of silica gel is spread over a glass plate of suitable size in thin layer chromatography which acts as an adsorbent.

In the light of the above statements, choose the correct answer from the options given below
(A) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}.
(B) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}
(C) \mathbf{A} is true but \mathbf{R} is false
(D) \mathbf{A} is false but \mathbf{R} is true

Answer (A)
Sol. Thin layer chromatography is an adsorption chromatography. A thin layer of silica gel is spread over a glass plate of suitable size and act as an adsorbent.
19. The formulas of A and B for the following reaction sequence

are
(A) $\mathrm{A}=\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{8}, \mathrm{~B}=\mathrm{C}_{6} \mathrm{H}_{14}$
(B) $\mathrm{A}=\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{O}_{7}, \mathrm{~B}=\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}$
(C) $\mathrm{A}=\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{8}, \mathrm{~B}=\mathrm{C}_{6} \mathrm{H}_{14}$
(D) $\mathrm{A}=\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{8}, \mathrm{~B}=\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$

Answer (A)
Sol.

Find out the major product for the above reaction.
(A)

(B)

(C)

(D)

Answer (C)

Sol.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. 2 L of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is reacted with 2 L of 0.1 M NaOH solution, the molarity of the resulting product $\mathrm{Na}_{2} \mathrm{SO}_{4}$ in the solution is \qquad millimolar. (Nearest integer)

Answer (25)

Sol.

Molarity of $\mathrm{Na}_{2} \mathrm{SO}_{4}=\frac{0.1}{4}=0.025 \mathrm{M}$

$$
=25 \text { millimolar. }
$$

2. Metal M crystallizes into a fcc lattice with the edge length of $4.0 \times 10^{-8} \mathrm{~cm}$. The atomic mass of the metal is \qquad $\mathrm{g} / \mathrm{mol}$. (Nearest integer)
(Use : $\mathrm{N}_{\mathrm{A}}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$, density of metal, $\mathrm{M}=9.03 \mathrm{~g} \mathrm{~cm}^{-3}$)

Answer (87)
Sol. $\rho=\frac{Z M}{N_{A} a^{3}} \Rightarrow M=\frac{9.03 \times 6.02 \times 10^{23} \times\left(4 \times 10^{-8}\right)^{3}}{4}$

$$
=\frac{9.03 \times 6.02 \times 64 \times 10^{-1}}{4}
$$

$$
=86.9 \mathrm{~g} \mathrm{~mol}^{-1}
$$

$$
\approx 87 \mathrm{~g} \mathrm{~mol}^{-1}
$$

3. If the wavelength for an electron emitted from H -atom is $3.3 \times 10^{-10} \mathrm{~m}$, then energy absorbed by the electron in its ground state compared to minimum energy required for its escape from the atom, is \qquad times. (Nearest integer)
[Given : $\mathrm{h}=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$]
[Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$]

Answer (2)

Sol. $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$

$$
\begin{aligned}
& \Rightarrow \mathrm{mv}=\frac{\mathrm{h}}{\lambda}=\frac{6.626 \times 10^{-34} \mathrm{~kg} \frac{\mathrm{~m}^{2}}{\mathrm{sec}^{2}} \times \mathrm{sec}}{3.3 \times 10^{-10} \mathrm{~m}} \\
& \mathrm{mv}=\frac{6.626 \times 10^{-24}}{3.3}=2 \times 10^{-24} \mathrm{~kg} \mathrm{~m} \mathrm{sec}^{-1}
\end{aligned}
$$

$$
\text { Kinetic energy }=\frac{1}{2} m v^{2}
$$

$$
=\frac{(m v)^{2}}{2 m}
$$

$$
=\frac{\left(2 \times 10^{-24}\right)^{2}}{2 \times 9.1 \times 10^{-31} \mathrm{~kg}}
$$

$$
=2.18 \times 10^{-18} \mathrm{~J}
$$

$$
=21.8 \times 10^{-19} \mathrm{~J}
$$

Total energy $=$ Ionization + Kinetic
absorbed energy energy

$$
\begin{aligned}
& =(21.76+21.8) \times 10^{-19} \\
& =43.56 \times 10^{-19} \mathrm{~J} \\
& \approx 2 \text { times of } 21.76 \times 10^{-19} \mathrm{~J}
\end{aligned}
$$

4. A gaseous mixture of two substances A and B, under a total pressure of 0.8 atm is in equilibrium with an ideal liquid solution. The mole fraction of substance A is 0.5 in the vapour phase and 0.2 in the liquid phase. The vapour pressure of pure liquid A is \qquad atm. (Nearest integer)

Answer (2)

Sol. Given that $X_{A}=0.2, Y_{A}=0.5, P_{T}=0.8 \mathrm{~atm}$
We know that $P_{A}=Y_{A} \times P_{T}$

$$
P_{A}=0.5 \times 0.8=0.4
$$

Now $P_{A}=X_{A} \times P_{A}^{\circ} \Rightarrow P_{A}^{\circ}=\frac{0.4}{0.2}=2 \mathrm{~atm}$
5. At $600 \mathrm{~K}, 2 \mathrm{~mol}$ of NO are mixed with 1 mol of O_{2}.
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{NO}_{2}(\mathrm{~g})$
The reaction occurring as above comes to equilibrium under a total pressure of 1 atm . Analysis of the system shows that 0.6 mol of oxygen are present at equilibrium. The equilibrium constant for the reaction is \qquad . (Nearest integer)
Answer (2)
Sol.

	$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons$	
at intial	2	1
at		
equilibrium	$2-0.8$	0.6

Partial pressure of $\mathrm{NO}(\mathrm{g})=\frac{1.2}{2.6} \times 1$
Partial pressure of $\mathrm{O}_{2}(\mathrm{~g})=\frac{0.6}{2.6}$
Partial pressure of $\mathrm{NO}_{2}(\mathrm{~g})=\frac{0.8}{2.6}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{p}}=\frac{\left(\mathrm{P}_{\mathrm{NO}_{2}}\right)^{2}}{\left(\mathrm{P}_{\mathrm{NO}}\right)^{2}\left(\mathrm{P}_{\mathrm{O}_{2}}\right)} & =\frac{0.8 \times 0.8 \times 2.6}{1.2 \times 1.2 \times 0.6} \\
& =1.925 \\
& \approx 2
\end{aligned}
$$

6. A sample of 0.125 g of an organic compound when analysed by Duma's method yields 22.78 mL of nitrogen gas collected over KOH solution at 280 K and 759 mm Hg . The percentage of nitrogen in the given organic compound is \qquad .(Nearest integer)

Given :
(a) The vapour pressure of water of 280 K is 14.2 mm Hg .
(b) $\mathrm{R}=0.082 \mathrm{~L}$ atm $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$

Answer (22)

Sol. Pactual $=759-14.2=744.8 \mathrm{mmHg}$

$$
\begin{aligned}
\mathrm{n}_{\mathrm{N}_{2}} & =\frac{744.8 \times 22.78}{760 \times 0.0821 \times 280 \times 1000} \\
& =0.000971 \mathrm{~mol}
\end{aligned}
$$

Mass of $\mathrm{N}_{2}=0.02719 \mathrm{gm}$
Percentage of nitrogen

$$
=\frac{0.0271}{0.125} \times 100=21.75 \simeq 22
$$

7. On reaction with stronger oxidizing agent like KIO_{4}, hydrogen peroxide oxidizes with the evolution of O_{2}. The oxidation number of I in KIO_{4} changes to \qquad .

Answer (5)

Sol. $\stackrel{+7}{\mathrm{KIO}_{4}}+\mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow \stackrel{+5}{\mathrm{KIO}_{3}}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
8. For a reaction, given below is the graph of $\ln \mathrm{k}$ vs $\frac{1}{\mathrm{~T}}$. The activation energy for the reaction is equal to \qquad cal mol ${ }^{-1}$. (Nearest integer)
(Given: $\mathrm{R}=2$ cal K $^{-1} \mathrm{~mol}^{-1}$)

Answer (8)

Sol. In k

Slope $=\frac{-20}{5}$
$\ln \mathrm{k}=\ln \mathrm{A}-\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{RT}}$
$\therefore \frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{R}}=\frac{20}{5} \Rightarrow \mathrm{E}=\frac{20 \mathrm{R}}{5}=8 \mathrm{cal} \mathrm{mol}^{-1}$
9. Among the following the number of curves not in accordance with Freundlich adsorption isotherm is \qquad .
(a)

(c)

(d)

Answer (3)

Sol. The following curves are not in accordance with Freundlich adsorption isotherm.

(b)

10. Among the following the number of state variables is \qquad -.
Internal energy (U)
Volume (V)
Heat (q)
Enthalpy (H)

Answer (3)

Sol. State variables are internal energy (U), Volume (V) and Enthalpy (H).

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let $S=\left\{x \in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2} \geq 0\right\}$ and $T=\left\{x \in \mathbb{Z}: x^{2}-7|x|+9 \leq 0\right\}$. Then the number of elements in $S \cap T$ is
(A) 7
(B) 5
(C) 4
(D) 3

Answer (D)

Sol. $|x|^{2}-7|x|+9 \leq 0$
$\Rightarrow|x| \in\left[\frac{7-\sqrt{13}}{2}, \frac{7+\sqrt{13}}{2}\right]$
As $x \in Z$
So, x can be $\pm 2, \pm 3, \pm 4, \pm 5$
Out of these values of x,
$x=3,-4,-5$
satisfy S as well
$n(S \cap T)=3$
2. Let α, β be the roots of the equation $x^{2}-\sqrt{2} x+\sqrt{6}=0$ and $\frac{1}{\alpha^{2}}+1, \frac{1}{\beta^{2}}+1, \frac{1}{\beta^{2}}+1$ be the roots of the equation $x^{2}+a x+b=0$. Then the roots of the equation $x^{2}-(a+b-2) x+(a+b+2)$ $=0$ are
(A) non-real complex number
(B) real and both negative
(C) real and both positive
(D) real and exactly one of them is positive

Answer (B)

Sol. $\alpha+\beta=\sqrt{2}, \alpha \beta=\sqrt{6}$

$$
\begin{aligned}
\frac{1}{\alpha^{2}}+1+\frac{1}{\beta^{2}}+1 & =2+\frac{\alpha^{2}+\beta^{2}}{6} \\
& =2+\frac{2-2 \sqrt{6}}{6}=-a
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{1}{\alpha^{2}}+1\right)\left(\frac{1}{\beta^{2}}+1\right) & =1+\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}+\frac{1}{\alpha^{2} \beta^{2}} \\
& =\frac{7}{6}+\frac{2-2 \sqrt{6}}{6}=b
\end{aligned}
$$

$\Rightarrow a+b=\frac{-5}{6}$
So, equation is $x^{2}+\frac{17 x}{6}+\frac{7}{6}=0$
OR $6 x^{2}+17 x+7=0$
Both roots of equation are -ve and distinct
3. Let A and B be any two 3×3 symmetric and skew symmetric matrices respectively. Then Which of the following is NOT true?
(A) $A^{4}-B^{4}$ is a symmetric matrix
(B) $A B-B A$ is a symmetric matrix
(C) $B^{5}-A^{5}$ is a skew-symmetric matrix
(D) $A B+B A$ is a skew-symmetric matrix

Answer (C)

Sol. (A) $M=A^{4}-B^{4}$

$$
\begin{aligned}
M^{\top}=\left(A^{4}-B^{4}\right)^{T} & =\left(A^{T}\right)^{4}-\left(B^{T}\right)^{4} \\
& =A^{4}-(-B)^{4}=A^{4}-B^{4}=M
\end{aligned}
$$

(B) $M=A B-B A$

$$
\begin{aligned}
& M^{T}=(A B-B A)^{\top}=(A B)^{\top}-(B A)^{\top} \\
& =B^{\top} A^{T}-A^{\top} B^{\top} \\
& =-B A-A(-B) \\
& =A B-B A=M
\end{aligned}
$$

(C) $M=B^{5}-A^{5}$

$$
M^{T}=\left(B^{T}\right)^{5}-\left(A^{T}\right)^{5}=-\left(B^{5}+A^{5}\right) \neq-M
$$

(D) $M=A B+B A$
$M^{T}=(A B)^{\top}+(B A)^{T}$

$$
=B^{\top} A^{\top}+A^{\top} B^{\top}=-B A-A B=-M
$$

4. Let $f(x)=a x^{2}+b x+c$ be such that $f(1)=3, f(-2)=$ λ and $f(3)=4$. If $f(0)+f(1)+f(-2)+f(3)=14$, then λ is equal to
(A) -4
(B) $\frac{13}{2}$
(C) $\frac{23}{2}$
(D) 4

Answer (D)

Sol. $f(1)=a+b+c=3$
$f(3)=9 a+3 b+c=4$
$f(0)+f(1)+f(-2)+f(3)=14$
OR $c+3+(4 a-2 b+c)+4=14$
OR $4 a-2 b+2 c=7$
From (i) and (ii) $8 a+2 b=1 \quad \ldots$ (iv)
From (iii) - (2) \times (i)
$\Rightarrow 2 a-4 b=1$
From (iv) and (v) $a=\frac{1}{6}, b=\frac{-1}{6}$ and $c=3$
$f(-2)=4 a-2 b+c$
$=\frac{4}{6}+\frac{2}{6}+3=4$
5. The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}$ is continuous for all x in
(A) $\mathbb{R}-\{-1\}$
(B) $\mathbb{R}-\{-1,1\}$
(C) $\mathbb{R}-\{1\}$
(D) $\mathbb{R}-\{0\}$

Answer (B)

Sol. $f(x)=\lim _{n \rightarrow \infty} \frac{\cos (2 \pi x)-x^{2 n} \sin (x-1)}{1+x^{2 n+1}-x^{2 n}}$
For $|x|<1, f(x)=\cos 2 \pi x$, continuous function
$|x|>1, f(x)=\lim _{n \rightarrow \infty} \frac{\frac{1}{x^{2 n}} \cos 2 \pi x-\sin (x-1)}{\frac{1}{x^{2 n}}+x-1}$
$=\frac{-\sin (x-1)}{x-1}$, continuous
For $|x|=1, f(x)=\left\{\begin{array}{cll}1 & \text { if } & x=1 \\ -(1+\sin 2) & \text { if } & x=-1\end{array}\right.$
Now,
$\lim _{x \rightarrow 1^{+}} f(x)=-1, \quad \lim _{x \rightarrow 1^{-}} f(x)=1$, so
discontinuous at $x=1$
$\lim _{x \rightarrow-1^{+}} f(x)=1, \lim _{x \rightarrow-1^{-}} f(x)=-\frac{\sin 2}{2}$, so discontinuous at $x=-1$
$\therefore f(x)$ is continuous for all $x \in R-\{-1,1\}$
6. The function $f(x)=x e^{x(1-x)}, x \in \mathbb{R}$, is
(A) Increasing in $\left(-\frac{1}{2}, 1\right)$
(B) Decreasing in $\left(\frac{1}{2}, 2\right)$
(C) Increasing in $\left(-1,-\frac{1}{2}\right)$
(D) Decreasing in $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Answer (A)

Sol. $f(x)=x e^{x(1-x)}, x \in \mathbb{R}$

$$
\begin{aligned}
f^{\prime}(x) & =x e^{x(1-x)} \cdot(1-2 x)+e^{x(1-x)} \\
& =e^{x(1-x)}\left[x-2 x^{2}+1\right] \\
& =-e^{x(1-x)}\left[2 x^{2}-x-1\right] \\
& =-e^{x(1-x)}(2 x+1)(x-1)
\end{aligned}
$$

$\therefore f(x)$ is increasing in $\left(-\frac{1}{2}, 1\right)$ and decreasing
in $\left(-\infty,-\frac{1}{2}\right) \cup(1, \infty)$
7. The sum of the absolute maximum and absolute minimum values of the function $f(x)=\tan ^{-1}(\sin x-\cos x)$ in the interval $[0, \pi]$ is
(A) 0
(B) $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)-\frac{\pi}{4}$
(C) $\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\frac{\pi}{4}$
(D) $\frac{-\pi}{12}$

Answer (C)

Sol. $f(x)=\tan ^{-1}(\sin x-\cos x), \quad[0, \pi]$
Let $g(x)=\sin x-\cos x$

$$
\left.\begin{array}{l}
\quad=\sqrt{2} \sin \left(x-\frac{\pi}{4}\right) \text { and } x-\frac{\pi}{4} \in\left[\frac{-\pi}{4}, \frac{3 \pi}{4}\right] \\
\therefore \quad g(x)
\end{array}\right)[-1, \sqrt{2}]
$$

and $\tan ^{-1} x$ is an increasing function
$\therefore \quad f(x) \in\left[\tan ^{-1}(-1), \tan ^{-1} \sqrt{2}\right]$

$$
\in\left[-\frac{\pi}{4}, \tan ^{-1} \sqrt{2}\right]
$$

\therefore Sum of $f_{\text {max }}$ and $f_{\text {min }}=\tan ^{-1} \sqrt{2}-\frac{\pi}{4}$

$$
=\cos ^{-1}\left(\frac{1}{\sqrt{3}}\right)-\frac{\pi}{4}
$$

8. Let $x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$ and $y(t)=2 \sqrt{2} \sin t$ $\sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$. Then $\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$ at $t=\frac{\pi}{4}$ is equal to
(A) $\frac{-2 \sqrt{2}}{3}$
(B) $\frac{2}{3}$
(C) $\frac{1}{3}$
(D) $\frac{-2}{3}$

Answer (D)

Sol. $x=2 \sqrt{2} \cos t \sqrt{\sin 2 t}, y=2 \sqrt{2} \sin t \sqrt{\sin 2 t}$

$$
\begin{aligned}
& \therefore \quad \frac{d x}{d t}=\frac{2 \sqrt{2} \cos 3 t}{\sqrt{\sin 2 t}}, \frac{d y}{d t}=\frac{2 \sqrt{2} \sin 3 t}{\sqrt{\sin 2 t}} \\
& \therefore \quad \frac{d y}{d x}=\tan 3 t,\left(\text { at } t=\frac{\pi}{4}, \frac{d y}{d x}=-1\right)
\end{aligned}
$$

and $\frac{d^{2} y}{d x^{2}}=3 \sec ^{2} 3 t \cdot \frac{d t}{d x}=\frac{3 \sec ^{2} 3 t \cdot \sqrt{\sin 2 t}}{2 \sqrt{2} \cos 3 t}$
(At $\left.t=\frac{\pi}{4}, \frac{d^{2} y}{d x^{2}}=-3\right)$
$\therefore \frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}=\frac{2}{-3}=\frac{-2}{3}$
9. Let $I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t, n=1,2,3, \ldots .$. Then
(A) $50 I_{6}-9 I_{5}=x I_{5}^{\prime}$
(B) $50 I_{6}-11 I_{5}=x I_{5}^{\prime}$
(C) $50 I_{6}-9 I_{5}=I_{5}$
(D) $50 I_{6}-11 I_{5}=I_{5}^{\prime}$

Sol. $I_{n}(x)=\int_{0}^{x} \frac{1}{\left(t^{2}+5\right)^{n}} d t$

$$
=\int_{0}^{\frac{1}{\left(t^{2}+5\right)^{n}}} \times \underbrace{\prime \prime}_{1} d t
$$

$$
=\left.\frac{t}{\left(t^{2}+5\right)^{n}}\right|_{0} ^{x}-\int_{0}^{x} \frac{-2 n t}{\left(t^{2}+5\right)^{n+1}} \times t d t
$$

$$
=\frac{x}{\left(x^{2}+5\right)^{n}}+\int_{0}^{x} 2 n\left(\frac{t^{2}+5-5}{\left(t^{2}+5\right)^{n+1}}\right) d t
$$

$$
I_{n}(x)=\frac{x}{\left(x^{2}+5\right)^{n}}+2 n I_{n}(x)-10 n I_{n+1}(x)
$$

10n $I_{n+1}(x)-(2 n-1) I_{n}(x)=x I_{n}^{\prime}(x)$
For $n=5$
$50 I_{6}(x)-9 I_{5}(x)=x I_{5}^{\prime}(x)$
10. The area enclosed by the curves $y=\log _{e}\left(x+e^{2}\right)$, $x=\log _{e}\left(\frac{2}{y}\right)$ and $x=\log _{e} 2$, above the line $y=1$ is
(A) $2+e-\log _{e} 2$
(B) $1+e-\log _{e} 2$
(C) $e-\log _{e} 2$
(D) $1+\log _{e} 2$

Answer (B*)

Sol.

According to NTA, the required region A_{2} which is shaded in crossed lines and comes out to be

$$
A_{2}=\int_{1}^{2}\left(\ln \frac{2}{y}-e^{y}+e^{2}\right) d y=1+e-\ln 2
$$

But according to us the required region A_{1} comes out to be shaded in parallel lines, which can be obtained as

$$
\begin{aligned}
A_{1} & =\int_{0}^{\ln 2}\left(\ln \left(x+e^{2}\right)-2 e^{-x}\right) d x \\
& =\left.\left\{\left(x+e^{2}\right) \ln \left(x+e^{2}\right)-x+2 e^{-x}\right\}\right|_{0} ^{\ln 2} \\
& =\left(\ln 2+e^{2}\right) \ln \left(\ln 2+e^{2}\right)-\ln 2+1 \\
& \quad-2 e^{2}-2 \\
& =\left(\ln 2+e^{2}\right) \ln \left(\ln 2+e^{2}\right)-\ln 2-2 e^{2}-1
\end{aligned}
$$

Not given in any option.
The region asked in the question is bounded by three curves

$$
\begin{aligned}
& y=\ln \left(x+e^{2}\right) \\
& x=\ln \left(\frac{2}{y}\right) \\
& x=\ln 2
\end{aligned}
$$

There is only one region which satisfies above requirement and which also lies above line $y=1$ Line $y=1$ may or may not be the boundary of the region.
11. Let $y=y(x)$ be the solution curve of the differential equation $\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{1 / 2}, x>1$ passing through the point $\left(2, \sqrt{\frac{1}{3}}\right)$. Then $\sqrt{7} y(8)$ is
(A) $11+6 \log _{e} 3$
(B) 19
(C) $12-2 \log _{e} 3$
(D) $19-6 \log _{e} 3$

Answer (D)

Sol. $\frac{d y}{d x}+\frac{1}{x^{2}-1} y=\sqrt{\frac{x-1}{x+1}}, x>1$
Integrating factor I.F. $=e^{\int \frac{1}{x^{2}-1} d x}=e^{\frac{1}{2} \ln \left|\frac{x-1}{x+1}\right|}$

$$
=\sqrt{\frac{x-1}{x+1}}
$$

Solution of differential equation
$y \sqrt{\frac{x-1}{x+1}}=\int \frac{x-1}{x+1} d x=\int\left(1-\frac{2}{x+1}\right) d x$
$y \sqrt{\frac{x-1}{x+1}}=x-2 \ln |x+1|+C$
Curve passes through $\left(2, \sqrt{\frac{1}{3}}\right)$
$\frac{1}{\sqrt{3}} \times \frac{1}{\sqrt{3}}=2-2 \ln 3+C$
$C=2 \ln 3-\frac{5}{3}$
$y(8) \times \frac{\sqrt{7}}{3}=8-2 \ln 9+2 \ln 3-\frac{5}{3}$
$\sqrt{7} \cdot y(8)=19-6 \ln 3$
12. The differential equation of the family of circles passing through the points $(0,2)$ and $(0,-2)$ is
(A) $2 x y \frac{d y}{d x}+\left(x^{2}-y^{2}+4\right)=0$
(B) $2 x y \frac{d y}{d x}+\left(x^{2}+y^{2}-4\right)=0$
(C) $2 x y \frac{d y}{d x}+\left(y^{2}-x^{2}+4\right)=0$
(D) $2 x y \frac{d y}{d x}-\left(x^{2}-y^{2}+4\right)=0$

Answer (A)

Sol. Family of circles passing through the points $(0,2)$ and $(0,-2)$
$x^{2}+(y-2)(y+2)+\lambda x=0, \lambda \in \mathbb{R}$
$x^{2}+y^{2}+\lambda x-4=0$
Differentiate w.r.t x
$2 x+2 y \frac{d y}{d x}+\lambda=0$
Using (1) and (2), eliminate λ
$x^{2}+y^{2}-\left(2 x+2 y \frac{d y}{d x}\right) x-4=0$
$2 x y \frac{d y}{d x}+x^{2}-y^{2}+4=0$
13. Let the tangents at two points A and B on the circle $x^{2}+y^{2}-4 x+3=0$ meet at origin $O(0,0)$. Then the area of the triangle $O A B$ is
(A) $\frac{3 \sqrt{3}}{2}$
(B) $\frac{3 \sqrt{3}}{4}$
(C) $\frac{3}{2 \sqrt{3}}$
(D) $\frac{3}{4 \sqrt{3}}$

Answer (B)

Sol. $x^{2}+y^{2}-4 x+3=0$
$\Rightarrow(x-2)^{2}+y^{2}=1$

$A O=\sqrt{(O C)^{2}-(A C)^{2}}$
$=\sqrt{4-1}=\sqrt{3}$
$\sin \theta=\frac{1}{2} \Rightarrow \theta=\frac{\pi}{6}$
Also, $A O=B O$
Area of $\triangle O A B=\frac{1}{2} \cdot O A \cdot O B \sin 60^{\circ}$

$$
=\frac{1}{2} \times \sqrt{3} \cdot \sqrt{3} \cdot \frac{\sqrt{3}}{2}=\frac{3 \sqrt{3}}{4}
$$

14. Let the hyperbola $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ pass through the point $(2 \sqrt{2},-2 \sqrt{2})$. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?
(A) $(2 \sqrt{3}, 3 \sqrt{2})$
(B) $(3 \sqrt{3},-6 \sqrt{2})$
(C) $(\sqrt{3},-\sqrt{6})$
(D) $(3 \sqrt{6}, 6 \sqrt{2})$

Answer (B)

Sol. $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$
Focus of parabola: (ae, 0)
Directrix: $x=-a e$.
Equation of parabola $\equiv y^{2}=4$ aex
Length of latus rectum of parabola $=4 \mathrm{ae}$
Length of latus rectum of hyperbola $=\frac{2 . b^{2}}{a}$
as given, $4 a e=\frac{2 b^{2}}{a} \cdot e$

$$
\begin{equation*}
2=\frac{b^{2}}{a^{2}} \tag{i}
\end{equation*}
$$

$\because \quad H$ passes through $(2 \sqrt{2},-2 \sqrt{2}) \Rightarrow \frac{8}{a^{2}}-\frac{8}{b^{2}}=1$

From (i) and (ii) $a^{2}=4$ and $b^{2}=8 \Rightarrow e=\sqrt{3}$
\Rightarrow Equation of parabola is $y^{2}=8 \sqrt{3} x$.
15. Let the lines $\frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}$ be coplanar and P be the plane containing these two lines. Then which of the following points does NOT lie on P?
(A) $(0,-2,-2)$
(B) $(-5,0,-1)$
(C) $(3,-1,0)$
(D) $(0,4,5)$

Answer (D)

Sol. $L_{1}: \frac{x-1}{\lambda}=\frac{y-2}{1}=\frac{z-3}{2}$,
through a point $\vec{a}_{1} \equiv(1,2,3)$
parallel to $\vec{b}_{1} \equiv(\lambda, 1,2)$
$L_{2}: \frac{x+26}{-2}=\frac{y+18}{3}=\frac{z+28}{\lambda}$
through a point $\vec{a}_{2}=(-26,-18,-28)$
parallel to $\vec{b}_{2}=(-2,3,1)$
If lines are coplanar then, $\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot \vec{b}_{1} \times \vec{b}_{2}=0$
$\Rightarrow\left|\begin{array}{ccc}27 & 20 & 31 \\ \lambda & 1 & 2 \\ -2 & 3 & \lambda\end{array}\right|=0 \Rightarrow \lambda=3$
Vector normal to the required plane $\vec{n}=\vec{b}_{1} \times \vec{b}_{2}$
$\Rightarrow \vec{n}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & 2 \\ -2 & 3 & 3\end{array}\right|=-3 \hat{i}-13 \hat{j}+11 \hat{k}$

Equation of plane

$\equiv((x-1),(y-2),(z-3)) \cdot(-3,-13,11)=0$
$\Rightarrow 3 x+13 y-11 z+4=0$
Checking the option gives $(0,4,5)$ does not lie on the plane.
16. A plane P is parallel to two lines whose direction rations are $-2,1,-3$ and $-1,2,-2$ and it contains the point $(2,2,-2)$. Let P intersect the co-ordinate axes at the points A, B, C making the intercepts α, β, γ. If V is the volume of the tetrahedron $O A B C$, where O is the origin and $p=\alpha+\beta+\gamma$, then the ordered pair N, p) is equal to :
(A) $(48,-13)$
(B) $(24,-13)$
(C) $(48,11)$
(D) $(24,-5)$

Answer (B)

Sol. Let $\vec{a}_{1}=(-2,1,-3)$ and $\vec{a}_{2}=(-1,2,-2)$
Vector normal to plane $\bar{n}=\vec{a}_{1} \times \vec{a}_{2}$
$\bar{n}=(4,-1,-3)$
Plane through $(2,2,-2)$ and normal to \bar{n}
$(x-2, y-2, z+2) \cdot(4,-1,-3)=0$
$\Rightarrow 4 x-y-3 z=12$
$\Rightarrow \frac{x}{3}+\frac{y}{-12}+\frac{z}{-4}=1$
Intercepts α, β, γ are $3,-12,-4$
$P=\alpha+\beta+\gamma=-13$
$V=\frac{1}{6} \times 3 \times 12 \times 4=24$
17. Let S be the set of all $a \in \mathrm{R}$ for which the angle between the vectors $\vec{u}=a\left(\log _{e} b\right) \hat{i}-6 \hat{j}+3 \hat{k}$ and $\vec{v}=\left(\log _{e} b\right) \hat{i}+2 \hat{j}+2 a\left(\log _{e} b\right) \hat{k},(b>1) \quad$ is acute. Then S is equal to :
(A) $\left(-\infty,-\frac{4}{3}\right)$
(B) Φ
(C) $\left(-\frac{4}{3}, 0\right)$
(D) $\left(\frac{12}{7}, \infty\right)$

Answer (B)

Sol. $\vec{u}=a\left(\log _{e} b\right) \hat{i}-6 \hat{j}+3 \hat{k}$

$$
\vec{v}=\left(\log _{e} b\right) \hat{i}+2 \hat{j}+2 a\left(\log _{e} b\right) \hat{k}
$$

For acute angle $\vec{u} \cdot \vec{v}>0$
$\Rightarrow a\left(\log _{e} b\right)^{2}-12+6 a\left(\log _{e} b\right)>0$
$\because b>1$
Let $\log _{e} b=t \Rightarrow t>0$ as $b>1$
$a t^{2}+6 a t-12>0 \quad \forall t>0$
$\Rightarrow a \in \phi$
18. A horizontal park is in the shape of a triangle $O A B$ with $A B=16$. A vertical lamp post $O P$ is erected at the point O such that $\angle P A O=\angle P B O=15^{\circ}$ and $\angle P C O=45^{\circ}$, where C is the midpoint of $A B$. Then $(O P)^{2}$ is equal to
(A) $\frac{32}{\sqrt{3}}(\sqrt{3}-1)$
(B) $\frac{32}{\sqrt{3}}(2-\sqrt{3})$
(C) $\frac{16}{\sqrt{3}}(\sqrt{3}-1)$
(D) $\frac{16}{\sqrt{3}}(2-\sqrt{3})$

Answer (B)

Sol.

$O P=O A \tan 15=O B \tan 15$
$O C^{2}+8^{2}=O A^{2}$
$O P^{2}+64=O P^{2}\left(\frac{\sqrt{3}+1}{\sqrt{3}-1}\right)^{2}$
$64=O P^{2}\left[\frac{(\sqrt{3}+1)^{2}-(\sqrt{3}-1)^{2}}{(\sqrt{3}-1)^{2}}\right]$
$=O P^{2}\left(\frac{4 \sqrt{3}}{(\sqrt{3}-1)^{2}}\right)$
$O P^{2}=\frac{64(\sqrt{3}-1)^{2}}{4 \sqrt{3}}=\frac{32}{\sqrt{3}}(2-\sqrt{3})$
19. Let A and B be two events such that $P(B \backslash A) \frac{2}{5}, P(A \backslash B)=\frac{1}{7} \quad$ and $\quad P(A \cap B)=\frac{1}{9}$.
Consider
(S1) $P\left(A^{\prime} \cup B\right)=\frac{5}{6}$,
(S2) $P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{18}$. Then
(A) Both (S1) and ($S 2$) are true
(B) Both (S1) and (S2) are false
(C) Only (S1) is true
(D) Only (S2) is true

Answer (A)

Sol. $P(A / B)=\frac{1}{7} \Rightarrow \frac{P(A \cap B)}{P(B)}=\frac{1}{7}$
$\Rightarrow \quad P(B)=\frac{7}{9}$
$P(B / A)=\frac{2}{5} \Rightarrow \frac{P(A \cap B)}{P(A)}=\frac{2}{5}$
$P(A)=\frac{5}{2} \cdot \frac{1}{9}=\frac{5}{18}$
$S 2: P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{18}$
$S 1:$ and $P\left(A^{\prime} \cup B\right)=\frac{1}{9}+\frac{6}{9}+\frac{1}{18}=\frac{5}{6}$.
20. Let
p : Ramesh listens to music.
q : Ramesh is out of his village.
r : It is Sunday.
s : It is Saturday.
Then the statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday" can be expressed as
(A) $((\sim q) \wedge(r \vee s)) \Rightarrow p$
(B) $(q \wedge(r \vee s)) \Rightarrow p$
(C) $p \Rightarrow(q \wedge(r \vee s))$
(D) $p \Rightarrow((\sim q) \wedge(r \vee s)$

Answer (D)

Sol. p : Ramesh listens to music
q : Ramesh is out of his village
r : It is Sunday
$s:$ It is Saturday
$p \rightarrow q$ conveys the same p only if q
Statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday"
$p \Rightarrow((\sim q) \wedge(r \vee s))$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let the coefficients of the middle terms in the
expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$ and
$\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$, respectively form the first three terms of an A.P. If d is the common difference of this A.P., then $50-\frac{2 d}{\beta^{2}}$ is equal to \qquad .

Answer (57)

Sol. Coefficients of middle terms of given expansions

$$
\begin{aligned}
& \text { are }{ }^{4} C_{2} \frac{1}{6} \beta^{2},{ }^{2} C_{1}(-3 \beta),{ }^{6} C_{3}\left(\frac{-\beta}{2}\right)^{3} \text { form an A.P. } \\
& \therefore \quad 2 \cdot 2(-3 \beta)=\beta^{2}-\frac{5 \beta^{3}}{2} \\
& \Rightarrow-24=2 \beta-5 \beta^{2} \\
& \Rightarrow 5 \beta^{2}-2 \beta-24=0 \\
& \Rightarrow 5 \beta^{2}-12 \beta+10 \beta-24=0 \\
& \Rightarrow \quad \beta(5 \beta-12)+2(5 \beta-12)=0 \\
& \quad \beta=\frac{12}{5} \\
& \quad d=-6 \beta-\beta^{2} \\
& \therefore \quad 50-\frac{2 d}{\beta^{2}}=50-2 \frac{\left(-6 \beta-\beta^{2}\right)}{\beta^{2}}=50+\frac{12}{\beta}+2=57
\end{aligned}
$$

2. A class contains b boys and g girls. If the number of ways of selecting 3 boys and 2 girls from the class is 168 , then $b+3 g$ is equal to \qquad .
Answer (17)
Sol. ${ }^{\mathrm{b}} \mathrm{C}_{3} \cdot{ }^{9} \mathrm{C}_{2}=168$

$$
\begin{aligned}
& \Rightarrow \quad \frac{b(b-1)(b-2)}{6} \cdot \frac{g(g-1)}{2}=168 \\
& \Rightarrow b(b-1)(b-2) \quad g(g-1)=2^{5} \cdot 3^{2} \cdot 7 \\
& \Rightarrow b(b-1)(b-2) g(g-1)=6.7 .8 .3 .2 \\
& \therefore \quad b=8 \text { and } g=3 \\
& \therefore \quad b+3 g=17
\end{aligned}
$$

3. Let the tangents at the points P and Q on the ellipse $\frac{x^{2}}{2}+\frac{y^{2}}{4}=1$ meet at the point $R(\sqrt{2}, 2 \sqrt{2}-2)$. If S is the focus of the ellipse on its negative major axis, then $S P^{2}+S Q^{2}$ is equal to \qquad _.

Answer (13)

Sol. $E \equiv \frac{x^{2}}{2}+\frac{y^{2}}{4}=1$
$T \equiv y=m x \pm \sqrt{2 m^{2}+4}$

$$
\downarrow(\sqrt{2}, 2 \sqrt{2}-2)
$$

$\Rightarrow(2 \sqrt{2}-2-m \sqrt{2})= \pm \sqrt{2 m^{2}+4}$
$\Rightarrow 2 m^{2}-2 m \sqrt{2}(2 \sqrt{2-2})+4(3-2 \sqrt{2})=2 m^{2}+4$
$\Rightarrow \quad-2 \sqrt{2} m(2 \sqrt{2}-2)=4-12+8 \sqrt{2}$
$\Rightarrow-4 \sqrt{2} m(\sqrt{2}-1)=8(\sqrt{2}-1)$
$\Rightarrow \quad m=-\sqrt{2}$ and $m \rightarrow \infty$
\therefore Tangents are $x=\sqrt{2}$ and $y=-\sqrt{2} x+\sqrt{8}$
$\therefore \quad P(\sqrt{2}, 0)$ and $Q(1, \sqrt{2})$ and $S=(0,-\sqrt{2})$
$\therefore \quad(P S)^{2}+(Q S)^{2}=4+9=13$
4. If $1+\left(2+{ }^{49} C_{1}+{ }^{49} C_{2}+\ldots{ }^{49} C_{49}\right)$
$\left({ }^{50} C_{2}+{ }^{50} C_{4}+\ldots{ }^{50} C_{50}\right)$ is equal to 2^{n}. m, where m is odd, then $n+m$ is equal to \qquad

Answer (99)

Sol. $I=1+\left(1+{ }^{49} C_{0}+{ }^{49} C_{1}+\ldots .+{ }^{49} C_{49}\right)\left({ }^{50} C_{2}+{ }^{50} C_{4}+\right.$ $\ldots+{ }^{50} C_{50}$)
As ${ }^{49} \mathrm{C}_{0}+{ }^{49} \mathrm{C}_{1}+\ldots .+{ }^{49} \mathrm{C}_{49}=2^{49}$
and ${ }^{50} C_{0}+{ }^{50} C_{2}+\ldots .+{ }^{50} C_{50}=2^{49}$
$\Rightarrow{ }^{50} C_{2}+{ }^{50} C_{4}+\ldots .+{ }^{50} C_{50}=2^{49}-1$
$\therefore \quad I=1+\left(2^{49}+1\right)\left(2^{49}-1\right)$

$$
=2^{98}
$$

$\therefore \quad m=1$ and $n=98$

$$
m+n=99
$$

5. Two tangent lines I_{1} and I_{2} are drawn from the point $(2,0)$ to the parabola $2 y^{2}=-x$. If the lines I_{1} and I_{2} are also tangent to the circle $(x-5)^{2}+y^{2}=r$, then $17 r$ is equal to \qquad -.

Answer (9)

Sol. Given: $y^{2}=\frac{-x}{2}$
$T \equiv y=m x-\frac{1}{8 m}$
$\downarrow(2,0)$
$\Rightarrow m^{2}=\frac{1}{16} \Rightarrow m= \pm \frac{1}{4}$
Tangents are $y=\frac{1}{4} x-\frac{1}{2}, y=\frac{-x}{4}+\frac{1}{2}$

$$
4 y=x-2 \text { and } 4 y+x=2
$$

If these are also tangent to circle then $d_{c}=r$

$$
\begin{aligned}
& \Rightarrow\left|\frac{5-2}{\sqrt{17}}\right|=\sqrt{r} \Rightarrow r=\left(\frac{3}{\sqrt{17}}\right)^{2} \\
& \Rightarrow \quad 17 r=17 \cdot \frac{9}{17}=9
\end{aligned}
$$

6. If $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots .+\frac{10240}{3}=2^{n} \cdot m$, where m is odd, then $m \cdot n$ is equal to \qquad .
Answer (12)
Sol. $\frac{1}{3^{12}}+5\left(\frac{2^{0}}{3^{12}}+\frac{2^{1}}{3^{11}}+\frac{2^{2}}{3^{10}}+\ldots \ldots .+\frac{2^{11}}{3}\right)=2^{n} \cdot m$
$\Rightarrow \frac{1}{3^{12}}+5\left(\frac{1}{3^{12}} \frac{\left((6)^{2}-1\right)}{(6-1)}\right)=2^{n} \cdot m$
$\Rightarrow \frac{1}{3^{12}}+\frac{5}{5}\left(\frac{1}{3^{12}} \cdot 2^{12} \cdot 3^{12}-\frac{1}{3^{12}}\right)=2^{n} \cdot m$
$\Rightarrow \frac{1}{3^{12}}+2^{12}-\frac{1}{3^{12}}=2^{n} \cdot m$
$\Rightarrow 2^{n} \cdot m=2^{12}$
$\Rightarrow m=1$ and $n=12$

$$
m \cdot n=12
$$

7. Let $S=\left[-\pi, \frac{\pi}{2}\right)-\left[-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right]$. Then the number of elements in the set $A=\{\theta \in S: \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ is \qquad -

Answer (5)

Sol. Let $\tan \alpha=\sqrt{5}$
$\therefore \tan \theta=\frac{\tan \alpha-\tan 2 \theta}{1+\tan \alpha \tan 2 \theta}$
$\therefore \quad \tan \theta=\tan (\alpha-2 \theta)$

$$
\alpha-2 \theta=n \pi+\theta
$$

$\Rightarrow 30=\alpha-n \pi$
$\Rightarrow \quad \theta=\frac{\alpha}{3}-\frac{n \pi}{3} \quad ; n \in Z$
If $\theta \in[-\pi, \pi / 2)$ then
$n=0,1,2,3,4$ are acceptable
$\therefore 5$ solutions.
8. Let $z=a+i b, b \neq 0$ be complex numbers satisfying $z^{2}=\bar{z} \cdot 2^{1-|z|}$. Then the least value of $n \in N$, such that $z^{n}=(z+1)^{n}$, is equal to \qquad -.

Answer (6)

Sol. $\because \quad z^{2}=\bar{z} \cdot 2^{1-|z|}$
$\Rightarrow|z|^{2}=|\bar{z}| \cdot 2^{1-|z|}$
$\Rightarrow|z|=2^{1-|z|}, \quad \because b \neq 0 \Rightarrow|z| \neq 0$
$\therefore|z|=1$
$\because \quad z=a+i b$ then $\sqrt{a^{2}+b^{2}}=1$
Now again from equation (1), equation (2), equation (3) we get :

$$
a^{2}-b^{2}+i 2 a b=(a-i b) 2^{0}
$$

$\therefore \quad a^{2}-b^{2}=a$ and $2 a b=-b$
$\therefore \quad a=-\frac{1}{2}$ and $b= \pm \frac{\sqrt{3}}{2}$
$\therefore \quad z=-\frac{1}{2}+\frac{\sqrt{3}}{2} i$ or $z=-\frac{1}{2}-\frac{\sqrt{3}}{2} i$
$z^{n}=(z+1)^{n} \Rightarrow\left(\frac{z+1}{z}\right)^{n}=1$

$$
\left(1+\frac{1}{z}\right)^{n}=1
$$

$\left(\frac{1+\sqrt{3} i}{2}\right)^{n}=1$, then minimum value of n is 6 .
9. A bag contains 4 white and 6 black balls. Three balls are drawn at random from the bag. Let X be the number of white balls, among the drawn balls. If σ^{2} is the variance of X, then $100 \sigma^{2}$ is equal to

Answer (56)

Sol. $X=$ Number of white ball drawn

$$
\begin{aligned}
& P(X=0)=\frac{{ }^{6} C_{3}}{{ }^{10} C_{3}}=\frac{1}{6} \\
& P(X=1)=\frac{{ }^{6} C_{2} \times{ }^{4} C_{1}}{{ }^{10} C_{3}}=\frac{1}{2} \\
& P(X=2)=\frac{{ }^{6} C_{1} \times{ }^{4} C_{2}}{{ }^{10} C_{3}}=\frac{3}{10}
\end{aligned}
$$

and $P(X=3)=\frac{{ }^{6} C_{0} \times{ }^{4} C_{3}}{{ }^{10} C_{3}}=\frac{1}{30}$
Variance $=\sigma^{2}=\sum P_{i} X_{i}^{2}-\left(\sum P_{i} X_{i}\right)^{2}$

$$
\begin{aligned}
\sigma^{2} & =\frac{1}{2}+\frac{12}{10}+\frac{3}{10}-\left(\frac{1}{2}+\frac{6}{10}+\frac{1}{10}\right)^{2} \\
& =\frac{56}{100} \\
100 \sigma^{2} & =56
\end{aligned}
$$

10. The value of the integral $\int_{0}^{\frac{\pi}{2}} 60 \frac{\sin (6 x)}{\sin x} d x$ is equal to

Answer (104)

Sol. $I=\int_{0}^{\frac{2}{2}} 60 \cdot \frac{\sin 6 x}{\sin x} d x$

$$
\begin{aligned}
& =60.2 \int_{0}^{\frac{\pi}{2}}\left(3-4 \sin ^{2} x\right)\left(4 \cos ^{2} x-3\right) \cos x d x \\
& =120 \int_{0}^{\frac{\pi}{2}}\left(3-4 \sin ^{2} x\right)\left(1-4 \sin ^{2} x\right) \cos x d x
\end{aligned}
$$

Let $\sin x=t \Rightarrow \cos x d x=d t$

$$
\begin{aligned}
& =120 \int_{0}^{1}\left(3-4 t^{2}\right)\left(1-4 t^{2}\right) d t \\
& =120 \int_{0}^{1}\left(3-16 t^{2}+16 t^{4}\right) d t \\
& =120\left[3 t-\frac{16 t^{3}}{3}+\frac{16 t^{5}}{5}\right]_{0}^{1} \\
& =104
\end{aligned}
$$

