Memory Based Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2022 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Half life of a radioactive sample is 0.3010 min . The ratio of initial activity to final activity after 2 min is equal to
(1) 10
(2) 1
(3) 100
(4) 20

Answer (3)
Sol. $A=\mathrm{A}_{0} e^{-\frac{\ln 2}{t_{1 / 2}} t}$

$$
\begin{aligned}
\frac{A_{0}}{A} & =e^{\frac{0.693}{0.3010} \times 2} \\
& =100
\end{aligned}
$$

2. A radioactive sample has concentration 64 times the allowed level. If half life of radioactive material in sample is 2 hours 30 min then after how much time the sample is safe for human exposure.
(1) 15 hrs
(2) 9 hrs
(3) 6 hrs
(4) 7.5 hrs

Answer (1)
Sol. $t=t_{1 / 2} \log _{2}\left(\frac{A_{0}}{A}\right)$
$=2.5 \log _{2}(64)$
$=2.5 \times 6=15 \mathrm{hrs}$
3. A wave has equation given as $y=0.5 \sin \left[\frac{2 \pi}{3}(400 t-x)\right]$. With x in meters and t in seconds the wave speed is equal to
(1) $100 \mathrm{~m} / \mathrm{s}$
(2) $100 \pi \mathrm{~m} / \mathrm{s}$
(3) $400 \mathrm{~m} / \mathrm{s}$
(4) $200 \pi \mathrm{~m} / \mathrm{s}$

Answer (3)
Sol. From equation of wave, $\omega=\frac{800 \pi}{3} \& k=\frac{2 \pi}{3}$
So, $v=\frac{\omega}{k}=400 \mathrm{~m} / \mathrm{s}$
4. In a medium with relative permittivity 1 and relative permeability 4 the speed of light is equal to
(1) $0.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(2) $1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(3) $2 \times 10^{8} \mathrm{~m} / \mathrm{s}$
(4) $1 \times 10^{8} \mathrm{~m} / \mathrm{s}$

Answer (2)

Sol. $\mu=\sqrt{\varepsilon_{r} \times \mu_{r}}$

$$
\begin{aligned}
& =\sqrt{1 \times 4} \\
& =2
\end{aligned}
$$

So, $v=\frac{c}{\mu}$

$$
=1.5 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

5. In a potentiometer setup shown point P is point of null deflection. If wire $A B$ has a resistance of 20Ω then value of resistance R is

(1) 380Ω
(2) 480Ω
(3) 680Ω
(4) 780Ω

Answer (4)
Sol. $V_{A P}=20 \mathrm{mV}$
So, $\left(-\frac{d V}{d l}\right)=\frac{20 \times 10^{-3}}{60} \mathrm{~V} / \mathrm{cm}$
Thus, $V_{A B}=\left(-\frac{d V}{d l}\right) \times 300$

$$
=0.1 \mathrm{~V}
$$

$V_{A B}=\frac{R_{A B} E}{R_{A B}+R}$
$0.1=\frac{20 \times 4}{20+R}$
$R=780 \Omega$
6. The force required to increase the length twice of a wire is (Given that cross section of wire is $1 \mathrm{~cm}^{2}$ and Young modulus $=2 \times 10^{11} \mathrm{~N} . \mathrm{m}$)
(1) $2 \times 10^{7} \mathrm{~N}$
(2) $1.5 \times 10^{7} \mathrm{~N}$
(3) $1 \times 10^{7} \mathrm{~N}$
(4) $2.5 \times 10^{7} \mathrm{~N}$

Answer (1)

Sol. $\Delta L=\frac{F L}{Y A}$
So $F=Y A=2 \times 10^{11} \times 10^{-4} \mathrm{~N}$

$$
=2 \times 10^{7} \mathrm{~N}
$$

7. Two identical capacitors of $40 \mu \mathrm{~F}$ each are connected in series. Now a dielectric slab of dielectric constant K is inserted in one of them such the new equivalent capacitance come out $24 \mu \mathrm{~F}$. Value of K is
(1) 2
(2) 1
(3) 1.5
(4) 3

Answer (3)
Sol.

$C_{\text {net }}=\frac{K C \times C}{K C+C}$
$\frac{K C}{1+K}=24 \mu \mathrm{~F}$
$\frac{K}{1+K} \times 40 \mu \mathrm{~F}=24 \mu \mathrm{~F}$
$\Rightarrow \mathrm{K}=1.5$
8. An apple falls from a height of 19.6 m from a tree and a man standing s distance away from the tree starts running with a speed of $2.5 \mathrm{~m} / \mathrm{s}$ to catch the apple. To just catch the apple the distance s should be $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(1) 5 m
(2) 10 m
(3) 15 m
(4) 20 m

Answer (1)
Sol. Time taken by apple to reach ground.
$t=\sqrt{\frac{2 h}{g}}=2 \mathrm{sec}$
So, $s=2.5 \times 2=5 \mathrm{~m}$
9. Dimension formula of $\frac{B o^{2}}{2 \mu}$ is
(B_{0} is magnetic field amplitude and μ is permeability)
(1) $\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$
(2) $\left[\mathrm{M}^{1} \mathrm{~L}^{-1} \mathrm{~T}^{-2}\right]$
(3) $\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-1}\right]$
(4) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$

Answer (2)

Sol. $\frac{B o^{2}}{2 \mu}$ is the formula of energy density $\frac{d U}{d V}$
So, $\frac{d U}{d V}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{\left[\mathrm{L}^{3}\right]}=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
10. Efficiency of carnot cycle is 50%. Now the efficiency is increased by 30% of its earlier value when temperature of sink is reduced by 40°. So the temperature of source is
(1) 266.7 K
(2) 300 K
(3) 366.7 K
(4) 255 K

Answer (1)

Sol. Let the temperature of source is T_{0} and sink is T
$1-\frac{T}{T_{0}}=\frac{1}{2}$ and $1-\frac{T-40}{T_{0}}=\frac{13}{20}$
So $\frac{1}{2}+\frac{40}{T_{0}}=\frac{13}{20}$

$$
\begin{aligned}
& \frac{40}{T_{0}}=\frac{3}{20} \\
& T_{0}=\frac{800}{3}=266.67 \mathrm{~K}
\end{aligned}
$$

11. With wavelength 560 nm fringe width comes out to be 72 mm in a YDSE. Now if wavelength is charged so that new fringe width is 81 mm , then the new wavelength is equal to
(1) 490 nm
(2) 630 nm
(3) 800 nm
(4) 700 nm

Answer (2)

Sol. $\omega=\frac{\lambda D}{d}$
$\omega \propto \lambda$
so $\frac{\omega_{1}}{\omega_{2}}=\frac{\lambda_{1}}{\lambda_{2}}$
$\frac{72}{81}=\frac{560}{\lambda_{2}}$
$\lambda_{2}=630 \mathrm{~nm}$
12. Radius of earth is shrink by 2%. Now new acceleration due to gravity is
(1) Increases by 4\%
(2) Decreases by 4\%
(3) Increases by 2%
(4) Decreases by 2%

Answer (1)

Sol. $g=\frac{G M_{e}}{R^{2}}$
So $\frac{d g}{g} \times 100=-2 \frac{d R}{R} \times 100$
Given $\frac{d R}{R} \times 100=-2 \%$
So g will increase by 4%
13. Value of modulation index so that modulated signal does not get distorted
(1) $\mu \leq 1$
(2) $\mu>1$
(3) $\mu=0$
(4) $\mu=2$

Answer (1)

Sol. For signal does not get distorted
$A_{m} \leq A_{C}$
So $\frac{A_{m}}{A_{C}} \leq 1$

$$
\mu \leq 1
$$

14. A train moves with a speed of $30 \mathrm{~km} / \mathrm{h}$ with whistle frequency of 320 Hz , towards a wall. The frequency of echo heard by the driver is equal to
(Sound speed $=330 \mathrm{~m} / \mathrm{s}$)
(1) 336
(2) 350
(3) 300
(4) 280

Answer (1)
Sol. $f=\frac{v+v_{t}}{v-v_{t}} f_{0}$
$=\frac{330+\frac{25}{3}}{330-\frac{25}{3}} \times 320$
$=336 \mathrm{~Hz}$
15. Statement 1: Net momentum of a ideal gas depends on temperature.
Statement 2: If initial $V_{\text {rms }}$ of oxygen is V. Now temperature is double and oxygen atoms dissociate in two parts, so new $V_{\text {rms }}$ is 2 V
(1) S1 \rightarrow True, S2 \rightarrow True
(2) S1 \rightarrow True, S2 \rightarrow False
(3) S1 \rightarrow False, S2 \rightarrow False
(4) S1 \rightarrow False, S2 \rightarrow True

Answer (4)

Sol. Net momentum of the ideal gas system is 0 . So statement 1 is false.
For statement 2 using $V_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M_{0}}}$
Temperature is doubled and molar mass is halved so rms speed is doubled.
16. A refracting telescope has angular magnification of 2 with distance between objective and eye piece equal to 30 cm . Find the focal length of the objective of telescope?
(1) 20
(2) 30
(3) 40
(4) 10

Answer (1)
Sol. $\frac{f_{o}}{f_{e}}=2$
$f_{o}+f_{e}=30$
$\Rightarrow \frac{3 f_{o}}{2}=30$
$f_{o}=20 \mathrm{~cm}, f_{e}=10 \mathrm{~cm}$
17. Which of the following represents the I-V characteristic graph of a solar cell
(1)

(2)

(4)

Answer (1)
Sol. I-V characteristic graph of solar cell is given as

A part of it resembles to option 1.
18. In expression of wavelength $\lambda_{e}=\frac{12.27}{K} \AA$, the value of K is $\left(\lambda_{e}\right.$ denotes the de-Broglie wavelength of electron)
(1) \sqrt{V}
(2) \sqrt{p}
(3) $\sqrt{K E}$
(4) \sqrt{m}

Answer (1)

Sol. de-Broglie wavelength of an electron accelerated through a potential difference V is given by

$$
\begin{aligned}
& \lambda_{e}=\frac{12.27}{\sqrt{V}} \AA \\
& \Rightarrow K=\sqrt{V}
\end{aligned}
$$

19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30)$ using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Projection of $\bar{a}=\hat{i}+2 \hat{j}+\alpha \hat{k}$ along $\bar{b}=2 \hat{i}+2 \hat{j}-3 \hat{k}$ is zero. So the value of α is equal to \qquad .
Answer (2)
Sol. $\vec{a} \cdot \vec{b}=0$
$2+4-3 \alpha=0$
$\Rightarrow \quad \alpha=2$
22. Four identical discs each of mass M and diameter a are rotating about the axis $A A^{\prime}$ as shown. The net moment of inertia of the system of discs about $A A^{\prime}$ is $\frac{3 M a^{2}}{x}$ then value of x is \qquad .

Answer (4)

Sol. $l=l_{1}+l_{2}+l_{3}+l_{4}$

So, $x=4$
23. A block with initial kinetic energy E Joule compresses a spring as shown. The compression is 25 cm when the velocity of block becomes half of its initial value. If spring constant is $k=n E$ then the value of n is \qquad (in SI units)

Answer (24)
Sol. $\frac{1}{2} k(0.25)^{2}=E-\frac{E}{4}$

$$
\begin{aligned}
k & =\frac{2 \times 3 E}{4 \times 0.0625} \\
& =24 E
\end{aligned}
$$

So, $n=24$
24.
25.
26.
27.
28.
29.
30.

CHEMSTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Which of the following options represent monomer of terylene?
(1)

(2)

(3)

(4)

Answer (1)
Sol. Formation of Terylene (also known as dacron) takes place by interaction of ethylene glycol and Terepthalic acid.

Ethylene glycol Terephthalic acid
(Benzene-1, 4-dicarboxylic acid)

Terylene
2. Which of the following metal has least tendency to evolve H_{2} from acid?
(1) Cu
(2) Zn
(3) Mn
(4) Ni

Answer (1)
Sol. $\mathrm{E}_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=0.34 \mathrm{~V}$
$\mathrm{Cu}\left|\mathrm{Cu}^{2+} \| \mathrm{H}^{+}\right| \mathrm{H}_{2} \mid \mathrm{Pt}$
$\mathrm{E}_{\text {cell }}^{\circ}=0-0.34=-0.34 \mathrm{~V}$
$\because \quad \mathrm{E}_{\text {cell }}^{\circ}$ is negative
Hence Cu has least tendency to evolve H_{2} from acid.
3. Which of the following indicated H -atom has lowest value of pK_{a} ?
(1)

(2)

(3)

(4)

Answer (2)

Sol.

Due to maximum stabilisation of negative charge by cross-conjugation, the indicated H will be most acidic and will have least pK_{a} value.
4. Which of the following will give
(i) Markovnikov-product
(ii) Anti-Markovnikov product?
(a)

(b) $\rangle=\xrightarrow[\mathrm{NaBH}_{4}]{\mathrm{Hg}(\mathrm{OC})_{2}, \mathrm{H}_{2} \mathrm{O}}$?
(1) a - Markovnikov, b - Markovnikov
(2) a - Markovnikov, b - Anti-Markovnikov
(3) a - Anti-Markovnikov, b - Anti-Markovnikov
(4) a - Anti-Markovnikov, b - Markovnikov

Answer (4)
Sol.
 (anti-Markovnikov
product)
$\rangle=\xrightarrow[\text { 2. } \mathrm{NaBH}_{4}]{\text { 1. } \mathrm{Hg}(\mathrm{OAC})_{2}} \lambda_{\mathrm{OH}}$
(Markovnikov product)
5. Match the following

List-I

(A) $\mathrm{Cd}(\mathrm{s})+2 \mathrm{NiO}(\mathrm{OH})(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\longrightarrow \mathrm{Cd}(\mathrm{OH})_{2}+2 \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$
(B) $\mathrm{Zn}(\mathrm{Hg})+2 \overline{\mathrm{O}} \mathrm{H}$

$$
\longrightarrow \mathrm{ZnO}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}
$$

(C) $\mathrm{PbSO}_{4}+2 \mathrm{e}^{-}$

$$
\longrightarrow \mathrm{Pb}(\mathrm{~s})+\mathrm{SO}_{4}^{2-}
$$

(R) Discharging
of secondary
Battery
(D) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$ (S) Charging of
$\longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad$ secondary battery
(1) A-(Q); B-(R); C-(P); D-(S)
(2) A-(Q); B-(P); C-(R); D-(S)
(3) A-(R); B-(Q); C-(S); D-(P)
(4) A-(P); B-(Q); C-(R); D-(S)

Answer (3)

Sol. Nickel Cadmium Battery is an example of secondary Battery
$\mathrm{Cd}(\mathrm{s})+2 \mathrm{NiO}(\mathrm{OH})(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{i}) \longrightarrow \mathrm{Cd}(\mathrm{OH})_{2}+$ $2 \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$
Below is equation of mercury cell, a primary Battery
$\mathrm{Zn}(\mathrm{Hg})+2 \overline{\mathrm{O}} \mathrm{H} \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$
Lead storage battery is an example of secondary cell
$\mathrm{PbSO}_{4}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pb}(\mathrm{s})+\mathrm{SO}_{4}^{2-}$
Equation of Fuel Cell is,

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

6. Match column (I) with Column (II)

Column I

Column II
(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta}(\mathrm{P}) \mathrm{Cl}_{2}$
(B) $\mathrm{KMnO}_{4}+\mathrm{HCl} \longrightarrow(Q) \mathrm{N}_{2}$
(C) $\mathrm{Al}+\mathrm{NaOH} \longrightarrow$
(R) O_{2}
(D) $\mathrm{NaNO}_{3} \xrightarrow{\Delta}$
(S) H_{2}
(1) A-(P); B-(Q); C-(R); D-(S)
(2) $A-(Q) ; B-(P) ; C-(S) ; D-(R)$
(3) $A-(P) ; B-(R) ; C-(S) ; D-(Q)$
(4) A-(Q); B-(R); C-(P); D-(S)

Answer (2)

Sol. The correct match is

Column (I)

Column (II)

(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta}$
(Q) $\mathrm{N}_{2}\left[\mathrm{~N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+\mathrm{H}_{2} \mathrm{O}\right]$
(B) $\mathrm{KMnO}_{4}+\mathrm{HCl} \longrightarrow$
(P) $\mathrm{Cl}_{2}\left[\mathrm{MnCl}_{2}+\mathrm{KCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Cl}_{2}\right]$
(C) $\mathrm{Al}+\mathrm{NaOH} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$
(S) $\mathrm{H}_{2}\left[\mathrm{NaAlO}_{2}+\mathrm{H}_{2}\right]$
(D) $\mathrm{NaNO}_{3} \xrightarrow{\Delta}$
(R) $\mathrm{O}_{2}\left[\mathrm{NaNO}_{2}+\mathrm{O}_{2}\right]$

Hence, the correct option is (2)
7. The correct decreasing order for magnitude of electron gain enthalpy is
(1) $\mathrm{S}>\mathrm{Se}>\mathrm{Te}>\mathrm{O}$
(2) $\mathrm{Te}>\mathrm{Se}>\mathrm{S}>\mathrm{O}$
(3) $\mathrm{O}>\mathrm{S}>\mathrm{Se}>\mathrm{Te}$
(4) $\mathrm{S}>\mathrm{O}>\mathrm{Se}>\mathrm{Te}$

Answer (1)

Sol. The correct decreasing order for magnitude of electron gain enthalpy for group 16 elements is, $\mathrm{S}>\mathrm{Se}>\mathrm{Te}>\mathrm{O}$
8. Find the cyclic structure of pentose given below

(1)

(2)

(4)

Answer (1)
Sol. The five membered cyclic structure of the given pentose is

9. Which of the following reactions represent leaching
(1) $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{NaOH} \rightarrow$ Products
(2) $\mathrm{Cu}_{2} \mathrm{~S}+\mathrm{O}_{2} \rightarrow$ Products
(3) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow$ Products
(4) $\mathrm{FeS}_{2}+\mathrm{O}_{2} \rightarrow$ Products

Sol. $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{NaOH} \rightarrow$ Products
This reaction is used for concentration of bauxite ore and represents leaching.
Reactions given in option (2) and (4) represent roasting and reaction given in option (3) represents reduction of Haematite ore.
10.

The compounds P and Q are respectively
(1)

(2)

(3)

(4)

Answer (1)
Sol.

(P)
(Q)
11. Choose the incorrect statement

Regarding Bohr's theory
(1) The electron move around the nucleus in certain circular stable orbits without emitting radiations
(2) The angular momentum of electron in the Bohr orbit always remains constant
(3) The angular momentum in $3^{\text {rd }}$ orbit is more than that of $1^{\text {st }}$ orbit
(4) The energy difference between consecutive levels remain same as n-increases.

Answer (4)

Sol. According to Bohr's theory, an electron moves in certain permissible circular orbits around the nucleus without emitting any radiation. Only those orbits are permissible for which mvr (angular momentum) is integral multiple of $\left(\frac{\mathrm{h}}{2 \pi}\right)$.
$m v r=n \frac{h}{2 \pi}$
As ' n ' increases, angular momentum increases. Energy difference between two consecutive levels decreases as ' n ' increases.
$\Delta E=13.6 Z^{2}\left[\frac{1}{n^{2}}-\frac{1}{(n+1)^{2}}\right]$
12. Match column I with Column II.

Column I

(Reactions)
(i) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
(ii) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
(q) Pt
(iii) Sucrose \rightarrow glucose
(r) $\mathrm{H}_{2} \mathrm{SO}_{4}$

+ fructose
(iv) $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(s) NO
(1) (i)-(p), (ii)-(q), (iii)-(r), (iv)-(s)
(2) (i)-(p), (ii)-(r), (iii)-(q), (iv)-(s)
(3) (i)-(p), (ii)-(s), (iii)-(r), (iv)-(q)
(4) (i)-(p), (ii)-(s), (iii)-(q), (iv)-(r)

Answer (3)

Sol. The correct match is

Reaction
(i) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
(ii) $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}$
(iii) Sucrose \rightarrow glucose
+fructose
(iv) $\mathrm{NH}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$
(q) Pt (Ostwald process)
13. Which of the following salts are formed in Clark's method.
(1) $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{Mg}(\mathrm{OH})_{2}$
(2) $\mathrm{CaCO}_{3}, \mathrm{Mg}(\mathrm{OH})_{2}$
(3) $\mathrm{Ca}(\mathrm{OH})_{2}, \mathrm{MgCO}_{3}$
(4) $\mathrm{CaCO}_{3}, \mathrm{MgCO}_{3}$

Answer (2)

Sol. Clark's method is used to remove Temporary Hardness of water. In this method calculated amount of lime is added to hard water precipitating calcium carbonate and magnesium hydroxide.
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow 2 \mathrm{CaCO}_{3} \downarrow+$ $\mathrm{Mg}(\mathrm{OH})_{2} \downarrow+2 \mathrm{H}_{2} \mathrm{O}$
14. Which of the following is a incorrect statement?
(1) LiF is less soluble in water due to low hydration enthalpy
(2) KO_{2} is Paramagnetic
(3) Density of sodium is greater than Potassium
(4) $\mathrm{K}_{2} \mathrm{O}_{2}$ is diamagnetic

Answer (1)

Sol. Hydration enthalpy of Li^{+}and F^{-}is very high due to high charge density.
O_{2}^{-}is Paramagnetic
O_{2}^{2-} is diamagnetic
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Identity the number of paramagnetic species out of the following:

$$
\mathrm{Li}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{C}_{2}^{\ominus}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-2}, \mathrm{O}_{2}^{\oplus}
$$

Answer (04.00)

Sol. Species

$\mathrm{Li}_{2} \quad \rightarrow \quad$ Diamagnetic
$\mathrm{B}_{2} \quad \rightarrow \quad$ Paramagnetic
$\mathrm{C}_{2} \quad \rightarrow \quad$ Diamagnetic
$\mathrm{C}_{2}^{\ominus} \quad \rightarrow \quad$ Paramagnetic
$\mathrm{O}_{2} \quad \rightarrow \quad$ Paramagnetic
$\mathrm{O}_{2}^{-2} \quad \rightarrow \quad$ Diamagnetic
$\mathrm{O}_{2}^{\oplus} \quad \rightarrow \quad$ Paramagnetic
22. MnO_{4}^{-2} disproportionates in acidic medium to form two compounds of manganese A and B. Oxidation state of Mn is less in B than A. Spin only magnetic moment of B is (in B.M)
(Round off nearest integer)

Answer (04.00)

Sol. $\mathrm{MnO}_{4}^{-2} \xrightarrow[\text { disproportionates }]{\mathrm{H}^{\oplus}} \mathrm{MnO}_{4}^{\ominus}+\underset{\mathrm{B}}{\mathrm{MnO}_{2}}$
MnO_{2} has α^{β} configuration
$\therefore \quad \mu($ magnetic moment of $B)=\sqrt{3(3+2)}$

$$
=\sqrt{15} \mathrm{~B} \cdot \mathrm{M}
$$

$$
\simeq 4
$$

23. Consider the following reaction

$$
\underset{1 \mathrm{~mol}}{\mathrm{X}}+\underset{1 \mathrm{~mol}}{\mathrm{Y}}+\underset{0.05 \mathrm{~mol}}{3 Z} \longrightarrow \mathrm{XYZ}_{3}
$$

Calculate the mass of XYZ_{3} formed at the end of the reaction (in grams).
[Given molar mass of X, Y and Z are 10, 20 and 30 $\mathrm{g} / \mathrm{mol}$ respectively]

Answer (02.00)

Sol. $\underset{\mathrm{t}=0}{ } \underset{1 \mathrm{~mol}}{\mathrm{X}}+\underset{1 \mathrm{~mol}}{\mathrm{Y}}+\underset{0.05 \mathrm{~mol}}{3 Z} \longrightarrow X Y Z_{3}$
As Z is the limiting reagent, $\frac{0.05}{3}$ moles of $X Y Z_{3}$ is formed.
\therefore Mass of $\mathrm{XYZ}_{3}=\frac{0.05}{3} \times(10+20+90)$

$$
\begin{aligned}
& =\frac{0.05}{3} \times 120 \\
& =0.05 \times 40 \\
& =2 \mathrm{~g}
\end{aligned}
$$

24. 10.2 g of ascorbic acid is dissolved in 150 g of $\mathrm{CH}_{3} \mathrm{COOH}$. The depression of freezing point of the resulting solution is ' x ' $\times 10^{-1} \mathrm{~K}$.
[Given $\mathrm{k}_{\mathrm{f}}=3.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ and Molar mass of ascorbic acid $=176 \mathrm{~g} \mathrm{~mol}^{-1}$]
[Consider ascorbic acid and acetic acid remain undissociated] (Round off to nearest integer)

Answer (15.00)
Sol. $\Delta T_{f}=k_{f} m$

$$
=3.9 \times \frac{10.2}{176 \times 150} \times 1000
$$

$=1.51 \mathrm{~K}$
$\simeq 15 \times 10^{-1} \mathrm{~K}$
$\therefore \quad x=15$
25. Calculate the pH of butyric acid with $\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5}$ \& concentration 0.2 M .
[Given $\log 2=0.3$]

Answer (02.70)

Sol. As α (degree of dissociation) is very less

$$
\begin{aligned}
& 1-\alpha \approx 1 \\
& {\left[\mathrm{H}^{\oplus}\right]=\sqrt{\mathrm{CK}_{\mathrm{a}}}} \\
& =\sqrt{0.2 \times 2 \times 10^{-5}} \\
& =\sqrt{4 \times 10^{-6}}
\end{aligned}
$$

$=2 \times 10^{-3} \mathrm{M}$
$\mathrm{pH}=3-\log 2$
$=2.7$
26. How many of the following interhalogen compound(s) have square pyramidal shape.
$\mathrm{CIF}_{2}, \mathrm{BrF}_{3}, \mathrm{IF}_{5}, \mathrm{IF}_{7}, \mathrm{ClF}_{5}, \mathrm{BrF}_{5}, \mathrm{IF}_{3}$

Answer (03.00)

Sol. Out of the given interhalogen compounds
$\mathrm{IF}_{5}, \mathrm{ClF}_{5}$ and BrF_{5} have square pyramidal shape.

27. For a first order reaction,
$A \longrightarrow B$
Half life is 0.3010 minutes. What will be the value of $\frac{\left[\mathrm{A}_{0}\right]}{[\mathrm{A}]}$ after 2 minutes
[A_{0}] is initial concentration, $[A]$ is concentration after 2 minutes]

Answer (100)

Sol. $A \longrightarrow B$
For a first order reaction, $\mathrm{t}_{1 / 2}=0.3010 \mathrm{~min}$
\therefore Rate constant, $\mathrm{K}=\frac{\ln 2}{\mathrm{t}_{1 / 2}}=2.303 \mathrm{~mm}^{-1}$
$K=\frac{2.303}{t} \log \frac{[A]_{0}}{[A]}$
At $t=2$ min

$$
2.303=\frac{2.303}{2} \log \frac{[\mathrm{~A}]_{0}}{[\mathrm{~A}]}
$$

On solving, $\frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}=100$
28. What is the spin only magnetic moment of the manganese containing product formed at the end of the following reaction: \rightarrow (in B.M.)
$\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{O}_{2} \xrightarrow{\Delta}$ Products
(Round off to nearest integer)

Answer (02.00)

Sol. $2 \mathrm{MnO}_{2}+4 \mathrm{KOH}+\mathrm{O}_{2} \rightarrow 2 \mathrm{~K}_{2} \mathrm{MnO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
Magnetic moment of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ (d configuration of Mn)
$=\sqrt{1(1+2)}$
$=\sqrt{3}$
$\simeq 1.73$ B.M
$\simeq 2$
29. In a bcc lattice, edge length of lattice is 300 pm . Density of the solid is $60 \mathrm{gm} / \mathrm{cm}^{3}$. If the number of atoms in 180 gm of sample is ' x ' $\times 10^{23}$, then x is:
[Take $N_{A}=6 \times 10^{23}$]

Answer (2.22)

Sol. $d=\frac{z \times M}{N_{A} \times a^{3}}$
$60=\frac{2 \times M}{N_{A} \times(3)^{3} \times 10^{-24}}$
$60=\frac{2 \times M}{27 \times 6} \times 10$
$M=486 \mathrm{gm} / \mathrm{mol}$
$\therefore 180 \mathrm{~g}$ of the sample contains $\frac{180}{486} \times 6 \times 10^{23}$

$$
=2.22 \times 10^{23} \text { atoms }
$$

30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Sum of $\left(7^{2022}+3^{2022}\right)$ is divided by 5 , then remainder is
(1) 0
(2) 3
(3) 2
(4) 1

Answer (2)
Sol. $7^{2022}+3^{2022}$

$$
\begin{aligned}
& =(50-1)^{1011}+(10-1)^{1011} \\
& ={ }^{1011} C_{0} 50^{10011}(-1)^{0}+\ldots . .1011 C_{1010} 5+1011 C_{1011}(-1)^{1011} \\
& \quad \quad+{ }^{1011} C_{0} 10^{1011}(-1)^{0}+\ldots . .+{ }^{1011} C_{1011}(-1)^{1011} \\
& =5 \lambda-2
\end{aligned}
$$

$\therefore \quad$ Remainder when divided by 5 is 3
2. The sum of all the value of x satisfying $\cos ^{-1} x-2 \sin ^{-1} x=\cos ^{-1} 2 x$
(1) 0
(2) 1
(3) $\frac{1}{2}$
(4) $-\frac{1}{2}$

Answer (1)

Sol. $\cos ^{-1} x-2 \sin ^{-1} x=\cos ^{-1} 2 x$

$$
\begin{aligned}
& \Rightarrow \quad \frac{\pi}{2}-3 \sin ^{-1} x=\cos ^{-1} 2 x \\
& \Rightarrow \cos \left(\frac{\pi}{2}-3 \sin ^{-1} x\right)=\cos \left(\cos ^{-1} 2 x\right) \\
& \Rightarrow \sin \left(3 \sin ^{-1} x\right)=\cos \left(\cos ^{-1} 2 x\right) \\
& \Rightarrow 3 x-4 x^{3}=2 x \\
& \Rightarrow 4 x^{3}=x \\
& \Rightarrow \quad x=0, \pm \frac{1}{2}
\end{aligned}
$$

\therefore Sum of values of $x=0$
3. If $x d y=\left(\sqrt{x^{2}+y^{2}}+y\right) d x$ and $y(1)=0$ then $y(2)$ equals
(1) $\frac{1}{2}$
(2) $\frac{1}{4}$
(3) $\frac{3}{2}$
(4) $\frac{5}{2}$

Answer (3)

Sol. $\frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}+y}{x}$
Put $y=v x$

$$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x} \\
& \therefore \quad v+x \frac{d v}{d x}=\sqrt{1+v^{2}}+v \\
& \Rightarrow \int \frac{d v}{\sqrt{1+v^{2}}}=\int \frac{d x}{x} \\
& \Rightarrow \ln \left(\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}\right)=\ln x+c
\end{aligned}
$$

$$
\begin{array}{ll}
& \begin{array}{ll}
\text { as } y(1)=0 & \text { We get } c=0 \\
& \text { for } y(2) \\
\Rightarrow & \ln \left(y+\sqrt{4+y^{2}}\right)=2 \ln 2 \\
\Rightarrow & y+\sqrt{4+y^{2}}=4 \quad \Rightarrow 1+y^{2}=16-8 y+y^{2} \\
\Rightarrow & y=\frac{3}{2}
\end{array}
\end{array}
$$

4. If $a_{n+2}=\frac{2}{a_{n+1}}+a_{n}, a_{1}=1, \quad a_{2}=2$, then

$$
\left(\frac{a_{1}+\frac{1}{a_{2}}}{a_{3}}\right) \cdot\left(\frac{a_{2}+\frac{1}{a_{3}}}{a_{4}}\right) \cdots \cdots \cdot \frac{a_{30}+\frac{1}{a_{31}}}{a_{32}}=2^{\alpha}{ }^{61} C_{31}
$$

then $\alpha=$
(1) -30
(2) -31
(3) -60
(4) -61

Answer (3)

Sol. $\because a_{n+2} \cdot a_{n+1}-a_{n+1} \cdot a_{n}=2$ where $a_{1}=1, a_{2}=2$ and $a_{3}=2$
Let $T_{r}=a_{r+1} \cdot a_{r}$
So $<T_{r}>$ is A.P. with common difference 2 and first term 2.
Clearly $T_{r}=2 r$
Now, $\prod_{i=1}^{30}\left(\frac{a_{i}+\frac{1}{a_{i+1}}}{a_{i+2}}\right)=\prod_{r=1}^{30}\left(\frac{T_{r}+1}{T_{r+1}}\right)$
$=\prod_{i=1}^{30}\left(\frac{2 r+1}{2 r+2}\right)=\frac{3 \cdot 5 \cdot 7 \cdot \ldots . \cdot 61}{4 \cdot 6 \cdot 8 \cdot \ldots . \cdot 62}=\frac{162}{2(4 \cdot 6 \cdot 8 \cdot \ldots \cdot 62)^{2}}$
$=\frac{\boxed{62}}{2^{61} \cdot(\underline{31})^{2}}=2^{-61} \cdot{ }^{62} C_{31}=2^{-60} \cdot{ }^{61} C_{30}$
$=2^{-60} \cdot{ }^{61} C_{31}$
5. Let $z_{1} \in C,\left|z_{1}-3\right|=\frac{1}{2}$,
$z_{2} \in C,\left|z_{2}+\left|z_{2}-1\right|\right|=\left|z_{2}-\left|z_{2}+1\right|\right|$, then least value of $\left|z_{1}-z_{2}\right|$ is
(1) 0
(2) $\frac{1}{2}$
(3) $\frac{3}{2}$
(4) $\frac{5}{2}$

Answer (3)

Sol. $\because\left|z_{2}+\left|z_{2}-1\right|\right|^{2}=\left|z_{2}-\left|z_{2}+1\right|^{2}\right.$
$\Rightarrow\left(z_{2}+\left|z_{2}-1\right|\right)\left(\bar{z}_{2}+\left|z_{2}-1\right|\right)$
$=\left(z_{2}-\left|z_{2}+1\right|\right)\left(\bar{z}_{2}-\left|z_{2}+1\right|\right)$
$\Rightarrow \quad z_{2}\left(\left|z_{2}-1\right|+\left|z_{2}+1\right|\right)+\bar{z}_{2}\left(\left|z_{2}-1\right|+\left|z_{2}+1\right|\right)$
$=\left|z_{2}+1\right|^{2}-\left|z_{1}+1\right|^{2}$
$\Rightarrow\left(z_{2}+\bar{z}_{2}\right)\left(\left|z_{2}+1\right|+\left|z_{2}-1\right|\right)=2\left(z_{2}+\bar{z}_{2}\right)$
\Rightarrow Either $z_{2}+\bar{z}_{2}=0$ or $\left|z_{2}+1\right|+\left|z_{2}-1\right|=2$

So z_{2} lies on imaginary axis or on real axis within $[-1,1]$. Also $\left|z_{1}-3\right|=\frac{1}{2} \Rightarrow z_{1}$ lies on the circle having centre 3 and radius $\frac{1}{2}$.

Clearly $\left|z_{1}-z_{2}\right|_{\text {min }}=\frac{3}{2}$
6. If $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $B_{0}=A^{98}+2 A^{49}$,
$B_{\mathrm{n}}=\operatorname{adj}\left(B_{\mathrm{n}-1}\right)$, then $\left|B_{4}\right|$ is equal to
(1) 3^{16}
(2) 3^{32}
(3) 2^{16}
(4) 2^{32}

Answer (2)
Sol. $A^{2}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=I$
$\therefore \quad B_{0}=I+2 A=\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]+\left[\begin{array}{lll}0 & 2 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 3\end{array}\right]$
As $B_{n}=\operatorname{adj}\left(B_{n-1}\right)$
$\therefore \quad B_{4}=\operatorname{adj}\left(B_{3}\right)=\operatorname{adj}\left(B_{2}\right)=\operatorname{adj}\left(\operatorname{adj}\left(\operatorname{adj} B_{1}\right)\right)$

$$
=\left(\operatorname{adj}\left(\operatorname{adj}\left(\operatorname{adj}\left(\operatorname{adj} B_{0}\right)\right)\right)\right)
$$

$\therefore \quad\left|B_{4}\right|\left|B_{0}\right|^{2^{4}}=\left|B_{0}\right|^{16}$

$$
\left|B_{0}\right|=\left[\begin{array}{lll}
1 & 2 & 0 \\
2 & 1 & 0 \\
0 & 0 & 3
\end{array}\right]=3(-3)
$$

$\therefore \quad\left|B_{0}\right|^{16}=9^{16}=3^{32}$
7. The domain of $\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$ is
(1) $\left(-\infty, \frac{-1}{3}\right)$
(2) $\left[\frac{-1}{4}, \infty\right)$
(3) $\left(\frac{-1}{3}, \infty\right)$
(4) $\left(\frac{-1}{4}, \infty\right)$

Answer (2)

Sol. $f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$
For $D_{f}-1 \leq \frac{x^{2}-4 x+2}{x^{2}+3} \leq 1$
$\Rightarrow-x^{2}-3 \leq x^{2}-4 x+2 \leq x^{2}+3$
$\Rightarrow 2 x^{2}-4 x+5 \geq 0$ and $4 x \geq-1$
$\Rightarrow x \in R$ and $x \in\left[\frac{-1}{4}, \infty\right)$
$\therefore \quad D_{f}=\left\{x: x \in\left[\frac{-1}{4}, \infty\right)\right\}$
8. Tangent at two point P and Q on parabola $y^{2}=2 x-3$ meet at $R(0,1)$, then orthocentre of $\triangle P Q R$ is
(1) $(0,1)$
(2) $(2,-1)$
(3) $(6,3)$
(4) $(2,1)$

Answer (2)

Sol.

$$
\begin{aligned}
& y^{2}=2 x-3 \\
& y=2\left(x-\frac{3}{2}\right)
\end{aligned}
$$

Let a point on parabola
$A=\left(\frac{3}{2}+\frac{t^{2}}{2}, t\right)$
Equation of tangent at A is
$y t=x+\frac{3 x+t^{2}}{2}-3$
$\because \quad R(0,1)$ lies on it then $t=3$ or -1
$\therefore \quad A=(6,3)$ and $B=(2,-1)$
Here, $\triangle A B C$ is right angled at $B(2,-1)$
\therefore Orthocentre of $\triangle A B C$ is $(2,-1)$
9. The solution of differential equation $\sin ^{2}(2 x) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+4 \sin 2 x\right) y=0$ $y\left(\frac{\pi}{4}\right)=e^{-\pi}$, then $y\left(\frac{\pi}{6}\right)$ is
(1) $3 e^{\frac{\pi}{3}}$
(2) $3 e^{-\frac{\pi}{3}}$
(3) $\sqrt{3} e^{\frac{\pi}{3}}$
(4) $\sqrt{3} e^{-}$

Answer (2)

Sol. $\sin ^{2} 2 x \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+4 \sin 2 x\right) y=0$

$$
\begin{aligned}
& \Rightarrow \int \frac{d y}{y}+\int(8+4 \operatorname{cosec} 2 x) d x=0 \\
& \Rightarrow \ln y+8 x+2 \ln |\operatorname{cosec} 2 x-\cot 2 x|=c
\end{aligned}
$$

$$
y\left(\frac{\pi}{4}\right)=e^{-\pi} \text { we get }
$$

$$
-\pi+2 \pi+2 \ln 1=c \Rightarrow c=\pi
$$

$\Rightarrow \ln y+8 x+2 \ln |\operatorname{cosec} 2 x-\cot 2 x|=\pi$
for $y\left(\frac{\pi}{6}\right)$ put $x=\frac{\pi}{6}$ we get
$\ln y+\frac{4 \pi}{3}+2 \ln \left|\frac{1}{\sqrt{3}}\right|=\pi$
$\Rightarrow \ln \left(\frac{y}{3}\right)=-\frac{\pi}{3} \Rightarrow y=3 e^{-\frac{\pi}{3}}$
10. Let $f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}},(x>0)$ and minimum value of $f(x)$ is 14 , then a is equal to
(1) 32
(2) 64
(3) 128
(4) 256

Answer (3)

Sol. Using weighted A.M.- G.M. Inequality

$$
\begin{aligned}
& \frac{5\left(\frac{x^{2}}{2}\right)+2\left(\frac{\alpha}{2 x^{5}}\right)}{5+2} \geq\left(\left(\frac{x^{2}}{2}\right)^{5} \cdot\left(\frac{\alpha}{2 x^{5}}\right)^{2}\right)^{\frac{1}{7}} \\
& \Rightarrow \frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}} \geq \frac{7}{2}(\alpha)^{\frac{2}{7}}
\end{aligned}
$$

So least value of $\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}=\frac{7}{2} \alpha^{\frac{2}{7}}=14$
$\Rightarrow \quad a^{\frac{2}{7}}=4 \Rightarrow \alpha=128$
11. The minimum value of function
$f(x)=\int_{0}^{x} e^{x-t} f^{\prime}(t) d t+\left(x^{2}-x+1\right) e^{x}$, is then find $f(x)$
(1) $\frac{-2}{\sqrt{e}}$
(2) $-2 \sqrt{e}$
(3) $\frac{2}{\sqrt{e}}$
(4) \sqrt{e}

Answer (3)

Sol. $f(x)=e^{x} \int_{0}^{x} e^{-t} f^{\prime}(t) d t+e^{x}\left(x^{2}-x+1\right)$
$f^{\prime}(x)=e^{x} \int_{0}^{x} e^{-t} f^{\prime}(t) d t+e^{x} . e^{-x} f^{\prime}(x)$

$$
+e^{x}\left(x^{2}-x+1\right)+e^{x}(2 x-1)
$$

$\Rightarrow \quad 0=e^{x} \int_{0}^{x} e^{-t}\left(f^{\prime}(t) d t+e^{x}\left(x^{2}+x\right)\right.$
$\Rightarrow \int_{0}^{x} e^{-t} f^{\prime}(t) d t=-\left(x^{2}+x\right)$
$\Rightarrow \quad e^{-x} f^{\prime}(x)=-(2 x+1)$
$\Rightarrow f^{\prime}(x)=-e^{x}(2 x+1)$

$$
\begin{aligned}
& \Rightarrow f(x)=-e^{x}(2 x-1)+c \quad(c=0 \text { as } f(0)=1) \\
& \therefore \quad f(x)=(1-2 x) e^{x} \\
& \Rightarrow f(x)_{\min }=\frac{2}{\sqrt{e}}
\end{aligned}
$$

12.
13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Let hyperbola $H: x^{2}-y^{2}=1$ and ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
and eccentricity of ellipse E is reciprocal of that of hyperbola H. If common tanget of H and E is $y=\sqrt{\frac{5}{2}} x+k$, then value of $4\left(a^{2}+b^{2}\right)$ is equal to

Answer (3)

Sol. $H: x^{2}-y^{2}=1, E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$

$$
\begin{align*}
& e_{H}=\sqrt{2}, \text { and } e_{E}=\frac{1}{e_{H}} \\
& \therefore \quad 1-\frac{b^{2}}{a^{2}}=\frac{1}{2} \\
& \Rightarrow \quad \frac{b^{2}}{a^{2}}=\frac{1}{2} \tag{i}
\end{align*}
$$

\because Common tangent of E and H is

$$
y=\sqrt{\frac{5}{2}} x+k\left(\text { i.e. } m=\sqrt{\frac{5}{2}}\right)
$$

Now, for common tangency

$$
\begin{aligned}
& \frac{5}{2} a^{2}+b^{2}=\frac{5}{2}-1 \\
& \frac{5}{2}+\frac{b^{2}}{a^{2}}=\frac{3}{2 a^{2}} \\
\Rightarrow & a^{2}=\frac{1}{2} \\
\therefore \quad & a^{2}+b^{2}=\frac{3}{2} \cdot \frac{1}{2}=\frac{3}{4} \\
\therefore \quad & 4\left(a^{2}+b^{2}\right)=3
\end{aligned}
$$

22. $A(\cos t, \sin t), B(\sin t,-\cos t)$ and $C(a, b)$ form an equilateral triangle, $t \in[0,2 \pi]$ and orthocentre of this triangle lies on a circle with centre $\left(1, \frac{1}{3}\right)$ then $a^{2}-b^{2}$ is equal to

Answer (08)

Sol. If $\triangle A B C$ is an equilateral triangle, then orthocentre \& centroid coincide.

So, Orthocentre of triangle is
$(h, k) \equiv\left(\frac{\cos t+\sin t+a}{3}, \frac{\sin t-\cos t+b}{3}\right)$
$\Rightarrow 3 h-a=\cos t+\sin t$
$3 k-b=\sin t-\cos t$
Eliminate t from above two equations (i) \& (ii)
$(3 h-a)^{2}+(3 k-b)^{2}=2$
So, (h, k) lies on the circle whose centre is at $\left(\frac{a}{3}, \frac{b}{3}\right)$.
$a=3, b=1 ;$ then $a^{2}-b^{2}=8$
23. A password is to be made of 6 to 8 digits from either of the sets A, B, C, D, E or $1,2,3,4,5$ having at least one numeric, then possible password is equal to $K \times 5^{6}$, then K is equal to

Answer (7073•5 ${ }^{6}$)
Sol. If password is six-digit then number of ways
$\therefore \quad 10^{6}-5^{6}$
Similarly, if 7-ditis password
Number of ways $=10^{7}-5^{7}$
For 8-digit password number of ways
$=10^{8}-5^{8}$
\therefore Total ways
$=\left(10^{6}+10^{7}+10^{8}\right)-\left(5^{6}+5^{7}+5^{8}\right)$
$=5^{6}\left(2^{6}+5 \cdot 2^{7}+25 \cdot 2^{8}-1-5-5^{2}\right)$
$=7073 \cdot 5^{6}$

