Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2022 (Online) Phase-2

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The dimensions of $\left(\frac{B^{2}}{\mu_{0}}\right)$ will be
(if μ_{0} : permeability of free space and B : magnetic field)
(A) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(B) $\left[\mathrm{MLT}^{-2}\right]$
(C) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(D) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$

Answer (C)

Sol. $\left[\frac{B^{2}}{\mu_{0}}\right]=[$ Energy density]

$$
=\frac{M L^{2} \mathrm{~T}^{-2}}{\mathrm{~L}^{3}}=\mathrm{ML}^{-1} \mathrm{~T}^{-2}
$$

2. A NCC parade is going at a uniform speed of $9 \mathrm{~km} / \mathrm{h}$ under a mango tree on which a monkey is sitting at a height of 19.6 m . At any particular instant, the monkey drops a mango. A cadet will receive the mango whose distance from the tree at time of drop is (Given $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(A) 5 m
(B) 10 m
(C) 19.8 m
(D) 24.5 m

Answer (A)

Sol. $H=\frac{1}{2} g t^{2}$
$19.6=4.9 t^{2}$
$t=2 \mathrm{sec}$
$D=9 \times \frac{5}{18} \times 2=5 \mathrm{~m}$
3. In two different experiments, an object of mass 5 kg moving with a speed of $25 \mathrm{~ms}^{-1}$ hits two different walls and comes to rest within (i) 3 second, (ii) 5 seconds, respectively.

Choose the correct option out of the following:
(A) Impulse and average force acting on the object will be same for both the cases.
(B) Impulse will be same for both the cases but the average force will be different.
(C) Average force will be same for both the cases but the impulse will be different.
(D) Average force and impulse will be different for both the cases.

Answer (B)

Sol. $\Delta P=$ impulse $=$ same since acceleration is different force acting will be different.
4. A balloon has mass of 10 g in air. The air escapes from the balloon at a uniform rate with velocity $4.5 \mathrm{~cm} / \mathrm{s}$. If the balloon shrinks in 5 s completely. Then, the average force acting on that balloon will be (in dyne).
(A) 3
(B) 9
(C) 12
(D) 18

Answer (B)
Sol. $F_{\text {avg }}=\mu \times v_{\text {rel }}$
$=\frac{10}{5} \times 4.5=9$
5. If the radius of earth shrinks by 2% while its mass remains same. The acceleration due to gravity on the earth's surface will approximately
(A) Decrease by 2%
(B) Decrease by 4%
(C) Increase by 2%
(D) Increase by 4\%

Answer (D)
Sol. $g=\frac{G M}{R^{2}}$
$\frac{\Delta R}{R} \times 100=-2$
$\frac{\Delta g}{g}=-\frac{2 \Delta R}{R}=4 \%$
Increase by 4\%
6. The force required to stretch a wire of cross-section $1 \mathrm{~cm}^{2}$ to double its length will be:
(Given Young's modulus of the wire $=2 \times 10^{11}$ $\mathrm{N} / \mathrm{m}^{2}$)
(A) $1 \times 10^{7} \mathrm{~N}$
(B) $1.5 \times 10^{7} \mathrm{~N}$
(C) $2 \times 10^{7} \mathrm{~N}$
(D) $2.5 \times 10^{7} \mathrm{~N}$

Answer (C)
Sol. $A=1 \mathrm{~cm}^{2}$
$Y=\frac{F I}{A \Delta I}$
$F=\frac{Y A \Delta I}{I}=\frac{2 \times 10^{11} \times 10^{-4} \times I}{I}$

$$
=2 \times 10^{7} \mathrm{~N}
$$

7. A Carnot engine has efficiency of 50%. If the temperature of sink is reduced by $40^{\circ} \mathrm{C}$, its efficiency increases by 30%. The temperature of the source will be:
(A) 166.7 K
(B) 255.1 K
(C) 266.7 K
(D) 367.7 K

Answer (C)
Sol. $1-\frac{T_{L}}{T_{H}}=0.5$
$1-\frac{T_{L}-40}{T_{H}}=0.65$
$\Rightarrow T_{H}=\frac{800}{3} \mathrm{~K} \simeq 266.7 \mathrm{~K}$
8. Given below are two statements :

Statement I : The average momentum of a molecule in a sample of an ideal gas depends on temperature.

Statement II: The rms speed of oxygen molecules in a gas is v. If the temperature is doubled and the oxygen molecules dissociate into oxygen atoms, the rms speed will become $2 v$.
In the light of the above statements, choose the correct answer from the options given below:
(A) Both Statement I and Statement II are true
(B) Both Statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Answer (D)

Sol. Average momentum $=\langle\vec{P}\rangle=0$
$v_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}$
If temperature is doubled and oxygen atoms are used then
$v_{\text {rms }}^{\prime}=\sqrt{\frac{3 R(2 T)}{M / 2}}=4 v_{\text {rms }}$
9. In the wave equation
$y=0.5 \sin \frac{2 \pi}{\lambda}(400 t-x) m$
the velocity of the wave will be :
(A) $200 \mathrm{~m} / \mathrm{s}$
(B) $200 \sqrt{2} \mathrm{~m} / \mathrm{s}$
(C) $400 \mathrm{~m} / \mathrm{s}$
(D) $400 \sqrt{2} \mathrm{~m} / \mathrm{s}$

Answer (C)

Sol. $v_{\text {wave }}=\left|\frac{\text { coefficient of } t}{\text { coefficient of } x}\right|$
$=\frac{400}{1}=400 \mathrm{~m} / \mathrm{s}$
10. Two capacitors, each having capacitance $40 \mu \mathrm{~F}$ are connected in series. The space between one of the capacitors is filled with dielectric material of dielectric constant K such that the equivalence capacitance of the system became $24 \mu \mathrm{~F}$. The value of K will be :
(A) 1.5
(B) 2.5
(C) 1.2
(D) 3

Answer (A)

Sol.

$\frac{40 K \times 40}{40 K+40}=24$
$40 K=24(K+1)$
$40 K=24 K+24$
$16 K=24$
$K=\frac{24}{16}=\frac{3}{2}=1.5$
11. A wire of resistance R_{1} is drawn out so that its length is increased by twice of its original length. The ratio of new resistance to original resistance is:
(A) $9: 1$
(B) $1: 9$
(C) $4: 1$
(D) $3: 1$

Answer (A)

Sol. $R=\frac{\rho l}{A}$
$A I=$ constant
$\Rightarrow R \propto R$
\Rightarrow Ratio $=3^{2}=9$
12. The current sensitivity of a galvanometer can be increased by :
(A) Decreasing the number of turns
(B) Increasing the magnetic field
(C) Decreasing the area of the coil
(D) Decreasing the torsional constant of the spring

Choose the most appropriate answer from the options given below :
(A) (B) and (C) only
(B) (C) and (D) only
(C) (A) and (C) only
(D) (B) and (D) only

Answer (D)

Sol. NiAB $=k \theta$
$\Rightarrow \frac{\theta}{i}=\frac{N A B}{k}$
\Rightarrow Sensitivity increases if $B \uparrow$ and $k \downarrow$
13. As shown in the figure, a metallic rod of linear density $0.45 \mathrm{~kg} \mathrm{~m}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of 45° with the horizontal. The minimum current flowing in the rod required to keep it stationary, when 0.15 T magnetic field is acting on it in the vertical upward direction, will be : $\left\{\right.$ Use $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right\}$

(A) 30 A
(B) 15 A
(C) 10 A
(D) 3 A

Answer (A)

$m g \times \frac{1}{\sqrt{2}}=\frac{i l B}{\sqrt{2}}$
$\Rightarrow \quad i=\frac{m g}{B I}$

$$
=\frac{0.45 \times 10}{0.15}=30 \mathrm{~A}
$$

14. The equation of current in a purely inductive circuit is $5 \sin \left(49 \pi t-30^{\circ}\right)$. If the inductance is 30 mH then the equation for the voltage across the inductor, will be :
$\left\{\right.$ Let $\left.\pi=\frac{22}{7}\right\}$
(A) $1.47 \sin \left(49 \pi t-30^{\circ}\right)$
(B) $1.47 \sin \left(49 \pi t+60^{\circ}\right)$
(C) $23.1 \sin \left(49 \pi t-30^{\circ}\right)$
(D) $23.1 \sin \left(49 \pi t+60^{\circ}\right)$

Answer (D)

Sol.

$$
\begin{aligned}
V(t) & =I \omega L \sin \left(49 \pi t-30^{\circ}+90^{\circ}\right) \\
& =5 \times 49 \pi \times \frac{30}{1000} \sin \left(49 \pi t+60^{\circ}\right) \\
& =23.1 \sin \left(49 \pi t+60^{\circ}\right)
\end{aligned}
$$

15. As shown in the figure, after passing through the medium 1. The speed of light v_{2} in medium 2 will be :
(Given $c=3 \times 10^{8} \mathrm{~ms}^{-1}$)

(A) $1.0 \times 10^{8} \mathrm{~ms}^{-1}$
(B) $0.5 \times 10^{8} \mathrm{~ms}^{-1}$
(C) $1.5 \times 10^{8} \mathrm{~ms}^{-1}$
(D) $3.0 \times 10^{8} \mathrm{~ms}^{-1}$

Answer (A)

Sol. $V=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{1}{\sqrt{\mu_{r} \varepsilon_{r} \mu_{0} \varepsilon_{0}}}$

$$
\Rightarrow \quad V_{2}=\frac{c}{\sqrt{9}}=10^{8} \mathrm{~m} / \mathrm{s}
$$

16. In normal adjustment, for a refracting telescope, the distance between objective and eye piece is 30 cm . The focal length of the objective, when the angular magnification of the telescope is 2 , will be:
(A) 20 cm
(B) 30 cm
(C) 10 cm
(D) 15 cm

Answer (A)

Sol. $\because \quad m=\frac{f_{o}}{f_{e}}$

$$
\begin{equation*}
\Rightarrow \quad 2=\frac{f_{o}}{f_{e}} \tag{i}
\end{equation*}
$$

and, $I=f_{o}+f_{\mathrm{e}}$
$\Rightarrow 30=f_{o}+f_{e}$
$\Rightarrow 30=f_{o}+\frac{f_{0}}{2}$
$\Rightarrow \quad 30 \times \frac{2}{3}=f_{o}$
$\Rightarrow f_{o}=20 \mathrm{~cm}$
17. The equation $\lambda=\frac{1.227}{x} \mathrm{~nm}$ can be used to find the de- Broglie wavelength of an electron.

In this equation x stands for:
Where $m=$ mass of electron
$P=$ momentum of electron
$K=$ Kinetic energy of electron
$V=$ Accelerating potential in volts for electron
(A) $\sqrt{m K}$
(B) \sqrt{P}
(C) \sqrt{K}
(D) \sqrt{V}

Answer (D)
Sol. $\because \quad \lambda=\frac{1.227}{\sqrt{V}} \mathrm{~nm}$
$\Rightarrow \quad x=\sqrt{V}$
18. The half life period of a radioactive substance is 60 days. The time taken for $\frac{7}{8}$ th of its original mass to disintegrate will be :
(A) 120 days
(B) 130 days
(C) 180 days
(D) 20 days

Answer (C)

Sol. $\because N=\frac{N_{0}}{2^{\frac{t}{T_{1} / 2}}}$

$$
\begin{aligned}
& \Rightarrow \quad 2^{\frac{t}{T_{1} / 2}}=\frac{N_{0}}{N}=\frac{N_{0}}{\left(\frac{N_{0}}{8}\right)} \\
& \Rightarrow \quad 2^{\frac{t}{T_{1} / 2}}=8=2^{3} \\
& \Rightarrow t=3 \times T_{1 / 2}=3 \times 60 \\
& \quad=180 \text { days }
\end{aligned}
$$

19. Identify the solar cell characteristics from the following options :
(A)

(B)

(C)

(D)

Answer (B)

Sol. Solar cell characteristics

20. In the case of amplitude modulation to avoid distortion the modulation index (μ) should be :
(A) $\mu \leq 1$
(B) $\mu \geq 1$
(C) $\mu=2$
(D) $\mu=0$

Answer (A)

Sol. For effective modulation,
$\mu \leq 1$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. projection of $2 \hat{i}+4 \hat{j}-2 \hat{k}$ on $\hat{i}+2 \hat{j}-\alpha \hat{k}$ is zero.

Then, the value of α will be \qquad -.

Answer (5)

Sol. $\vec{A}=2 \hat{i}+4 \hat{j}-2 \hat{k}$
$\vec{B}=\hat{i}+2 \hat{j}+\alpha \hat{k}$
$\vec{A} \cdot \vec{B}=0$, as \vec{A} should be perpendicular to \vec{B}
$\Rightarrow 2+8-2 \alpha=0$

$$
\alpha=5
$$

2. A freshly prepared radioactive source of half life 2 hours 30 minutes emits radiation which is 64 times the permissible safe level. The minimum time, after which it would be possible to work safely with source, will be \qquad hours.

Answer (15)

Sol. $T_{1 / 2}=150$ minutes
$A_{0}=64 x$, where x is safe limit
$x=64 x \times 2^{-\frac{n}{T_{1} / 2}}$
$\Rightarrow \frac{1}{64}=2^{-\frac{n}{T_{1} / 2}}$
or $\frac{n}{T_{1 / 2}}=6$
$\Rightarrow n=6 \times 150$ minutes
$=15$ hours
3. In a Young's double slit experiment, a laser light of 560 nm produces an interference pattern with consecutive bright fringes' separation of 7.2 mm . Now another light is used to produce an interference pattern with consecutive bright fringes' separation of 8.1 mm . The wavelength of second light is \qquad nm .

Answer (630)

Sol. $\lambda=560 \times 10^{-9}$
$B_{1}=7.2 \times 10^{-3}$
$B_{2}=8.1 \times 10^{-3}$

$$
\frac{B_{1}}{B_{2}}=\frac{\lambda_{1}}{\lambda_{2}}
$$

$$
\Rightarrow \quad \lambda_{2}=\frac{560 \times 10^{-9} \times 8.1 \times 10^{-3}}{7.2 \times 10^{-3}}
$$

$$
=6.3 \times 10^{-7} \mathrm{~m}
$$

$$
=630 \mathrm{~nm}
$$

4. The frequencies at which the current amplitude in an LCR series circuit becomes $\frac{1}{\sqrt{2}}$ times its maximum value, are $212 \mathrm{rad} \mathrm{s}^{-1}$ and $232 \mathrm{rad} \mathrm{s}^{-1}$. The value of resistance in the Question: circuit is $R=5 \Omega$. The self-inductance in the circuit is \qquad mH .

Answer (250)

$\frac{i}{i_{\max }}=\frac{1}{\sqrt{2}}$
Sol.
$=\frac{V_{0} / Z}{V_{0} / R}$

$$
\Rightarrow \frac{R}{Z}=\frac{1}{\sqrt{2}}
$$

and $\frac{1}{212 C}-212 L=232 L-\frac{1}{232 C}$
so $212 L=\frac{1}{232 C}$
so $\frac{R}{\sqrt{R^{2}+\left(232 L+\frac{1}{232 C}\right)^{2}}}=\frac{1}{\sqrt{2}}$

$$
\begin{aligned}
& \frac{R^{2}}{R^{2}+(20 L)^{2}}=\frac{1}{2} \\
& 400 L^{2}=R^{2} \\
& L=\frac{5}{20} \\
& H=\frac{5}{20} \times 1000 \mathrm{mH} \\
& \quad=250 \mathrm{mH}
\end{aligned}
$$

5. As shown in the figure, a potentiometer wire of resistance 20Ω and length 300 cm is connected with resistance box (R.B.) and a standard cell of emf 4 V . For a resistance ' R ' of resistance box introduced into the circuit, the null point for a cell of 20 mV is found to be 60 cm . The value of ' R ' is Ω.

Answer (780)

Sol. $I=3 \mathrm{~m}, R_{W}=20 \Omega$

$$
\begin{aligned}
& \varepsilon_{0}=4 \mathrm{~V} \\
& \frac{4 \times 20}{20+R} \times \frac{60}{300}=20 \times 10^{-3} \\
& \frac{4}{20+R}=5 \times 10^{-3} \\
& 20+R=800 \\
& R=780 \Omega
\end{aligned}
$$

6. Two electric dipoles of dipole moments 1.2×10^{-30} C-m and $2.4 \times 10^{-30} \mathrm{C}-\mathrm{m}$ are placed in two different uniform electric fields of strength $5 \times 10^{4} \mathrm{NC}^{-1}$ and $15 \times 10^{4} \mathrm{NC}^{-1}$ respectively. The ratio of maximum torque experienced by the electric dipoles will be $\frac{1}{x}$. The value of x is \qquad -

Answer (6)

Sol. $\frac{\rho_{1}}{\rho_{2}}=\frac{\mu_{1} B_{1} \sin 90}{\mu_{2} B_{2} \sin 90}$

$$
\begin{aligned}
& =\frac{1.2 \times 10^{-30} \times 5 \times 10^{4}}{2.4 \times 10^{-30} \times 15 \times 10^{4}} \\
& =\frac{1}{6}
\end{aligned}
$$

7. The frequency of echo will be \qquad Hz if the train blowing a whistle of frequency 320 Hz is moving with a velocity of $36 \mathrm{~km} / \mathrm{h}$ towards a hill from which an echo is heard by the train driver. Velocity of sound in air is $330 \mathrm{~m} / \mathrm{s}$.

Answer (340)

Sol. $v_{s}=36 \times \frac{5}{18}=10 \mathrm{~m} / \mathrm{sec}$

$$
\begin{aligned}
f & =\frac{v+v_{s}}{v-v_{s}} f_{0} \\
& =\frac{340}{320} \times 320 \\
& =340 \mathrm{~Hz}
\end{aligned}
$$

8. The diameter of an air bubble which was initially 2 mm , rises steadily through a solution of density $1750 \mathrm{~kg} \mathrm{~m}^{-3}$ at the rate of $0.35 \mathrm{cms}^{-1}$. The coefficient of viscosity of the solution is \qquad poise (in nearest integer). (The density of air is negligible).

Answer (11)

Sol. $F=6 \pi \eta r v$

$$
\begin{aligned}
& \frac{4}{3} \pi r^{3} \rho_{l} g=6 \pi \eta r v \\
& \eta=\frac{2 r^{2} \rho_{l} g}{v} \\
&=\frac{2 \times\left(2 \times 10^{-3}\right)^{2} \times 1750 \times 10}{9 \times 3.5 \times 10^{-3} \times 4} \\
&=11 \text { poise }
\end{aligned}
$$

9. A block of mass ' m ' (as shown in figure) moving with kinetic energy E compresses a spring through a distance 25 cm when, its speed is halved. The value of spring constant of used spring will be $n E$ Nm^{-1} for $n=$ \qquad -.

Answer (24)
Sol. $\Delta \mathrm{KE}=W_{\text {all }}$
So $\frac{E}{4}-E=-\frac{1}{2} \mathrm{~K} \times(0.25)^{2}$

$$
\begin{aligned}
& \frac{3 E}{4}=\frac{1}{2} \mathrm{~K} \times \frac{1}{16} \\
& K=24 E
\end{aligned}
$$

10. Four identical discs each of mass ' M ' and diameter 'a' are arranged in a small plane as shown in figure. If the moment of inertia of the system about OO' is
$\frac{x}{4} \mathrm{Ma}^{2}$. Then, the value of x will be \qquad -

Answer (3)

Sol. $I=2 \times\left(\frac{M\left(\frac{a}{2}\right)^{2}}{4}\right)+2 \times\left(\frac{M\left(\frac{a}{2}\right)^{2}}{4}+M\left(\frac{a}{2}\right)^{2}\right)$
$=\frac{M a^{2}}{8}+\frac{5 M a^{2}}{8}$
$=\frac{6 M a^{2}}{8}=\frac{3}{4} M a^{2}$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Identify the incorrect statement from the following.
(A) A circular path around the nucleus in which an electron moves is proposed as Bohr's orbit.
(B) An orbital is the one electron wave function (Ψ) in an atom.
(C) The existence of Bohr's orbits is supported by hydrogen spectrum.
(D) Atomic orbital is characterised by the quantum numbers n and I only.

Answer (D)

Sol. Atomic orbital is characterised by the quantum numbers n, I and m .

Hence option D is incorrect.
2. Which of the following relation is not correct?
(A) $\Delta \mathrm{H}=\Delta \mathrm{U}-\mathrm{P} \Delta \mathrm{V}$
(B) $\Delta U=q+W$
(C) $\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }} \geq 0$
(D) $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$

Answer (A)

Sol. $\Delta H=\Delta U+P \Delta V$
Hence option A is incorrect.
3. Match List-I with List-II :

List-I

(A) $\mathrm{Cd}(\mathrm{s})+2 \mathrm{Ni}(\mathrm{OH})_{3}(\mathrm{~s})$
$\rightarrow \mathrm{CdO}(\mathrm{s})$
$+2 \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})$
$+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
(B) $\mathrm{Zn}(\mathrm{Hg})+\mathrm{HgO}(\mathrm{s})$
$\rightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{Hg}(\mathrm{l})$

List-II

(I) Primary battery
(II) Discharging of secondary battery
(C) $2 \mathrm{PbSO}_{4}(\mathrm{~s})+$
(III) Fuel cell

$$
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{Pb}(\mathrm{~s})
$$

$$
+\mathrm{PbO}_{2}(\mathrm{~s})
$$

$$
+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

(D) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

$$
\rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(IV) Charging of secondary battery

Choose the correct answer from the options given below:
(A) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(B) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
(C) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(D) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)

Answer (C)

Sol. (A) $\mathrm{Cd}(\mathrm{s})+2 \mathrm{Ni}(\mathrm{OH})_{3}(\mathrm{~s}) \rightarrow$

$$
\mathrm{CdO}(\mathrm{~s})+2 \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

(Discharging of secondary battery)
(B) $\mathrm{Zn}(\mathrm{Hg})+\mathrm{HgO}(\mathrm{s}) \rightarrow$

$$
\mathrm{ZnO}(\mathrm{~s})+\mathrm{Hg}(\mathrm{l}) \text { (Primary battery) }
$$

(C) $2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow$

$$
\mathrm{Pb}(\mathrm{~s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})
$$

(Charging of secondary battery)
(D) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ (Fuel cell)
4. Match List-I with List-II.

List-I
Reaction
(A) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g})$
$\rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(B) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
(II) $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})$
$\rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(C) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})$
(III) $\mathrm{Pt}(\mathrm{s})$
$+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\rightarrow \underset{\text { Glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\underset{\text { Fructose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$
(D) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad$ (IV) $\mathrm{Fe}(\mathrm{s})$
$\rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

Choose the correct answer from the options given below:
(A) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
(B) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
(C) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(D) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)

Answer (C)

Sol. (A) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Pt}(\mathrm{s})} 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(B) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{Fe}(\mathrm{s})} 2 \mathrm{NH}_{3}(\mathrm{~g})$
(C) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})}$

$$
\underset{\text { Glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\underset{\text { Fructose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}
$$

(D) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{NO}(\mathrm{g})} 2 \mathrm{SO}_{3}$
5. In which of the following pairs, electron gain enthalpies of constituent elements are nearly the same or identical?
(A) Rb and Cs
(B) Na and K
(C) Ar and Kr
(D) I and At

Choose the correct answer from the options given below:
(A) (A) and (B) only
(B) (B) and (C) only
(C) (A) and (C) only
(D) (C) and (D) only

Answer (C)

Sol. Element \quad Electron gain enthalpy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{Rb} \quad-47$

Cs -46
Electron gain enthalpy of noble gases is almost zero.

Hence the correct option is (C).
6. Which of the reaction is suitable for concentrating ore by leaching process?
(A) $2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$
(B) $\mathrm{Fe}_{3} \mathrm{O}_{4}+\mathrm{CO} \rightarrow 3 \mathrm{FeO}+\mathrm{CO}_{2}$
(C) $\mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$
(D) $\mathrm{Al}_{2} \mathrm{O}_{3}+6 \mathrm{Mg} \rightarrow 6 \mathrm{MgO}+4 \mathrm{Al}$

Answer (C)

Sol. Leaching involves the treatment of ore with a suitable reagent so as it make it soluble while impurities remain insoluble.
$\mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]$

Soluble complex

7. The metal salts formed during softening of hardwater using Clark's method are :
(A) $\mathrm{Ca}(\mathrm{OH})_{2}$ and $\mathrm{Mg}(\mathrm{OH})_{2}$
(B) CaCO_{3} and $\mathrm{Mg}(\mathrm{OH})_{2}$
(C) $\mathrm{Ca}(\mathrm{OH})_{2}$ and MgCO_{3}
(D) CaCO_{3} and MgCO_{3}

Answer (B)

Sol. In Clark's method, calculated amount of lime is added to hard water. It precipitates out calcium carbonate and magnesium hydroxide which can filtered off.

$$
\begin{aligned}
& \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow 2 \mathrm{CaCO}_{3} \downarrow+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+2 \mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \\
& 2 \mathrm{CaCO}_{3} \downarrow+\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

8. Which of the following statement is incorrect?
(A) Low solubility of LiF in water is due to its small hydration enthalpy.
(B) KO_{2} is paramagnetic.
(C) Solution of sodium in liquid ammonia is conducting in nature.
(D) Sodium metal has higher density than potassium metal.

Answer (A)

Sol. Low solubility of LiF in water is due to the fact that though Li^{+}is having high hydration enthalpy but it has higher lattice enthalpy when present in LiF. Due to higher lattice enthalpy its solubility is less.
9. Match List-I with List-II, match the gas evolved during each reaction.

List-I

List-II

(A) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta}$ (I) H_{2}
(B) $\mathrm{KMnO}_{4}+\mathrm{HCl} \rightarrow$
(II) N_{2}
(C) $\mathrm{Al}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ (III) O_{2}
(D) $\mathrm{NaNO}_{3} \xrightarrow{\Delta} \quad$ (IV) Cl_{2}

Choose the correct answer from the options given below:
(A) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
(B) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(C) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
(D) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)

Answer (C)

Sol. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta} \mathrm{~N}_{2}+4 \mathrm{H}_{2} \mathrm{O}+\mathrm{Cr}_{2} \mathrm{O}_{3}$
$\mathrm{KMnO}_{4}+\mathrm{HCl} \longrightarrow \mathrm{KCl}+\mathrm{MnCl}_{2}+\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Al}+\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Na}\left(\mathrm{Al}(\mathrm{OH})_{4}\right)+\mathrm{H}_{2}$
$2 \mathrm{NaNO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} 2 \mathrm{NaNO}_{2}(\mathrm{~s})+\mathrm{O}_{2}$
10. Which of the following has least tendency to liberate H_{2} from mineral acids?
(A) Cu
(B) Mn
(C) Ni
(D) Zn

Answer (A)

Sol. The metal atom whose oxidation potential is less than that of hydrogen can release H_{2} from mineral acids.

$$
\begin{array}{ll}
\mathrm{E}_{\mathrm{Zn} / \mathrm{Zn}+2}^{\circ}=0.76 & \mathrm{E}_{{\mathrm{Ni} / \mathrm{N} \mathrm{i}^{+2}}_{\circ}^{\circ}=0.25}^{\mathrm{E}_{\mathrm{Mn} / \mathrm{Mn}^{+2}}=1.18}
\end{array} \mathrm{E}_{\mathrm{Cu} / \mathrm{Cu}^{+2}}^{\circ}=-0.34
$$

11. Given below are two statements:

Statement I: In polluted water values of both dissolved oxygen and BOD are very low.

Statement II: Eutrophication results in decrease in the amount of dissolved oxygen.

In the light of the above statements, choose the most appropriate answer from the options given below:
(A) Both Statement I and Statement II are true
(B) Both Statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Answer (D)

Sol. - Clean water would have BOD value of less than 5 ppm whereas highly polluted water could have BOD value of 17 ppm or more.

- Eutrophication results in decrease in the amount of dissolved oxygen.

12. Match List - I with List - II

List-I

(A)

List-II

(i) Spiro compound
(B)

(C)

(iii) Non-planar

Heterocyclic compound
(D)

(iv) Bicyclo compound
(A) $(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{IV}),(\mathrm{D})-(\mathrm{III})$
(B) $(\mathrm{A})-(\mathrm{IV}),(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-$ (II)
(C) $(\mathrm{A})-$ (III), (B) $-(\mathrm{IV}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{II})$
(D) $(\mathrm{A})-(\mathrm{IV}),(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-(\mathrm{I})$

Answer (C)
Sol. (A)
 $=$ Non-planar Heterocyclic compound
(B)

$=$ Bicyclo compound
(C)

$=$ Spiro compound
(D)

= Aromatic compound
13. Choose the correct option for the following reactions.

(A) ' A ' and ' B ' are both Markovnikov addition products
(B) ' A ' is Markovnikov product and ' B ' is antiMarkovnikov product
(C) ' A ' and ' B ' are both anti-Markovnikov products
(D) ' B ' is Markovnikov and ' A ' is anti-Markovnikov product

Answer (B)

Sol.

(B)

Anti-Markovnikov product

(A)

Markovnikov product
14. Among the following marked proton of which compound shows lowest pK_{a} value?
(A)

(B)

(C)

(D)

Answer (C)

Sol.
(A)

(B)

(C)

The conjugate base of compound (C) is stabilized by extended conjugation. Hence the indicated proton of compound C is most acidic i.e. will have lowest pK_{a}.
15. Identify the major products A and B for the below given reaction sequence.

(A)
(A)

 and

(B)

(B)
 and

(C)

(D)

and

Answer (B)

Sol.

16. Identify the correct statement for the below given transformation.

(A) $\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}, \mathrm{~B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$ CH_{2}, Saytzeff products
(B) $\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}, \mathrm{~B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=$ CH_{2}, Hofmann products
(C) $\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=$ CHCH_{2}, Hofmann products
(D) $\mathrm{A}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}-\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=$ CHCH_{3}, Saytzeff products

Answer (C)

17. Terylene polymer is obtained by condensation of:
(A) Ethane-1, 2-diol and Benzene-1, 3 dicarboxylic acid
(B) Propane-1, 2-diol and Benzene-1, 4 dicarboxylic acid
(C) Ethane-1, 2-diol and Benzene-1, 4 dicarboxylic acid
(D) Ethane-1, 2-diol and Benzene-1, 2 dicarboxylic acid

Answer (C)

Sol.

18. For the below given cyclic hemiacetal (X), the correct pyranose structure is :

(X)
(A)

(B)

(C)

(D)

Answer (D)

Sol.

-OH on right side will point downwards
-OH on left side will point upwards
19. Statements about Enzyme Inhibitor Drugs are given below :
(A) There are Competitive and Non-competitive inhibitor drugs.
(B) These can bind at the active sites and allosteric sites.
(C) Competitive Drugs are allosteric site blocking drugs.
(D) Non-competitive Drugs are active site blocking drugs.

Choose the correct answer from the options given below:
(A) (A), (D) only
(B) (A), (C) only
(C) (A), (B) only
(D) (A), (B), (C) only

Answer (C)

Sol. Drugs can inhibit the attachment of substrate on active site of Enzyme in two ways.
(1) Competitive, (2) Non-competitive

Competitive inhibitors bind on the active site of Enzymes. Non-Competitive inhibitors bind on allosteric site.
20. For kinetic study of the reaction of iodide ion with $\mathrm{H}_{2} \mathrm{O}_{2}$ at room temperature :
(A) Always use freshly prepared starch solution.
(B) Always keep the concentration of sodium thiosulphate solution less than that of KI solution.
(C) Record the time immediately after the appearance of blue colour.
(D) Record the time immediately before the appearance of blue colour.
(E) Always keep the concentration of sodium thiosulphate solution more than that of KI solution.

Choose the correct answer from the options given below :
(A) (A), (B), (C) only
(B) (A), (D), (E) only
(C) (D), (E) only
(D) (A), (B), (E) only

Answer (A)

Sol. To minimize contamination, use freshly prepared starch solution to determine end point. As KI is used in excess to consume all the $\mathrm{H}_{2} \mathrm{O}_{2}$ the concentration of sodium thiosulphate solution is less than KI solution. After appearance of blue colour record the time immediately.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. In the given reaction,
$X+Y+3 Z \rightleftarrows X^{2} Z_{3}$
if one mole of each of X and Y with 0.05 mol of Z gives compound XYZ_{3}. (Given : Atomic masses of X, Y and Z are 10, 20 and 30 amu , respectively.) the yield of XYZ_{3} is \qquad g. (Nearest integer)

Answer (2)

Sol. $\underset{n_{\text {moles }}=1}{X}+\underset{1}{Y}+\underset{.05}{3 Z} \rightleftharpoons x y z_{3}$
Limiting reagent is $Z=\frac{.05}{3}=.016$
3 moles of $Z \rightarrow 1$ mole of $X Y Z_{3}$
.05 mole of $Z \rightarrow \frac{1}{3} \times .05$ mole of $X Y Z_{3}$
M.wt. of $\mathrm{XYZ}_{3}=10+20+90$
$=120 \mathrm{amu}$
Wt. of $X Y Z_{3}=\frac{.05}{3} \times 120$
$=2 \mathrm{~g}$
2. An element M crystallises in a body centred cubic unit cell with a cell edge of 300 pm . The density of the element is $6.0 \mathrm{~g} \mathrm{~cm}^{-3}$. The number of atoms present in 180 g of the element is \qquad $\times 10^{23}$. (Nearest integer)

Answer (22)

Sol. $\mathrm{a}=300 \mathrm{pm}$

$$
\begin{aligned}
& =300 \times 10^{-12} \mathrm{~m} \\
& =300 \times 10^{-10} \mathrm{~cm} . \\
& =3 \times 10^{-8} \mathrm{~cm} . \\
& \rho=6 \mathrm{~g} / \mathrm{cm}^{3} \\
& \mathrm{wt}=180 \mathrm{gm} \\
& \text { Volume }=\mathrm{a}^{3} \\
& \quad=\left(3 \times 10^{-8}\right)^{3}
\end{aligned}
$$

Volume occupied per atom $=\frac{27 \times 10^{-24}}{2}$

$$
\rho=6 \quad w t=180 \mathrm{~g}
$$

Volume $=\frac{180}{6}=30$
Number of atoms $=\frac{30 \times 2}{27 \times 10^{-24}}$

$$
\begin{aligned}
& =\frac{60}{27} \times 10^{24} \\
& =22.2 \times 10^{23}
\end{aligned}
$$

3. The number of paramagnetic species among the following is \qquad _.
$\mathrm{B}_{2}, \mathrm{Li}_{2}, \mathrm{C}_{2}, \mathrm{C}_{2}^{-}, \mathrm{O}_{2}^{2-}, \mathrm{O}_{2}^{+}$and He_{2}^{+}
Answer (4)
Sol. $\mathrm{B}_{2} \rightarrow 10 \mathrm{e}^{-}$ paramagnetic
$\mathrm{Li}_{2} \rightarrow 6 \mathrm{e}^{-}$
$\mathrm{C}_{2} \rightarrow 12 \mathrm{e}^{-}$
$C_{2}^{-} \rightarrow 13 \mathrm{e}^{-}$ paramagnetic
$\mathrm{O}_{2}^{-2} \rightarrow 18 \mathrm{e}^{-}$
$\mathrm{O}_{2}^{+} \rightarrow 15 \mathrm{e}^{-}$
paramagnetic
$\mathrm{He}_{2}^{+} \rightarrow 3 \mathrm{e}^{-} \quad$ paramagnetic
Species with odd number of electrons are paramagnetic except boron and oxygen.
4. $\quad 150 \mathrm{~g}$ of acetic acid was contaminated with 10.2 g ascorbic acid $\left(\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$ to lower down its freezing point by $\left(x \times 10^{-1}\right)^{\circ} \mathrm{C}$. The value of x is \qquad -.
(Nearest integer)
(Given : $\mathrm{K}_{\mathrm{f}}=3.9 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$; molar mass of ascorbic $\operatorname{acid}=176 \mathrm{~g} \mathrm{~mol}^{-1}$)

Answer (15)

Sol. M.wt. of Acetic acid $=60 \mathrm{~g}$
M.wt. of Ascorbic acid $=176 \mathrm{~g}$
$\Delta T_{f}=K_{f} m$

$$
\Delta \mathrm{T}_{\mathrm{f}}=\frac{3.9 \times 10.2 \times 1000}{176 \times 150}
$$

$$
\Delta \mathrm{T}_{\mathrm{f}}=1.506
$$

$$
=15.06 \times 10^{-1}
$$

$$
=15
$$

5. $\quad \mathrm{K}_{\mathrm{a}}$ for butyric acid $\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{COOH}\right)$ is 2×10^{-5}. The pH of 0.2 M solution of butyric acid is \qquad $\times 10^{-1}$. $($ Nearest integer) $($ Given $\log 2=0.30)$

Answer (27)

Sol. $\mathrm{K}_{\mathrm{a}}=\mathrm{C} \alpha^{2}$
$\mathrm{C}=0.2 \mathrm{M}$

$$
\begin{aligned}
& \alpha=\sqrt{\frac{\mathrm{K}_{\mathrm{a}}}{\mathrm{C}}} \\
& =\sqrt{\frac{2 \times 10^{-5}}{2 \times 10^{-1}}} \\
& =10^{-2}
\end{aligned}
$$

$$
\mathrm{K}_{\mathrm{a}}=2 \times 10^{-5}
$$

$$
\left[\mathrm{H}^{+}\right]=\mathrm{C} \alpha
$$

$$
=0.2 \times 10^{-2}
$$

$$
=2 \times 10^{-3}
$$

$$
\mathrm{pH}=3-\log 2
$$

$$
=3-0.30
$$

$$
=2.7
$$

$$
\mathrm{pH}=27 \times 10^{-1}
$$

6. For the given first order reaction $A \rightarrow B$, the halflife of the reaction is 0.3010 min . The ratio of the initial concentration of reactant to the concentration of reactant at time 2.0 min will be equal to \qquad _. (Nearest integer)

Answer (100)

Sol. $\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{~K}} \quad \mathrm{t}_{1 / 2}$ given $=0.3010$

$$
K=\frac{0.693}{0.3010}
$$

$K=2.30$
$\mathrm{K}=\frac{2.303}{\mathrm{t}} \log \frac{\left(\mathrm{A}_{0}\right)}{\left(\mathrm{A}_{\mathrm{t}}\right)}$
$\mathrm{A}_{0} \rightarrow$ initial concentration of reactant
$\mathrm{A}_{\mathrm{t}} \rightarrow$ concentration of reactant at time t
$2.303=\frac{2.303}{2} \log \frac{\left(\mathrm{~A}_{0}\right)}{\left(\mathrm{A}_{\mathrm{t}}\right)}$
$2=\log \frac{\left(\mathrm{A}_{0}\right)}{\left(\mathrm{A}_{\mathrm{t}}\right)}$
$100=\frac{A_{0}}{A_{t}}$
7. The number of interhalogens from the following having square pyramidal structure is :
$\mathrm{CIF}_{3}, \mathrm{IF}_{7}, \mathrm{BrF}_{5}, \mathrm{BrF}_{3}, \mathrm{I}_{2} \mathrm{Cl}_{6}, \mathrm{IF}_{5}, \mathrm{CIF}, \mathrm{ClF}_{5}$

Answer (3)

Sol. $\mathrm{ClF}_{3} \rightarrow 3 \sigma$ bond +2 lone pair
$\mathrm{IF}_{7} \rightarrow 7 \sigma$ bond +0 lone pair
$\mathrm{BrF}_{5} \rightarrow 5 \sigma$ bond +1 lone pair \rightarrow Square pyramidal
$\mathrm{BrF}_{3} \rightarrow 3 \sigma$ bond +2 lone pair
$\mathrm{I}_{2} \mathrm{Cl}_{6} \rightarrow 4 \sigma$ bond +2 lone pair
$\mathrm{IF}_{5} \rightarrow 5 \sigma$ bond +1 lone pair \rightarrow Square pyramidal
$\mathrm{CIF} \rightarrow 1 \sigma$ bond +3 lone pair
$\mathrm{ClF}_{5} \rightarrow 5 \sigma$ bond +1 lone pair \rightarrow Square pyramidal
8. The disproportionation of MnO_{4}^{2-} in acidic medium resulted in the formation of two manganese compounds A and B . If the oxidation state of Mn in B is smaller than that of A, then the spin-only magnetic moment (μ) value of B in $B M$ is \qquad (Nearest integer)

Answer (4)

Sol. $3 \mathrm{M}^{+6} \mathrm{MO}_{4}^{-2}+4 \mathrm{H}^{+} \rightarrow \stackrel{+4}{\mathrm{Mn}} \mathrm{MO}_{2}+\stackrel{+7}{\mathrm{MnO}_{4}^{-}}$

$$
\mathrm{Mn} \rightarrow 4 s^{2} 3 d^{5}
$$

$\mathrm{Mn}^{+4} \rightarrow 3 d^{3}$
$\mathrm{n}=3$

$$
\begin{aligned}
\mu & =\sqrt{n(n+2)} \\
& =\sqrt{3(5)} \\
& =\sqrt{15} \\
& =3.87 \approx 4 \text { B.M. }
\end{aligned}
$$

9. Total number of relatively more stable isomer(s) possible for octahedral complex $\left[\mathrm{Cu}(\mathrm{en})_{2}(\mathrm{SCN})_{2}\right]$ wiil be \qquad .

Answer (3)
Sol. $\left[\mathrm{Cu}(\mathrm{en})_{2}(\mathrm{SCN})_{2}\right]$
Total isomers

10. On complete combustion of 0.492 g of an organic compound containing C, H and $\mathrm{O}, 0.7938 \mathrm{~g}$ of CO_{2} and 0.4428 g of $\mathrm{H}_{2} \mathrm{O}$ was produced. The \% composition of oxygen in the compound is

Answer (46)

Sol. $\%$ of $\mathrm{H}=\frac{2}{18} \times \frac{\text { wt. of } \mathrm{H}_{2} \mathrm{O}}{\text { wt. of organic compound }} \times 100$
$=\frac{2}{18} \times \frac{0.4428}{0.492} \times 100$
$=0.11 \times 0.9 \times 100$
$=.099 \times 100=9.9$
$\%$ of $C=\frac{12}{44} \times \frac{0.7938}{0.492} \times 100$
$=0.27 \times 1.61 \times 100$
$=43.47$
\% Oxygen = $100-(43.47+9.9)$
= $100-53.37$
$\simeq 46$

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Let the solution curve of the differential equation $x d y=\left(\sqrt{x^{2}+y^{2}}+y\right) d x, x>0$, intersect the line $x=1$ at $y=0$ and the line $x=2$ at $y=\alpha$. Then the value of α is
(A) $\frac{1}{2}$
(B) $\frac{3}{2}$
(C) $-\frac{3}{2}$
(D) $\frac{5}{2}$

Answer (B)

Sol. $\frac{x d y-y d x}{\sqrt{x^{2}+y^{2}}}=d x$
$\Rightarrow \frac{d y}{d x}=\frac{\sqrt{x^{2}+y^{2}}}{x}+\frac{y}{x}$
$\Rightarrow \frac{d y}{d x}=\sqrt{1+\frac{y^{2}}{x^{2}}}+\frac{y}{x}$
Let $\frac{y}{x}=v$
$\Rightarrow \quad v+x \frac{d v}{d x}=\sqrt{1+v^{2}}+v$
$\Rightarrow \frac{d v}{\sqrt{1+v^{2}}}=\frac{d x}{x}$
OR $\ln \left(v+\sqrt{1+v^{2}}\right)=\ln x+C$
at $x=1, y=0$
$\Rightarrow C=0$
$\frac{y}{x}+\sqrt{1+\frac{y^{2}}{x^{2}}}=x$
At $x=2$,
$\frac{y}{2}+\sqrt{1+\frac{y^{2}}{4}}=2$
$\Rightarrow 1+\frac{y^{2}}{4}=4+\frac{y^{2}}{4}-2 y$
OR $y=\frac{3}{2}$
2. Considering only the principal values of the inverse trigonometric functions, the domain of the function $f(x)=\cos ^{-1}\left(\frac{x^{2}-4 x+2}{x^{2}+3}\right)$ is
(A) $\left(-\infty, \frac{1}{4}\right]$
(B) $\left[-\frac{1}{4}, \infty\right)$
(C) $\left(\frac{-1}{3}, \infty\right)$
(D) $\left(-\infty, \frac{1}{3}\right]$

Answer (B)

Sol. $-1 \leq \frac{x^{2}-4 x+2}{x^{2}+3} \leq 1$

$$
\begin{array}{cccc}
\Rightarrow & -x^{2}-3 \leq x^{2}-4 x+2 \leq x^{2}+3 \\
\Rightarrow & 2 x^{2}-4 x+5 \geq 0 & \& & -4 x \leq 1 \\
& x \in R & \& & x \geq-\frac{1}{4}
\end{array}
$$

So domain is $\left[-\frac{1}{4}, \infty\right)$
3. Let the vectors $\vec{a}=(1+t) \hat{i}+(1-t) \hat{j}+\hat{k}$, $\vec{b}=(1-t) \hat{i}+(1+t) \hat{j}+2 \hat{k}$ and $\vec{c}=t \hat{i}-t \hat{j}+\hat{k}, t \in \mathbf{R}$ be such that for $\alpha, \beta, \gamma \in \mathbf{R}, \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0}$ $\Rightarrow \alpha=\beta=\gamma=0$. Then, the set of all values of t is
(A) A non-empty finite set
(B) Equal to N
(C) Equal to $\mathbf{R}-\{0\}$
(D) Equal to \mathbf{R}

Answer (C)

Sol. Clearily $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1+t & 1-t & 1 \\
1-t & 1+t & 2 \\
t & -t & 1
\end{array}\right| \neq 0 \\
& \Rightarrow(1+t)(1+t+2 t)-(1-t)(1-t-2 t) \\
& \quad+1\left(t^{2}-t-t-t^{2}\right) \neq 0
\end{aligned} \begin{aligned}
& \Rightarrow\left(3 t^{2}+4 t+1\right)-(1-t)(1-3 t)-2 t \neq 0 \\
& \Rightarrow\left(3 t^{2}+4 t+1\right)-\left(3 t^{2}-4 t+1\right)-2 t \neq 0 \\
& \Rightarrow t \neq 0
\end{aligned}
$$

4. Considering the principal values of the inverse trigonometric functions, the sum of all the solutions of the equation $\cos ^{-1}(x)-2 \sin ^{-1}(x)=\cos ^{-1}(2 x)$ is equal to
(A) 0
(B) 1
(C) $\frac{1}{2}$
(D) $-\frac{1}{2}$

Answer (A)
Sol. $\cos ^{-1} x-2 \sin ^{-1} x=\cos ^{-1} 2 x$
For Domain : $x \in\left[\frac{-1}{2}, \frac{1}{2}\right]$

$$
\begin{aligned}
& \cos ^{-1} x-2\left(\frac{\pi}{2}-\cos ^{-1} x\right)=\cos ^{-1}(2 x) \\
\Rightarrow & \cos ^{-1} x+2 \cos ^{-1} x=\pi+\cos ^{-1} 2 x \\
\Rightarrow & \cos \left(3 \cos ^{-1} x\right)=-\cos \left(\cos ^{-1} 2 x\right) \\
\Rightarrow & 4 x^{3}=x \\
\Rightarrow & x=0, \pm \frac{1}{2}
\end{aligned}
$$

5. Let the operations *, $\odot \in\{\wedge, v\}$. If $(p * q) \odot(p \odot \sim q)$ is a tautology, then the ordered pair $(*, \odot)$ is
(A) (V, \wedge)
(B) (v, v)
(C) (\wedge, \wedge)
(D) (\wedge, v)

Answer (B)
Sol. *, $\odot \in\{\wedge, \vee\}$
Now for $(p * q) \odot(p \odot \sim q)$ is tautology
(A) $(\vee, \wedge):(p \vee q) \wedge(p \wedge \sim q)$ not a tautology
(B) $(\vee, \vee):(p \vee q) \vee(p \vee \sim q)$

$$
=P \vee T \text { is tautology }
$$

(C) $(\wedge, \wedge):(p \wedge q) \wedge(p \wedge \sim q)$
$=(p \wedge p) \wedge(q \wedge \sim q)=p \wedge F$ not a tautology (Fallasy)
(D) $(\wedge, \vee):(p \wedge q) \vee(p \vee \sim q)$ not a tautology
6. Let a vector \vec{a} has magnitude 9 . Let a vector \vec{b} be such that for every $(x, y) \in \mathbf{R} \times \mathbf{R}-\{(0,0)\}$, the vector $(x \vec{a}+y \vec{b})$ is perpendicular to the vector ($6 y \vec{a}-18 x \vec{b}$). Then the value of $|\vec{a} \times \vec{b}|$ is equal to
(A) $9 \sqrt{3}$
(B) $27 \sqrt{3}$
(C) 9
(D) 81

Answer (B)

Sol. $(x \vec{a}+y \vec{b}) \cdot(6 y \vec{a}-18 x \vec{b})=0$

$$
\Rightarrow\left(6 x y|\dot{a}|^{2}-18 x y|\dot{b}|^{2}\right)+\left(6 y^{2}-18 x^{2}\right) \dot{a} \cdot \dot{b}=0
$$

As given equation is identity
Coefficient of $x^{2}=$ coefficient of $y^{2}=$ coefficient of $x y=0$
$\Rightarrow|\vec{a}|^{2}=3|\vec{b}|^{2} \Rightarrow|\vec{b}|=3 \sqrt{3}$
and $\vec{a} \cdot \vec{b}=0$
$|\vec{a} \times \vec{b}|=|\vec{a}||\vec{b}| \sin \theta$
$=9.3 \sqrt{3} .1=27 \sqrt{3}$
7. For $t \in(0,2 \pi)$, if $A B C$ is an equilateral triangle with vertices $A(\sin t,-\cos t), B(\cos t, \sin t)$ and $C(a, b)$ such that its orthocentre lies on a circle with centre $\left(1, \frac{1}{3}\right)$, then $\left(a^{2}-b^{2}\right)$ is equal to
(A) $\frac{8}{3}$
(B) 8
(C) $\frac{77}{9}$
(D) $\frac{80}{9}$

Answer (B)

Sol. Let $P(h, k)$ be the orthocentre of $\triangle A B C$

Then

$$
h=\frac{\sin t+\cos t+a}{3}, k=\frac{-\cos t+\sin t+b}{3}
$$

(orthocentre coincide with centroid)
$\therefore \quad(3 h-a)^{2}+(3 k-b)^{2}=2$
$\therefore\left(h-\frac{a}{3}\right)^{2}+\left(k-\frac{b}{3}\right)^{2}=\frac{2}{9}$
\because orthocentre lies on circle with centre $\left(1, \frac{1}{3}\right)$
$\therefore \quad a=3, b=1$
$\therefore \quad a^{2}-b^{2}=8$
8. For $\alpha \in \mathbf{N}$, consider a relation R on \mathbf{N} given by $R=\{(x, y): 3 x+\alpha y$ is a multiple of 7$\}$. The relation R is an equivalence relation if and only if
(A) $\alpha=14$
(B) α is a multiple of 4
(C) 4 is the remainder when α is divided by 10
(D) 4 is the remainder when α is divided by 7

Answer (D)

Sol. $R=\{(x, y): 3 x+\alpha y$ is multiple of 7$\}$, Now R to be an equivalence relation
(1) R should be reflexive : $(a, a) \in R \forall a \in N$
$\therefore 3 a+a \alpha=7 k$
$\therefore(3+\alpha) a=7 k$
$\therefore \quad 3+\alpha=7 k_{1} \Rightarrow \alpha=7 k_{1}-3$

$$
=7 k_{1}+4
$$

(2) R should be symmetric: $a R b \Leftrightarrow b R a$
$a R b: 3 a+(7 k-3) b=7 \mathrm{~m}$
$\Rightarrow 3(a-b)+7 k b=7 \mathrm{~m}$
$\Rightarrow 3(b-a)+7 k a=7 m$
So, $a R b \Rightarrow b R a$
$\therefore \quad R$ will be symmetric for $a=7 k_{1}-3$
(3) Transitive : Let $(a, b) \in R,(b, c) \in R$
$\Rightarrow 3 a+(7 k-3) b=7 k_{1}$ and

$$
3 b+\left(7 k_{2}-3\right) c=7 k_{3}
$$

Adding $3 a+7 k b+\left(7 k_{2}-3\right) c=7\left(k_{1}+k_{3}\right)$
$3 a+\left(7 k_{2}-3\right) c=7 \mathrm{~m}$
$\therefore \quad(a, c) \in R$
$\therefore \quad R$ is transitive
$\therefore \quad \alpha=7 k-3=7 k+4$
9. Out of 60% female and 40% male candidates appearing in an exam, 60% candidates qualify it. The number of females qualifying the exam is twice the number of males qualifying it. A candidate is randomly chosen from the qualified candidates. The probability, that the chosen candidate is a female, is
(A) $\frac{3}{4}$
(B) $\frac{11}{16}$
(C) $\frac{23}{32}$
(D) $\frac{13}{16}$

Answer (*) None of the given option is correct

Sol. $P($ Female $)=\frac{60}{100}=\frac{3}{5}$
$P($ Male $)=\frac{2}{5}$
$P($ Female/Qualified $)=\frac{40}{60}=\frac{2}{3}$
$P($ Male / Qualified $)=\frac{20}{60}=\frac{1}{3}$
10. If $y=y(x), x \in\left(0, \frac{\pi}{2}\right)$ be the solution curve of the differential equation $\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+\right.$ $2 \sin 4 x) y=2 e^{-4 x}(2 \sin 2 x+\cos 2 x)$, with $y\left(\frac{\pi}{4}\right)=e^{-\pi}$, then $y\left(\frac{\pi}{6}\right)$ is equal to
(A) $\frac{2}{\sqrt{3}} e^{-2 \pi / 3}$
(B) $\frac{2}{\sqrt{3}} e^{2 \pi / 3}$
(C) $\frac{1}{\sqrt{3}} e^{-2 \pi / 3}$
(D) $\frac{1}{\sqrt{3}} e^{2 \pi / 3}$

Answer (A)

Sol. $\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y$
$=2 e^{-4 x}(2 \sin 2 x+\cos 2 x)$
$\frac{d y}{d x}+(8+4 \cot 2 x) y=2 e^{-4 x}\left(\frac{2 \sin 2 x+\cos 2 x}{\sin ^{2} 2 x}\right)$
Integrating factor

$$
\begin{aligned}
(\text { I.F. }) & =e^{\int(8+4 \cot 2 x) d x} \\
& =e^{8 x+2 \ln \sin 2 x}
\end{aligned}
$$

Solution of differential equation
y. $e^{8 x+2 \ln \sin 2 x}$

$$
\begin{aligned}
& =\int 2 e^{(4 x+2 \ln \sin 2 x)} \frac{(2 \sin 2 x+\cos 2 x)}{\sin ^{2} 2 x} d x \\
& =2 \int e^{4 x}(2 \sin 2 x+\cos 2 x) d x
\end{aligned}
$$

$y . e^{8 x+2 \ln \sin 2 x}=e^{4 x} \sin 2 x+c$
$y\left(\frac{\pi}{4}\right)=e^{-\pi}$
$e^{-\pi} \cdot e^{2 \pi}=e^{\pi}+c \Rightarrow c=0$

$$
\begin{aligned}
& y\left(\frac{\pi}{6}\right)=\frac{e^{\frac{2 \pi}{3} \frac{\sqrt{3}}{2}}}{e^{\left(\frac{4 \pi}{3}+2 \ln \frac{\sqrt{3}}{2}\right)}} \\
&=e^{\frac{-2 \pi}{3}} \cdot \frac{2}{\sqrt{3}}
\end{aligned}
$$

11. If the tangents drawn at the points P and Q on the parabola $y^{2}=2 x-3$ intersect at the point $R(0,1)$, then the orthocentre of the triangle $P Q R$ is :
(A) $(0,1)$
(B) $(2,-1)$
(C) $(6,3)$
(D) $(2,1)$

Answer (B)

Sol.

Equation of chord $P Q$
$\Rightarrow y \times 1=x-3$
$\Rightarrow x-y=3$
For point P \& Q
Intersection of $P Q$ with parabola $P:(6,3) Q:(2,-1)$
Slope of $R Q=-1 \&$ Slope of $P Q=1$
Therefore $\angle P Q R=90^{\circ} \Rightarrow$ Orthocentre is at $Q:(2,-1)$
12. Let C be the centre of the circle $x^{2}+y^{2}-x+2 y=\frac{11}{4}$ and P be a point on the circle. A line passes through the point C, makes an angle of $\frac{\pi}{4}$ with the line $C P$ and intersects the circle at the Q and R. Then the area of the triangle $P Q R$ (in unit ${ }^{2}$) is :
(A) 2
(B) $2 \sqrt{2}$
(C) $8 \sin \left(\frac{\pi}{8}\right)$
(D) $8 \cos \left(\frac{\pi}{8}\right)$

Answer (B)

Sol.

$Q R=2 r=4$
$P=\left(\frac{1}{2}+2 \cos \frac{\pi}{4},-1+2 \sin \frac{\pi}{4}\right)$
$=\left(\frac{1}{2}+\sqrt{2},-1+\sqrt{2}\right)$
Area of $\triangle P Q R=\frac{1}{2} \times 4 \times \sqrt{2}$
$=2 \sqrt{2}$ sq. units
13. The remainder when $7^{2022}+3^{2022}$ is divided by 5 is:
(A) 0
(B) 2
(C) 3
(D) 4

Answer (C)
Sol. Let $E=7^{2022}+3^{2022}$

$$
\begin{aligned}
& =(15-1)^{1011}+(10-1)^{1011} \\
& =-1+(\text { multiple of } 15)-1+\text { multiple of } 10 \\
& =-2+(\text { multiple of } 5)
\end{aligned}
$$

Hence remainder on dividing E by 5 is 3 .
14. Let the matrix $A=\left|\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right|$ and the matrix B_{0} $=A^{49}+2 A^{98}$. If $B_{n}=\operatorname{Adj}\left(B_{n-1}\right)$ for all $n \geq 1$, then $\operatorname{det}\left(B_{4}\right)$ is equal to :
(A) 3^{28}
(B) 3^{30}
(C) 3^{32}
(D) 3^{36}

Answer (C)
Sol. $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$

$$
\begin{aligned}
& \Rightarrow A^{2}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \times\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& \Rightarrow A^{3}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
\end{aligned}
$$

Now $B_{0}=A^{49}+2 A^{98}=\left(A^{3}\right)^{16} \cdot A+2\left(A^{3}\right)^{32} \cdot A^{2}$ $B_{0}=A+2 A^{2}=$

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]+\left[\begin{array}{lll}
0 & 0 & 2 \\
2 & 0 & 0 \\
0 & 2 & 0
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 2 \\
2 & 0 & 1 \\
1 & 2 & 0
\end{array}\right]
$$

$\left|B_{0}\right|=9$
Since, $B_{n}=\operatorname{Adj}\left|B_{n-1}\right| \quad \Rightarrow\left|B_{n}\right|=\left|B_{n-1}\right|^{2}$
Hence $\left|B_{4}\right|=\left|B_{3}\right|^{2}=\left|B_{2}\right|^{4}=\left|B_{1}\right|^{8}=\left|B_{0}\right|^{16}$

$$
=\left|3^{2}\right|^{16}=3^{32}
$$

15. Let $S_{1}=\left\{z_{1} \in C:\left|z_{1}-3\right|=\frac{1}{2}\right\}$ and $S_{2}=\left\{z_{2} \in C:\left|z_{2}-\left|z_{2}+1\right|\right|=\left|z_{2}+\left|z_{2}-1\right|\right|\right\}$. Then, for $z_{1} \in S_{1}$ and $z_{2} \in S_{2}$, the least value of $\left|z_{2}-z_{1}\right|$ is :
(A) 0
(B) $\frac{1}{2}$
(C) $\frac{3}{2}$
(D) $\frac{5}{2}$

Answer (C)

Sol. $\because \quad\left|Z_{2}+\left|Z_{2}-1\right|^{2}=\left|Z_{2}-\left|Z_{2}+1\right|\right|^{2}\right.$
$\Rightarrow\left(Z_{2}+\left|Z_{2}-1\right|\right)\left(\bar{Z}_{2}+\left|Z_{2}-1\right|\right)=\left(Z_{2}-\left|Z_{2}+1\right|\right)$
$\left(\bar{Z}_{2}-\left|Z_{2}+1\right|\right)$
$\Rightarrow \quad Z_{2}\left(\left|Z_{2}-1\right|+\left|Z_{2}+1\right|\right)+\bar{Z}_{2}\left(\left|Z_{2}-1\right|+\left|Z_{2}+1\right|\right)$

$$
=\left|z_{2}+1\right|^{2}-\left|z_{2}-1\right|^{2}
$$

$\Rightarrow\left(Z_{2}+\bar{Z}_{2}\right)\left(\left|Z_{2}+1\right|+\left|Z_{2}-1\right|\right)=2\left(Z_{2}+\bar{Z}_{2}\right)$
\Rightarrow Either $Z_{2}+\bar{Z}_{2}=0$ or $\left|Z_{2}+1\right|+\left|Z_{2}-1\right|=2$
So, Z_{2} lies on imaginary axis or on real axis within
$[-1,1]$
Also $\left|Z_{1}-3\right|=\frac{1}{2} \Rightarrow Z_{1}$ lies on the circle having center 3 and radius $\frac{1}{2}$.

Clearly $\left|Z_{1}-Z_{2}\right|_{\text {min }}=\frac{3}{2}$
16. The foot of the perpendicular from a point on the circle $x^{2}+y^{2}=1, z=0$ to the plane $2 x+3 y+z=6$ lies on which one of the following curves?
(A) $(6 x+5 y-12)^{2}+4(3 x+7 y-8)^{2}=1, z=6-2 x$ $-3 y$
(B) $(5 x+6 y-12)^{2}+4(3 x+5 y-9)^{2}=1, z=6-2 x$ $-3 y$
(C) $(6 x+5 y-14)^{2}+9(3 x+5 y-7)^{2}=1, z=6-2 x$ $-3 y$
(D) $(5 x+6 y-14)^{2}+9(3 x+7 y-8)^{2}=1, z=6-2 x$ $-3 y$

Answer (B)

Sol. Any point on $x^{2}+y^{2}=1, z=0$ is $p(\cos \theta, \sin \theta, 0)$ If foot of perpendicular of p on the plane $2 x+3 y+$ $z=6$ is (h, k, l) then

$$
\begin{aligned}
\frac{h-\cos \theta}{2}= & \frac{k-\sin \theta}{3}
\end{aligned}=\frac{l-0}{1} .
$$

$h=2 r+\cos \theta, k=3 r+\sin \theta, l=r$
Hence, $h-2 l=\cos \theta$ and $k-3 l=\sin \theta$
Hence $(h-2)^{2}+(k-3)^{2}=1$
When $I=6-2 h-3 k$
Hence required locus is
$(x-2(6-2 x-3 y))^{2}+(y-3(6-2 x-3 y))^{2}=1$
$\Rightarrow(5 x+6 y-12)^{2}+4(3 x+5 y-9)^{2}=1, z=6-2 x$ $-3 y$
17. If the minimum value of $f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}}, x>0$, is 14, then the value of α is equal to
(A) 32
(B) 64
(C) 128
(D) 256

Answer (C)
Sol. $f(x)=\frac{5 x^{2}}{2}+\frac{\alpha}{x^{5}} \quad\{x>0\}$

$$
f^{\prime}(x)=5 x-\frac{5 \alpha}{x^{6}}=0
$$

$\Rightarrow \quad x=(\alpha)^{\frac{1}{7}}$

$f(x)_{\min }=\frac{5(\alpha)^{\frac{2}{7}}}{2}+\frac{\alpha}{\alpha^{\frac{5}{7}}}=14$

$$
\begin{aligned}
& \frac{5}{2} \alpha^{\frac{2}{7}}+\alpha^{\frac{2}{7}}=14 \\
& \frac{7}{2} \alpha^{\frac{2}{7}}=14 \\
& \alpha=128
\end{aligned}
$$

18. Let α, β and γ be three positive real numbers. Let $f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, \quad x \in \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ be such that $g(f(x))=x$ for all $x \in \mathbb{R}$. If $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ be in arithmetic progression with mean zero, then the value of $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$ is equal to
(A) 0
(B) 3
(C) 9
(D) 27

Answer (A)

Sol. $f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)$
$\frac{a_{1}+a_{2}+a_{3}+\ldots . .+a_{n}}{n}=0$
$\therefore \quad$ First and last term, second and second last and so on are equal in magnitude but opposite in sign.

$$
\begin{aligned}
& f(x)=\alpha x^{5}+\beta x^{3}+\gamma x \\
& \begin{aligned}
\sum_{i=1}^{n} f\left(a_{i}\right)= & \alpha\left(a_{1}^{5}+a_{2}^{5}+a_{3}^{5}+\ldots . .+a_{n}^{5}\right) \\
& +\beta\left(a_{1}^{3}+a_{2}^{3}+\ldots . .+a_{n}^{3}\right) \\
& +\gamma\left(a_{1}+a_{2}+\ldots . .+a_{n}\right) \\
= & 0 \alpha+0 \beta+0 \gamma \\
& =0
\end{aligned} \\
& \therefore \quad f\left(g\left(\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)\right)\right)=\frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)=0
\end{aligned}
$$

19. Consider the sequence $a_{1}, a_{2}, a_{3}, \ldots$ such that $a_{1}=1, a_{2}=2$ and $a_{n+2}=\frac{2}{a_{n+1}}+a_{n}$ for $n=1,2,3$,
\ldots If $\left(\frac{a_{1}+\frac{1}{a_{2}}}{a_{3}}\right) \cdot\left(\frac{a_{2}+\frac{1}{a_{3}}}{a_{4}}\right) \cdot\left(\frac{a_{3}+\frac{1}{a_{4}}}{a_{5}}\right) \ldots\left(\frac{a_{30}+\frac{1}{a_{31}}}{a_{32}}\right)$
$=2^{\alpha}\left({ }^{61} \mathrm{C}_{31}\right)$, then α is equal to
(A) -30
(B) -31
(C) -60
(D) -61

Answer (C)

Sol. $a_{n+2}=\frac{2}{a_{n+1}}+a_{n}$

$$
\begin{aligned}
& \Rightarrow \quad a_{n} a_{n+1}+1=a_{n+1} a_{n+2}-1 \\
& \Rightarrow \quad a_{n+2} a_{n+1}-a_{n} \cdot a_{n+1}=2
\end{aligned}
$$

For $n=1$

$$
a_{3} a_{2}-a_{1} a_{2}=2
$$

$$
n=2 \quad a_{4} a_{3}-a_{3} a_{2}=2
$$

$$
n=3 \quad a_{5} a_{4}-a_{4} a_{3}=2
$$

$$
\vdots
$$

$$
n=n \quad \frac{a_{n+2} a_{n+1}-a_{n} a_{n+1}=2}{a_{n+2} a_{n+1}=2 n+a_{1} a_{2}}
$$

Now,

$$
\begin{gathered}
\frac{\left(a_{1} a_{2}+1\right)}{a_{2} a_{3}} \cdot \frac{\left(a_{2} a_{3}+1\right)}{a_{3} a_{4}} \cdot \frac{\left(a_{3} a_{4}+1\right)}{a_{4} a_{5}} \cdot \ldots . \cdot \frac{\left(a_{30} a_{31}+1\right)}{a_{31} a_{32}} \\
\quad=\frac{3}{4} \cdot \frac{5}{6} \cdot \frac{7}{8} \cdot \ldots \cdot \cdot \frac{61}{62} \\
=2^{-60}\left({ }^{61} C_{31}\right)
\end{gathered}
$$

20. The minimum value of the twice differentiable function $f(x)=\int_{0}^{x} e^{x-t} f^{\prime}(t) \mathrm{dt}-\left(x^{2}-x+1\right) e^{x}, x \in \mathbb{R}$, is
(A) $-\frac{2}{\sqrt{e}}$
(B) $-2 \sqrt{e}$
(C) $-\sqrt{e}$
(D) $\frac{2}{\sqrt{e}}$

Answer (A)

Sol. $f(x)=\int_{0}^{x} e^{x-t} f^{\prime}(t) d t-\left(x^{2}-x+1\right) e^{x}$
$f(x)=e^{x} \int_{0}^{x} e^{-t} f^{\prime}(t) d t-\left(x^{2}-x+1\right) e^{x}$
$e^{-x} f(x)=\int_{0}^{x} e^{-t} f^{\prime}(t) d t-\left(x^{2}-x+1\right)$
Differentiate on both side
$e^{-x} f^{\prime}(x)+\left(-f(x) e^{-x}\right)=e^{-x} f^{\prime}(x)-2 x+1$
$f(x)=e^{x}(2 x-1)$

$$
\begin{aligned}
f^{\prime}(x) & =e^{x}(2)+e^{x}(2 x-1) \\
& =e^{x}(2 x+1) \\
x= & -\frac{1}{2} \\
f^{\prime \prime}(x) & =e^{x}(2)+(2 x+1) e^{x} \\
& =e^{x}(2 x+3)
\end{aligned}
$$

For $x=-\frac{1}{2} f^{\prime \prime}(x)>0$
\Rightarrow Maxima
$\therefore \quad$ Max. $=e^{-\frac{1}{2}}(-1-1)$
$\therefore \quad-\frac{2}{\sqrt{e}}$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let S be the set of all passwords which are six to eight characters long, where each character is either an alphabet from $\{A, B, C, D, E\}$ or a number from $\{1,2,3,4,5\}$ with the repetition of characters allowed. If the number of passwords in S whose at least one character is a number from $\{1,2,3,4,5\}$ is $\alpha \times 5^{6}$, then α is equal to \qquad .
Answer (7073)
Sol. If password is 6 character long, tehn
Total number of ways having atleast one number = $10^{6}-5^{6}$
Similarly, if 7 character long $=10^{7}-5^{7}$
and if 8 -character long $=10^{8}-5^{8}$
Number of password $=\left(10^{6}+10^{7}+10^{8}\right)-\left(5^{6}+5^{7}\right.$ $+5^{8}$)
$=5^{6}\left(2^{6}+5.2^{7}+25.2^{8}-1-5-25\right)$
$=5^{6}(64+640+6400-31)$
$=7073 \times 5^{6}$
$\therefore \alpha=7073$.
2. Let $P(-2,-1,1)$ and $Q\left(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}\right)$ be the vertices of the rhombus $P R Q S$. If the direction ratios of the diagonal $R S$ are $\alpha,-1, \beta$, where both α and β are integers of minimum absolute values, then $\alpha^{2}+\beta^{2}$ is equal to \qquad -.

Answer (450)

Sol.

d.r's of $R S=\langle\alpha,-1, \beta\rangle$
d.r's of $\left.P Q=<\frac{90}{17}, \frac{60}{17}, \frac{94}{17}\right\rangle=\langle 45,30,47>$
as $P Q$ and $R S$ are diagonals of rhombus
$\alpha(45)+30(-1)+47(\beta)=0$
$\Rightarrow 45 \alpha+47 \beta=30$
i.e., $\alpha=\frac{30-47 \beta}{45}$
for minimum integral value $\alpha=-15$ and $\beta=15$
$\Rightarrow \alpha^{2}+\beta^{2}=450$.
3. Let $f:[0,1] \rightarrow \mathbf{R}$ be a twice differentiable function in $(0,1)$ such that $f(0)=3$ and $f(1)=5$. If the line $y=2 x+3$ intersects the graph of f at only two distinct points in $(0,1)$ then the least number of points $x \in(0,1)$ at which $f^{\prime}(x)=0$, is \qquad .

Answer (2)

Sol.

If a graph cuts $y=2 x+5$ in $(0,1)$ twice then its concavity changes twice
$\therefore \quad f^{\prime}(x)=0$ at atleast two points.
4. If $\int_{0}^{\sqrt{3}} \frac{15 x^{3}}{\sqrt{1+x^{2}+\sqrt{\left(1+x^{2}\right)^{3}}}} d x=\alpha \sqrt{2}+\beta \sqrt{3}$, where α,
β are integers, then $\alpha+\beta$ is equal to

Answer (10)

Sol. Put $x=\tan \theta \Rightarrow d x=\sec ^{2} \theta d \theta$

$$
\begin{aligned}
& \Rightarrow I=\int_{0}^{\frac{\pi}{3}} \frac{15 \tan ^{3} \theta \cdot \sec ^{2} \theta d \theta}{\sqrt{1+\tan ^{2} \theta+\sqrt{\sec ^{6} \theta}}} \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{3}} \frac{15 \tan ^{2} \theta \sec ^{2} \theta d \theta}{\sec \theta \sqrt{1+\sec \theta}} \\
& \Rightarrow I=\int_{0}^{\frac{\pi}{3}} \frac{15\left(\sec ^{2} \theta-1\right) \sec \theta \tan \theta d \theta}{(\sqrt{1+\sec \theta})}
\end{aligned}
$$

Now put $1+\sec \theta=t^{2}$

$$
\Rightarrow \sec \theta \tan \theta d \theta=2 t d t
$$

$$
\Rightarrow \quad I=\int_{\sqrt{2}}^{\sqrt{3}} \frac{15\left(\left(t^{2}-1\right)^{2}-1\right) 2 t d t}{t}
$$

$$
\Rightarrow \quad I=30 \int_{\sqrt{2}}^{\sqrt{3}}\left(t^{4}-2 t^{2}+1-1\right) d t
$$

$$
\Rightarrow \quad I=30 \int_{\sqrt{2}}^{\sqrt{3}}\left(t^{4}-2 t^{2}\right) d t
$$

$$
\Rightarrow \quad I=\left.30\left(\frac{t^{5}}{5}-\frac{2 t^{3}}{3}\right)\right|_{\sqrt{2}} ^{\sqrt{3}}
$$

$$
=30\left[\left(\frac{9}{5} \sqrt{3}-2 \sqrt{3}\right)-\left(\frac{4 \sqrt{2}}{5}-\frac{4 \sqrt{2}}{3}\right)\right]
$$

$$
=(54 \sqrt{3}-60 \sqrt{3})-(24 \sqrt{2}-40 \sqrt{2})
$$

$$
=16 \sqrt{2}-6 \sqrt{3}
$$

$\therefore \quad \alpha=16$ and $\beta=-6$
$\alpha+\beta=10$.
5. Let $A=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]$ and $B=\left[\begin{array}{ll}\beta & 1 \\ 1 & 0\end{array}\right], \alpha, \beta \in \boldsymbol{R}$. Let α_{1} be the value of α which satisfies $(A+B)^{2}=A^{2}+\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$ and α_{2} be the value of α which satisfies $(A+B)^{2}=B^{2}$. Then $\left|\alpha_{1}-\alpha_{2}\right|$ is equal to \qquad -.

Answer (2)

Sol. $(A+B)^{2}=A^{2}+B^{2}+A B+B A$

$$
\begin{align*}
& =A^{2}+\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right] \\
& \therefore \quad B^{2}+A B+B A=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right] \tag{1}
\end{align*}
$$

$A B=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]\left[\begin{array}{ll}\beta & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}\beta-1 & 1 \\ \alpha+2 \beta & 2\end{array}\right]$
$B A=\left[\begin{array}{ll}\beta & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]=\left[\begin{array}{cc}\beta+2 & \alpha-\beta \\ 1 & -1\end{array}\right]$
$B^{2}=\left[\begin{array}{ll}\beta & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}\beta & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}\beta^{2}+1 & \beta \\ \beta & 1\end{array}\right]$
By (1) we get

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\beta^{2}+2 \beta+2 & \alpha+1 \\
\alpha+3 \beta+1 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]} \\
& \therefore \alpha=1 \beta=0 \Rightarrow \alpha_{1}=1
\end{aligned}
$$

Similarly If $A^{2}+A B+B A=0$ then
$\left(A^{2}=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]=\left[\begin{array}{cc}-1 & -1-\alpha \\ 2+2 \alpha & \alpha^{2}-2\end{array}\right]\right)$
$\left[\begin{array}{cc}2 \beta & \alpha-\beta+1-1-\alpha \\ \alpha+2 \beta+1+2+2 \alpha & \alpha^{2}-2+1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
$\Rightarrow \beta=0$ and $\alpha=-1 \Rightarrow \alpha_{2}=-1$
$\therefore \quad\left|\alpha_{1}-\alpha_{2}\right|=|2|=2$.
6. For $p, q, \in \mathbf{R}$, consider the real valued function $f(x)$ $=(x-p)^{2}-q, x \in \mathbf{R}$ and $q>0$, Let a_{1}, a_{2}, a_{3} and a_{4} be in an arithmetic progression with mean p and positive common difference. If $\left|f\left(a_{i}\right)\right|=500$ for all i $=1,2,3,4$, then the absolute difference between the roots of $f(x)=0$ is

Answer (50)

Sol. $\because a_{1}, a_{2}, a_{3}, a_{4}$ are in A.P and its mean is p.
$\therefore \quad a_{1}=p-3 d, a_{2}=p-d, a_{3}=p+d$ and $a_{4}=p+$ 3d
Where $d>0$
$\because\left|f\left(a_{i}\right)\right|=500$
$\Rightarrow\left|9 d^{2}-q\right|=500$
and $\left|d^{2}-q\right|=500$
either $9 d^{2}-q=d^{2}-q$
$\Rightarrow d=0$ not acceptable
$\therefore 9 d^{2}-q=q-d^{R}$
$\therefore \quad 5 d^{2}-q=0$
Roots of $f(x)=0$ are $p+\sqrt{q}$ and $p-\sqrt{q}$
$\therefore \quad$ absolute difference between roots $=|2 \sqrt{q}|$

$$
=50
$$

7. For the hyperbola $\mathrm{H}: x^{2}-y^{2}=1$ and the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b>0$, let the
(1) eccentricity of E be reciprocal of the eccentricity of H, and
(2) the line $y=\sqrt{\frac{5}{2}} x+K$ be a common tangent of E and H .
Then $4\left(a^{2}+b^{2}\right)$ is equal to \qquad
Answer (03.00)
Sol. The equation of tangent to hyperbola $x^{2}-y^{2}=1$ within slope m is equal to $y=m x \pm \sqrt{m^{2}-1}$
And for same slope m, equation of tangent to ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is $y=m x \pm \sqrt{a^{2} m^{2}+b^{2}}$
\because Equation (i) and (ii) are identical
$\therefore \quad a^{2} m^{2}+b^{2}=m^{2}-1$
$\therefore \quad m^{2}=\frac{1+b^{2}}{1-a^{2}}$
But equation of common tangent is $y=\sqrt{\frac{5}{2}} x+k$
$\therefore \quad m=\sqrt{\frac{5}{2}} \Rightarrow \frac{5}{2}=\frac{1+b^{2}}{1-a^{2}}$
$\therefore 5 a^{2}+2 b^{2}=3$
eccentricity of ellipse $=\frac{1}{\sqrt{2}}$
$\therefore \quad 1-\frac{b^{2}}{a^{2}}=\frac{1}{2}$
$\Rightarrow a^{2}=2 b^{2}$
From equation (i) and (ii): $a^{2}=\frac{1}{2}, b^{2}=\frac{1}{4}$
$\therefore 4\left(a^{2}+b^{2}\right)=3$
8. Let $x_{1}, x_{2}, x_{3}, \ldots, x_{20}$ be in geometric progression with $x_{1}=3$ and the common ratio $\frac{1}{2}$. A new data is constructed replacing each x_{i} by $\left(x_{i}-i\right)^{2}$. If \bar{x} is the mean of new data, then the greatest integer less than or equal to \bar{x} is \qquad .

Answer (142)

Sol. $x_{1}, x_{2}, x_{3}, \ldots, x_{20}$ are in G.P.

$$
\begin{aligned}
& x_{1}=3, r=\frac{1}{2} \\
& \bar{x}=\frac{\sum x_{i}^{2}-2 x_{i} i+i^{2}}{20} \\
& =\frac{1}{20}\left[12\left(1-\frac{1}{2^{40}}\right)-6\left(4-\frac{11}{2^{18}}\right)+70 \times 41\right] \\
& \left\{\begin{array}{l}
S=1+2 \cdot \frac{1}{2}+3 \cdot \frac{1}{2^{2}}+\ldots \\
\frac{S}{2}= \\
\frac{1}{2}+\frac{2}{2^{2}}+\ldots . \\
\left.\frac{S}{2}=2\left(1-\frac{1}{2^{20}}\right)-\frac{20}{2^{20}}=4-\frac{11}{2^{18}}\right\} \\
\therefore \quad[\bar{x}]=\left[\frac{2858}{20}-\left(\frac{12}{240}-\frac{66}{2^{18}}\right) \cdot \frac{1}{20}\right] \\
\quad=142
\end{array}\right. \\
& \hline
\end{aligned}
$$

9. $\lim _{x \rightarrow 0}\left(\frac{(x+2 \cos x)^{3}+2(x+2 \cos x)^{2}+3 \sin (x+2 \cos x)}{(x+2)^{3}+2(x+2)^{2}+3 \sin (x+2)}\right)^{\frac{100}{x}}$ is equal to \qquad .
Answer (01)
Sol. Let $x+2 \cos x=a$
$x+2=b$
as $x \rightarrow 0, a \rightarrow 2$ and $b \rightarrow 2$
$\lim _{x \rightarrow 0}\left(\frac{a^{3}+2 a^{2}+3 \sin a}{b^{3}+2 b^{2}+3 \sin b}\right)^{\frac{100}{x}}$
$=e^{\lim _{x \rightarrow 0} \cdot \frac{100}{x}} \cdot \frac{\left(a^{3}-b^{3}\right)+2\left(a^{2}-b^{2}\right)+3(\sin a-\sin b)}{b^{3}+2 b^{2}+3 \sin b}$
$\because \quad \lim _{x \rightarrow 0} \frac{a-b}{x}=\lim _{x \rightarrow 0} \frac{2(\cos x-1)}{x}=0$
$=e^{0}$
$=1$
10. The sum of all real value of x for which $\frac{3 x^{2}-9 x+17}{x^{2}+3 x+10}=\frac{5 x^{2}-7 x+19}{3 x^{2}+5 x+12}$ is equal to

Answer (06)

Sol. $\frac{3 x^{2}-9 x+17}{x^{2}+3 x+10}=\frac{5 x^{2}-7 x+19}{3 x^{2}+5 x+12}$
$\Rightarrow \frac{3 x^{2}-9 x+17}{5 x^{2}-7 x+19}=\frac{x^{2}+3 x+10}{3 x^{2}+5 x+12}$
$\frac{-2 x^{2}-2 x-2}{5 x^{2}-7 x+19}=\frac{-2 x^{2}-2 x-2}{3 x^{2}+5 x+12}$
$\Rightarrow \quad \begin{aligned} & \text { Either } x^{2}+x+1=0 \\ & \text { No real roots }\end{aligned} \left\lvert\, \begin{array}{r}5 x^{2}-7 x+19 \\ =3 x^{2}+5 x+12 \\ 2 x^{2}-12 x+7=0 \\ \text { sum of roots }=6\end{array}\right.$

