Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2022 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The SI unit of a physical quantity is pascal-second. The dimensional formula of this quantity will be :
(A) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
(B) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(C) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(D) $\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{0}\right]$

Answer (A)

Sol. [pascal-second] $=\frac{\mathrm{MLT}^{-2}}{\mathrm{~L}^{2}} \times \mathrm{T}$

$$
=\mathrm{ML}^{-1} \mathrm{~T}^{-1}
$$

2. The distance of the Sun from earth is $1.5 \times 10^{11} \mathrm{~m}$ and its angular diameter is (2000) s when observed from the earth. The diameter of the Sun will be :
(A) $2.45 \times 10^{10} \mathrm{~m}$
(B) $1.45 \times 10^{10} \mathrm{~m}$
(C) $1.45 \times 10^{9} \mathrm{~m}$
(D) $0.14 \times 10^{9} \mathrm{~m}$

Answer (C)

Sol. Diameter $=r \times \delta$

$$
\begin{aligned}
& =1.5 \times 10^{11} \times(2000) \times\left(\frac{1}{3600}\right) \times\left(\frac{\pi}{180}\right) \\
& =1.45 \times 10^{9} \mathrm{~m}
\end{aligned}
$$

3. When a ball is dropped into a lake from a height 4.9 m above the water level, it hits the water with a velocity v and then sinks to the bottom with the constant velocity v. It reaches the bottom of the lake 4.0 s after it is dropped. The approximate depth of the lake is :
(A) 19.6 m
(B) 29.4 m
(C) 39.2 m
(D) 73.5 m

Answer (B)
Sol. $t_{1}=\sqrt{\frac{2 h}{g}}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times 4.9}{9.8}}=1 \mathrm{~s} \\
\Delta t & =4-1=3 \mathrm{~s}, \\
v & =\sqrt{2 g h}=\sqrt{2 \times 9.8 \times 4.9}=9.8 \mathrm{~m} / \mathrm{s} \\
\therefore \quad \text { depth } & =9.8 \times 3=29.4 \mathrm{~m}
\end{aligned}
$$

4. One end of a massless spring of spring constant k and natural length I_{0} is fixed while the other end is connected to a small object of mass m lying on a frictionless table. The spring remains horizontal on the table. If the object is made to rotate at an angular velocity ω about an axis passing through fixed end, then the elongation of the spring will be :
(A) $\frac{k-m \omega^{2} l_{0}}{m \omega^{2}}$
(B) $\frac{m \omega^{2} I_{0}}{k+m \omega^{2}}$
(C) $\frac{m \omega^{2} I_{0}}{k-m \omega^{2}}$
(D) $\frac{k+m \omega^{2} l_{0}}{m \omega^{2}}$

Answer (C)

Sol. $m \omega^{2}\left(I_{0}+x\right)=k x$

$$
\begin{aligned}
& \Rightarrow \quad m \omega^{2} l_{0}=\left(k-m \omega^{2}\right) \times x \\
& \Rightarrow x=\frac{m \omega^{2} I_{0}}{\left(k-m \omega^{2}\right)}
\end{aligned}
$$

5. A stone tied to a string of length L is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed u. The magnitude of change in its velocity, as it reaches a position where the string is horizontal, is $\sqrt{x\left(u^{2}-g L\right)}$. The value of x is
(A) 3
(B) 2
(C) 1
(D) 5

Answer (B)
Sol. $\vec{v}=\sqrt{u^{2}-2 g L} \hat{j}$

$\vec{u}=u \hat{i}$
$\therefore|\vec{v}-\vec{u}|=\sqrt{\left(u^{2}-2 g L\right)+u^{2}}$

$$
=\sqrt{2 u^{2}-2 g L}
$$

$\therefore \quad x=2$
6. Four spheres each of mass m form a square of side d (as shown in figure). A fifth sphere of mass M is situated at the centre of square. The total gravitational potential energy of the system is:

(A) $-\frac{G m}{d}[(4+\sqrt{2}) m+4 \sqrt{2} M]$
(B) $-\frac{G m}{d}[(4+\sqrt{2}) M+4 \sqrt{2} m]$
(C) $-\frac{G m}{d}\left[3 m^{2}+4 \sqrt{2} M\right]$
(D) $-\frac{G m}{d}\left[6 m^{2}+4 \sqrt{2} M\right]$

Answer (A)

Sol. Total gravitational potential energy

$$
\begin{aligned}
& =-\left\{\frac{4 G M m}{d / \sqrt{2}}+\frac{4 G m^{2}}{d}+\frac{2 G m^{2}}{\sqrt{2} d}\right\} \\
& =-\frac{G m}{d}\{M 4 \sqrt{2}+(4+\sqrt{2}) m\} \\
& =-\frac{G m}{d}\{4 \sqrt{2} M+(4+\sqrt{2}) m\}
\end{aligned}
$$

7. For a perfect gas, two pressures P_{1} and P_{2} are shown in figure. The graph shows:

(A) $P_{1}>P_{2}$
(B) $P_{1}<P_{2}$
(C) $P_{1}=P_{2}$
(D) Insufficient data to draw any conclusion

Answer (A)

Sol. As per ideal gas equation, $V=\frac{n R}{P} T$
\Rightarrow Slope of $V-T$ graph is inversely proportional to P.
As $m_{2}>m_{1} \Rightarrow P_{1}>P_{2}$
8. According to kinetic theory of gases,
A. The motion of the gas molecules freezes at $0^{\circ} \mathrm{C}$
B. The mean free path of gas molecules decreases if the density of molecules is increased.
C. The mean free path of gas molecules increases if temperature is increased keeping pressure constant.
D. Average kinetic energy per molecule per degree of freedom is $\frac{3}{2} k_{B} T$ (for monoatomic gases).
Choose the most appropriate answer from the options given below:
(A) A and C only
(B) B and C only
(C) A and B only
(D) C and D only

Answer (B)
Sol. According to kinetic theory of gases,
A. The motion of the gas molecules freezes at 0 K .
B. The mean free path decreases on increasing the number density of the molecules as $\mu=\frac{1}{\sqrt{2} \pi n d^{2}} \Rightarrow \mu \propto \frac{1}{n}$.
C. The mean free path increases on increasing the volume. Now if temperature is increased by keeping the pressure constant the volume should increase that is mean free path increases.
D. K.E.avg per molecule per degree of freedom is $\frac{1}{2} k_{B} T$.
\Rightarrow Option (B) and (C) only are correct.
9. A lead bullet penetrates into a solid object and melts. Assuming that 40% of its kinetic energy is used to heat it, the initial speed of bullet is:
(Given initial temperature of the bullet $=127^{\circ} \mathrm{C}$),
Melting point of the bullet $=327^{\circ} \mathrm{C}$,
Latent heat of fusion of lead $=2.5 \times 10^{4} \mathrm{~J} \mathrm{~kg}^{-1}$
Specific heat capacity of lead $=125 \mathrm{~J} / \mathrm{kg} \mathrm{K}$)
(A) $125 \mathrm{~ms}^{-1}$
(B) $500 \mathrm{~ms}^{-1}$
(C) $250 \mathrm{~ms}^{-1}$
(D) $600 \mathrm{~ms}^{-1}$

Answer (B)

Sol. $\frac{2}{5} \times \frac{1}{2} m v^{2}=m L+m s \Delta T$
$\Rightarrow \frac{v^{2}}{5}=2.5 \times 10^{4}+125+200$
$\Rightarrow \frac{v^{2}}{5}=5 \times 10^{4}$
$\Rightarrow v=500 \mathrm{~m} / \mathrm{s}$
10. The equation of a particle executing simple harmonic motion is given by $x=\sin \pi\left(t+\frac{1}{3}\right) m$. At $t=1 \mathrm{~s}$, the speed of particle will be
(A) $0 \mathrm{~cm} \mathrm{~s}^{-1}$
(B) $157 \mathrm{~cm} \mathrm{~s}^{-1}$
(C) $272 \mathrm{~cm} \mathrm{~s}^{-1}$
(D) $314 \mathrm{~cm} \mathrm{~s}^{-1}$

Answer (B)

Sol. $x=\sin \left(\pi t+\frac{\pi}{3}\right) \mathrm{m}$

$$
\begin{aligned}
\Rightarrow \quad & \frac{d x}{d t}=\pi \cos \left(\pi t+\frac{\pi}{3}\right) \\
& =\pi \cos \left(\pi+\frac{\pi}{3}\right) \text { at } t=1 \mathrm{~s} \\
& =-\frac{\pi}{2} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

or $\left|\frac{d x}{d t}\right|=157 \mathrm{~cm} / \mathrm{s}$
11. If a charge q is placed at the centre of a closed hemispherical non-conducting surface, the total flux passing through the flat surface would be:

(A) $\frac{q}{\varepsilon_{0}}$
(B) $\frac{q}{2 \varepsilon_{0}}$
(C) $\frac{q}{4 \varepsilon_{0}}$
(D) $\frac{q}{2 \pi \varepsilon_{0}}$

Answer (B)

Sol. Flux passing through flat surface = Flux passing through curved surface.

So $\phi=\frac{q}{2 \varepsilon_{0}}$
12. Three identical charged balls each of charge 2 C are suspended from a common point P by silk threads of 2 m each (as shown in figure). They form an equilateral triangle of side 1 m .
The ratio of net force on a charged ball to the force between any two charged balls will be:

(A) $1: 1$
(B) $1: 4$
(C) $\sqrt{3}: 2$
(D) $\sqrt{3}: 1$

Answer (D)

Sol.

$F_{\text {net }}$ on charge 3, $F_{1}=\frac{\sqrt{3} k q^{2}}{1^{2}}$
Force between any 2 charges
$F_{2}=\frac{k q^{2}}{1^{2}}$
So, $\frac{F_{1}}{F_{2}}=\sqrt{3}$
13. Two long parallel conductors S_{1} and S_{2} are separated by a distance 10 cm and carrying currents of 4 A and 2 A respectively. The conductors are placed along x-axis in $X-Y$ plane. There is a point P located between the conductors (as shown in figure).
A charge particle of 3π coulomb is passing through the point P with velocity $\vec{v}=(2 \hat{i}+3 \hat{j}) \mathrm{m} / \mathrm{s}$; where \hat{i} and \hat{j} represents unit vector along $x \& y$ axis respectively.
The force acting on the charge particle is $4 \pi \times 10^{-5}(-x \hat{i}+2 \hat{j}) N$. The value of x is:

(A) 2
(B) 1
(C) 3
(D) -3

Answer (C)

Sol. Field at P is $=\left(\frac{\mu_{0} \times i_{1}}{2 \pi r_{1}}-\frac{\mu_{0} i_{2}}{2 \pi r_{2}}\right)(-\hat{k})$

$$
=-\left(\frac{\mu_{0} 4}{2 \pi \times 0.04}-\frac{\mu_{0} \times 2}{2 \pi \times 0.06}\right) \hat{k}=-\frac{\mu_{0} \times 200}{6 \pi} \hat{k}
$$

So, force $\vec{F}=q \vec{v} \times \vec{B}$

$$
\begin{aligned}
& =3 \pi(2 \hat{i}+3 \hat{j}) \times\left(-\left(\frac{\mu_{0} \times 200}{6 \pi} \hat{k}\right)\right) \\
& =3 \pi\left(\frac{200 \mu_{0}}{3 \pi} \hat{j}-\frac{100 \mu_{0}}{\pi} \hat{i}\right) \\
& =200 \mu_{0} \hat{j}-300 \mu_{0} \hat{i} \\
& =4 \pi \times 10^{-5}(2 \hat{j}-3 \hat{i})
\end{aligned}
$$

So, $x=3$
14. If L, C and R are the self-inductance, capacitance and resistance respectively, which of the following does not have the dimension of time?
(A) $R C$
(B) $\frac{L}{R}$
(C) $\sqrt{L C}$
(D) $\frac{L}{C}$

Answer (D)

Sol. $U=\frac{1}{2} L i^{2}=\frac{1}{2} C V^{2}$
So, $\left[\frac{L}{C}\right]=\frac{V^{2}}{i^{2}}=R^{2}$ is not the dimension of time.
15. Given below are two statements:

Statement I: A time varying electric field is a source of changing magnetic field and vice-versa. Thus a disturbance in electric or magnetic field creates $E M$ waves.
Statement II: In a material medium, the EM wave travels with speed $v=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both statement I and statement II are true
(B) Both statement I and statement II are false
(C) Statement I is correct but statement II is false
(D) Statement I is incorrect but statement II is true

Answer (C)
Sol. In a material medium speed of light is given by $v=\frac{1}{\sqrt{\varepsilon_{0} \varepsilon_{r} \mu_{0} \mu_{r}}}$. So statement 2 is false.
16. A convex lens has power P. It is cut into two halves along its principal axis. Further one piece (out of the two halves) is cut into two halves perpendicular to the principal axis (as shown in figures). Choose the incorrect option for the reported pieces.

(A) Power of $L_{1}=\frac{P}{2}$
(B) Power of $L_{2}=\frac{P}{2}$
(C) Power of $L_{3}=\frac{P}{2}$
(D) Power of $L_{1}=P$

Answer (A)

Sol. We know $P=\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
$L_{1}: \frac{1}{f_{1}}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=P_{1}=(\mu-1)\left(\frac{2}{R}\right)=P$
$L_{2}: \frac{1}{f_{2}}=(\mu-1)\left(\frac{1}{R_{1}}\right)=P_{2}=\frac{\mu-1}{R}$
$L_{3}: \frac{1}{f_{3}}=(\mu-1)\left(-\frac{1}{R_{2}}\right)=P_{3}=\frac{\mu-1}{R}$
17. If a wave gets refracted into a denser medium, then which of the following is true?
(A) Wavelength, speed and frequency decreases
(B) Wavelength increases, speed decreases and frequency remains constant
(C) Wavelength and speed decreases but frequency remains constant
(D) Wavelength, speed and frequency increases

Answer (C)

Sol. Frequency is independent of medium. For denser medium, wavelength and speed both would decrease.
18. Given below are two statements:

Statement I: In hydrogen atom, the frequency of radiation emitted when an electron jumps from lower energy orbit $\left(E_{1}\right)$ to higher energy orbit (E_{2}), is given as $h f=E_{1}-E_{2}$.
Statement II: The jumping of electron from higher energy orbit $\left(E_{2}\right)$ to lower energy orbit $\left(E_{1}\right)$ is associated with frequency of radiation given as $f=\frac{\left(E_{2}-E_{1}\right)}{h}$.

This condition is Bohr's frequency condition.
In the light of the above statements, choose the correct answer from the options given below:
(A) Both statement I and statement II are true
(B) Both statement I and statement II are false
(C) Statement I is correct but statement II is false
(D) Statement I is incorrect but statement II is true

Answer (D)

Sol. Radiation is not emitted but absorbed when an electron jumps from low energy to high energy.
Also, $E_{2}-E_{1}$ is the energy of photon
$\Rightarrow E_{2}-E_{1}=h f$
$\Rightarrow \quad f=\frac{E_{2}-E_{1}}{h}$
19. For a transistor to act as a switch, it must be operated in
(A) Active region
(B) Saturation state only
(C) Cut-off state only
(D) Saturation and cut-off state

Answer (D)

Sol. A transistor acts as a switch when it is operated in saturation and cut-off state.
20. We do not transmit low frequency signal to long distance because-
(a) The size of the antenna should be comparable to signal wavelength which is unreal solution for a signal of longer wavelength
(b) Effective power radiated by a long wavelength baseband signal would be high
(c) We want to avoid mixing up signals transmitted by different transmitter simultaneously
(d) Low frequency signal can be sent to long distances by superimposing with a high frequency wave as well

Therefore, the most suitable option will be:
(A) All statements are true
(B) (a), (b) and (c) are true only
(C) (a), (c) and (d) are true only
(D) (b), (c) and (d) are true only

Answer (C)

Sol. For longer wavelength, size of antenna would increase. Also, mixing of signals needs to be avoided.

Also, we can use modulation to send low frequency signal by superimposing them with high frequency signals.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. A mass of 10 kg is suspended vertically by a rope of length 5 m from the roof. A force of 30 N is applied at the middle point of rope in horizontal direction. The angle made by upper half of the rope with vertical is $\theta=\tan ^{-1}\left(x \times 10^{-1}\right)$. The value of x is
(Given, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Answer (3)

$T \cos \theta=m g$
$T \cos \theta=100 \mathrm{~N}$
$T \sin \theta=30$
$\Rightarrow \frac{T \sin \theta}{T \cos \theta}=\frac{30}{100}$
$\Rightarrow \tan \theta=\frac{3}{10}$
$\therefore \quad x=3$
2. A rolling wheel of 12 kg is on an inclined plane at position P and connected to a mass of 3 kg through a string of fixed length and pulley as shown in figure. Consider PR as friction free surface.
The velocity of centre of mass of the wheel when it reaches at the bottom Q of the inclined plane $P Q$ will be $\frac{1}{2} \sqrt{x g h} \mathrm{~m} / \mathrm{s}$. The value of x is \qquad -

Answer (3)

Sol. For rolling wheel

$$
[12 g \sin \alpha-3 g \sin \alpha] \times R=\left(2 \times 12 R^{2}+3 R^{2}\right) \times \frac{a}{R}
$$

$$
\Rightarrow \frac{9 g \sin \alpha}{27}=a
$$

$$
\Rightarrow \quad a=\frac{g \sin \alpha}{3}
$$

$$
\therefore v=\sqrt{2 \times \frac{g \sin \alpha}{3} \times \frac{h}{\sin \alpha}}=\sqrt{\frac{2}{3} g h}
$$

$$
=\frac{1}{2} \times \sqrt{\frac{8}{3} g h}
$$

$$
\therefore \quad x=\frac{8}{3}=2.67
$$

3. A diatomic gas $(\gamma=1.4)$ does 400 J of work when it is expanded isobarically. The heat given to the gas in the process is \qquad J.

Answer (1400)

Sol. $W=n R \Delta T=400 \mathrm{~J}$
$\therefore \quad \Delta Q=n C_{P} \Delta T$

$$
=n \times \frac{7}{2} R \times \Delta T=\frac{7}{2} \times(400)=1400
$$

4. A particle executes simple harmonic motion. Its amplitude is 8 cm and time period is 6 s . The time it will take to travel from its position of maximum displacement to the point corresponding to half of its amplitude, is \qquad s.

Answer (1)

Sol. $A=8 \mathrm{~cm}$
$T=6 \mathrm{~s}$
$A \cos \left(\frac{2 \pi t}{T}\right)=\frac{A}{2}$
$\Rightarrow \quad \frac{2 \pi t}{T}=\frac{\pi}{3}$
or $t=\frac{T}{6}=1 \mathrm{~s}$
5. A parallel plate capacitor is made up of stair like structure with a plate area A of each stair and that is connected with a wire of length b, as shown in the figure. The capacitance of the arrangement is $\frac{x}{15} \frac{\varepsilon_{0} A}{b}$, the value of x is \qquad ?

Answer (23)

Aakash
Sol. The circuit is equivalent to 3 capacitors in parallel as shown

$C_{\text {eq }}=\frac{\varepsilon_{0} A}{b}\left(1+\frac{1}{3}+\frac{1}{5}\right)=\frac{23}{15} \frac{\varepsilon_{0} A}{b}$
$\Rightarrow x=23$
6. The current density in a cylindrical wire of radius $r=4.0 \mathrm{~mm}$ is $1.0 \times 10^{6} \mathrm{~A} / \mathrm{m}^{2}$. The current through the outer portion of the wire between radial distances $\frac{r}{2}$ and r is $x \pi A$; where x is \qquad
Answer (12)
Sol. $i=A \times j$

$$
\begin{aligned}
& =\pi\left(R^{2}-\frac{R^{2}}{4}\right) j \\
& =\frac{3 \pi R^{2}}{4} \times j \\
& =\frac{3 \pi \times\left(4 \times 10^{-3}\right)^{2}}{4} \times 1.0 \times 10^{6} \\
& =12 \pi
\end{aligned}
$$

7. In the given circuit 'a' is an arbitrary constant. The value of m for which the equivalent circuit resistance is minimum, will be $\sqrt{\frac{x}{2}}$. The value of x is \qquad .

Answer (3)
Sol. $R_{\text {net }}=\frac{m a}{3}+\frac{a}{2 m}$

$$
\begin{aligned}
& =a\left[\frac{m}{3}+\frac{1}{2 m}-\frac{2}{\sqrt{6}}+\frac{2}{\sqrt{6}}\right] \\
& =a\left[\left(\sqrt{\frac{m}{3}}-\frac{1}{\sqrt{2 m}}\right)^{2}+\sqrt{\frac{2}{3}}\right]
\end{aligned}
$$

JEE (Main)-2022 : Phase-1 (27-06-2022)-Evening
This will be minimum when
$\sqrt{\frac{m}{3}}=\frac{1}{\sqrt{2 m}}$
or $m=\sqrt{\frac{3}{2}}$ so $x=3$
8. A deuteron and a proton moving with equal kinetic energy enter into a uniform magnetic field at right angle to the field. If r_{d} and r_{p} are the radii of their circular paths respectively, then the ratio $\frac{r_{d}}{r_{p}}$ will be $\sqrt{x}: 1$ where x is \qquad .

Answer (2)

Sol. $R=\frac{\sqrt{2 m K}}{q B}$
So $\frac{r_{d}}{r_{p}}=\frac{\sqrt{m_{d}} / q_{d}}{\sqrt{m_{p}} / q_{p}}$
$=\sqrt{2}$
So $x=2$
9. A metallic rod of length 20 cm is placed in NorthSouth direction and is moved at a constant speed of $20 \mathrm{~m} / \mathrm{s}$ towards East. The horizontal component of the Earth's magnetic field at that place is $4 \times 10^{-3} \mathrm{~T}$ and the angle of dip is 45°. The emf induced in the rod is \qquad mV .
Answer (16)
Sol. $E=B / v$

$$
\begin{aligned}
& =4 \times 10^{-3} \times \frac{20}{100} \times 20 \text { Volts } \\
& =16 \mathrm{mV}
\end{aligned}
$$

10. The cut-off voltage of the diodes (shown in figure) in forward bias is 0.6 V . The current through the resistor of 40Ω is \qquad mA .

Answer (4)
Sol. D_{1} : conducting
D_{2} : open circuit
$\Rightarrow i=\frac{1-0.6}{60+40} \mathrm{~A}$
$=\frac{0.4}{100} \mathrm{~A}$
$\Rightarrow i=4 \mathrm{~mA}$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Which amongst the given plots is the correct plot for pressure (p) vs density (d) for an ideal gas?
(A)

(B)

(C)

(D)

Answer (B)

Sol. $\because d=\frac{p M}{R T}$
Hence, $\mathrm{dRT}=\mathrm{pM}$
$p \propto T$

2. Identify the incorrect statement for PCl_{5} from the following.
(A) In this molecule, orbitals of phosphorous are assumed to undergo $s p^{3} d$ hybridization.
(B) The geometry of PCl_{5} is trigonal bipyramidal.
(C) PCl_{5} has two axial bonds stronger than three equatorial bonds.
(D) The three equatorial bonds of PCl_{5} lie in a plane

Answer (C)

Sol. PCl5

- All three equatorial bonds in a plane
- $s p^{3} d$ hybridization
- Trigonal bipyramidal
- Axial bonds are weaker than equatorial bonds.

3. Statement-I: Leaching of gold with cyanide ion in absence of air/ O_{2} leads to cyano complex of $\mathrm{Au}(\mathrm{III})$. Statement-II : Zinc is oxidized during the displacement reaction carried out for gold extraction.

In the light of the above statements, choose the correct answer from the options given below.
(A) Both statement-I and statement-II are correct
(B) Both statement-I and statement-II are incorrect
(C) Statement-I is correct but statement-II is incorrect
(D) Statement-I is incorrect but statement-II is correct
Answer (D)
Sol. Leaching of gold with cyanide ion is done in presence of air/ O_{2} leading to cyano complex $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$where Au is in +1 oxidation state.

$$
\begin{aligned}
4 \mathrm{Au}(\mathrm{~s})+8 \mathrm{CN}^{-}(\mathrm{aq}) & +2 \mathrm{H}_{2} \mathrm{O}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g}) \\
& \longrightarrow 4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{\mathrm{aq}}^{-}+4 \mathrm{OH}^{-}
\end{aligned}
$$

$$
\begin{aligned}
2\left[\mathrm{Au}(\mathrm{CN})_{2}\right]_{(\mathrm{aq})}^{-} & +\mathrm{Zn}(\mathrm{~s}) \\
& \longrightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]_{(\mathrm{aq})}^{2-}+2 \mathrm{Au}(\mathrm{~s})
\end{aligned}
$$

Zinc is oxidised from (0) to +2 oxidation state during displacement reaction carried out for gold extraction.
4. The correct order of increasing intermolecular hydrogen bond strength is
(A) $\mathrm{HCN}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
(B) $\mathrm{HCN}<\mathrm{CH}_{4}<\mathrm{NH}_{3}$
(C) $\mathrm{CH}_{4}<\mathrm{HCN}<\mathrm{NH}_{3}$
(D) $\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{HCN}$

Answer (C)

Sol. Due to high difference in electronegativity of H and N the H -bond strength of NH_{3} is highest. There is no H -bond in CH_{4}.
$\mathrm{CH}_{4}<\mathrm{HCN}<\mathrm{NH}_{3}$
Hence, correct option is (C)
5. The correct order of increasing ionic radii is
(A) $\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
(B) $\mathrm{N}^{3-}<\mathrm{O}^{2-}<\mathrm{F}^{-}<\mathrm{Na}^{+}<\mathrm{Mg}^{2+}$
(C) $\mathrm{F}^{-}<\mathrm{Na}^{+}<\mathrm{O}^{2-}<\mathrm{Mg}^{2+}<\mathrm{N}^{3-}$
(D) $\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{Mg}^{2+}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$

Answer (A)

Sol. For isoelectronic species

$$
\text { lonic radii } \propto \frac{(-) \text { ve charge }}{(+) \text { ve charge }}
$$

Hence, correct order of ionic radii is
$\mathrm{Mg}^{2+}<\mathrm{Na}^{+}<\mathrm{F}^{-}<\mathrm{O}^{2-}<\mathrm{N}^{3-}$
6. The gas produced by treating an aqueous solution of ammonium chloride with sodium nitrite is
(A) NH_{3}
(B) N_{2}
(C) $\mathrm{N}_{2} \mathrm{O}$
(D) Cl_{2}

Answer (B)

Sol. N_{2} gas is produced by treating an aqueous solution of ammonium chloride with sodium nitrite.

$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+$			
Ammonium chloride	Sodium nitrite		
$\mathrm{NaNO}_{2}(\mathrm{aq})$		\quad	Nitrogen
:---	Water	Sodium	
---:			
chloride			

7. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Fluorine forms one oxoacid.
Reason R: Fluorine has smallest size amongst all halogens and is highly electronegative.

In the light of the above statements, choose the most appropriate answer from the option given below.
(1) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}.
(2) Both \mathbf{A} and \mathbf{R} are correct but \mathbf{R} is NOT the correct explanation of \mathbf{A}.
(3) \mathbf{A} is correct but \mathbf{R} is not correct.
(4) \mathbf{A} is not correct but \mathbf{R} is correct.

Answer (A)

Sol. Due to smaller size, fluorine forms only one oxoacid.

Both the Assertion and Reason are correct and Reason is the correct explanation.
8. In 3d series, the metal having the highest $\mathrm{M}^{2+} / \mathrm{M}$ standard electrode potential is
(A) Cr
(B) Fe
(C) Cu
(D) Zn

Answer (C)
Sol. Metal

$$
\mathrm{E}^{\circ} \mathrm{M}^{2+} / \mathrm{M}
$$

Cr	-0.90 V
Fe	-0.44 V
Cu	+0.34 V
Zn	$(-0.76 \mathrm{~V})$

The metal having highest $\mathrm{E}^{\circ}\left(\mathrm{M}^{2+} / \mathrm{M}\right)$ standard reduction potential is Cu .
9. The ' f ' orbitals are half and completely filled, respectively in lanthanide ions
[Given: Atomic no. Eu, 63; Sm, 62; Tm, 69; Tb, 65; Yb, 70; Dy, 66]
(A) Eu^{2+} and Tm^{2+}
(B) Sm^{2+} and Tm^{3+}
(C) Tb^{4+} and Yb^{2+}
(D) Dy^{3+} and Yb^{3+}

Answer (C)

Sol.

	+2	+3	+4
Eu	$4 \mathrm{f}^{7}$	$4 f^{6}$	
Tm	$4 f^{13}$	$4 f^{12}$	
Sm	$4 f^{6}$	$4 f^{5}$	
Tb	$4 f^{9}$	$4 f^{8}$	$4 f^{7}$
Yb	$4 f^{14}$	$4 f^{13}$	
Dy	$4 f^{10}$	$4 f^{9}$	

Hence, the pair $\mathrm{Tb}^{+4} \mathrm{Yb}^{+2}$ have half filled and completely filled f subshells respectively.
10. Arrange the following coordination compounds in the increasing order of magnetic moments. (Atomic numbers: $\mathrm{Mn}=25 ; \mathrm{Fe}=26$)
(1) $\left[\mathrm{FeF}_{6}\right]^{3-}$
(2) $[\mathrm{Fe}(\mathrm{CN})]^{3-}$
(3) $\left[\mathrm{MnCl}_{6}\right]^{3-}$ (high spin)
(4) $\left[\mathrm{Mn}(\mathrm{CN}) \mathrm{E}^{3-}\right.$

Choose the correct answer from the options given below:
(A) $1<2<4<3$
(B) $2<4<3<1$
(C) $1<3<4<2$
(D) $2<4<1<3$

Answer (B)

Sol.

Coordination Compound	Number of unpaired e^{-} (n)	Magnetic moment (μ) $(\mathrm{B} . \mathrm{M})$
$\mathrm{A}\left[\mathrm{FeF}_{6}\right]^{3-}-\mathrm{d}^{5}$	5	5.91
$\mathrm{~B}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}-\mathrm{d}^{5}$	1	1.73
$\left.\mathrm{C}[\mathrm{MnCl}]_{6}\right]^{3-}-\mathrm{d}^{4}$	4	4.89
$\mathrm{D}\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}-\mathrm{d}^{4}$	2	2.82

Hence, correct order of magnetic moment is $2<4<3<1$
11. On the surface of polar stratospheric clouds, hydrolysis of chlorine nitrate gives A and B while its reaction with HCl produces B and $\mathrm{C} . \mathrm{A}, \mathrm{B}$ and C are, respectively
(A) $\mathrm{HOCl}, \mathrm{HNO}_{3}, \mathrm{Cl}_{2}$
(B) $\mathrm{Cl}_{2}, \mathrm{HNO}_{3}, \mathrm{HOCl}$
(C) $\mathrm{HClO}_{2}, \mathrm{HNO}_{2}, \mathrm{HOCl}$
(D) $\mathrm{HOCl}, \mathrm{HNO}_{2}, \mathrm{Cl}_{2} \mathrm{O}$

Answer (A)

Sol. On the surface of polar stratospheric clouds, hydrolysis of chlorine nitrate as

Hence A, B and C are $\mathrm{HOCl}, \mathrm{HNO}_{3}$ and Cl_{2} respectively.
12. Which of the following is most stable?
(A)

(B)

(C)

(D)

Answer (D)

Sol.
\bigwedge^{\oplus} - Aromatic compound ($2 \pi \mathrm{e}^{-}$)

$\overbrace{-}^{\oplus}$ - Anti Aromatic compound ($4 \pi \mathrm{e}^{-}$)

1,3 -cyclohexadiene is most stable because it is a neutral molecule. All others are intermediates and hence less stable.
13. What will be the major product of following sequence of reactions?

(A)

(B)

(C)

(D)

Answer (C)

Sol.

Hence correct option is (C).
14. Product ' A ' of following sequence of reactions is

Ethylbenzene $\xrightarrow[\substack{\text { (b) } \\ \text { (c) alc. } \mathrm{Cl}_{2} \text {. } \mathrm{KOH}}]{\text { (a) } \mathrm{Br}_{2}, \mathrm{Fe}} \xrightarrow[\text { Major Product }]{\text { A. }}$
(A)

(B)

(C)

(D)

Answer (D)
Sol.

15. Match List I with List II.
List I

Choose the correct answer from the options given below:
(A) A-IV, B-III, C-II, D-I
(B) A-IV, B-III, C-I, D-II
(C) A-II, B-III, C-I, D-IV
(D) A-IV, B-II, C-III, D-I

Answer (A)

Sol. A.

Reimer Tiemann reaction
B.

(Reduction)
C.

(major)
D.

\therefore Correct match is
(A) - IV, (B) - III, (C) - II, (D) - I
16. Decarboxylation of all six possible forms of diaminobenzoic acid $\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{NH}_{2}\right)_{2} \mathrm{COOH}$ yields three products A, B and C. Three acids give a product ' A ', two acids give a product ' B ' and one acid gives a product ' C '. The melting point of product ' C ' is
(A) $63^{\circ} \mathrm{C}$
(B) $90^{\circ} \mathrm{C}$
(C) $104^{\circ} \mathrm{C}$
(D) $142^{\circ} \mathrm{C}$

Answer (D)

Sol. The six possible forms of diaminobenzoic acid are

(1)

(2)

(3)

(C)

Melting point of product $(\mathrm{C})=142^{\circ} \mathrm{C}$
17. Which is true about Buna-N?
(A) It is a linear polymer of 1, 3-butadiene
(B) It is obtained by copolymerization of 1, 3butadiene and styrene
(C) It is obtained by copolymerization of 1, 3butadiene and acrylonitrile
(D) The suffix N in Buna- N stands for its natural occurrence.

Answer (C)

Sol. Buna-N is formed by copolymerisation of 1-3butadiene and acrylonitrile

18. Given below are two statements

Statement I: Maltose has two α-D-glucose units linked at C_{1} and C_{4} and is a reducing sugar.

Statement II: Maltose has two monosaccharides: α-D-glucose and β-D-glucose linked at C_{1} and C_{6} and it is a non-reducing sugar.

In the light of the above statements, choose the correct answer from the options given below.
(A) Both Statement I and Statement II are true
(B) Both Statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Answer (C)

Sol. Maltose is composed of two α-D-glucose units in which C_{1} of one glucose unit and C_{4} of second glucose unit are linked.

19. Match List I with List II.

List I		List II	
A.	Antipyretic	I.	Reduces pain
B.	Analgesic	II.	Reduces stress
C.	Tranquilizer	III.	Reduces fever
D.	Antacid	IV.	Reduces acidity (stomach)

Choose the correct answer from the options given below:
(A) A-III, B-I, C-II, D-IV
(B) A-III, B-I, C-IV, D-II
(C) A-I, B-IV, C-II, D-III
(D) A-I, B-III, C-II, D-IV

Answer (A)

Sol. Antipyretic - Reduces fever
Analgesic - Reduces pain
Tranquilizer - Reduces stress
Antacid - Reduces Acidity (stomach)
20. Match List I with List II.

| $\begin{array}{l}\text { List I } \\ \text { (Anion) }\end{array}$ | | $\begin{array}{l}\text { List II } \\ \text { (gas evolved on } \\ \text { reaction with dil H2SO }\end{array}$ | |
| :--- | :--- | :--- | :--- |$]$

Choose the correct answer from the options given below:
(A) A-III, B-I, C-II, D-IV
(B) A-II, B-I, C-IV, D-III
(C) A-IV, B-I, C-III, D-II
(D) A-IV, B-I, C-II, D-III

Answer (D)
Sol. CO_{3}^{2-} : On action of dil sulphuric acid, CO_{2} gas is released which turns lime water milky.
$\mathrm{S}^{2-} \quad:$ On action of dil sulphuric acid, $\mathrm{H}_{2} \mathrm{~S}$ gas is released which turns lead acetate paper black.
SO_{3}^{2-} : On action of dil $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ gas is evolved which turns acidified potassium dichromate solution green.
NO_{2}^{-}: On action of dil $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NO}_{2}$ gas is evolved which turns KI solution containg starch blue.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30)$ using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. 116 g of a substance upon dissociation reaction, yields 7.5 g of hydrogen, 60 g of oxygen and 48.5 g of carbon. Given that the atomic masses of H, O and C are 1, 16 and 12, respectively. The data agrees with how many formulae of the following?
\qquad -.
A. $\mathrm{CH}_{3} \mathrm{COOH}$
B. HCHO
C. $\mathrm{CH}_{3} \mathrm{OOCH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CHO}$

Answer (2)

Sol.

Element	Mass\%	Moles\%	Relative moles
H	6.46	6.46	2
O	51.72	3.23	1
C	41.81	3.48	1

\therefore Empirical formula $=\mathrm{COH}_{2}$
The empirical formula goes with acetic acid $\mathrm{CH}_{3} \mathrm{COOH}$ and formaldehyde HCHO .

Thus data agrees with 2 formulae.
2. Consider the following set of quantum numbers.
n l mi
A. $3 \quad 3 \quad-3$
B. $3 \quad 2 \quad-2$
C. $21+1$
D. $22+2$

The number of correct sets of quantum numbers is
\qquad _.

Answer (2)

Sol. The correct sets of Quantum numbers are, (02)

$$
\begin{array}{rlr}
\mathrm{n}=3 & l=2 & \mathrm{~m}_{l}=-2 \\
\text { and } \mathrm{n}=2 & l=1 & \mathrm{~m}_{l}=+1
\end{array}
$$

I can have values from 0 to $(n-1)$ and m can have values from $-l . \ldots . .0 \ldots \ldots+l(2 l+1)$
3. BeO reacts with HF in presence of ammonia to give [A] which on thermal decomposition produces [B] and ammonium fluoride. Oxidation state of Be in $[A]$ is \qquad

Answer (2)

Sol. $\mathrm{BeO}+2 \mathrm{NH}_{3}+4 \mathrm{HF} \longrightarrow\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{BeF}_{4}\right]$
(A)
$\left(\mathrm{NH}_{4}\right)_{2}\left(\mathrm{BeF}_{4}\right) \xrightarrow[(\mathrm{B})]{\text { Heating }} \underset{\mathrm{BeF}_{2}}{ }+2 \mathrm{NH}_{4} \mathrm{~F}$
Oxidation State of Be in (A) is $(+2)$
4. When 5 moles of He gas expand isothermally and reversibly at 300 K from 10 litre to 20 litre, the magnitude of the maximum work obtained is \qquad J. [nearest integer] (Given : R = $8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ and $\log 2=0.3010)$

Answer (8630)

Sol. $W_{\text {rev }}=-2.303 n R T \log _{10}\left(\frac{V_{2}}{V_{1}}\right)$

$$
\begin{aligned}
& =-2.303 \times 5 \times 8.3 \times 300 \times \log _{10}\left(\frac{20}{10}\right) \\
& \simeq-8630 \mathrm{~J}
\end{aligned}
$$

5. A solution containing $2.5 \times 10^{-3} \mathrm{~kg}$ of a solute dissolved in $75 \times 10^{-3} \mathrm{~kg}$ of water boils at 373.535 K. The molar mass of the solute is \qquad $\mathrm{g} \mathrm{mol}{ }^{-1}$. [nearest integer] (Given : $\mathrm{K}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.52 \mathrm{~K} \mathrm{~kg}$ mol^{-1} and boiling point of water $=373.15 \mathrm{~K}$)

Answer (45)

Sol. $W_{\text {solute }}=2.5 \times 10^{-3} \mathrm{~kg}$

$$
\begin{aligned}
& W_{\text {solvent }}=75 \times 10^{-3} \mathrm{~kg} \\
& \Delta T_{b}=373.535-373.15 \\
& =0.385 \mathrm{~K} \\
& \mathrm{~K}_{\mathrm{b}}\left(\mathrm{H}_{2} \mathrm{O}\right)=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} \\
& \Delta \mathrm{~T}_{\mathrm{b}}=\frac{\mathrm{K}_{\mathrm{b}} \times 10^{3} \times \mathrm{W}_{\text {solute }}}{\mathrm{M}_{\text {solute }} \times \mathrm{W}_{\text {solvent }}} \\
& M_{\text {solute }}=\frac{0.52 \times 10^{3} \times 2.5 \times 10^{-3}}{75 \times 10^{-3} \times 0.385} \\
& =45.02 \\
& \approx 45
\end{aligned}
$$

6. pH value of 0.001 M NaOH solution is \qquad -

Answer (11)
Sol. $\left[\mathrm{OH}^{-}\right]=0.001=10^{-3} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$

$$
\left[\mathrm{H}^{+}\right]=10^{-11}
$$

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

$$
=-\log \left(10^{-11}\right)
$$

$\mathrm{pH}=11$
7. For the reaction taking place in the cell:
$\mathrm{Pt}(\mathrm{s})\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})| | \mathrm{Ag}^{+}(\mathrm{aq}) \mid \mathrm{Ag}(\mathrm{s})$
$\mathrm{E}_{\text {cell }}^{\circ}=+0.5332 \mathrm{~V}$.
The value of $\Delta_{f} G^{\ominus}$ is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ [in nearest integer]

Answer (51)

Sol. Pt(s) $\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{H}^{+}(\mathrm{aq})| | \mathrm{Ag}^{+}(\mathrm{aq}) \mid \mathrm{Ag}(\mathrm{s})$

$$
\begin{aligned}
& \frac{1}{2} \mathrm{H}_{2}+\mathrm{Ag}^{+} \longrightarrow \mathrm{Ag}+\mathrm{H}^{+} \\
& \mathrm{n}=1 \\
& \begin{aligned}
\mathrm{E}_{\text {cell }}^{\circ} & =0.5332 \\
\Delta \mathrm{G}^{\circ} & =-\mathrm{nFE} \\
& =-1 \times 96500 \times 0.5332 \\
& =-51.453 \mathrm{~kJ} / \mathrm{mole} \\
& \simeq-51 \mathrm{~kJ} / \mathrm{mole}
\end{aligned}
\end{aligned}
$$

8. It has been found that for a chemical reaction with rise in temperature by 9 K the rate constant gets doubled. Assuming a reaction to be occurring at 300 K , the value of activation energy is found to be
\qquad $\mathrm{kJ} \mathrm{mol}^{-1}$. [nearest integer]
(Given $\ln 10=2.3, \mathrm{R}=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}, \log 2=0.30$)

Answer (59)

Sol. $\mathrm{T}_{1}=300 \mathrm{~K}$
(Rate constant)
$\mathrm{K}_{2}=2 \mathrm{~K}_{1}$, on increase temperature by 9 K
$\mathrm{T}_{2}=309 \mathrm{~K}$
$\mathrm{Ea}=$?
$\log \frac{K_{2}}{K_{1}}=\frac{E a}{2.3 R}\left[\frac{T_{2}-T_{1}}{T_{2} \cdot T_{1}}\right]$
$\log 2=\frac{\mathrm{Ea}}{2.3 \times 8.3}\left[\frac{9}{309 \times 300}\right]$
$\mathrm{Ea}=\frac{0.3 \times 309 \times 300 \times 2.3 \times 8.3}{9}$
$=58988.1 \mathrm{~J} / \mathrm{mole}$
$\simeq 59 \mathrm{~kJ} / \mathrm{mole}$
9.

If the initial pressure of a gas 0.03 atm , the mass of the gas absorbed per gram of the adsorbent is
\qquad $\times 10^{-2} \mathrm{~g}$.

Answer (12)
Sol. Given that $\log \mathrm{K}=$ intercept $=0.602=\log 4$
$\therefore \mathrm{K}=4$
Slope $=\frac{1}{n}=1$
and initial pressure $=0.03 \mathrm{~atm}$
$\frac{x}{m}=K(p)^{1 / n}=4 \times 0.03=0.12=12 \times 10^{-2}$
$\therefore \quad$ mass of gas absorbed per gm of adsorbent

$$
=12 \times 10^{-2} \mathrm{~g}
$$

10. 0.25 g of an organic compound containing chlorine gave 0.40 g of silver chloride in Carius estimation. The percentage of chlorine present in the compound is \qquad . [in nearest integer]
(Given : Molar mass of Ag is $108 \mathrm{~g} \mathrm{~mol}^{-1}$ and that of Cl is $35.5 \mathrm{~g} \mathrm{~mol}^{-1}$)

Answer (40)
Sol. Mass of organic compound $=0.25 \mathrm{~g}$
Mass of $\mathrm{AgCl}=0.40 \mathrm{~g}$
$\% \mathrm{Cl}=\frac{35.5 \times(\text { mass of } \mathrm{AgCl})}{143.5 \times(\text { mass of organic compound })} \times 100$
$=\frac{35.5 \times 0.40 \times 100}{143.5 \times 0.25}$
$=39.581$
$\simeq 40$
\% CI = 40 \%

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The number of points of intersection of $|z-(4+3 i)|$ $=2$ and $|z|+|z-4|=6, z \in C$, is
(A) 0
(B) 1
(C) 2
(D) 3

Answer (C)
Sol. $C_{1}:|z-(4+3 i)|=2$ and $C_{2}:|z|+|z-4|=6, z \in C$ C_{1} : represents a circle with centre $(4,3)$ and radius 2 and C_{2} represents a ellipse with focii at $(0,0)$ and $(4,0)$ and length of major axis $=6$, and length of semi-major axis $2 \sqrt{5}$ and $(4,2)$ lies inside the both C_{1} and C_{2} and $(4,3)$ lies outside the C_{2} \therefore

So, number of intersection points $=2$
2. Let $f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & -1 \\ a x^{2} & a x & a\end{array}\right|, a \in R$. Then the sum of the square of all the values of a, for which $2 f(10)-$ $f(5)+100=0$, is
(A) 117
(B) 106
(C) 125
(D) 136

Answer (C)

Sol. $f(x)=\left|\begin{array}{ccc}a & -1 & 0 \\ a x & a & -1 \\ a x^{2} & a x & a\end{array}\right|, \quad a \in R$
$f(x)=a\left(a^{2}+a x\right)+1\left(a^{2} x+a x^{2}\right)$
$=a(x+a)^{2}$
$f(x)=2 a(x+a)$
Now, $2 f(10)-f(5)+100=0$
$\Rightarrow 2 \cdot 2 a(10+a)-2 a(5+a)+100=0$
$\Rightarrow 2 a(a+15)+100=0$
$\Rightarrow a^{2}+15 a+50=0$
$\Rightarrow a=-10,-5$
\therefore Sum of squares of values of $a=125$.
3. Let for some real numbers α and $\beta, a=\alpha-i \beta$. If the system of equations $4 i x+(1+i) y=0$ and $8\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) x+\bar{a} y=0$ has more than one solution, then $\frac{\alpha}{\beta}$ is equal to
(A) $-2+\sqrt{3}$
(B) $2-\sqrt{3}$
(C) $2+\sqrt{3}$
(D) $-2-\sqrt{3}$

Answer (B)
Sol. Given $a=\alpha-i \beta$ and

$$
\begin{align*}
& 4 i x+(1+i) y=0 \tag{i}\\
& 8\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right) x+\bar{a} y=0 \tag{ii}
\end{align*}
$$

By (i)

$$
\begin{equation*}
\frac{x}{y}=\frac{-(1+i)}{4 i} \tag{iii}
\end{equation*}
$$

By (ii)

$$
\begin{equation*}
\frac{x}{y}=\frac{-\bar{a}}{8\left(\frac{-1}{2}+\frac{\sqrt{3} i}{2}\right)} \tag{iv}
\end{equation*}
$$

Now by (iii) and (iv)

$$
\begin{aligned}
& \frac{1+i}{4 i}=\frac{\bar{a}}{4(-1+\sqrt{3} i)} \\
\Rightarrow & \bar{a}=(\sqrt{3}-1)+(\sqrt{3}+1) i \\
\Rightarrow & \alpha+i \beta=(\sqrt{3}-1)+(\sqrt{3}+1) i \\
\therefore & \frac{\alpha}{\beta}=\frac{\sqrt{3}-1}{\sqrt{3}+1}=2-\sqrt{3}
\end{aligned}
$$

Aakash

4. Let A and B be two 3×3 matrices such that $A B=1$ and $|A|=\frac{1}{8}$. Then $|\operatorname{adj}(B \operatorname{adj}(2 A))|$ is equal to
(A) 16
(B) 32
(B) 64
(D) 128

Answer (C)
Sol. A and B are two matrices of order 3×3.

$$
\text { and } A B=I, \quad|A|=\frac{1}{8}
$$

Now, $|A||B|=1$

$$
\begin{aligned}
&|B|=8 \\
& \therefore \quad \mid \operatorname{adj}(B(\operatorname{adj}(2 A)) \mid=|B(\operatorname{adj}(2 A))|^{2} \\
&=|B|^{2}|\operatorname{adj}(2 A)|^{2} \\
&=2^{6}|2 A|^{2 \times 2} \\
&=2^{6} \cdot 2^{12} \cdot \frac{1}{2^{12}}=64
\end{aligned}
$$

5. Let $S=2+\frac{6}{7}+\frac{12}{7^{2}}+\frac{20}{7^{3}}+\frac{30}{7^{4}}+\ldots$ Then $4 S$ is equal to
(A) $\left(\frac{7}{3}\right)^{2}$
(B) $\frac{7^{3}}{3^{2}}$
(C) $\left(\frac{7}{3}\right)^{3}$
(D) $\frac{7^{2}}{3^{3}}$

Answer (C)

Sol. $S=2+\frac{6}{7}+\frac{12}{7^{2}}+\frac{20}{7^{3}}+\frac{30}{7^{4}}+\ldots$.
$\frac{1}{7} S=\frac{2}{7}+\frac{6}{7^{2}}+\frac{12}{7^{3}}+\frac{20}{7^{4}}+\ldots$.
(i) - (ii)
$\frac{6}{7} S=2+\frac{4}{7}+\frac{6}{7^{2}}+\frac{8}{7^{3}}+\ldots$.
$\frac{6}{7^{2}} S=\frac{2}{7}+\frac{4}{7^{2}}+\frac{6}{7^{3}}+\ldots$.
(iii) - (iv)
$\left(\frac{6}{7}\right)^{2} S=2+\frac{2}{7}+\frac{2}{7^{2}}+\frac{2}{7^{3}}+\ldots .$.
$=2\left[\frac{1}{1-\frac{1}{7}}\right]=2\left(\frac{7}{6}\right)$
$\therefore \quad 4 S=8\left(\frac{7}{6}\right)^{3}=\left(\frac{7}{3}\right)^{3}$
6. If $a_{1}, a_{2}, a_{3} \ldots$. and $b_{1}, b_{2}, b_{3} \ldots$. are A.P., and $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$, then $a_{4} b_{4}$ is equal to
(A) $\frac{35}{27}$
(B) 1
(C) $\frac{27}{28}$
(D) $\frac{28}{27}$

Answer (D)

Sol. $a_{1}, a_{2}, a_{3} \ldots$ are in A.P. (Let common difference is d_{1})
$b_{1}, b_{2}, b_{3} \ldots$ are in A.P. (Let common difference is d_{2})
and $a_{1}=2, a_{10}=3, a_{1} b_{1}=1=a_{10} b_{10}$

$$
\begin{array}{rll}
\because & a_{1} b_{1}=1 & \therefore \\
& a_{10} b_{10}=1 & \therefore \\
& b_{10}=\frac{1}{2}
\end{array}
$$

Now, $a_{10}=a_{1}+9 d_{1} \Rightarrow d_{1}=\frac{1}{9}$
$b_{10}=b_{1}+9 d_{2} \Rightarrow d_{2}=\frac{1}{9}\left[\frac{1}{3}-\frac{1}{2}\right]=-\frac{1}{54}$
Now, $a_{4}=2+\frac{3}{9}=\frac{7}{3}$

$$
b_{4}=\frac{1}{2}-\frac{3}{54}=\frac{4}{9}
$$

$\therefore \quad a_{4} b_{4}=\frac{28}{27}$
7. If m and n respectively are the number of local maximum and local minimum points of the function $f(x)=\int_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t$, then the ordered pair (m, n) is equal to
(A) $(3,2)$
(B) $(2,3)$
(C) $(2,2)$
(D) $(3,4)$

Answer (B)
Sol. $f(x)=\int_{0}^{x^{2}} \frac{t^{2}-5 t+4}{2+e^{t}} d t$

$$
f^{\prime}(x)=2 x\left(\frac{x^{4}-5 x^{2}+4}{2+e^{x^{2}}}\right)=0
$$

$x=0$, or $\left(x^{2}-4\right)\left(x^{2}-1\right)=0$
$x=0, x= \pm 2, \pm 1$
Now, $f^{\prime}(x)=\frac{2 x(x+1)(x-1)(x+2)(x-2)}{\left(e^{x^{2}}+2\right)}$
$f^{\prime}(x)$ changes sign from positive to negative at
$x=-1,1$ So, number of local maximum points $=2$ $f^{\prime}(x)$ changes sign from negative to positive at $x=-2,0,2$ So, number of local minimum points $=3$
$\therefore \quad m=2, n=3$
8. Let f be a differentiable function in $\left(0, \frac{\pi}{2}\right)$ If $\int_{\cos x}^{1} t^{2} f(t) d t=\sin ^{3} x+\cos x$, then $\frac{1}{\sqrt{3}} f^{\prime}\left(\frac{1}{\sqrt{3}}\right)$ is equal to
(A) $6-9 \sqrt{2}$
(B) $6-\frac{9}{\sqrt{2}}$
(D) $\frac{9}{2}-6 \sqrt{2}$
(D) $\frac{9}{\sqrt{2}}-6$

Answer (B)

Sol. $\int_{\cos x}^{1} t^{2} f(t) d t=\sin ^{3} x+\cos x$
$\Rightarrow \sin x \cos ^{2} x f(\cos x)=3 \sin ^{2} x \cos x-\sin x$
$\Rightarrow f(\cos x)=3 \tan x-\sec ^{2} x$
$\Rightarrow f^{\prime}(\cos x) \cdot(-\sin x)=3 \sec ^{2} x-2 \sec ^{2} x \tan x$
Put $\cos x=\frac{1}{\sqrt{3}}$
$\therefore \quad f^{\prime}\left(\frac{1}{\sqrt{3}}\right)\left(-\frac{\sqrt{2}}{\sqrt{3}}\right)=9-6 \sqrt{2}$

$$
\frac{1}{\sqrt{3}} f^{\prime}\left(\frac{1}{\sqrt{3}}\right)=6-\frac{9}{\sqrt{2}}
$$

9. The integral $\int_{0}^{1} \frac{1}{\left[\frac{1}{x}\right]} d x$, where [.] denotes the greatest integer function, is equal to
(A) $1+6 \log _{e}\left(\frac{6}{7}\right)$
(B) $1-6 \log _{e}\left(\frac{6}{7}\right)$
(C) $\log _{e}\left(\frac{7}{6}\right)$
(D) $1-7 \log _{e}\left(\frac{6}{7}\right)$

Answer (A)

Sol. $\int_{0}^{1} \frac{1}{{ }_{7}^{\left[\frac{1}{x}\right]}} d x$, let $\frac{1}{x}=t$

$$
\begin{aligned}
& \frac{-1}{x^{2}} d x=d t \\
& =\int_{\infty}^{1} \frac{1}{-t^{2} 7^{[t]}} d t=\int_{1}^{\infty} \frac{1}{t^{2} 7^{[t]}} d t \\
& =\int_{1}^{2} \frac{1}{7 t^{2}} d t+\int_{2}^{3} \frac{1}{7^{2} t^{2}} d t+\ldots \\
& =\frac{1}{7}\left[-\frac{1}{t}\right]_{1}^{2}+\frac{1}{7^{2}}\left[\frac{-1}{t}\right]_{2}^{3}+\frac{1}{7^{3}}\left[-\frac{1}{t}\right]_{2}^{3}+\ldots \\
& =\sum_{n=1}^{\infty} \frac{1}{7^{n}}\left(\frac{1}{n}-\frac{1}{n+1}\right)^{n} \\
& =\sum_{n=1}^{\infty} \frac{\left(\frac{1}{7}\right)^{n}}{n}-7 \sum_{n=1}^{\infty} \frac{\left(\frac{1}{7}\right)^{n+1}}{n+1} \\
& =-\log \left(1-\frac{1}{7}\right)+7 \log \left(1-\frac{1}{7}\right)+1 \\
& =1+6 \log \frac{6}{7}
\end{aligned}
$$

10. If the solution curve of the differential equation $\left(\left(\tan ^{-1} y\right)-x\right) d y=\left(1+y^{2}\right) d x$ passes through the point $(1,0)$, then the abscissa of the point on the curve whose ordinate is $\tan (1)$, is
(A) $2 e$
(B) $\frac{2}{e}$
(C) 2
(D) $\frac{1}{e}$

Answer (B)

Sol. $\left(\left(\tan ^{-1} y\right)-x\right) d y=\left(1+y^{2}\right) d x$
$\frac{d x}{d y}+\frac{x}{1+y^{2}}=\frac{\tan ^{-1} y}{1+y^{2}}$
I.F. $=e^{\int \frac{1}{1+y^{2}} d y}=e^{\tan ^{-1} y}$
\therefore Solution

$$
x \cdot e^{\tan ^{-1} y}=\int \frac{e^{\tan ^{-1} y} \tan ^{-1} y}{1+y^{2}} d y
$$

Let $e^{\tan ^{-1} y}=t$

$$
\begin{aligned}
& \frac{e^{\tan ^{-1} y}}{1+y^{2}}=d t \\
= & x e^{\tan ^{-1} y}=\int \ln t d t=t \ln t-t+c \\
\therefore & =x e^{\tan ^{-1} y}=e^{\tan ^{-1} y} \tan ^{-1} y-e^{\tan ^{-1}} y+c \ldots \text { (i) }
\end{aligned}
$$

\because It passes through $(1,0) \Rightarrow c=2$
Now put $y=\tan 1$, then
$e x=e-e+2$
$\Rightarrow \quad x=\frac{2}{e}$
11. If the equation of the parabola, whose vertex is at $(5,4)$ and the directrix is $3 x+y-29=0$, is $x^{2}+a y^{2}$ $+b x y+c x+d y+k=0$, then $a+b+c+d+k$ is equal to
(A) 575
(B) -575
(C) 576
(D) -576

Answer (D)

Sol. Given vertex is $(5,4)$ and directrix $3 x+y-29=0$
Let foot of perpendicular of $(5,4)$ on directrix is $\left(x_{1}, y_{1}\right)$
$\frac{x_{1}-5}{3}=\frac{y_{1}-4}{1}=\frac{-(-10)}{10}$
$\therefore \quad\left(x_{1}, y_{1}\right) \equiv(8,5)$
So, focus of parabola will be $S=(2,3)$
Let $P(x, y)$ be any point on parabola, then

$$
\begin{aligned}
& (x-2)^{2}+(y-3)^{2}=\frac{(3 x+y-29)^{2}}{10} \\
& \Rightarrow \quad \begin{array}{r}
10\left(x^{2}+y^{2}-4 x-6 y+13\right) \\
\quad=9 x^{2}+y^{2}+841+6 x y-58 y-174 x
\end{array} \\
& \Rightarrow \quad x^{2}+9 y^{2}-6 x y+134 x-2 y-711=0
\end{aligned}
$$

and given parabola

$$
x^{2}+a y^{2}+b x y+c x+d y+k=0
$$

$\therefore \quad a=9, b=-6, c=134, d=-2, k=-711$
$\therefore \quad a+b+c+d+k=-576$
12. The set of values of k, for which the circle $C: 4 x^{2}+$ $4 y^{2}-12 x+8 y+k=0$ lies inside the fourth quadrant and the point $\left(1,-\frac{1}{3}\right)$ lies on or inside the circle C, is
(A) An empty set
(B) $\left(6, \frac{65}{9}\right]$
(C) $\left[\frac{80}{9}, 10\right)$
(D) $\left(9, \frac{92}{9}\right]$

Answer (D)

Sol. $C: 4 x^{2}+4 y^{2}-12 x+8 y+k=0$
$\because\left(1,-\frac{1}{3}\right)$ lies on or inside the C
then $4+\frac{4}{9}-12-\frac{8}{3}+k \leq 0$
$\Rightarrow k \leq \frac{92}{9}$
Now, circle lies in $4^{\text {th }}$ quadrant centre $\equiv\left(\frac{3}{2},-1\right)$
$\therefore r<1 \Rightarrow \sqrt{\frac{9}{4}+1-\frac{k}{4}}<1$
$\Rightarrow \frac{13}{4}-\frac{k}{4}<1$
$\Rightarrow \quad \frac{k}{4}>\frac{9}{4}$
$\Rightarrow \quad k>9$
$\therefore \quad k \in\left(9, \frac{92}{9}\right)$
13. Let the foot of the perpendicular from the point (1 , 2,4) on the line $\frac{x+2}{4}=\frac{y-1}{2}=\frac{z+1}{3}$ be P, Then the distance of P from the plane $3 x+4 y+12 z+23=0$ is
(A) 5
(B) $\frac{50}{13}$
(C) 4
(D) $\frac{63}{13}$

Answer (A)

Sol. $L: \frac{x+2}{4}=\frac{y-1}{2}=\frac{z+1}{3}=t$
Let $P=(4 t-2,2 t+1,3 t-1)$
$\because P$ is the foot of perpendicular of $(1,2,4)$
$\therefore \quad 4(4 t-3)+2(2 t-1)+3(3 t-5)=0$
$\Rightarrow 29 t=29 \Rightarrow t=1$
$\therefore \quad P=(2,3,2)$
Now, distance of P from the plane
$3 x+4 y+12 z+23=0$, is
$\left|\frac{6+12+24+23}{\sqrt{9+16+144}}\right|=\frac{65}{13}=5$
14. The shortest distance between the lines $\frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{-1}$ and $\frac{x+3}{2}=\frac{y-6}{1}=\frac{z-5}{3}$, is
(A) $\frac{18}{\sqrt{5}}$
(B) $\frac{22}{3 \sqrt{5}}$
(C) $\frac{46}{3 \sqrt{5}}$
(D) $6 \sqrt{3}$

Answer (A)

Sol. $L_{1}: \frac{x-3}{2}=\frac{y-2}{3}=\frac{z-1}{-1}$
$L_{2}: \frac{x+3}{2}=\frac{y-6}{1}=\frac{z-5}{3}$
Now, $\vec{p} \times \vec{q}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & -1 \\ 2 & 1 & 3\end{array}\right|=10 \hat{i}-8 \hat{j}-4 \hat{k}$
and $\vec{a}_{2}-\vec{a}_{1}=6 \hat{i}-4 \hat{j}-4 \hat{k}$
$\therefore S . D=\left|\frac{60+32+16}{\sqrt{100+64+16}}\right|=\frac{108}{\sqrt{180}}=\frac{18}{\sqrt{5}}$
15. Let \vec{a} and \vec{b} be the vectors along the diagonals of a parallelogram having area $2 \sqrt{2}$. Let the angle between \vec{a} and \vec{b} be acute, $|\vec{a}|=1$, and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$. If $\quad \vec{c}=2 \sqrt{2}(\vec{a} \times \vec{b})-2 \vec{b}$, then an angle between \vec{b} and \vec{c} is
(A) $\frac{\pi}{4}$
(B) $-\frac{\pi}{4}$
(C) $\frac{5 \pi}{6}$
(D) $\frac{3 \pi}{4}$

Answer (D)

Sol. $\because \vec{a}$ and \vec{b} be the vectors along the diagonals of a parallelogram having area $2 \sqrt{2}$.
$\therefore \quad \frac{1}{2}|\vec{a} \times \vec{b}|=2 \sqrt{2}$
$|\vec{a}||\vec{b}| \sin \theta=4 \sqrt{2}$
$\Rightarrow \quad|\vec{b}| \sin \theta=4 \sqrt{2}$
and $|\vec{a} \cdot \vec{b}|=|\vec{a} \times \vec{b}|$
$|\vec{a}||\vec{b}| \cos \theta=|\vec{a}||\vec{b}| \sin \theta$
$\Rightarrow \quad \tan \theta=1 \quad \therefore \theta=\frac{\pi}{4}$
By (i) $|\vec{b}|=8$
Now $\vec{c}=2 \sqrt{2}(\vec{a} \times \vec{b})-2 \vec{b}$
$\Rightarrow \vec{c} \cdot \vec{b}=-2|\vec{b}|^{2}=-128$
and $\vec{c} \cdot \vec{c}=8|\vec{a} \times \vec{b}|^{2}+4|\vec{b}|^{2}$

$$
\begin{align*}
& \Rightarrow|\vec{c}|^{2}=8.32+4.64 \\
& \Rightarrow|\vec{c}|=16 \sqrt{2} \tag{iii}
\end{align*}
$$

From (ii) and (iii)

$$
|\vec{c}||\vec{b}| \cos \alpha=-128
$$

$\Rightarrow \quad \cos \alpha=\frac{-1}{\sqrt{2}}$

$$
\alpha=\frac{3 \pi}{4}
$$

16. The mean and variance of the data $4,5,6,6,7,8$, x, y, where $x<y$, are 6 and $\frac{9}{4}$ respectively. Then $x^{4}+y^{2}$ is equal to
(A) 162
(B) 320
(C) 674
(D) 420

Answer (B)
Sol. Mean $=\frac{4+5+6+6+7+8+x+y}{8}=6$
$\therefore \quad x+y=12$
And variance

$$
\begin{align*}
& =\frac{2^{2}+1^{2}+0^{2}+0^{2}+1^{2}+2^{2}+(x-6)^{2}+(y-6)^{2}}{8} \\
& =\frac{9}{4} \\
& \therefore(x-6)^{2}+(y-6)^{2}=8 \ldots \text { (ii) } \tag{ii}
\end{align*}
$$

From (i) and (ii)
$x=4$ and $y=8$
$\therefore \quad x^{4}+y^{2}=320$
17. If a point $A(x, y)$ lies in the region bounded by the y-axis, straight lines $2 y+x=6$ and $5 x-6 y=30$, then the probability that $y<1$ is
(A) $\frac{1}{6}$
(B) $\frac{5}{6}$
(C) $\frac{2}{3}$
(D) $\frac{6}{7}$

Answer (B)

Sol. The required probability

$=\frac{\text { Area of Region PQCAP }}{\text { Area of Region ABCA }}$
$=\frac{\frac{\frac{1}{2} \times 8 \times 6-\frac{1}{2} \times 2 \times 4}{\frac{1}{2} \times 8 \times 6}}{\text { 位 }}$
$=\frac{5}{6}$
18. The value of $\cot \left(\sum_{n=1}^{50} \tan ^{-1}\left(\frac{1}{1+n+n^{2}}\right)\right)$ is
(A) $\frac{26}{25}$
(B) $\frac{25}{26}$
(C) $\frac{50}{51}$
(D) $\frac{52}{51}$

Sol. $\cot \left(\sum_{n=1}^{50} \tan ^{-1}\left(\frac{1}{1+n+n^{2}}\right)\right)$

$$
=\cot \left(\sum_{n=1}^{50} \tan ^{-1}\left(\frac{(n+1)-n}{1+(n+1) n}\right)\right)
$$

$$
=\cot \left(\sum_{n=1}^{50}\left(\tan ^{-1}(n+1)-\tan ^{-1} n\right)\right)
$$

$$
=\cot \left(\tan ^{-1} 51-\tan ^{-1} 1\right)
$$

$$
=\cot \left(\tan ^{-1}\left(\frac{51-1}{1+51}\right)\right)
$$

$$
=\cot \left(\cot ^{-1}\left(\frac{52}{50}\right)\right)
$$

$$
=\frac{26}{25}
$$

19. $\alpha=\sin 36^{\circ}$ is a root of which of the following equation?
(A) $16 x^{4}-10 x^{2}-5=0$
(B) $16 x^{4}+20 x^{2}-5=0$
(C) $16 x^{4}-20 x^{2}+5=0$
(D) $16 x^{4}-10 x^{2}+5=0$

Answer (C)

Sol. $\alpha=\sin 36^{\circ}=x($ say $)$

$$
\begin{aligned}
& \therefore \quad x=\frac{\sqrt{10-2 \sqrt{5}}}{4} \\
& \Rightarrow 16 x^{2}=10-2 \sqrt{5} \\
& \Rightarrow\left(8 x^{2}-5\right)^{2}=5 \\
& \Rightarrow 16 x^{4}-80 x^{2}+20=0 \\
& \therefore 4 x^{4}-20 x^{2}+5=0
\end{aligned}
$$

20. Which of the following statement is a tautology?
(A) $((\sim q) \wedge p) \wedge q$
(B) $((\sim q) \wedge p) \wedge(p \wedge(\sim p))$
(C) $((\sim q) \wedge p) \vee(p \vee(\sim p))$
(D) $(p \wedge q) \wedge(\sim(p \wedge q))$

Answer (C)

Sol. $\because \quad((\sim q) \wedge p) \vee(p \vee(\sim p))$

$$
\begin{aligned}
& =(\sim q \wedge p) \vee t \quad(t \text { is tautology }) \\
& \equiv t
\end{aligned}
$$

\therefore option (C) is correct.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let $S=\{1,2,3,4,5,6,7,8,9,10\}$. Define $f: S \rightarrow S$ as
$f(n)=\left\{\begin{array}{ll}2 n & , \text { if } n=1,2,3,4,5 \\ 2 n-11, \text { if } n=6,7,8,9,10\end{array}\right.$.
Let $g: S \rightarrow S$ be a function such that
$f \circ g(n)=\left\{\begin{array}{ll}n+1 & , \text { if } n \text { is odd } \\ n-1 & , \text { if } n \text { is even }\end{array}\right.$,
Then $g(10)(g(1)+g(2)+g(3)+g(4)+g(5))$ is equal to \qquad .

Answer (190)

Sol. $\because f(n)= \begin{cases}2 n & , n=1,2,3,4,5 \\ 2 n-11, & n=6,7,8,9,10\end{cases}$
$\therefore \quad f(1)=2, f(2)=4, \ldots, f(5)=10$
and $f(6)=1, f(7)=3, f(8)=5, \ldots, f(10)=9$
Now, $f(g(n))= \begin{cases}n+1, & \text { if } n \text { is odd } \\ n-1, & \text { if } n \text { is even }\end{cases}$
$\therefore \quad f(g(10))=9 \quad \Rightarrow g(10)=10$
$f(g(1))=2 \quad \Rightarrow g(1)=1$
$f(g(2))=1 \quad \Rightarrow g(2)=6$
$f(g(3))=4 \quad \Rightarrow g(3)=2$
$f(g(4))=3 \quad \Rightarrow g(4)=7$
$f(g(5))=6 \quad \Rightarrow g(5)=3$
$\therefore \quad g(10)(g(1)+g(2)+g(3)+g(4)+g(5))=190$
2. Let α, β be the roots of the equation $x^{2}-4 \lambda x+5=0$ and α, γ be the roots of the equation $x^{2}-(3 \sqrt{2}+2 \sqrt{3}) x+7+3 \lambda \sqrt{3}=0, \quad \lambda>0$. If $\beta+\gamma=3 \sqrt{2}$, then $(\alpha+2 \beta+\gamma)^{2}$ is equal to \qquad .

Answer (98)

Sol.
$\because \alpha, \beta$ are roots of $x^{2}-4 \lambda x+5=0$
$\therefore \alpha+\beta=4 \lambda$ and $\alpha \beta=5$
Also, α, γ are roots of

$$
\begin{aligned}
& x^{2}-(3 \sqrt{2}+2 \sqrt{3}) x+7+3 \sqrt{3} \lambda=0, \lambda>0 \\
& \therefore \alpha+\gamma=3 \sqrt{2}+2 \sqrt{3}, \quad \alpha \gamma=7+3 \sqrt{3} \lambda
\end{aligned}
$$

$\because \quad \alpha$ is common root
$\therefore \quad \alpha^{2}-4 \lambda \alpha+5=0$

$$
\begin{equation*}
\text { and } \alpha^{2}-(3 \sqrt{2}+2 \sqrt{3}) \alpha+7+3 \sqrt{3} \lambda=0 \tag{i}
\end{equation*}
$$

From (i) - (ii): we get $\alpha=\frac{2+3 \sqrt{3} \lambda}{3 \sqrt{2}+2 \sqrt{3}-4 \lambda}$
$\because \quad \beta+\gamma=3 \sqrt{2}$

$$
4 \lambda+3 \sqrt{2}+2 \sqrt{3}-2 \alpha=3 \sqrt{2}
$$

$$
\Rightarrow 3 \sqrt{2}=4 \lambda+3 \sqrt{2}+2 \sqrt{3}-\frac{4+6 \sqrt{3} \lambda}{3 \sqrt{2}+2 \sqrt{3}-4 \lambda}
$$

$$
\Rightarrow 8 \lambda^{2}+3(\sqrt{3}-2 \sqrt{2}) \lambda-4-3 \sqrt{6}=0
$$

$$
\therefore \quad \lambda=\frac{6 \sqrt{2}-3 \sqrt{3} \pm \sqrt{9(11-4 \sqrt{6})+32(4+3 \sqrt{6})}}{16}
$$

$$
\therefore \quad \lambda=\sqrt{2}
$$

$$
\therefore \quad(\alpha+2 \beta+\gamma)^{2}=(\alpha+\beta+\beta+\gamma)^{2}
$$

$$
\begin{aligned}
& =(4 \sqrt{2}+3 \sqrt{2})^{2} \\
& =(7 \sqrt{2})^{2} \\
& =98
\end{aligned}
$$

3. Let A be a matrix of order 2×2, whose entries are from the set $\{0,1,3,4,5\}$. If the sum of all the entries of A is a prime number $p, 2<p<8$, then the number of such matrices A is \qquad .

Answer (180)

Sol. \because Sum of all entries of matrix A must be prime p such that $2<p<8$ then sum of entries may be 3,5 or 7 .
If sum is 3 then possible entries are ($0,0,0,3$), $(0,0,1,2)$ or $(0,1,1,1)$.
\therefore Total number of matrices $=4+4+12=20$
If sum of 5 then possible entries are
$(0,0,0,5),(0,0,1,4),(0,0,2,3),(0,1,1,3)$, $(0,1,2,2)$ and (1, 1, 1, 2).
\therefore Total number of matrices $=4+12+12+12+$ $12+4=56$
If sum is 7 then possible entries are
$(0,0,2,5),(0,0,3,4),(0,1,1,5),(0,3,3,1)$, $(0,2,2,3),(1,1,1,4),(1,2,2,2),(1,1,2,3)$ and ($0,1,2,4$)
Total number of matrices with sum $7=104$
\therefore Total number of required matrices

$$
\begin{aligned}
& =20+56+104 \\
& =180
\end{aligned}
$$

4. If the sum of the coefficients of all the positive powers of x, in the Binomial expansion of $\left(x^{n}+\frac{2}{x^{5}}\right)^{7}$ is 939 , then the sum of all the possible integral values of n is \qquad .

Answer (57)

Sol.

$$
\begin{aligned}
\left(x^{n}+\frac{2}{x^{5}}\right)^{7} & =\sum_{r=0}^{7}{ }^{7} C_{r}\left(x^{n}\right)^{7-r} \cdot\left(\frac{2}{x^{5}}\right)^{r} \\
& =\sum_{r=0}^{7} C_{r} \cdot 2^{r} \cdot x^{7 n-n r-5 r}
\end{aligned}
$$

$$
\therefore \quad{ }^{7} C_{0} \cdot 2^{0}+{ }^{7} C_{1} \cdot 2^{1}+{ }^{7} C_{2} \cdot 2^{2}+{ }^{7} C_{3} \cdot 2^{3}+{ }^{7} C_{4} \cdot 2^{4}
$$

$$
=939
$$

$$
\therefore \quad r=4
$$

$$
\because \quad 7 n-n r-5 r=0
$$

and $r=4$ then $n>\frac{20}{3}$
and r should not be 5
$\therefore \quad n<\frac{25}{2}$
\therefore Possible values of n are $7,8,9,10,11,12$
\therefore Sum of integral value of $n=57$
5. Let $[t]$ denote the greatest integer $\leq t$ and $\{t\}$ denote the fractional part of t. The integral value of α for which the left hand limit of the function
$f(x)=[1+x]+\frac{\alpha^{2[x]+\{x\}}+[x]-1}{2[x]+\{x\}}$ at $x=0$ is equal to $\alpha-\frac{4}{3}$, is \qquad .
Answer (3)

$$
\begin{aligned}
& f(x)=[1+x]+\frac{a^{2[x]+\{x\}}+[x]-1}{2[x]+\{x\}} \\
& \\
& \lim _{x \rightarrow 0^{-}} f(x)=\alpha-\frac{4}{3} \\
& \Rightarrow \quad \lim _{x \rightarrow 0^{-}} 1+[x]+\frac{\alpha^{x+[x]}+[x]-1}{x+[x]}=\alpha-\frac{4}{3} \\
& \Rightarrow \quad \lim _{h \rightarrow 0^{-}} 1-1+\frac{\alpha^{-h-1}-1-1}{-h-1}=\alpha-\frac{4}{3} \\
& \therefore \quad \frac{\alpha^{-1}-2}{-1}=\alpha-\frac{4}{3} \\
& \Rightarrow 3 \alpha^{2}-10 \alpha+3=0 \\
& \therefore \quad \alpha=3 \text { or } \frac{1}{3} \\
& \because \quad \alpha \text { in integer, hence } \alpha=3
\end{aligned}
$$

6. If $y(x)=\left(x^{x}\right)^{x}, x>0$, then $\frac{d^{2} x}{d y^{2}}+20$ at $x=1$ is equal to \qquad .

Answer (16)

Sol. $\because y(x)=\left(x^{x}\right)^{x}$

$$
\therefore \quad y=x^{x^{2}}
$$

$$
\therefore \quad \frac{d y}{d x}=x^{2} \cdot x^{x^{2}-1}+x^{x^{2}} \ln x \cdot 2 x
$$

$$
\begin{equation*}
\therefore \quad \frac{d x}{d y}=\frac{1}{x^{x^{2}+1}(1+2 \ln x)} \tag{i}
\end{equation*}
$$

Now, $\frac{d^{2} x}{d x}=\frac{d}{d x}\left(\left(x^{x^{2}+1}(1+2 \ln x)\right)^{-1}\right) \cdot \frac{d x}{d y}$
$=\frac{-x\left(x^{x^{2}+1}(1+2 \ln x)\right)^{-2} \cdot x^{x^{2}}(1+2 \ln x)\left(x^{2}+2 x^{2} \ln x+3\right)}{x^{x^{2}}(1+2 \ln x)}$

$$
\begin{aligned}
& =\frac{-x^{x^{2}}(1+2 \ln x)\left(x^{2}+3+2 x^{2} \ln x\right)}{\left(x^{x^{2}}(1+2 \ln x)\right)^{3}} \\
& \frac{d^{2} x}{d y^{2}(\text { at } x=1)}=-4
\end{aligned}
$$

$$
\therefore \quad \frac{d^{2} x}{d y^{2}(\text { at } x=1)}+20=16
$$

7. If the area of the region
$\left\{(x, y): x^{\frac{2}{3}}+y^{\frac{2}{3}} \leq 1, x+y \geq 0, y \geq 0\right\}$ is A, then $\frac{256 A}{\pi}$ is equal to \qquad -

Answer (36)

Sol.

\therefore Area of shaded region

$$
\begin{aligned}
= & \int_{-\left(\frac{1}{2}\right)^{\frac{3}{2}}}^{0}\left(\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}}+x\right) d x+\int_{0}^{1}\left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}} d x \\
= & \int_{-\left(\frac{1}{2}\right.}^{\frac{3}{2}} \\
& \left(1-x^{\frac{2}{3}}\right)^{\frac{3}{2}} d x+\int_{-\left(\frac{1}{2}\right)^{\frac{3}{2}}}^{0} x d x
\end{aligned}
$$

Let $x=\sin ^{3} \theta$
$\therefore \quad d x=3 \sin ^{2} \theta \cos \theta d \theta$

$$
\begin{aligned}
& =\int_{-\frac{\pi}{4}}^{\frac{\pi}{2}} 3 \sin ^{2} \theta \cos ^{4} \theta d \theta+\left(0-\frac{1}{16}\right) \\
& =\frac{9 \pi}{64}+\frac{1}{16}-\frac{1}{16}=\frac{36 \pi}{256}=A
\end{aligned}
$$

$$
\therefore \quad \frac{256 A}{\pi}=36
$$

8. Let $y=y(x)$ be the solution of the differential equation $\left(1-x^{2}\right) d y=\left(x y+\left(x^{3}+2\right) \sqrt{1-x^{2}}\right) d x$, $-1<x<1$, and $y(0)=0$. If $\int_{\frac{-1}{2}}^{\frac{1}{2}} \sqrt{1-x^{2}} y(x) d x=k$, then k^{-1} is equal to \qquad .
Answer (320)
Sol. $\left(1-x^{2}\right) d y=\left(x y+\left(x^{3}+2\right) \sqrt{1-x^{2}}\right) d x$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}-\frac{x}{1-x^{2}} y=\frac{x^{3}+3}{\sqrt{1-x^{2}}} \\
& \therefore \text { I.F. }=e^{\int-\frac{x}{1-x^{2}} d x}=\sqrt{1-x^{2}}
\end{aligned}
$$

Solution is

$$
\begin{aligned}
& y \cdot \sqrt{1-x^{2}}=\int\left(x^{3}+3\right) d x \\
& y \cdot \sqrt{1-x^{2}}=\frac{x^{4}}{4}+3 x+c \\
& \because \quad y(0)=0 \Rightarrow c=0 \\
& \therefore \quad y(x)=\frac{x^{4}+12 x}{4 \sqrt{1-x^{2}}}
\end{aligned}
$$

$$
\therefore \quad \int_{\frac{-1}{2}}^{\frac{1}{2}} \sqrt{1-x^{2}} y(x) d x=\int_{\frac{-1}{2}}^{\frac{1}{2}}\left(\frac{x^{4}+12 x}{4}\right) d x
$$

$$
=\int_{0}^{\frac{1}{2}} \frac{x^{4}}{2} d x
$$

$\therefore \quad k=\frac{1}{320}$
$\therefore \quad k^{-1}=320$

Aakash

9. Let a circle C of radius 5 lie below the x-axis. The line $L_{1}: 4 x+3 y+2=0$ passes through the centre P of the circle C and intersects the line $L_{2}: 3 x-4 y$ $-11=0$ at Q. The line L_{2} touches C at the point Q. Then the distance of P from the line $5 x-12 y+51$ $=0$ is \qquad .

Answer (11)

Sol. $L_{1}: 4 x+3 y+2=0$

$$
L_{2}: 3 x-4 y-11=0
$$

Since circle C touches the line L_{2} at Q intersection point Q of L_{1} and L_{2}, is $(1,-2)$
$\because P$ lies of L_{1}
$\therefore \quad P\left(x,-\frac{1}{3}(2+4 x)\right)$
Now, $P Q=5 \Rightarrow(x-1)^{2}+\left(\frac{4 x+2}{3}-2\right)^{2}=25$
$\Rightarrow \quad(x-1)^{2}\left[1+\frac{16}{9}\right]=25$
$\Rightarrow(x-1)^{2}=9$
$\Rightarrow x=4,-2$
\because Circle lies below the x-axis
$\therefore \quad y=-6$
$P(4,-6)$
Now distance of P from $5 x-12 y+51=0$
$=\left|\frac{20+72+51}{13}\right|=\frac{143}{13}=11$
10. Let $S=\left\{E_{1}, E_{2}\right.$, \qquad $\left.E_{8}\right\}$ be a sample space of a random experiment such that $P\left(E_{n}\right)=\frac{n}{36}$ for every $n=1,2, \ldots \ldots \ldots$, 8. Then the number of elements in the set $\left\{A \subseteq S: P(A) \geq \frac{4}{5}\right\}$ is
\qquad .

Answer (19)
Sol. Here $P\left(E_{n}\right)=\frac{n}{36}$ for $n=1,2,3, \ldots \ldots \ldots, 8$
Here $P(A)$
$\frac{\text { Any possible sum of }(1,2,3, \ldots, 8)(=a \text { say })}{36}$

$$
\frac{a}{36} \geq \frac{4}{5}
$$

$$
a \geq 29
$$

If one of the number from $\{1,2, \ldots ., 8\}$ is left then total $a \geq 29$ by 3 ways.

Similarly by leaving terms more 2 or 3 we get 16 more combinations.
\therefore Total number of different set A possible is $16+3$ $=19$

