Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2022 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and -1 mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. A projectile is launched at an angle ' α ' with the horizontal with a velocity $20 \mathrm{~ms}^{-1}$. After 10 s , its inclination with horizontal is ' β '. The value of $\tan \beta$ will be ($g=10 \mathrm{~ms}^{-2}$).
(A) $\tan \alpha+5 \sec \alpha$
(B) $\tan \alpha-5 \sec \alpha$
(C) $2 \tan \alpha-5 \sec \alpha$
(D) $2 \tan \alpha+5 \sec \alpha$

Answer (B)

Sol. $v_{y}=20 \times \sin \alpha-10 \times 10$

$$
\begin{aligned}
& v_{x}=20 \cos \alpha \\
& \begin{aligned}
\therefore \tan \beta=\frac{v_{y}}{v_{x}} & =\frac{20 \sin \alpha-100}{20 \cos \alpha} \\
& =\tan \alpha-5 \sec \alpha
\end{aligned}
\end{aligned}
$$

2. A girl standing on road holds her umbrella at 45° with the vertical to keep the rain away. If she starts running without umbrella with a speed of $15 \sqrt{2} \mathrm{kmh}^{-1}$, the rain drops hit her head vertically. The speed of rain drops with respect to the moving girl is
(A) $30 \mathrm{kmh}^{-1}$
(B) $\frac{25}{\sqrt{2}} \mathrm{kmh}^{-1}$
(C) $\frac{30}{\sqrt{2}} \mathrm{kmh}^{-1}$
(D) $25 \mathrm{kmh}^{-1}$

Answer (C)

Sol.

From graph,

$$
\begin{aligned}
V_{R G} & =15 \sqrt{2} \tan 45^{\circ} \\
& =15 \sqrt{2} \\
& =\frac{30}{\sqrt{2}}
\end{aligned}
$$

3. A silver wire has a mass $(0.6 \pm 0.006) \mathrm{g}$, radius $(0.5 \pm 0.005) \mathrm{mm}$ and length $(4 \pm 0.04) \mathrm{cm}$. The maximum percentage error in the measurement of its density will be
(A) 4%
(B) 3%
(C) 6%
(D) 7%

Answer (A)
Sol. $\rho=\frac{m}{V}=\frac{m}{\pi r^{2} \times 1}$
$\therefore \quad \%$ error in $\rho=\left(\frac{0.006}{0.6}+2 \times \frac{0.005}{0.5}+\frac{0.04}{4}\right) \times 100$

$$
=4 \%
$$

4. A system of two blocks of masses $m=2 \mathrm{~kg}$ and $M=8 \mathrm{~kg}$ is placed on a smooth table as shown in figure. The coefficient of static friction between two blocks is 0.5 . The maximum horizontal force F that can be applied to the block of mass M so that the blocks move together will be

(A) 9.8 N
(B) 39.2 N
(C) 49 N
(D) 78.4 N

Answer (C)

Sol.

$$
\begin{array}{rlrl}
\therefore \quad a_{\max } & =\mu g \\
& =0.5 \times 9.8=4.9 \mathrm{~m} / \mathrm{s}^{2} \\
& \therefore \quad F_{\max } & =(8+2) \times 4.9=49 \mathrm{~N}
\end{array}
$$

5. Two blocks of masses 10 kg and 30 kg are placed on the same straight line with coordinates $(0,0) \mathrm{cm}$ and $(x, 0) \mathrm{cm}$ respectively. The block of 10 kg is moved on the same line through a distance of 6 cm towards the other block. The distance through which the block of 30 kg must be moved to keep the position of centre of mass of the system unchanged is
(A) 4 cm towards the 10 kg block
(B) 2 cm away from the 10 kg block
(C) 2 cm towards the 10 kg block
(D) 4 cm away from the 10 kg block

Answer (C)

Sol. For COM to remain unchanged,

$$
m_{1} x_{1}=m_{2} x_{2}
$$

$$
\Rightarrow \quad 10 \times 6=30 \times x 2
$$

$\Rightarrow x_{2}=2 \mathrm{~cm}$ towards 10 kg block.
6. A 72Ω galvanometer is shunted by a resistance of 8Ω. The percentage of the total current which passes through the galvanometer is
(A) 0.1%
(B) 10%
(C) 25%
(D) 0.25%

Answer (B)
Sol.

From the given setup
$y \times R_{G}=(x-y)\left(R_{S}\right)$
$\Rightarrow \quad y \times 72=(x-y) \times 8$
$\Rightarrow 9 y=x-y$
$\Rightarrow \quad y=\frac{x}{10}$ or 10% of x
Option (B)
7. Given below are two statements

Statement-I: The law of gravitation holds good for any pair of bodies in the universe.

Statement-II: The weight of any person becomes zero when the person is at the centre of the earth.

In the light of the above statements, choose the correct answer from the options given below
(A) Both Statement I and Statement II are true
(B) Both Statement I and Statement II are false
(C) Statement I is true but Statement II is false
(D) Statement I is false but Statement II is true

Answer (A)

Sol. Statement-I is true as law of gravitation is a universal law

Statement-II is also true as gravitational field at centre of earth is zero.
8. What percentage of kinetic energy of a moving particle is transferred to a stationary particle when it strikes the stationary particle of 5 times its mass?
(Assume the collision to be head-on elastic collision)
(A) 50.0%
(B) 66.6%
(C) 55.6%
(D) 33.3\%

Answer (C)
Sol. For a head on elastic collision
$v_{2}=\frac{m u_{1}}{m+5 m}+\frac{m u_{1}}{m+5 m}$
$=\frac{2 u_{1}}{6}$ or $\frac{u_{1}}{3}$
Initial kinetic energy of first mass $=\frac{1}{2} m u_{1}^{2}$
Final kinetic energy of second mass
$=\frac{1}{2} \times 5 m\left(\frac{u_{1}}{3}\right)^{2}$
$=\frac{5}{9}\left(\frac{1}{2} m u_{1}^{2}\right)$
\Rightarrow kinetic energy transferred $=55 \%$ of initial kinetic energy of first colliding mass
9. The velocity of a small ball of mass ' m ' and density d_{1}, when dropped in a container filled with glycerine, becomes constant after some time. If the density of glycerine is d_{2}, then the viscous force acting on the ball, will be
(A) $m g\left(1-\frac{d_{1}}{d_{2}}\right)$
(B) $m g\left(1-\frac{d_{2}}{d_{1}}\right)$
(C) $m g\left(\frac{d_{1}}{d_{2}}-1\right)$
(D) $m g\left(\frac{d_{2}}{d_{1}}-1\right)$

Answer (B)

Sol. Viscous force acting on the ball will be equal and opposite to net of weight and buoyant force
$\Rightarrow \quad F_{0}=\frac{4}{3} \pi r^{3} d_{1} g-\frac{4}{3} \pi r^{3} d_{2} g$

$$
=\frac{4}{3} \pi r^{3} d_{1} g\left(1-\frac{d_{2}}{d_{1}}\right)
$$

$$
=m g\left(1-\frac{d_{2}}{d_{1}}\right)
$$

\Rightarrow Option (B) is correct
10. The susceptibility of a paramagnetic material is 99 . The permeability of the material in Wb/A-m, is
[Permeability of free space $\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A}-\mathrm{m}$]
(A) $4 \pi \times 10^{-7}$
(B) $4 \pi \times 10^{-4}$
(C) $4 \pi \times 10^{-5}$
(D) $4 \pi \times 10^{-6}$

Answer (C)

Sol. $\mu_{r}=x+1$
$=99+1=100$
$\Rightarrow \mu=\mu_{r} \mu_{0}=100 \times 4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{Am}$
$=4 \pi \times 10^{-5} \mathrm{~Wb} / \mathrm{Am}$
\Rightarrow Option (C) is correct
11. The current flowing through an ac circuit is given by $I=5 \sin (120 \pi t) A$
How long will the current take to reach the peak value starting from zero?
(A) $\frac{1}{60} \mathrm{~s}$
(B) 60 s
(C) $\frac{1}{120} \mathrm{~s}$
(D) $\frac{1}{240} \mathrm{~s}$

Answer (D)

Sol. $\omega=120 \pi$
$\Rightarrow \quad T=\frac{1}{60} \mathrm{sec}$
The current will take its peak value in $\frac{T}{4}$ time
So $t=\frac{T}{4}$
$=\frac{1}{240} \mathrm{~s}$
12. Match List-I with List-II

	List-I		List-II
(a)	Ultraviolet rays	(i)	Study crystal structure
(b)	Microwaves	(ii)	Greenhouse effect
(c)	Infrared waves	(iii)	Sterilizing surgical instrument
(d)	X-rays	(iv)	Radar system

Choose the correct answer from the options given below :
(A) (a)-(iii), (b)-(iv), (c)-(ii), (d)-(i)
(B) (a)-(iii), (b)-(i), (c)-(ii), (d)-(iv)
(C) (a)-(iv), (b)-(iii), (c)-(ii), (d)-(i)
(D) (a)-(iii), (b)-(iv), (c)-(i), (d)-(ii)

Answer (A)
Sol. UV rays are used to sterilize surgical material. Microwaves are used in radar system, infrared are used for green house effect and X-rays are used to study crystal structure.
13. An a particle and a carbon 12 atom has same kinetic energy K. The ratio of their de-Broglie wavelengths $\left(\lambda_{\alpha}: \lambda_{\mathrm{C} 12}\right)$ is :
(A) $1: \sqrt{3}$
(B) $\sqrt{3}: 1$
(C) $3: 1$
(D) $2: \sqrt{3}$

Answer (B)

Sol. $K_{\alpha}=K_{C}$
$\frac{p_{\alpha}^{2}}{2 m_{\alpha}}=\frac{p_{\mathrm{C}}^{2}}{2 m_{\mathrm{C}}}$
$\frac{p_{\alpha}}{p_{\mathrm{C}}}=\sqrt{\frac{m_{\alpha}}{m_{\mathrm{C}}}}$
So $\frac{\lambda_{\alpha}}{\lambda_{\mathrm{C}}}=\frac{h / p_{\alpha}}{h / p_{\mathrm{C}}}=\sqrt{\frac{m_{\mathrm{C}}}{m_{\alpha}}}$
So $\frac{\lambda_{\alpha}}{\lambda_{c}}=\sqrt{3}$
14. A force of 10 N acts on a charged particle placed between two plates of a charged capacitor. If one plate of capacitor is removed, then the force acting on that particle will be
(A) 5 N
(B) 10 N
(C) 20 N
(D) Zero

Answer (A)

Sol. E between two plates is $\frac{\sigma}{\varepsilon_{0}}$ and due to one plate is $\frac{\sigma}{2 \varepsilon_{0}}$ so the force will be halved
So new force $F=5 \mathrm{~N}$
15. The displacement of simple harmonic oscillator after 3 seconds starting from its mean position is equal to half of its amplitude. The time period of harmonic motion is :
(A) 6 s
(B) 8 s
(C) 12 s
(D) 36 s

Answer (D)

Sol. Time taken by the harmonic oscillator to move from mean position to half of amplitude is $\frac{T}{12}$

So, $\frac{T}{12}=3$
$T=36 \mathrm{sec}$
16. An observer moves towards a stationary source of sound with a velocity equal to one-fifth of the velocity of sound. The percentage change in the frequency will be:
(A) 20%
(B) 10%
(C) 5%
(D) 0%

Answer (A)

Sol. $f^{\prime}=f_{0}\left[\frac{v-v_{0}}{v-v_{s}}\right]$

$$
\begin{aligned}
& \Rightarrow f^{\prime}=f_{0}\left[\frac{v+\frac{v}{5}}{v}\right] \\
& \Rightarrow f^{\prime}=\frac{6 f_{0}}{5}
\end{aligned}
$$

\Rightarrow \% change $=20$
17. Consider a light ray travelling in air is incident into a medium of refractive index $\sqrt{2 n}$. The incident angle is twice that of refracting angle. Then, the angle of incidence will be:
(A) $\sin ^{-1}(\sqrt{n})$
(B) $\cos ^{-1}\left(\sqrt{\frac{n}{2}}\right)$
(C) $\sin ^{-1}(\sqrt{2 n})$
(D) $2 \cos ^{-1}\left(\sqrt{\frac{n}{2}}\right)$

Answer (D)

Sol. According to the law,

$$
\begin{aligned}
& 1 \times \sin \theta=\sqrt{2 n} \times \sin \left(\frac{\theta}{2}\right) \\
& \Rightarrow \quad \cos \frac{\theta}{2}=\sqrt{\frac{n}{2}} \\
& \Rightarrow \quad \theta=2 \cos ^{-1}\left(\sqrt{\frac{n}{2}}\right)
\end{aligned}
$$

18. A hydrogen atom in its ground state absorbs 10.2 eV of energy. The angular momentum of electron of the hydrogen atom will increase by the value of:
(Given, Planck's constant $=6.6 \times 10^{-34} \mathrm{Js}$).
(A) $2.10 \times 10^{-34} \mathrm{Js}$
(B) $1.05 \times 10^{-34} \mathrm{Js}$
(C) $3.15 \times 10^{-34} \mathrm{Js}$
(D) $4.2 \times 10^{-34} \mathrm{Js}$

Answer (B)

Sol. $-13.6+10.2=\frac{-13.6}{n^{2}}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{13.6}{n^{2}}=3.4 \\
& \Rightarrow \quad n=2 \\
& \Rightarrow \quad \Delta L=2 \times \frac{h}{2 \lambda}-1 \times \frac{h}{2 \lambda} \\
& \quad=\frac{h}{2 \lambda} \\
& \Rightarrow \quad \Delta L \simeq 1.05 \times 10^{-34} \mathrm{Js}
\end{aligned}
$$

19. Identify the correct Logic Gate for the following output (Y) of two inputs A and B.

(A)

(B)

(C)

(D)

Answer (B)

Sol. A B Y
$0 \quad 0 \quad 1$
$\begin{array}{lll}0 & 0 & 1 \\ 1 & 1 & 1\end{array} \Rightarrow Y=(A B)^{\prime} \Rightarrow \square \square-\infty$
$\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0\end{array}$
20. A mixture of hydrogen and oxygen has volume $2000 \mathrm{~cm}^{3}$, temperature 300 K , pressure 100 kPa and mass 0.76 g . The ratio of number of moles of hydrogen to number of moles of oxygen in the mixture will be:
[Take gas constant $R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$]
(A) $\frac{1}{3}$
(B) $\frac{3}{1}$
(C) $\frac{1}{16}$
(D) $\frac{16}{1}$

Answer (B)

Sol. $P_{1} V=n_{1} R T$
$P_{2} V=n_{2} R T$
$\Rightarrow(100 \mathrm{kPa}) V=\left(n_{1}+n_{2}\right) R T$
$\Rightarrow n_{1}+n_{2}=\frac{(100 \mathrm{kPa})\left(2000 \mathrm{~cm}^{3}\right)}{8.3 \times 300}$
Also, $n_{1} \times 2+n_{2} \times 32=0.76$
Solving (1) and (2),

$$
\begin{aligned}
n_{1} & =0.06 \\
n_{2} & =0.02 \\
\Rightarrow \frac{n_{1}}{n_{2}} & =3
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a

NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. In a carnot engine, the temperature of reservoir is $527^{\circ} \mathrm{C}$ and that of sink is 200 K . If the work done by the engine when it transfers heat from reservoir to sink is 12000 kJ , the quantity of heat absorbed by the engine from reservoir is \qquad $\times 10^{6} \mathrm{~J}$.

Answer (16)
Sol. $\eta=1-\frac{T_{2}}{T_{1}}$

$$
\begin{aligned}
& =1-\frac{200}{800}=\frac{3}{4} \\
& \therefore \eta=\frac{W}{Q_{1}} \\
& \Rightarrow \frac{3}{4}=\frac{12000 \times 10^{3}}{Q_{1}} \\
& \Rightarrow Q_{1}=16 \times 10^{6} \mathrm{~J}
\end{aligned}
$$

2. A $220 \mathrm{~V}, 50 \mathrm{~Hz} \mathrm{AC}$ source is connected to a 25 V , 5 W lamp and an additional resistance R in series (as shown in figure) to run the lamp at its peak brightness, then the value of R (in ohm) will be \qquad -.

Answer (975)

Sol. $R_{b}=\frac{(25)^{2}}{5}=125 \Omega$

$$
\begin{gathered}
I_{\mathrm{rms}}=\sqrt{\frac{5}{125}}=\frac{1}{5} \mathrm{~A} \\
\Rightarrow \quad \frac{220}{\mathrm{R}+125}=\frac{1}{5} \\
\Rightarrow \mathrm{R}=1100-125 \\
\quad=975 \Omega
\end{gathered}
$$

3. In young's double slit experiment the two slits are 0.6 mm distance apart. Interference pattern is observed on a screen at a distance 80 cm from the slits. The first dark fringe is observed on the screen directly opposite to one of the slits. The wavelength of light will be \qquad nm .

Answer (450)

Sol. $y=\frac{d}{2}$,

$$
\begin{aligned}
& \therefore \quad \Delta x=y \frac{d}{D} \\
& \Rightarrow \quad \frac{d^{2}}{2 D}=\frac{\lambda}{2}
\end{aligned}
$$

$$
\Rightarrow \lambda=\frac{\left(0.6 \times 10^{-3}\right)^{2}}{0.8}
$$

$$
=450 \mathrm{~nm}
$$

4. A beam of monochromatic light is used to excite the electron in Li^{++}from the first orbit to the third orbit. The wavelength of monochromatic light is found to be $x \times 10^{-10} \mathrm{~m}$. The value of x is \qquad .
[Given hc $=1242 \mathrm{eV} \mathrm{nm}$]

Answer (114)

Sol. $E($ ineV $)=13.6 \times 9\left(1-\frac{1}{9}\right)$
$=13.6 \times 8 \mathrm{eV}$
$\Rightarrow \lambda=\frac{12420}{13.6 \times 8} \AA$
$=114.15 \AA$
5. A cell, shunted by a 8Ω resistance, is balanced across a potentiometer wire of length 3 m . The balancing length is 2 m when the cell is shunted by 4Ω resistance. The value of internal resistance of the cell will be \qquad Ω.

Answer (8)

Sol.

$\frac{\varepsilon_{1} 8}{\mathrm{r}_{1}+8} 3 \mathrm{c}$
$\frac{\varepsilon_{1} 4}{\mathrm{r}_{1}+4} 2 \mathrm{c}$
$\Rightarrow \frac{2\left(r_{1}+4\right)}{r_{1}+8}=\frac{3}{2}$
$\Rightarrow \mathrm{r}_{1}=8 \Omega$
6. The current density in a cylindrical wire of radius 4 mm is $4 \times 10^{6} \mathrm{Am}^{-2}$. The current through the outer portion of the wire between radial distances $\frac{R}{2}$ and R is \qquad $\pi \mathrm{A}$.

Answer (48)

Sol. $i=A \times j$

$$
\begin{aligned}
& =\pi\left(R^{2}-\frac{R^{2}}{4}\right) j \\
& =\frac{3 \pi R^{2}}{4} \times j \\
& =\frac{3 \pi \times\left(4 \times 10^{-3}\right)^{2}}{4} \times 4 \times 10^{6} \\
& =48 \pi
\end{aligned}
$$

7. A capacitor of capacitance 50 pF is charged by 100 V source. It is then connected to another uncharged identical capacitor. Electrostatic energy loss in the process is \qquad nJ.

Answer (125)

Sol. Electrical energy lost $=\frac{1}{2}\left(\frac{1}{2} C V^{2}\right)$
$=\frac{1}{2} \times \frac{1}{2} \times 50 \times 10^{-12} \times(100)^{2}$
$=\frac{500}{4} \mathrm{~nJ}$
$=125 \mathrm{~nJ}$
8. The height of a transmitting antenna at the top of a tower is 25 m and that of receiving antenna is, 49 m . The maximum distance between them, for satisfactory communication in LOS (Line-Of-Sight) is $K \sqrt{5} \times 10^{2} \mathrm{~m}$. The value of K is \qquad .
(Assume radius of Earth is $64 \times 10^{+5} \mathrm{~m}$) [Calculate upto nearest integer value]

Answer (192)

Sol. $d=\sqrt{2 h_{t} R_{e}}+\sqrt{2 \times h_{R} R_{e}}$

$$
=\sqrt{2 \times 25 \times 64 \times 10^{5}}+\sqrt{2 \times 49 \times 64 \times 10^{5}}
$$

$$
\begin{aligned}
& =8000 \sqrt{5}+11200 \sqrt{5} \mathrm{~m} \\
& =19200 \sqrt{5} \mathrm{~m} \\
& =192 \sqrt{5} \times 10^{2} \mathrm{~m}
\end{aligned}
$$

9. The area of cross-section of a large tank is $0.5 \mathrm{~m}^{2}$. It has a narrow opening near the bottom having area of cross-section $1 \mathrm{~cm}^{2}$. A load of 25 kg is applied on the water at the top in the tank. Neglecting the speed of water in the tank, the velocity of the water, coming out of the opening at the time when the height of water level in the tank is 40 cm above the bottom, will be \qquad cms^{-1}.
[Take $g=10 \mathrm{~ms}^{-2}$]

Answer (300)

Sol. By Bernoulli's theorem:

$$
\begin{aligned}
& \frac{250}{0.5}+\rho g h=\frac{1}{2} \rho v^{2} \\
& \Rightarrow v=3 \mathrm{~m} / \mathrm{s} \\
& \Rightarrow v=300 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

10. A pendulum of length 2 m consists of a wooden bob of mass 50 g . A bullet of mass 75 g is fired towards the stationary bob with a speed v. The bullet emerges out of the bob with a speed $\frac{v}{3}$ and the bob just completes the vertical circle. The value of v is
\qquad ms^{-1}. (if $g=10 \mathrm{~m} / \mathrm{s}^{2}$).

Answer (10)

Sol. $v_{\text {bob }}=\sqrt{5 g l}=\sqrt{5 \times 10 \times 2}=10 \mathrm{~m} / \mathrm{s}$
Conserving momentum:
$75 \times v=75 \times \frac{v}{3}+50 \times 10$
$\Rightarrow 50 v=50 \times 10$
$\Rightarrow v=10 \mathrm{~m} / \mathrm{s}$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : At $10^{\circ} \mathrm{C}$, the density of a 5 M solution of KCl [atomic masses of $\mathrm{K} \& \mathrm{Cl}$ are 39 \& $35.5 \mathrm{~g} \mathrm{~mol}^{-1}$ respectively], is ' x ' $\mathrm{g} \mathrm{ml}^{-1}$. The solution is cooled to $-21^{\circ} \mathrm{C}$. The molality of the solution will remain unchanged.
Reason (R) : The molality of a solution does not change with temperature as mass remains unaffected with temperature.

In the light of the above statements, choose the correct answer from the options given below.
(A) Both (A) and (R) are true and (R) is the correct explanation of (A).
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(C) (A) is true but (R) is false.
(D) (A) is false but (R) is true.

Answer (A)

Sol. Density $=$ ' x ' gm ml-1
\therefore molality, $\mathrm{m}=\frac{5 \times 1000}{[\mathrm{x}(1000)-372.5]}=7.96$

$$
\simeq 8 \mathrm{~m} \quad \text { (Assuming } x=1)
$$

$\therefore \Delta \mathrm{T}_{\mathrm{f}}=\mathrm{iK}_{\mathrm{f}} \mathrm{m}$
Assuming complete dissociation of salt (100\%)
($\mathrm{i}=2$)
$\Delta T_{f}=2 \times 1.86 \times 8 \simeq 29.76$
Hence, the solution does not freeze at $-21^{\circ} \mathrm{C}$. This means that molality of the solution won't change as $x \geq 1$.

Statement (II) is also correct as molality is mass dependent and hence, does not change with temperature. However, as solvents are not mentioned, statement (I) can also be incorrect.
2. Based upon VSEPR theory, match the shape (geometry) of the molecules in List-I with the molecules in List-II and select the most appropriate option.

List-I

(Shape)
(A) T-shaped
(B) Trigonal planar
(C) Square planar
(D) See-saw

List-II
(Molecules)
(I) XeF_{4}
(II) SF_{4}
(III) CIF_{3}
(IV) BF_{3}
(A) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(B) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(C) $(\mathrm{A})-(\mathrm{III}),(\mathrm{B})-(\mathrm{IV}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-(\mathrm{I})$
(D) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)

Answer (B)

Sol. (Shape)
(A) T-shaped
(B) Trigonal planar
(C) Square planar
(D) See-saw
(Molecules)
(III) ClF_{3}
(IV) BF_{3}
(I) XeF_{4}
(II) SF_{4}

Hence, (B) is the correct option.
3. Match List-I with List-II

List-I

(A) Spontaneous process
(B) Process with $\Delta \mathrm{P}=0, \Delta \mathrm{~T}=0$
(C) $\Delta \mathrm{H}_{\text {reaction }}$
(D) Exothermic Process

List-II

(I) $\Delta \mathrm{H}<0$
(II) $\Delta \mathrm{G}_{\mathrm{T}, \mathrm{P}}<0$
(III) Isothermal and isobaric process
(IV) [Bond energies of molecules in reactants] [Bond energies of product molecules]

Choose the correct answer from the options given below :
(A) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
(B) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
(C) $(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{IV})$
(D) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)

Answer (B)

Sol. Correct match is
(A) Spontaneous process
(II) $\Delta \mathrm{G}_{\mathrm{T}, \mathrm{P}}<0$ (Constant temperature and pressure condition)
(B) Process with
$\Delta \mathrm{P}=0, \Delta \mathrm{~T}=0$
(C) $\Delta \mathrm{H}_{\text {reaction }}$
(III) Isothermal and isobaric process
(IV) [Bond energies of molecules in reactants - bond energies of product molecules]
(D) Exothermic process
(I) $\Delta \mathrm{H}<0$

Hence, the correct option is (B).
4. Match List-I with List-II

List-I

(A) Lyophilic colloid
(B) Emulsion
(C) Positively charged colloid
(D) Negatively charged colloid

Choose the correct answer from the options given below :
(A) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(B) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
(C) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)
(D) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)

Answer (A)

Sol. Correct match of List-I and List-II is:
(A) Lyophilic colloid
(II) Protective colloid
(B) Emulsion
(I) Liquid-liquid colloid
(C) Positively charged colloid
(IV) $\mathrm{FeCl}_{3}+$ hot water (It forms a positively charged sol of $\left.\mathrm{Fe}(\mathrm{OH})_{3}\right)$
(D) Negatively charged colloid
(III) $\mathrm{FeCl}_{3}+\mathrm{NaOH}$ (Negatively charged colloid is formed due to adsorption of OH^{-} ions on $\left.\mathrm{Fe}(\mathrm{OH})_{3}\right)$
Hence, the correct option is (A).
5. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : The ionic radii of O^{2-} and Mg^{2+} are same.
Reason (R): Both O^{2-} and Mg^{2+} are isoelectronic species.
In the light of the above statements, choose the correct answer from the options given below.
(A) Both (A) and (R) are true and (R) is the correct explanation of (A).
(B) Both (A) and (R) are true but (R) is not the correct explanation of (A).
(C) (A) is true but (R) is false.
(D) (A) is false but (R) is true.

Answer (D)
Sol. Correct order of ionic radii:

$$
\mathrm{O}^{-2}>\mathrm{Mg}^{+2}
$$

This is because among isoelectronic species, the size of anions are greater than the size of cations. Statement (II) is correct as both O^{-2} and Mg^{+2} are isoelectronic.
6. Match List-I with List-II.

List-I

(A) Concentration of Gold ore
(B) Leaching of alumina
(C) Froth stabiliser
(D) Blister copper

Choose the correct answer from the options given below.
(A) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(B) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
(C) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
(D) (A)-(II), (B)-(IV), (C)-(III), (D)-(I)

Answer (B)

Sol. List-I

(A) Concentration of Gold ore
(B) Leaching of alumina
(C) Froth stabiliser
(D) Blister copper

List-II

(IV) NaCN
(II) NaOH
(I) Aniline
(Aniline and cresols are used as froth stabilisers in froth floatation process)
(III) SO_{2} (During self reduction process used in the formation of blister copper SO_{2} gas is evolved)

Hence (B) is most appropriate option.
7. Addition of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to BaO_{2} produces:
(A) $\mathrm{BaO}, \mathrm{SO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
(B) BaHSO_{4} and O_{2}
(C) $\mathrm{BaSO}_{4}, \mathrm{H}_{2}$ and O_{2}
(D) BaSO_{4} and $\mathrm{H}_{2} \mathrm{O}_{2}$

Answer (D)

Sol. $\mathrm{BaO}_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{BaSO}_{4}+\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
Hence, the correct option is (D)
8. BeCl_{2} reacts with LiAlH_{4} to give:
(A) $\mathrm{Be}+\mathrm{Li}\left[\mathrm{AICl}_{4}\right]+\mathrm{H}_{2}$
(B) $\mathrm{Be}+\mathrm{AlH}_{3}+\mathrm{LiCl}+\mathrm{HCl}$
(C) $\mathrm{BeH}_{2}+\mathrm{LiCl}+\mathrm{AICl}_{3}$
(D) $\mathrm{BeH}_{2}+\mathrm{Li}\left[\mathrm{AICl}_{4}\right]$

Answer (C)

Sol. $\mathrm{BeCl}_{2}+\mathrm{LiAlH}_{4} \rightarrow \mathrm{BeH}_{2}+\mathrm{LiCl}+\mathrm{AlCl}_{3}$
The above reaction using LiAlH_{4} is an important preparation method for production of hydrides.
9. Match List-I with List-II.

List-I
(Si-Compounds)

List-II

(Si-Polymeric/other
Products)
(A) $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$
(I) Chain Silicone
(B) $\left(\mathrm{CH}_{3}\right) \mathrm{Si}(\mathrm{OH})_{3}$
(II) Dimeric Silicone
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}(\mathrm{OH})_{2}$
(III) Silane
(D) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}(\mathrm{OH})$
(IV) 2D-Silicone

Choose the correct answer from the options given below:
(A) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
(B) $(\mathrm{A})-(\mathrm{IV}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-(\mathrm{III})$
(C) $(\mathrm{A})-(\mathrm{II}),(\mathrm{B})-(\mathrm{I}),(\mathrm{C})-(\mathrm{IV}),(\mathrm{D})-(\mathrm{III})$
(D) $(\mathrm{A})-(\mathrm{III}),(\mathrm{B})-(\mathrm{IV}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{II})$

Answer (D)
Sol. List-I
(Si-Compounds)
(A) $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}$
(B) $\left(\mathrm{CH}_{3}\right) \mathrm{Si}(\mathrm{OH})_{3}$
(C) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}(\mathrm{OH})_{2}$
(D) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Si}(\mathrm{OH})$

2D-Silicone

$\xrightarrow{-\mathrm{H}_{2} \mathrm{O}}$

Dimeric Silicone

10. Heating white phosphorus with conc. NaOH solution gives mainly:
(A) $\mathrm{Na}_{3} \mathrm{P}$ and $\mathrm{H}_{2} \mathrm{O}$
(B) $\mathrm{H}_{3} \mathrm{PO}$ and NaH
(C) $\mathrm{P}(\mathrm{OH})_{3}$ and $\mathrm{NaH}_{2} \mathrm{PO}_{4}$
(D) PH_{3} and $\mathrm{NaH}_{2} \mathrm{PO}_{2}$

Answer (D)
Sol. P_{4} (white) +NaOH
$\rightarrow \mathrm{PH}_{3}+\mathrm{NaH}_{2} \mathrm{PO}_{2}+\mathrm{H}_{2} \mathrm{O}$
11. Which of the following will have maximum stabilization due to crystal field?
(A) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(B) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-3}$
(D) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$

Answer (C)

Sol. The given complexes are:
$\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-3},\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
CN^{-}is the strongest ligand among the given complexes CFSE value for the $\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{-3}$ complex will be highest as it has d^{6} configuration with a CFSE value of $-2.40 \Delta_{0}+2 P$, where P represents pairing energy and Δ_{0} represents splitting energy in octahedral field.

The value of Δ_{0} is high for cyanide complexes.
12. Given below are two Statements:

Statement I: Classical smog occurs in cool humid climate. It is a reducing mixture of smoke, fog and sulphur dioxide.

Statement II: Photochemical smog has components, ozone, nitric oxide, acrolein, formaldehyde, PAN etc.

In the light of the above statements, choose the most appropriate answer from the options given below.
(A) Both Statement I and Statement II are correct.
(B) Both Statement I and Statement II are incorrect.
(C) Statement I is correct but Statement II is incorrect.
(D) Statement I is incorrect but Statement II is correct

Answer (A)

Sol. (I) Classical smog occurs in cool humid climate. It is a reducing mixture of smoke, fog and sulphur dioxide. This is a correct statement.
(II) This statement is also based on fact and is a correct statement.
13. Which of the following is structure of a separating funnel?
(A)

(B)

(C)

(D)

Answer (A)

Sol. The diagram is option (A) clearly represents separating funnel which is used to separate two immiscible liquids.
14. ' A ' and ' B ' respectively are:
$\mathrm{A} \xrightarrow[(2) \mathrm{Z} \mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}]{(1) \mathrm{O}_{3}}$ Ethane-1, 2-dicarbaldehyde + Glyoxal/Oxaldehyde
$\mathrm{B} \xrightarrow[\text { (2) } \mathrm{Zn}-\mathrm{H}_{2} \mathrm{O}]{\text { (1) } \mathrm{O}_{3}} 5$-oxohexanal
(A) 1-methylcyclohex-1, 3-diene \& cyclopentene
(B) Cyclohex-1, 3-diene \& cyclopentene
(C) 1-methylcyclohex-1, 4-diene \& 1-methylcyclo-pent-ene
(D) Cyclohex-1, 3-diene \& 1-methylcyclopent-1ene

Answer (D)

Sol.

(Ethane-1,2-dicarbaldeyde)

(B)

(S-oxohexanal)
(B) should be 1-methylcyclopent-1-ene.
15. The major product of the following reaction is:

(A)

(B)

(C)

(D)

Answer (A)

Sol.

Rate of $S_{N} 2>S_{N} 2(A R)$
16. Which of the following reactions will yield benzaldehyde as a product?
(A)

$\xrightarrow[\text { (ii) } \mathrm{H}_{2} / \mathrm{Pd} / \mathrm{BaSO}_{4}]{\text { (i) } \mathrm{SOCl}_{2} \text {, Quinoline }}$
(B)

(C)

(D)

(A) (B) and (C)
(B) (C) and (D)
(C) (A) and (D)
(D) (A) and (C)

Answer (C)

Sol. (A)

(B)

(C)

17. Given below are two statements:

Statement-I : In Hofmann degradation reaction, the migration of only an alkyl group takes place from carbonyl carbon of the amide to the nitrogen atom.

Statement-II : The group is migrated in Hofmann degradation reaction to electron deficient atom.

In the light of the above statements, choose the most appropriate answer from the options given below:
(A) Both Statement I and Statement II are correct
(B) Both Statement I and Statement II are incorrect
(C) Statement I is correct but Statement II is incorrect
(D) Statement I is incorrect but Statement II is correct

Answer (D)

Sol. Hofmann bromamide degradation
In this degradation, the migration of the alkyl/aryl group occurs to the electron deficient nitrogen (nitrene).

Statement (I) is not absolutely correct as it mentions only the alkyl group, whereas migration of aryl groups may also occur depending on migratory aptitude.

Statement (II) is correct as migration occurs to electron deficient atom.
18. Match List-I with List-II

List-I
 (Polymer)

(A) Bakelite
(B) Glyptal
(C) PVC
(D) Polystyrene

List-II

(Used in)
(I) Radio and television cabinets
(II) Electrical switches
(III) Paints and Lacqures
(IV) Water pipes

Choose the correct answer from the options given below:
(A) $(\mathrm{A})-(\mathrm{II})(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{IV}),(\mathrm{D})-(\mathrm{I})$
(B) $(\mathrm{A})-(\mathrm{I})(\mathrm{B})-(\mathrm{II}),(\mathrm{C})-(\mathrm{III}),(\mathrm{D})-(\mathrm{IV})$
(C) $(\mathrm{A})-(\mathrm{IV})(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-(\mathrm{I})$
(D) $(\mathrm{A})-(\mathrm{II})(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-(\mathrm{IV})$

Answer (A)

Sol. List-I
(Polymer)
(A) Bakelite
(B) Glyptal
(C) PVC
(D) Polystyrene

List-II

(Used in)
(II) Electrical switches
(III) Paints and Lacqures
(IV) Water pipes
(I) Radio and television Cabinets

Therefore, the correct option is (A).
19. L-isomer of a compound ' A ' $\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ gives a positive test with $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$. Treatment of ' A ' with acetic anhydride yields triacetate derivative. Compound ' A ' produces an optically active compound (B) and an optically inactive compound (C) on treatment with bromine water and HNO_{3} respectively. Compound (A) is:
(A)

(B)

(C)

(D)

Answer (A)

Sol.

L-erythreose
(A)

When (A) is heated with acetic anhydride, acetylation occurs and -OH group is replaced by $-\mathrm{O}-\stackrel{\text { II }}{\mathrm{O}}-\mathrm{CH}_{3}$ and hence, triacetate is formed.

(A)

(A)

(B)

Optically active

(C)
(Optically inactive)
20. Match List-I with List-II

List-I

(A)

(B)

(C) $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{Na}_{2} \mathrm{CO}_{3}+$ Rosinate
(D) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right){ }_{16} \mathrm{COO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

List-II

(I) Dishwashing power
(II) Toothpaste
(III) Laundry soap
(IV) Hair conditional

Choose the correct answer from the options given below:
(A) $(\mathrm{A})-(\mathrm{III})(\mathrm{B})-(\mathrm{II}),(\mathrm{C})-(\mathrm{IV})$, (D) $-(\mathrm{I})$
(B) $(\mathrm{A})-(\mathrm{IV})(\mathrm{B})-(\mathrm{II}),(\mathrm{C})-(\mathrm{III}),(\mathrm{D})-(\mathrm{I})$
(C) $(\mathrm{A})-(\mathrm{IV})(\mathrm{B})-(\mathrm{III}),(\mathrm{C})-(\mathrm{II}),(\mathrm{D})-$ (I)
(D) $(\mathrm{A})-(\mathrm{III})(\mathrm{B})-(\mathrm{IV}),(\mathrm{C})-(\mathrm{I}),(\mathrm{D})-$ (II)

Answer (B)

Sol.
 (Hair conditioner)
(B)

\rightarrow Toothpaste
(Anionic detergent)
(C) $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{COO}^{-} \mathrm{Na}^{+}+\mathrm{Na}_{2} \mathrm{CO}_{3}+$ Rosinate
\rightarrow Laundry soap
(D) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right){ }_{16} \mathrm{COO}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
\rightarrow Dishwashing powder

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Metal deficiency defect is shown by $\mathrm{Fe}_{0.93} \mathrm{O}$. In the crystal, some Fe^{2+} cations are missing and loss of positive charge is compensated by the presence of Fe^{3+} ions. The percentage of Fe^{2+} ions in the Fe 0.93 O crystals is \qquad . (Nearest integer)

Answer (85)

Sol. $\mathrm{Fe}_{0.93} \mathrm{O}$
Let the number of O^{-2} ions be 100
and the number of Fe^{+2} ions be X
The number of Fe^{+3} ions be $(93-X)$
$\therefore \quad \mathrm{X}(2)+(93-\mathrm{X}) 3=200$

$$
279-X=200
$$

$$
X=79
$$

$$
\begin{aligned}
\therefore \% \text { of } \mathrm{Fe}^{+2} \text { ions } & =\frac{79}{93} \times 100 \\
& \simeq 85 \%
\end{aligned}
$$

2. If the uncertainty in velocity and position of a minute particle in space are, $2.4 \times 10^{-26}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ and 10^{-7} (m) respectively. The mass of the particle in g is
\qquad . (Nearest integer)
(Given : $\mathrm{h}=6.626 \times 10^{-34} \mathrm{Js}$)

Answer (22)

Sol. $\Delta v=2.4 \times 10^{-26} \mathrm{~m} \mathrm{~s}^{-1}$

$$
\Delta x=10^{-7} \mathrm{~m}
$$

$$
\begin{aligned}
& \therefore \mathrm{m} \geq \frac{\mathrm{h}}{4 \pi(\Delta \mathrm{x})(\Delta \mathrm{v})} \\
& \geq \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times\left(10^{-7}\right)(2.4) \times 10^{-26}} \\
& \geq \frac{6.626 \times 10^{-1}}{4 \times 2.4 \times 3.14} \\
& \geq 0.02198 \mathrm{~kg}
\end{aligned}
$$

\therefore Mass of the particle $\simeq 22 \mathrm{~g}$
3. 2 g of a non-volatile non-electrolyte solute is dissolved in 200 g of two different solvents A and B whose ebullioscopic constants are in the ratio of $1: 8$. The elevation in boiling points of A and B are in the ratio $\frac{x}{y}(x: y)$. The value of y is \qquad .
(Nearest Integer)

Answer (8)

Sol. $\Delta \mathrm{Tb}=\mathrm{kbm}$
$\frac{\left(\Delta T_{b}\right)_{A}}{\left(\Delta T_{b}\right)_{B}}=\frac{\left(k_{b}\right)_{A}}{\left(k_{b}\right)_{B}}$
$=\frac{1}{8}=\frac{x}{y}$
$\therefore y=8$
4. $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$

In an experiment, 2.0 moles of NOCl was placed in a one-litre flask and the concentration of NO after equilibrium established, was found to be $0.4 \mathrm{~mol} / \mathrm{L}$. The equilibrium constant at $30^{\circ} \mathrm{C}$ is \qquad $\times 10^{-4}$.

Answer (125)

Sol. $2 \mathrm{NOCl}(\mathrm{g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$

$$
\begin{aligned}
& t=0 \quad 2 \\
& t=t_{\text {eq }} 2-0.4 \quad 0.4 \\
& k_{C}=\frac{(0.2) \times(0.4)^{2}}{(1.6)^{2}} \\
& =\frac{0.2}{16}=\frac{1}{8} \times 10^{-1} \\
& =0.125 \times 10^{-1} \\
& =125 \times 10^{-4}
\end{aligned}
$$

5. The limiting molar conductivities of $\mathrm{NaI}, \mathrm{NaNO}_{3}$ and AgNO_{3} are 12.7, 12.0 and $13.3 \mathrm{mS} \mathrm{m}{ }^{2} \mathrm{~mol}-1$, respectively (all at $25^{\circ} \mathrm{C}$). The limiting molar conductivity of Agl at this temperature is \qquad mS $\mathrm{m}^{2} \mathrm{~mol}$ - .

Answer (14)

Sol. $\Lambda_{\mathrm{m}}^{0}(\mathrm{Agl})=\Lambda_{\mathrm{m}}^{0}(\mathrm{NaI})+\Lambda_{\mathrm{m}}^{0}\left(\mathrm{AgNO}_{3}\right)-\Lambda_{\mathrm{m}}^{0}\left(\mathrm{NaNO}_{3}\right)$
$=12.7+13.3-12.0$
$=26-12$
$=14 \mathrm{mS} \mathrm{m}^{2} \mathrm{~mol}^{-1}$
6. The rate constant for a first order reaction is given by the following equation :

Ink $=33.24-\frac{2.0 \times 10^{4} \mathrm{~K}}{\mathrm{~T}}$
The activation energy for the reaction is given by
\qquad $\mathrm{kJ} \mathrm{mol}{ }^{-1}$. (In nearest integer)
(Given : R $=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$)

Answer (166)

Sol. Ink $=33.24-\frac{2 \times 10^{4}}{T}$
$\therefore \quad \frac{E_{a}}{R}=2 \times 10^{4}$
$E_{a}=2 \times 10^{4} \times 8.3$
$=166 \mathrm{~kJ} / \mathrm{mol}$
7. The number of statement(s) correct from the following for Copper (at. no. 29) is/are \qquad -
(A) $\mathrm{Cu}(\mathrm{II})$ complexes are always paramagnetic
(B) $\mathrm{Cu}(\mathrm{I})$ complexes are generally colourless
(C) $\mathrm{Cu}(\mathrm{I})$ is easily oxidized
(D) In Fehling solution, the active reagent has $\mathrm{Cu}(\mathrm{I})$

Answer (3)

Sol. (A) $\mathrm{Cu}(\mathrm{II})$ complexes are always paramagnetic as they have one unpaired electron due to d^{9} configuration of $\mathrm{Cu}(\mathrm{II})$
(B) $\mathrm{Cu}(\mathrm{I})$ complexes are generally colourless due to d^{10} configuration.
(C) $\mathrm{Cu}(\mathrm{I})$ is easily oxidised to Cu^{+2} in aqueous solution
$2 \mathrm{Cu}^{+} \rightarrow \mathrm{Cu}^{+2}+\mathrm{Cu}$
Cu^{+1} disproportionates to Cu^{+2} and Cu
($\mathrm{E}_{\text {cell }}^{\circ}>0$ for this cell reaction in aqueous solution)

In Fehling's solution, active reagent has Cu (II) which is reduced to $\mathrm{Cu}(\mathrm{I})$ on reaction with aldehydes.

Hence (D) statement is incorrect
8. Acidified potassium permanganate solution oxidises oxalic acid. The spin-only magnetic moment of the manganese product formed from the above reaction is \qquad B.M. (Nearest Integer)

Answer (6)

Sol. $\mathrm{KMnO}_{4}($ acidic medium $)+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{CO}_{2}+\mathrm{Mn}^{+2}$
Mn^{+2} has 5 unpaired electrons
$\therefore \quad$ Spin only magnetic moment $=\sqrt{5(5+2)}$
$=\sqrt{5 \times 7}$
$=\sqrt{35}$
$\simeq 5.92$ B.M.
$\simeq 6 \mathrm{~B} . \mathrm{M}$.
9. Two elements A and B which form 0.15 moles of $A_{2} B$ and $A B_{3}$ type compounds. If both $A_{2} B$ and $A B_{3}$ weigh equally, then the atomic weight of A is \qquad times of atomic weight of B.

Answer (2)

Sol. Mole of $\mathrm{A}_{2} \mathrm{~B}=$ moles of AB_{3}
$\frac{W}{2 A+B}=\frac{W}{A+3 B}$
$A+3 B=2 A+B$
$2 B=A$
Atomic weight of A is 2 times that of B.
10. Total number of possible stereoisomers of dimethyl cyclopentane is \qquad -.

Answer (Bonus)

Sol. Position of methyl groups not mentioned.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The area of the polygon, whose vertices are the non-real roots of the equation $\bar{z}=i z^{2}$ is :
(A) $\frac{3 \sqrt{3}}{4}$
(B) $\frac{3 \sqrt{3}}{2}$
(C) $\frac{3}{2}$
(D) $\frac{3}{4}$

Answer (A)

Sol. $\bar{z}=i z^{2}$
Let $z=x+i y$
$x-i y=i\left(x^{2}-y^{2}+2 x i y\right)$
$x-i y=i\left(x^{2}-y^{2}\right)-2 x y$
$\therefore \quad x=-2 y x$ or $x^{2}-y^{2}=-y$

$$
x=0 \text { or } y=-\frac{1}{2}
$$

Case-I
$x=0$
$-y^{2}=-y$
$y=0,1$

Case-II

$y=-\frac{1}{2}$
$\Rightarrow x^{2}-\frac{1}{4}=\frac{1}{2} \Rightarrow x= \pm \frac{\sqrt{3}}{2}$
$z=\left\{0, i, \frac{\sqrt{3}}{2}-\frac{i}{2}, \frac{-\sqrt{3}}{2}-\frac{i}{2}\right\}$
Area of polygon $=\frac{1}{2}\left|\begin{array}{ccc}0 & 1 & 1 \\ \frac{\sqrt{3}}{2} & \frac{-1}{2} & 1 \\ \frac{-\sqrt{3}}{2} & \frac{-1}{2} & 1\end{array}\right|$ $=\frac{1}{2}\left|-\sqrt{3}-\frac{\sqrt{3}}{2}\right|=\frac{3 \sqrt{3}}{4}$
2. Let the system of linear equations $x+2 y+z=2, \alpha x$ $+3 y-z=\alpha,-\alpha x+y+2 z=-\alpha$ be inconsistent. Then α is equal to :
(A) $\frac{5}{2}$
(B) $-\frac{5}{2}$
(C) $\frac{7}{2}$
(D) $-\frac{7}{2}$

Answer (D)
Sol. $x+2 y+z=2$

$$
\begin{aligned}
& \alpha x+3 y-z=\alpha \\
& -\alpha x+y+2 z=-\alpha
\end{aligned}
$$

$$
\Delta=\left|\begin{array}{ccc}
1 & 2 & 1 \\
\alpha & 3 & -1 \\
-\alpha & 1 & 2
\end{array}\right|=1(6+1)-2(2 \alpha-\alpha)+1(\alpha+3 \alpha)
$$

$$
=7+2 \alpha
$$

$$
\Delta=0 \Rightarrow \alpha=-\frac{7}{2}
$$

$$
\Delta_{1}=\left|\begin{array}{ccc}
2 & 2 & 1 \\
\alpha & 3 & -1 \\
-\alpha & 1 & 2
\end{array}\right|=14+2 \alpha \neq 0 \text { for } \alpha=-\frac{7}{2}
$$

$$
\text { For no solution } \alpha=-\frac{7}{2}
$$

3. If $x=\sum_{n=0}^{\infty} a^{n}, y=\sum_{n=0}^{\infty} b^{n}, z=\sum_{n=0}^{\infty} c^{n}$, where a, b, c are in A.P. and $|a|<1,|b|<1,|c|<1, a b c \neq 0$, then :
(A) x, y, z are in A.P.
(B) x, y, z are in G.P.
(C) $\frac{1}{x}, \frac{1}{y}, \frac{1}{z}$ are in A.P.
(D) $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1-(a+b+c)$

Answer (C)
Sol. $x=\sum_{n=0}^{\infty} a^{n}=\frac{1}{1-a} ; y=\sum_{n=0}^{\infty} b^{n}=\frac{1}{1-b} ; z=\sum_{n=0}^{\infty} c^{n}=\frac{1}{1-c}$ Now,
$a, b, c \rightarrow \mathrm{AP}$
$1-a, 1-b, 1-c \rightarrow \mathrm{AP}$
$\frac{1}{1-a}, \frac{1}{1-b}, \frac{1}{1-c} \rightarrow \mathrm{HP}$
$x, y, z \rightarrow H P$
$\therefore \frac{1}{x}, \frac{1}{y}, \frac{1}{z} \rightarrow \mathrm{AP}$
4. Let $\frac{d y}{d x}=\frac{a x-b y+a}{b x+c y+a}$, where a, b, c are constants, represent a circle passing through the point $(2,5)$. Then the shortest distance of the point $(11,6)$ from this circle is
(A) 10
(B) 8
(C) 7
(D) 5

Answer (B)

Sol. $\frac{d y}{d x}=\frac{a x-b y+a}{b x+c y+a}$
$=b x d y+c y d y+a d y=a x d x-b y d x+a d x$
$=c y d y+a d y-a x d x-a d x+b(x d y+y d x)=0$
$=c \int y d y+a \int x d x-a \int d x+b \int d(x y)=0$

$$
\begin{aligned}
& =\frac{c y^{2}}{2}+a y-\frac{a x^{2}}{2}-a x+b x y=k \\
& =a x^{2}-c y^{2}+2 a x-2 a y-2 b x y=k
\end{aligned}
$$

Above equation is circle
$\Rightarrow a=-c$ and $b=0$

$$
a x^{2}+a y^{2}+2 a x-2 a y=k
$$

$\Rightarrow x^{2}+y^{2}+2 x-2 y=\lambda \quad\left[\lambda=\frac{k}{a}\right]$
Passes through $(2,5)$
$4+25+4-10=\lambda \Rightarrow \lambda=23$
Circle $\equiv x^{2}+y^{2}+2 x-2 y-23=0$
Centre $(-1,1) r=\sqrt{(-1)^{2}+1^{2}+23}=5$
Shortest distance of $(11,6)=\sqrt{12^{2}+5^{2}}-5$

$$
\begin{gathered}
=13-5 \\
=8
\end{gathered}
$$

5. Let a be an integer such that $\lim _{x \rightarrow 7} \frac{18-[1-x]}{[x-3 a]}$ exists, where $[t]$ is greatest integer $\leq t$. Then a is equal to :
(A) -6
(B) -2
(C) 2
(D) 6

Answer (A)

Sol. $\lim _{x \rightarrow 7} \frac{18-[1-x]}{[x-3 a]}$ exist $\& a \in I$.
$=\lim _{x \rightarrow 7} \frac{17-[-x]}{[x]-3 a}$ exist
$\mathrm{RHL}=\lim _{x \rightarrow 7^{+}} \frac{17-[-x]}{[x]-3 a}=\frac{25}{7-3 a} \quad\left[a \neq \frac{7}{3}\right]$
$\mathrm{LHL}=\lim _{x \rightarrow 7^{-}} \frac{17-[-x]}{[x]-3 a}=\frac{24}{6-3 a} \quad[a \neq 2]$
For limit to exist
LHL = RHL
$\frac{25}{7-3 a}=\frac{24}{6-3 a}$
$\Rightarrow \frac{25}{7-3 a}=\frac{8}{2-a}$
$\therefore \quad a=-6$
6. The number of distinct real roots of $x^{4}-4 x+1=0$ is:
(A) 4
(B) 2
(C) 1
(D) 0

Answer (B)

Sol. $f(x)=x^{4}-4 x+1=0$

\Rightarrow Two solution
7. The lengths of the sides of a triangle are $10+x^{2}, 10$ $+x^{2}$ and $20-2 x^{2}$. If for $x=k$, the area of the triangle is maximum, then $3 k^{2}$ is equal to :
(A) 5
(B) 8
(C) 10
(D) 12

Answer (C)

Sol.

$$
C D=\sqrt{\left(10+x^{2}\right)^{2}-\left(10-x^{2}\right)^{2}}=2 \sqrt{10}|x|
$$

Area $=\frac{1}{2} \times C D \times A B=\frac{1}{2} \times 2 \sqrt{10}|x|\left(20-2 x^{2}\right)$
$A=\sqrt{10}|x|\left(10-x^{2}\right)$
$\frac{d A}{d x}=\sqrt{10} \frac{|x|}{x}\left(10-x^{2}\right)+\sqrt{10}|x|(-2 x)=0$
$\Rightarrow 10-x^{2}=2 x^{2}$

$$
3 x^{2}=10
$$

$$
x=k
$$

$$
3 k^{2}=10
$$

8. If $\cos ^{-1}\left(\frac{y}{2}\right)=\log _{e}\left(\frac{x}{5}\right)^{5},|y|<2$, then :
(A) $x^{2} y^{\prime \prime}+x y^{\prime}-25 y=0$
(B) $x^{2} y^{\prime \prime}-x y^{\prime}-25 y=0$
(C) $x^{2} y^{\prime \prime}-x y^{\prime}+25 y=0$
(D) $x^{2} y^{\prime \prime}+x y^{\prime}+25 y=0$

Answer (D)

Sol. $\cos ^{-1}\left(\frac{y}{2}\right)=\log _{e}\left(\frac{x}{5}\right)^{5} \quad|y|<2$
Differentating on both side
$-\frac{1}{\sqrt{1-\left(\frac{y}{2}\right)^{2}}} \times \frac{y^{\prime}}{2}=\frac{5}{\frac{x}{5}} \times \frac{1}{5}$
$\frac{-x y^{\prime}}{2}=5 \sqrt{1-\left(\frac{y}{2}\right)^{2}}$
Square on both side
$\frac{x^{2} y^{\prime 2}}{4}=25\left(\frac{4-y^{2}}{4}\right)$

Diff on both side
$2 x y^{\prime 2}+2 y^{\prime} y^{\prime \prime} x^{2}=-25 \times 2 y y^{\prime}$
$x y^{\prime}+y^{\prime \prime} x^{2}+25 y=0$
9. If $\int \frac{\left(x^{2}+1\right) e^{x}}{(x+1)^{2}} d x=f(x) e^{x}+C$, where C is a constant, then $\frac{d^{3} f}{d x^{3}}$ at $x=1$ is equal to :
(A) $-\frac{3}{4}$
(B) $\frac{3}{4}$
(C) $-\frac{3}{2}$
(D) $\frac{3}{2}$

Answer (B)

Sol. $I=\int \frac{e^{x}\left(x^{2}+1\right)}{(x+1)^{2}} d x=f(x) e^{x}+c$
$=\int \frac{e^{x}\left(x^{2}-1+1+1\right)}{(x+1)^{2}} d x$
$=\int e^{x}\left[\frac{x-1}{x+1}+\frac{2}{(x+1)^{2}}\right] d x$
$=e^{x}\left(\frac{x-1}{x+1}\right)+c$
$\therefore \quad f(x)=\frac{x-1}{x+1}$
$f(x)=1-\frac{2}{x+1}$
$f^{\prime}(x)=2\left(\frac{1}{x+1}\right)^{2}$
$f^{\prime \prime}(x)=-4\left(\frac{1}{x+1}\right)^{3}$
$f^{\prime \prime \prime}(x)=\frac{12}{(x+1)^{4}}$
for $x=1$
$f^{\prime \prime \prime}(1)=\frac{12}{2^{4}}=\frac{12}{16}=\frac{3}{4}$
10. The value of the integral $\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{\left(e^{x|x|}+1\right)} d x$ is equal to:
(A) $5 e^{2}$
(B) $3 e^{-2}$
(C) 4
(D) 6

Answer (D)

Sol. $I=\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{e^{x|x|}+1} d x$
$I=\int_{-2}^{2} \frac{\left|x^{3}+x\right|}{e^{-x|x|}+1} d x$
$2 I=\int_{-2}^{2}\left|x^{3}+x\right| d x$
$2 I=2 \int_{0}^{2}\left(x^{3}+x\right) d x$
$I=\int_{0}^{2}\left(x^{3}+x\right) d x$
$\left.=\frac{x^{4}}{4}+\frac{x^{2}}{2}\right]_{0}^{2}$
$=\left(\frac{16}{4}+\frac{4}{2}\right)-0$
$=4+2=6$
11. If $\frac{d y}{d x}+\frac{2^{x-y}\left(2^{y}-1\right)}{2^{x}-1}=0, x, y>0, y(1)=1$, then $y(2)$ is equal to:
(A) $2+\log _{2} 3$
(B) $2+\log _{3} 2$
(C) $2-\log _{3} 2$
(D) $2-\log _{2} 3$

Answer (D)

Sol. $\frac{d y}{d x}+\frac{2^{x-y}\left(2^{y}-1\right)}{2^{x}-1}=0, x, y>0, y(1)=1$
$\frac{d y}{d x}=-\frac{2^{x}\left(2^{y}-1\right)}{2^{y}\left(2^{x}-1\right)}$
$\int \frac{2^{y}}{2^{y}-1} d y=-\int \frac{2^{x}}{2^{x}-1} d x$
$=\frac{\log _{e}\left(2^{y}-1\right)}{\log _{e} 2}=-\frac{\log _{e}\left(2^{x}-1\right)}{\log _{e} 2}+\frac{\log _{e} c}{\log _{e} 2}$
$=\left|\left(2^{y}-1\right)\left(2^{x}-1\right)\right|=c$
$\because y(1)=1$
$\therefore \quad c=1$
$=\left|\left(2^{y}-1\right)\left(2^{x}-1\right)\right|=1$
For $x=2$
$\left|\left(2^{y}-1\right) 3\right|=1$
$2^{y}-1=\frac{1}{3} \Rightarrow 2 y=\frac{4}{3}$
Taking log to base 2.
$\therefore y=2-\log _{2} 3$
12. In an isosceles triangle $A B C$, the vertex A is $(6,1)$ and the equation of the base $B C$ is $2 x+y=4$. Let the point B lie on the line $x+3 y=7$. If (α, β) is the centroid of $\triangle A B C$, then $15(\alpha+\beta)$ is equal to :
(A) 39
(B) 41
(C) 51
(D) 63

Answer (C)
Sol.

$\left.\begin{array}{l}2 x+y=4 \\ 2 x+6 y=14\end{array}\right\} y=2, x=3$
$B(1,2)$
Let $C(k, 4-2 k)$
Now $A B^{2}=A C^{2}$
$5^{2}+(-1)^{2}=(6-k)^{2}+(-3+2 k)^{2}$
$\Rightarrow 5 k^{2}-24 k+19=0$
$(5 k-19)(k-1)=0 \Rightarrow k=\frac{19}{5}$
$C\left(\frac{19}{5},-\frac{18}{5}\right)$
Centroid (α, β)
$\alpha=\frac{6+1+\frac{19}{5}}{3}=\frac{18}{5}$
$\beta=\frac{1+2-\frac{18}{5}}{3}=-\frac{1}{5}$
Now $15(\alpha+\beta)$
$15\left(\frac{17}{5}\right)=51$
13. Let the eccentricity of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$, be $\frac{1}{4}$. If this ellipse passes through the point $\left(-4 \sqrt{\frac{2}{5}}, 3\right)$, then $a^{2}+b^{2}$ is equal to :
(A) 29
(B) 31
(C) 32
(D) 34

Answer (B)

Sol. $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$\Rightarrow \frac{\left(-4 \sqrt{\frac{2}{5}}\right)^{2}}{a^{2}}+\frac{32}{b^{2}}=1$
$\Rightarrow \frac{32}{5 a^{2}}+\frac{9}{b^{2}}=1$
$a^{2}\left(1-e^{2}\right)=b^{2}$
$a^{2}\left(1-\frac{1}{16}\right)=b^{2}$
$15 a^{2}=16 b^{2} \Rightarrow a^{2}=\frac{16 b^{2}}{15}$
From (i)
$\frac{6}{b^{2}}+\frac{9}{b^{2}}=1 \Rightarrow b^{2}=15 \quad \& a^{2}=16$
$a^{2}+b^{2}=15+16=31$
14. If two straight lines whose direction cosines are given by the relations $I+m-n=0,3^{2}+m^{2}+c n l=$ 0 are parallel, then the positive value of c is :
(A) 6
(B) 4
(C) 3
(D) 2

Answer (A)

Sol. $I+m-n=0 \Rightarrow n=I+m$
$3 R+m^{2}+c n l=0$
$3 R+m^{2}+c l(I+m)=0$
$=(3+c))^{2}+c l m+m^{2}=0$
$=(3+c)\left(\frac{l}{m}\right)^{2}+c\left(\frac{l}{m}\right)+1=0$
\because Lines are parallel
$D=0$
$c^{2}-4(3+c)=0$
$c^{2}-4 c-12=0$
$(c-4)(c+3)=0$
$c=4$ (as $c>0$)
15. Let $\vec{a}=\hat{i}+\hat{j}-\hat{k}$ and $\vec{c}=2 \hat{i}-3 \hat{j}+2 \hat{k}$. Then the number of vectors \vec{b} such that $\vec{b} \times \vec{c}=\vec{a}$ and $|\vec{b}| \in\{1,2, \ldots, 10\}$ is :
(A) 0
(B) 1
(C) 2
(D) 3

Answer (A)

Sol. $\vec{a}=\hat{i}+\hat{j}-\hat{k}$
$\vec{c}=2 \hat{i}-3 \hat{j}+2 \hat{k}$
Now, $\vec{b} \times \vec{c}=\vec{a}$
$\vec{c} \cdot(\vec{b} \times \vec{c})=\vec{c} \cdot \vec{a}$
$\vec{c} \cdot \vec{a}=0$
$\Rightarrow(\hat{i}+\hat{j}-\hat{k})(2 \hat{i}-3 \hat{j}+2 \hat{k})=0$
$=2-3-2=0$
$\Rightarrow-3=0$ (Not possible)
$\Rightarrow \quad$ No possible value of \vec{b} is possible.
16. Five numbers, $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are randomly selected from the numbers $1,2,3, \ldots \ldots, 18$ and are arranged in the increasing order $\left(x_{1}<x_{2}<x_{3}<x_{4}<x_{5}\right)$. The probability that $x_{2}=7$ and $x_{4}=11$ is:
(A) $\frac{1}{136}$
(B) $\frac{1}{72}$
(C) $\frac{1}{68}$
(D) $\frac{1}{34}$

Answer (C)

Sol. Total cases $=18 C_{5}$
Favourable cases

$$
\begin{aligned}
& { }^{6} C_{1} \quad{ }^{3} C_{1} \quad{ }^{7} C_{1} \\
& \text { (Select } \left.x_{1}\right) \quad\left(\text { Select } x_{3}\right) \quad\left(\text { Select } x_{5}\right) \\
& P=\frac{6 \cdot 3 \cdot 7}{{ }^{18} C_{5}}=\frac{1}{68}
\end{aligned}
$$

17. Let X be a random variable having binomial distribution $B(7, p)$. If $P(X=3)=5 P(X=4)$, then the sum of the mean and the variance of X is:
(A) $\frac{105}{16}$
(B) $\frac{7}{16}$
(C) $\frac{77}{36}$
(D) $\frac{49}{16}$

Answer (C)

Sol. Given $P(X=3)=5 P(X=4)$ and $n=7$
$\Rightarrow \quad{ }^{7} C_{3} p^{3} q^{4}=5 \cdot{ }^{7} C_{4} p^{4} q^{3}$
$\Rightarrow q=5 p$ and also $p+q=1$
$\Rightarrow p=\frac{1}{6}$ and $q=\frac{5}{6}$
Mean $=\frac{7}{6}$ and variance $=\frac{35}{36}$
Mean + Variance $=\frac{7}{6}+\frac{35}{36}=\frac{77}{36}$
18. The value of $\cos \left(\frac{2 \pi}{7}\right)+\cos \left(\frac{4 \pi}{7}\right)+\cos \left(\frac{6 \pi}{7}\right)$ is equal to:
(A) -1
(B) $-\frac{1}{2}$
(C) $-\frac{1}{3}$
(D) $-\frac{1}{4}$

Answer (B)

Sol. $\cos \frac{2 \pi}{7}+\cos \frac{4 \pi}{7}+\cos \frac{6 \pi}{7}=\frac{\sin 3\left(\frac{\pi}{7}\right)}{\sin \frac{\pi}{7}} \cos \frac{\left(\frac{2 \pi}{7}+\frac{6 \pi}{7}\right)}{2}$

$$
=\frac{\sin \left(\frac{3 \pi}{7}\right) \cdot \cos \left(\frac{4 \pi}{7}\right)}{\sin \left(\frac{\pi}{7}\right)}
$$

$$
=\frac{2 \sin \frac{4 \pi}{7} \cos \frac{4 \pi}{7}}{2 \sin \frac{\pi}{7}}
$$

$$
=\frac{\sin \left(\frac{8 \pi}{7}\right)}{2 \sin \frac{\pi}{7}}=\frac{-\sin \frac{\pi}{7}}{2 \sin \frac{\pi}{7}}=\frac{-1}{2}
$$

19. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)+\cos ^{-1}\left(\cos \frac{7 \pi}{6}\right)+\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$ is equal to:
(A) $\frac{11 \pi}{12}$
(B) $\frac{17 \pi}{12}$
(C) $\frac{31 \pi}{12}$
(D) $-\frac{3 \pi}{4}$

Answer (A)

Sol. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)+\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)+\tan ^{-1}(-1)$
$=\frac{\pi}{3}+\frac{5 \pi}{6}-\frac{\pi}{4}$
$=\frac{4 \pi+10 \pi-3 \pi}{12}=\frac{11 \pi}{12}$
20. The boolean expression $(\sim(p \wedge q)) \vee q$ is equivalent to:
(A) $q \rightarrow(p \wedge q)$
(B) $p \rightarrow q$
(C) $p \rightarrow(p \rightarrow q)$
(D) $p \rightarrow(p \vee q)$

Answer (D)
Sol. Making truth table

p	q	$p \wedge q$	$\sim p \wedge q$	$(\sim(p \wedge q)) \vee q$	$p \vee q$	$p \rightarrow q$	$p \rightarrow(p \vee q)$
T	T	T	F	T	T	T	T
T	F	F	T	T	T	F	T
F	T	F	T	T	T	T	T
F	F	F	T	T	F	T	T
				Tautology			Tautology

$\therefore \quad(\sim(p \wedge q)) \vee q \equiv p \rightarrow(p \vee q)$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, $-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a function defined by $f(x)=\frac{2 e^{2 x}}{e^{2 x}+e}$.

Then $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots+f\left(\frac{99}{100}\right)$ is equal to \qquad .
Answer (99)
Sol. $f(x)=\frac{2 e^{2 x}}{e^{2 x}+e^{x}}$ and $f(1-x)=\frac{2 e^{2-2 x}}{e^{2-2 x}+e^{1-x}}$
$\therefore \quad \frac{f(x)+f(1-x)}{2}=1$
i.e. $f(x)+f(1-x)=2$
$\therefore \quad f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$
$=\sum_{x=1}^{49} f\left(\frac{x}{100}\right)+f\left(1-\frac{x}{100}\right)+f\left(\frac{1}{2}\right)$
$=49 \times 2+1=99$
2. If the sum of all the roots of the equation $e^{2 x}-11 e^{x}$ $-45 e^{-x}+\frac{81}{2}=0$ is $\log _{e} p$, then p is equal to \qquad .

Answer (45)

Sol. Let $e^{x}=t$ then equation reduces to

$$
\begin{align*}
& t^{2}-11 t-\frac{45}{t}+\frac{81}{2}=0 \\
& \Rightarrow 2 t^{3}-22 t^{2}+81 t-45=0 \tag{i}
\end{align*}
$$

if roots of $e^{2 x}-11 e^{x}-45 e^{-x}+\frac{81}{2}=0$ are α, β, γ then roots of (i) will be $e^{\alpha_{1}} e^{\alpha_{2}} e^{\alpha_{3}}$ using product of roots

$$
\begin{aligned}
& e^{\alpha_{1}+\alpha_{2}+\alpha_{3}}=45 \\
& \Rightarrow \quad \alpha_{1}+\alpha_{2}+\alpha_{3}=\ln 45 \Rightarrow p=45
\end{aligned}
$$

3. The positive value of the determinant of the matrix A, whose
$\operatorname{Adj}(\operatorname{Adj}(A))=\left(\begin{array}{ccc}14 & 28 & -14 \\ -14 & 14 & 28 \\ 28 & -14 & 14\end{array}\right)$, is \qquad -

Answer (14)

Sol. $|\operatorname{adj}(\operatorname{adj}(A))|=|A|^{2^{2}}=|A|^{4}$

$$
\begin{aligned}
\therefore & |A|^{4}=\left|\begin{array}{ccc}
14 & 28 & -14 \\
-14 & 14 & 28 \\
28 & -14 & 14
\end{array}\right| \\
& =(14)^{3}\left|\begin{array}{ccc}
1 & 2 & -1 \\
-1 & 1 & 2 \\
2 & -1 & 1
\end{array}\right| \\
& =(14)^{3}(3-2(-5)-1(-1)) \\
& |A|^{4}=(14)^{4} \Rightarrow|A|=14
\end{aligned}
$$

4. The number of ways, 16 identical cubes, of which 11 are blue and rest are red, can be placed in a row so that between any two red cubes there should be at least 2 blue cubes, is \qquad -.

Answer (56)
Sol. First we arrange 5 red cubes in a row and assume $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6} number of blue cubes between them

Here, $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=11$
and $x_{2}, x_{3}, x_{4}, x_{5} \geq 2$
So $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}=3$
No. of solutions $={ }^{8} C_{5}=56$
5. If the coefficient of x^{10} in the binomial expansion of $\left(\frac{\sqrt{x}}{5^{\frac{1}{4}}}+\frac{\sqrt{5}}{x^{\frac{1}{3}}}\right)^{60}$ is $5^{k \cdot I}$, where $l, k \in \mathbf{N}$ and $/$ is co-prime to 5 , then k is equal to \qquad -.

Answer (5)

Sol. $T_{r+1}={ }^{60} C_{r}\left(x^{\frac{1}{2}}\right)^{60-r}\left(x^{-\frac{1}{3}}\right)^{r}\left(5^{\frac{-1}{4}}\right)^{60-r}\left(5^{\frac{1}{2}}\right)^{r}$
for $x^{10} \frac{60-r}{2}-\frac{r}{3}=10$
$\Rightarrow 180-3 r-2 r=60$
$\Rightarrow r=24$
\therefore Coeff. of $x^{10}=\frac{{ }^{60} C_{24}}{5^{9}} 5^{12}=5^{k}$,
as $/$ and 5 are coprime
$k=3+$ exponent of 5 in ${ }^{60} C_{24}$
$=3+\left(\left[\frac{60}{5}\right]+\left[\frac{60}{5^{2}}\right]-\left[\frac{24}{5}\right]-\left[\frac{24}{5^{2}}\right]-\left[\frac{36}{5}\right]-\left[\frac{36}{5^{2}}\right]\right.$
$=3+(12+2-4-0-7-1)$
$=3+2=5$
6. Let
$A_{1}=\left\{(x, y):|x| \leq y^{2},|x|+2 y \leq 8\right\}$ and
$A_{2}=\{(x, y):|x|+|y| \leq k\}$. If 27(Area $\left.A_{1}\right)=$
5(Area $\left.A_{2}\right)$, then k is equal to :

Answer (6*)

Sol.

Required area (above x-axis)

$$
\begin{aligned}
A_{1} & =2 \int_{0}^{4}\left(\frac{8-x}{2}-\sqrt{x}\right) d x \\
& =2\left(16-\frac{16}{4}-\frac{8}{3 / 2}\right)=\frac{40}{3}
\end{aligned}
$$

and $A_{2}=4\left(\frac{1}{2} \cdot k^{2}\right)=2 k^{2}$

$\therefore \quad 27 \cdot \frac{40}{3}=5 \cdot\left(2 k^{2}\right)$
$\Rightarrow k=6$

* A_{1} is

Which tends to infinity if not mentioned above x-axis
7. If the sum of the first ten terms of the series $\frac{1}{5}+\frac{2}{65}+\frac{3}{325}+\frac{4}{1025}+\frac{5}{2501}+\ldots$ is $\frac{m}{n}$, where m and n are co-prime numbers, then $m+n$ is equal to
\qquad -.

Answer (276)

Sol. $T_{r}=\frac{r}{\left(2 r^{2}\right)^{2}+1}$

$$
\begin{aligned}
& =\frac{r}{\left(2 r^{2}+1\right)^{2}-(2 r)^{2}} \\
& =\frac{1}{4} \frac{4 r}{\left(2 r^{2}+2 r+1\right)\left(2 r^{2}-2 r+1\right)}
\end{aligned}
$$

$S_{10}=\frac{1}{4} \sum_{r=1}^{10}\left(\frac{1}{\left(2 r^{2}-2 r+1\right)}-\frac{1}{\left(2 r^{2}+2 r+1\right)}\right)$

$$
=\frac{1}{4}\left[1-\frac{1}{5}+\frac{1}{5}-\frac{1}{13}+\ldots .+\frac{1}{181}-\frac{1}{221}\right]
$$

$\Rightarrow S_{10}=\frac{1}{4} \cdot \frac{220}{221}=\frac{55}{221}=\frac{m}{n}$
$\therefore \quad m+n=276$
8. A rectangle R with end points of one of its sides as $(1,2)$ and $(3,6)$ is inscribed in a circle. If the equation of a diameter of the circle is $2 x-y+4=0$, then the area of R is \qquad .
Answer (16)

Sol.

As slope of line joining $(1,2)$ and $(3,6)$ is 2 given diameter is parallel to side
$\therefore \quad a=\sqrt{(3-1)^{2}+(6-2)^{2}}=\sqrt{20}$
and $b / 2=\frac{4}{\sqrt{5}} \Rightarrow b=\frac{8}{\sqrt{5}}$
Area $=a b=2 \sqrt{5} \cdot \frac{8}{\sqrt{5}}=16$.

Aakash

9. A circle of radius 2 unit passes through the vertex and the focus of the parabola $y^{2}=2 x$ and touches the parabola $y=\left(x-\frac{1}{4}\right)^{2}+\alpha$, where $\alpha>0$. Then $(4 \alpha-8)^{2}$ is equal to \qquad .

Answer (63)

Sol.

Let the equation of circle be
$x\left(x-\frac{1}{2}\right)+y^{2}+\lambda y=0$
$\Rightarrow x^{2}+y^{2}-\frac{1}{2} x+\lambda y=0$
Radius $=\sqrt{\frac{1}{16}+\frac{\lambda^{2}}{4}}=2$
$\Rightarrow \quad \lambda^{2}=\frac{63}{4}$
$\Rightarrow\left(x-\frac{1}{4}\right)^{2}+\left(y+\frac{\lambda}{2}\right)^{2}=4$
\because This circle and parabola $y-\alpha=\left(x-\frac{1}{4}\right)^{2}$ touch each other, so
$\alpha=-\frac{\lambda}{2}+2$
$\Rightarrow \quad \alpha-2=-\frac{\lambda}{2}$
$\Rightarrow(\alpha-2)^{2}=\frac{\lambda^{2}}{4}=\frac{63}{16}$
$\Rightarrow(4 \alpha-8)^{2}=63$
10. Let the mirror image of the point (a, b, c) with respect to the plane $3 x-4 y+12 z+19=0$ be $(a-6, \beta, \gamma)$. If $a+b+c=5$, then $7 \beta-9 \gamma$ is equal to
\qquad .

Answer (137)

Sol. $\frac{x-a}{3}=\frac{y-b}{-4}=\frac{z-c}{12}=\frac{-2(3 a-4 b+12 c+19)}{3^{2}+(-4)^{2}+12^{2}}$

$$
\frac{x-a}{3}=\frac{y-b}{-4}=\frac{z-c}{12}=\frac{-6 a+8 b-24 c-38}{169}
$$

$(x, y, z) \equiv(a-6, \beta, \gamma)$
$\frac{(a-6)-a}{3}=\frac{\beta-b}{-4}=\frac{\gamma-c}{12}=\frac{-6 a+8 b-24 c-38}{169}$
$\frac{\beta-b}{-4}=-2 \Rightarrow \beta=8+b$
$\frac{\gamma-c}{12}=-2 \Rightarrow \gamma=-24+c$
$\frac{-6 a+8 b-24 c-38}{169}=-2$
$\Rightarrow \quad 3 a-4 b+12 c=150$

$$
\begin{equation*}
a+b+c=5 \tag{1}
\end{equation*}
$$

$$
3 a+3 b+3 c=15 \quad \ldots(2)
$$

Applying (1) - (2)
$-7 b+9 c=135$
$7 b-9 c=-135$

$$
\begin{aligned}
& 7 \beta-9 \gamma=7(8+b)-9(-24+c) \\
& =56+216+7 b-9 c \\
& =56+216-135=137
\end{aligned}
$$

