JEE (MAIN)-2021 (Online) Phase-3

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS :

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper A, B, C consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part has two sections.
(i) Section-I: This section contains 20 multiple choice questions which have only one correct answer. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-II : This section contains 10 questions. In Section-II, attempt any five questions out of 10. There will be no negative marking for Section-II. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and there is no negative marking for wrong answer.

PART-A : PHYSICS

SECTION -I

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. An electron and proton are separated by a large distance. The electron starts approaching the proton with energy 3 eV . The proton captures the electron and forms a hydrogen atom in second excited state. The resulting photon is incident on a photosensitive metal of threshold wavelength $4000 \AA$. What is the maximum kinetic energy of the emitted photoelectron?
(1) 3.3 eV
(2) No photoelectron would be emitted
(3) 1.41 eV
(4) 7.61 eV

Answer (3)

Sol. $\phi_{0}=3.1 \mathrm{eV}$
$E_{1}=\frac{-13.6}{9} \mathrm{eV}$
$\therefore \mathrm{E}_{\text {photo }}=\left(3.0+\frac{13.6}{9}\right) \mathrm{eV}=4.511$
\therefore KE of photoelectron $=4.511-3.1=1.41 \mathrm{eV}$
2. Given below is the plot of a potential energy function $U(x)$ for a system, in which a particle is in one dimensional motion, while a conservative force $F(x)$ acts on it. Suppose that $E_{\text {mech }}=8 \mathrm{~J}$, the incorrect statement for this system is :

[where K.E. $=$ kinetic energy]
(1) At $x<x_{1}$, K.E. is smallest and the particle is moving at the slowest speed.
(2) At $x>x_{4}$, K.E. is constant throughout the region.
(3) At $x=x_{2}$, K.E. is greatest and the particle is moving at the fastest speed.
(4) At $x=x_{3}$, K.E. $=4 \mathrm{~J}$.

Answer (1)
Sol. At $x<x_{1}, \mathrm{KE}=0$
\Rightarrow Particle is at rest
3. A particle of mass M originally at rest is subjected to a force whose direction is constant but magnitude varies with time according to the relation

$$
\mathrm{F}=\mathrm{F}_{0}\left[1-\left(\frac{t-\mathrm{T}}{\mathrm{~T}}\right)^{2}\right]
$$

Where F_{0} and T are constants. The force acts only for the time interval 2 T . The velocity v of the particle after time 2 T is :
(1) $\frac{F_{0} T}{3 M}$
(2) $\frac{F_{0} T}{2 M}$
(3) $\frac{2 \mathrm{~F}_{0} \mathrm{~T}}{\mathrm{M}}$
(4) $\frac{4 \mathrm{~F}_{0} \mathrm{~T}}{3 \mathrm{M}}$

Answer (4)
Sol. $F=F_{0}\left[1-\left(\frac{t-T}{T}\right)^{2}\right]$

$$
\begin{aligned}
a & =\frac{\mathrm{F}_{0}}{\mathrm{M}}\left[1-\left(\frac{t-\mathrm{T}}{\mathrm{~T}}\right)^{2}\right] \\
\Rightarrow & \int_{0}^{v} d v=\int \frac{\mathrm{F}_{0}}{\mathrm{M} \times \mathrm{T}^{2}}\left[\mathrm{~T}^{2}-\left(t^{2}+\mathrm{T}^{2}-2 t \mathrm{~T}\right)\right] d t \\
\Rightarrow \mathrm{~V} & =\frac{\mathrm{F}_{0}}{\mathrm{MT}^{2}} \times\left[2 \mathrm{~T} \times \frac{t^{2}}{2}-\frac{t^{3}}{3}\right]_{0}^{2 \mathrm{~T}} \\
& =\frac{\mathrm{F}_{0}}{\mathrm{MT}^{2}} \times\left[\mathrm{T} \times 4 \mathrm{~T}^{2}-\frac{1}{3} \times 8 \mathrm{~T}^{3}\right] \\
& =\frac{\mathrm{F}_{0}}{\mathrm{MT}^{2}} \times \frac{4 \mathrm{~T}^{3}}{3}=\frac{4 \mathrm{~F}_{0} \mathrm{~T}}{3 \mathrm{M}}
\end{aligned}
$$

4. One mole of an ideal gas is taken through an adiabatic process where the temperature rises from $27^{\circ} \mathrm{C}$ to $37^{\circ} \mathrm{C}$. If the ideal gas is composed of polyatomic molecule that has 4 vibrational modes, which of the following is true?
$\left[\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right]$
(1) Work done by the gas is close to 332 J
(2) Work done on the gas is close to 332 J
(3) Work done by the gas is close to 582 J
(4) Work done on the gas is close to 582 J

Answer (4)
Sol. $\Delta \mathrm{T}=37-27=10^{\circ} \mathrm{C}$

$$
\begin{aligned}
& f=3+3+4 \times 2=14 \\
& \therefore \quad \gamma=1+\frac{2}{f}=1+\frac{2}{14}=\frac{8}{7} \\
& \therefore W=\frac{-n R \Delta T}{(\gamma-1)}=\frac{-1 \times 8.314 \times 10}{\left(\frac{1}{7}\right)}=-582 \mathrm{~J}
\end{aligned}
$$

5. Two Carnot engines A and B operate in series such that engine A absorbs heat at T_{1} and rejects heat to a sink at temperature T. Engine B absorbs half of the heat rejected by Engine A and rejects heat to the sink at T_{3}. When workdone in both the cases is equal, the value of T is
(1) $\frac{2}{3} T_{1}+\frac{1}{3} T_{3}$
(2) $\frac{1}{3} \mathrm{~T}_{1}+\frac{2}{3} \mathrm{~T}_{3}$
(3) $\frac{3}{2} T_{1}+\frac{1}{3} T_{3}$
(4) $\frac{2}{3} T_{1}+\frac{3}{2} T_{3}$

Answer (1)

Sol.

$$
W_{1}=Q_{1}-Q \Rightarrow \frac{W_{1}}{Q}=\frac{Q_{1}}{Q}-1
$$

$$
\begin{equation*}
=\frac{T_{1}}{T}-1 \tag{i}
\end{equation*}
$$

$$
W_{2}=\frac{Q}{2}-Q_{3} \Rightarrow \frac{W_{2}}{\frac{Q}{2}}=1-\frac{Q_{3}}{\frac{Q}{2}}
$$

$$
\begin{equation*}
\Rightarrow \frac{2 W_{2}}{Q}=1-\frac{T_{3}}{T} \tag{ii}
\end{equation*}
$$

From (i) and (ii)

$$
\begin{aligned}
& 2\left(\frac{T_{1}}{T}-1\right)=1-\frac{T_{3}}{T} \\
& \Rightarrow \frac{2 T_{1}}{T}+\frac{T_{3}}{T}=3 \\
& \Rightarrow T=\frac{2 T_{1}}{3}+\frac{T_{3}}{3}
\end{aligned}
$$

6. Find the truth table for the function Y of A and B represented in the following figure

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

(2)

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

A	B	Y
0	0	0
0	1	1
1	0	0
1	1	0

(4)

A	B	Y
0	0	1
0	1	0
1	0	1
1	1	1

Answer (4)

Sol.

A	B	Y
0	0	1
1	0	1
1	1	1
0	1	0

7. Match List I with List II.

List I

(a) Capacitance, C
(b) Permittivity of free space, ε_{0}
(c) Permeability of free space, μ_{0}
(d) Electric field, E

List II

(i) $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-3} \mathrm{~A}^{-1}$
(ii) $\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}$
(iii) $\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}$
(iv) $\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{-2}$

Choose the correct answer from the options given below
(1) (a) \rightarrow (iii), (b) \rightarrow (iv), (c) \rightarrow (ii), (d) \rightarrow (i)
(2) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (iv), (d) \rightarrow (i)
(3) (a) \rightarrow (iv), (b) \rightarrow (ii), (c) \rightarrow (iii), (d) \rightarrow (i)
(4) (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (ii), (d) \rightarrow (i)

Answer (2)
Sol. (a) $U=\frac{Q^{2}}{2 C}$

$$
\Rightarrow[\mathrm{C}]=\frac{\mathrm{I}^{2} \mathrm{t}^{2}}{\mathrm{U}}=\frac{\mathrm{A}^{2} \mathrm{~T}^{2}}{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}=\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]
$$

(b) $\left[\varepsilon_{0}\right] \rightarrow\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{4} \mathrm{~A}^{2}\right]$
(c) $\left[\mu_{0}\right] \rightarrow\left[\mathrm{MLT}^{-2} \mathrm{~A}^{-2}\right]$
(d) $\mathrm{W}=q \mathrm{E} \times d \Rightarrow \mathrm{E}=\frac{\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]}{[\mathrm{AT}][\mathrm{L}]}$
10. What will be the magnitude of electric field at point O as shown in figure? Each side of the figure is I and perpendicular to each other?

(1) $\frac{q}{4 \pi \varepsilon_{0}(2 l)^{2}}$
(2) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q}{2 l^{2}}(\sqrt{2})$
(3) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{l^{2}}$
(4) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{\left(2 l^{2}\right)}(2 \sqrt{2}-1)$

Answer (4)
Sol. $\overline{\mathrm{E}}_{0}=\overline{\mathrm{E}}_{\mathrm{A}}+\overline{\mathrm{E}}_{\mathrm{B}}+\overline{\mathrm{E}}_{\mathrm{C}}+\overline{\mathrm{E}}_{\mathrm{D}}+\overline{\mathrm{E}}_{\mathrm{E}}+\overline{\mathrm{E}}_{\mathrm{F}}+\overline{\mathrm{E}}_{\mathrm{G}}+\overline{\mathrm{E}}_{\mathrm{H}}$

$$
\begin{aligned}
& \overline{\mathrm{E}}_{\mathrm{A}}+\overline{\mathrm{E}}_{\mathrm{H}}=0 \\
& \begin{aligned}
&\left(\overrightarrow{\mathrm{E}}_{\mathrm{B}}+\stackrel{\rightharpoonup}{\mathrm{E}}_{\mathrm{G}}\right) \frac{k q}{l^{2}} \\
& \Rightarrow\left|\overline{\mathrm{E}}_{0}\right| \\
& \frac{k q}{l^{2}}\left(\overrightarrow{\mathrm{E}}_{\mathrm{D}}+\overline{\mathrm{E}}_{\mathrm{E}}\right) \\
& l^{2}\left(\overrightarrow{\mathrm{E}}_{\mathrm{C}}+\overline{\mathrm{E}}_{\mathrm{F}}\right) \\
&=\frac{k q}{l^{2}}-\frac{k q}{l^{2}} \sqrt{2}\left|\left(\frac{1}{2}-\sqrt{2}\right)\right| \\
&=\frac{k q}{2 I^{2}}(2 \sqrt{2}-1)
\end{aligned}
\end{aligned}
$$

11. Figure A and B show two long straight wires of circular cross-section (a and b with $a<b$), carrying current I which is uniformly distributed across the cross-section. The magnitude of magnetic field B varies with radius r and can be represented as:

Fig. A

Fig. B
(1)

(2)

(3)

(4)

Answer (1)
Sol. For inside point
$B \cdot 2 \pi r=\frac{\mu_{0} \mid \cdot \pi r^{2}}{\pi a^{2}}$

$B=\frac{\mu_{0} l r}{2 \pi a^{2}}$
For outside point
B- $2 \pi r=\mu_{0}$ I
$B=\frac{\mu_{0} l}{2 \pi r}$
For fig. A $\quad \mathrm{B}(\mathrm{at} r=a)=\frac{\mu_{0} l}{2 \pi a}$
For fig. B

$$
\mathrm{B}(\text { at } r=b)=\frac{\mu_{0} \mathrm{I}}{2 \pi b}
$$

So option (1) is correct.
12. Two identical particles of mass 1 kg each go round a circle of radius R , under the action of their mutual gravitational attraction. The angular speed of each particle is:
(1) $\sqrt{\frac{G}{2 R^{3}}}$
(2) $\sqrt{\frac{2 G}{R^{3}}}$
(3) $\frac{1}{2 R} \sqrt{\frac{1}{G}}$
(4) $\frac{1}{2} \sqrt{\frac{G}{R^{3}}}$

Answer (4)

Sol.

$$
\frac{G M^{2}}{(2 R)^{2}}=M \omega^{2} R
$$

$$
\frac{G M}{4 R^{3}}=\omega^{2}
$$

$$
\Rightarrow \omega=\frac{1}{2} \sqrt{\frac{G M}{R^{3}}}
$$

$$
=\frac{1}{2} \sqrt{\frac{G}{R^{3}}}
$$

Option 4 is correct.
13. Consider the following statements
A. Atoms of each element emit characteristics spectrum.
B. According to Bohr's Postulate, an electron in a hydrogen atom, revolves in a certain stationary orbit.
C. The density of nuclear matter depends on the size of the nucleus.
D. A free neutron is stable but a free proton decay is possible.
E. Radioactivity is an indication of the instability of nuclei.
Choose the correct answer from the options given below
(1) B and D only
(2) A, B and E only
(3) A, B, C, D and E
(4) A, C and E only

Answer (2)

Sol. Density of nuclear matter is independent of size. Free neutron can decay
$n \rightarrow P+e$
As $m_{n}>m_{p}+m_{e}$
So, A, B and E are correct
option 2 is correct
14. An automobile of mass ' m ' accelerates starting from origin and initially at rest, while the engine supplies constant power P. The position is given as a function of time by
(1) $\left(\frac{9 \mathrm{P}}{8 m}\right)^{\frac{1}{2}} t^{\frac{3}{2}}$
(2) $\left(\frac{8 \mathrm{P}}{9 m}\right)^{\frac{1}{2}} t^{\frac{3}{2}}$
(3) $\left(\frac{8 \mathrm{P}}{9 m}\right)^{\frac{1}{2}} t^{\frac{2}{3}}$
(4) $\left(\frac{9 m}{8 \mathrm{P}}\right)^{\frac{1}{2}} t^{\frac{3}{2}}$

Answer (2)
Sol. Power $=P$
So, K.E $=\mathrm{P} t$
$\frac{1}{2} m v^{2}=P t$
$v^{2}=\frac{2 \mathrm{P}}{m} t$
$v=\sqrt{\frac{2 \mathrm{P}}{m}} t^{\frac{1}{2}}$
$d x=\sqrt{\frac{2 \mathrm{P}}{m}} t^{\frac{1}{2}} d t$
$\int d x=\sqrt{\frac{2 \mathrm{P}}{m}} \int_{0}^{\mathrm{t}} \mathrm{t}^{1} d t$
$x=\sqrt{\frac{2 \mathrm{P}}{m}}{\frac{t^{3 / 2}}{3 / 2}}^{3}$
$x=\left(\frac{8 \mathrm{P}}{9 m}\right)^{\frac{1}{2}} t^{3 / 2}$
15. An object of mass 0.5 kg is executing simple harmonic motion. Its amplitude is 5 cm and time period (T) is 0.2 s . What will be the potential energy of the object at an instant $t=\frac{T}{4} \mathrm{~s}$ starting from mean position. Assume that the initial phase of the oscillation is zero
(1) $6.2 \times 10^{-3} \mathrm{~J}$
(2) $6.2 \times 10^{3} \mathrm{~J}$
(3) 0.62 J
(4) $1.2 \times 10^{3} \mathrm{~J}$

Answer (3)
Sol. $m=\frac{1}{2} \mathrm{~kg} \quad \mathrm{~A}=5 \mathrm{~cm}, \mathrm{~T}=0.2 \mathrm{~s}$ $x=A \sin \omega t$
$P . E=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2} \sin \omega t$
$=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2} \sin \frac{2 \pi}{\mathrm{~T}} \times \frac{\mathrm{T}}{4}$
$=\frac{1}{2} m \omega^{2} \mathrm{~A}^{2}$
$=\frac{1}{2} \times \frac{1}{2} \times \frac{4 \pi^{2}}{(0.2)^{2}} \times\left(\frac{5}{100}\right)^{2}$
$=\frac{\pi^{2}}{16}$
$\approx 0.62 \mathrm{~J}$
16. A physical quantity ' y ' is represented by the formula $y=m^{2} r^{-4} g^{x} I^{-\frac{3}{2}}$. If the percentage errors found in y, m, r, I and g are 18, 1, 0.5, 4 and p respectively, then find the value of x and p.
(1) $\frac{16}{3}$ and $\pm \frac{3}{2}$
(2) 8 and ± 2
(3) 4 and ± 3
(4) 5 and ± 2

Answer (1)

Sol. $\frac{\Delta y}{y}=\frac{2 \Delta m}{m}+\frac{4 \Delta r}{r}+\frac{x \Delta g}{g}+\frac{3}{2} \frac{\Delta l}{l}$
$18=2 \times 1+4 \times 0.5+\frac{3}{2} \times 4+p x$
$8=p x$
As per given option, option 1 is correct match
†brvos
17. A simple pendulum of mass ' m ', length ' l ' and charge ' $+q$ ' suspended in the electric field produced by two conducting parallel plates as shown. The value of deflection of pendulum in equilibrium position will be

(1) $\tan ^{-1}\left[\frac{q}{m g} \times \frac{\mathrm{C}_{2}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)(d-t)}\right]$
(2) $\tan ^{-1}\left[\frac{q}{m g} \times \frac{\mathrm{C}_{1}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)(d-t)}\right]$
(3) $\tan ^{-1}\left[\frac{q}{m g} \times \frac{\mathrm{C}_{1}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)(d-t)}\right]$
(4) $\tan ^{-1}\left[\frac{q}{m g} \times \frac{\mathrm{C}_{2}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)(d-t)}\right]$

Answer (Bonus)

Sol. Potential across capacitor, $C_{1}=\frac{C_{2}\left(V_{1}+V_{2}\right)}{\left(C_{1}+C_{2}\right)}$

Field in the region of $C_{1}=\frac{C_{2}\left(V_{1}+V_{2}\right)}{\left(C_{1}+C_{2}\right)(d-t)}$
$\mathrm{T} \cos \theta=m g$
$\mathrm{T} \sin \theta=q \mathrm{E}$
$\tan \theta=\frac{q \mathrm{E}}{m g}$

$\tan \theta=\frac{q \mathrm{C}_{2}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)}{\left(\mathrm{C}_{1}+\mathrm{C}_{2}\right)(d-t) m g}$
In the given problem C_{1} and C_{2} is not mentioned, so option (3) and (4) both can be correct.
18. The planet Mars has two moons, if one of them has a period 7 hours, 30 minutes and an orbital radius of $9.0 \times 10^{3} \mathrm{~km}$. Find the mass of Mars.
$\left\{\right.$ Given $\left.\frac{4 \pi^{2}}{\mathrm{G}}=6 \times 10^{11} \mathrm{~N}^{-1} \mathrm{~m}^{-2} \mathrm{~kg}^{2}\right\}$
(1) $3.25 \times 10^{21} \mathrm{~kg}$
(2) $5.96 \times 10^{19} \mathrm{~kg}$
(3) $6.00 \times 10^{23} \mathrm{~kg}$
(4) $7.02 \times 10^{25} \mathrm{~kg}$

Answer (3)
Sol. $m \omega^{2} r=\frac{\mathrm{GM} m}{r^{2}}$

$$
\begin{aligned}
& \omega^{2}=\frac{\mathrm{GM}}{r^{3}} \\
& \frac{4 \pi^{2}}{T^{2}}=\frac{\mathrm{GM}}{r^{3}} \\
& T^{2}=\frac{4 \pi^{2} r^{3}}{\mathrm{GM}} \\
& T=2 \pi \sqrt{\frac{r^{3}}{\mathrm{GM}}} \\
& \mathrm{M}=\frac{4 \pi^{2} r^{3}}{\mathrm{GT}^{2}}=\frac{6 \times 10^{11} \times 729 \times 10^{18}}{\mathrm{~T}^{2}} \\
& \mathrm{M}=6.0 \times 10^{23} \mathrm{~kg}
\end{aligned}
$$

19. The resistance of a conductor at $15^{\circ} \mathrm{C}$ is 16Ω and at $100^{\circ} \mathrm{C}$ is 20Ω. What will be the temperature coefficient of resistance of the conductor?
(1) $0.010^{\circ} \mathrm{C}^{-1}$
(2) $0.003^{\circ} \mathrm{C}^{-1}$
(3) $0.033^{\circ} \mathrm{C}^{-1}$
(4) $0.042^{\circ} \mathrm{C}^{-1}$

Answer (2)

Sol. $R_{t}=R_{0}[1+\alpha(\Delta T)]$

$$
\begin{aligned}
& 20=16[1+\alpha(85)] \\
& \alpha=\frac{4}{16 \times 85} \\
& =0.003^{\circ} \mathrm{C}^{-1}
\end{aligned}
$$

20. A 100Ω resistance, a $0.1 \mu \mathrm{~F}$ capacitor and an inductor are connected in series across a 250 V supply at variable frequency. Calculate the value of inductance of inductor at which resonance will occur. Given that the resonant frequency is 60 HZ .
(1) 70.3 mH
(2) 70.3 H
(3) $7.03 \times 10^{-5} \mathrm{H}$
(4) 0.70 H

Answer (2)
Sol. $\omega=\frac{1}{\sqrt{\text { LC }}}$

$$
\begin{aligned}
& L=\frac{1}{\omega^{2} C}=\frac{1}{[120 \pi]^{2} 10^{-7}} \\
& L=\frac{10^{7}}{120^{2} \pi^{2}} \mathrm{H} \\
& =70.3 \mathrm{H}
\end{aligned}
$$

SECTION - II

Numerical Value Type Questions: This section contains 10 questions. In Section II, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30$, $30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. The maximum amplitude for an amplitude modulated wave is found to be 12 V while the minimum amplitude is found to be 3 V . The modulation index is $0.6 x$ where x is \qquad .

Answer (1)

Sol. $\mathrm{M}+\mathrm{A}=12$

$$
\begin{aligned}
A-M & =3 \\
\Rightarrow \quad A & =\frac{15}{2} \text { and } M=\frac{9}{2} \\
m & =\frac{M}{A}=\frac{9}{15}=0.6
\end{aligned}
$$

2. The difference in the number of waves when yellow light propagates through air and vacuum columns of the same thickness is one. The thickness of the air column is \qquad mm .
[Refractive index of air $=1.0003$, wavelength of yellow light in vacuum $=6000 \AA$]
Answer (2)
Sol. $\Delta n=\frac{d}{\lambda_{1}}-\frac{d}{\lambda_{2}}$

$$
\begin{aligned}
1= & \frac{(\mu-1) d}{\lambda_{0}} \\
\Rightarrow d & =6 \times 10^{-7} / .0003 \\
& =2 \times 10^{-3} \mathrm{~m}
\end{aligned}
$$

3. The $\mathrm{K}_{\alpha} \mathrm{X}$-ray of molybdenum has wavelength 0.071 nm . If the energy of a molybdenum atom with a K electron knocked out is 27.5 keV , the energy of this atom when an L electron is knocked out will be
\qquad keV . (Round off to the nearest integer)
$\left[h=4.14 \times 10^{-15} \mathrm{eVs}, \mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}\right]$
Answer (10)
Sol. $\lambda_{\mathrm{K}_{\alpha}}=\frac{h c}{\mathrm{E}_{\mathrm{K}}-\mathrm{E}_{\mathrm{L}}}$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{L}} & =\mathrm{E}_{\mathrm{K}}-\frac{h c}{\lambda_{\mathrm{K}_{\alpha}}} \\
& =27.5 \times 10^{3}-\frac{4.14 \times 10^{-15} \times 3 \times 10^{8}}{0.071 \times 10^{-9}} \mathrm{eV} \\
& =27.5-17.49 \mathrm{KeV} \\
& =10 \mathrm{KeV}
\end{aligned}
$$

4. In the given figure the magnetic flux through the loop increases according to the relation $\phi_{\beta}(t)=10 t^{2}+20 t$, where ϕ_{β} is in milliwebers and t is in seconds.

The magnitude of current through $\mathrm{R}=2 \Omega$ resistor at $t=5 \mathrm{~s}$ is \qquad mA .

Answer (60)
Sol. $\quad \varepsilon=\left|\frac{d \phi}{d t}\right|=(20 t+20) \times 10^{-3}$

$$
i=\frac{\varepsilon}{R}=\frac{(20 \times 5+20)}{2} \times 10^{-3}=60 \mathrm{~mA}
$$

5. A particle executes simple harmonic motion represented by displacement function as
$x(t)=A \sin (\omega t+\phi)$
If the position and velocity of the particle at $t=0 \mathrm{~s}$ are 2 cm and $2 \omega \mathrm{~cm} \mathrm{~s}^{-1}$ respectively, then its amplitude is $x \sqrt{2} \mathrm{~cm}$ where the value of x is

Answer (2)
Sol. \mid A $\sin \phi \mid=2$

$$
\begin{aligned}
& |\omega \mathrm{A} \cos \phi|=2 \omega \\
& \Rightarrow|\tan \phi|=1 \Rightarrow \phi=\frac{\pi}{4} \\
& x(0)=\mathrm{A} \sin \left(\frac{\pi}{4}\right)=2 \mathrm{~cm} \\
& \Rightarrow \mathrm{~A}=2 \sqrt{2} \mathrm{~cm} \\
& \Rightarrow x=2
\end{aligned}
$$

6. A swimmer wants to cross a river from point A to point B . Line AB makes an angle of 30° with the flow of river. Magnitude of velocity of the swimmer is same as that of the river. The angle θ with the line $A B$ should be \qquad ${ }^{\circ}$, so that the swimmer reaches point B.

Answer (30)

Sol.

For equal magnitude v_{s} and v_{R}

$$
\begin{aligned}
& \alpha=\theta \\
& \Rightarrow \alpha=30^{\circ}
\end{aligned}
$$

7. The water is filled upto height of 12 m in a tank having vertical sidewalls. A hole is made in one of the walls at a depth ' h ' below the water level. The value of ' h ' for which the emerging stream of water strikes the ground at the maximum range is \qquad m.

Answer (6)

Sol.

For maximum range
$h=H-h$
$h=\frac{H}{2}$
$=\frac{12}{2} \mathrm{~m}=6 \mathrm{~m}$
8. For the circuit shown, the value of current at time $t=3.2 \mathrm{~s}$ will be \qquad A.

Figure 1
Figure 2
[Voltage distribution $\mathrm{V}(t)$ is shown by Fig. (1) and the circuit is shown in Fig. (2)]

Answer (1)

Sol. $V(3.2)=6 \mathrm{~V}$

$$
I=\frac{6-5}{1} A=1 A
$$

9. In the given figure, two wheels P and Q are connected by a belt B. The radius of P is three times as that of Q. In case of same rotational kinetic energy, the ratio of rotational inertias $\left(\frac{I_{1}}{I_{2}}\right)$ will be $x: 1$. The value of x will be \qquad -

Answer (9)
Sol. $\frac{1}{2} I_{1} \omega_{1}^{2}=\frac{1}{2} I_{2} \omega_{2}^{2}$

$$
\begin{aligned}
& \frac{1}{2} I_{1}\left(\frac{v}{R_{1}}\right)^{2}=\frac{1}{2} I_{2}\left(\frac{v}{R_{2}}\right)^{2} \\
& \frac{I_{1}}{I_{2}}=\left(\frac{R_{2}}{R_{1}}\right)^{2}=9
\end{aligned}
$$

10. A small block slides down from the top of hemisphere of radius $\mathrm{R}=3 \mathrm{~m}$ as shown in the figure. The height ' h ' at which the block will lose contact with the surface of the sphere is \qquad m.
(Assume there is no friction between the block and the hemisphere)

Answer (2)

Sol.

$m g \cos \theta=\frac{m v^{2}}{\mathrm{R}}$
$\frac{1}{2} m v^{2}=m g \mathrm{R}(1-\cos \theta)$
On solving $\cos \theta=\frac{2}{3}$
$h=\frac{2 \mathrm{R}}{3}=2 \mathrm{~m}$

PART-B : CHEMISTRY

SECTION -I

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. What is A in the following reaction?

(ii) ${ }^{\ominus} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ (Major Product)
(1)

(2)

(3)

(4)

Answer (4)

Sol.

(Major product)
2. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason \mathbf{R}.

Assertion A: $\mathrm{SO}_{2}(\mathrm{~g})$ is adsorbed to a larger extent than $\mathrm{H}_{2}(\mathrm{~g})$ on activated charcoal.

Reason \mathbf{R} : $\mathrm{SO}_{2}(\mathrm{~g})$ has a higher critical temperature than $\mathrm{H}_{2}(\mathrm{~g})$.

In the light of the above statements, choose the most appropriate answer from the options given below.
(1) \mathbf{A} is correct but \mathbf{R} is not correct
(2) Both \mathbf{A} and \mathbf{R} are correct but \mathbf{R} is not the correct explanation of \mathbf{A}
(3) \mathbf{A} is not correct but \mathbf{R} is correct
(4) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}

Answer (4)

Sol. SO_{2} has higher mass and larger surface area. It has higher critical temperature than H_{2} and that's why it adsorbed to a larger extent.
3. If the Thompson model of the atom was correct, then the result of Rutherford's gold foil experiment would have been :
(1) All α-particles get bounced back by 180°
(2) α-particles pass through the gold foil deflected by small angles and with reduced speed
(3) α-particles are deflected over a wide range of angles
(4) All of the α-particles pass through the gold foil without decrease in speed

Answer (2)

Sol. According to thompson model of atom, the mass of each gold atom is uniformly distributed. And as the α-particles had enough energy to pass directly through such mass, it slowed down with small changes in its directions.
4.

Consider the above reaction, and choose the correct statement :
(1) Both compounds \mathbf{A} and \mathbf{B} are formed equally
(2) Compound \mathbf{A} will be the major product
(3) Compound \mathbf{B} will be the major product
(4) The reaction is not possible in acidic medium

Sol.

5. To an aqueous solution containing ions such as $\mathrm{Al}^{3+}, \mathrm{Zn}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Ni}^{2+}, \mathrm{Ba}^{2+}$ and Cu^{2+} was added conc. HCl , followed by $\mathrm{H}_{2} \mathrm{~S}$.

The total number of cations precipitated during this reaction is/are :
(1) 2
(2) 1
(3) 3
(4) 4

Answer (2)
Sol. Only group I and group II cations will get precipitated.
\therefore Only Cu^{2+} gets precipitated here.
6. The CORRECT order of first ionisation enthalpy is:
(1) $\mathrm{Al}<\mathrm{Mg}<\mathrm{S}<\mathrm{P}$
(2) $\mathrm{Mg}<\mathrm{Al}<\mathrm{P}<\mathrm{S}$
(3) $\mathrm{Mg}<\mathrm{S}<\mathrm{Al}<\mathrm{P}$
(4) $\mathrm{Mg}<\mathrm{Al}<\mathrm{S}<$ P

Answer (1)

Sol. All elements belong to $3^{\text {rd }}$ period in periodic table.
$\mathrm{Al}<\underbrace{\mathrm{Mg}}<\mathrm{S}<\mathrm{P}$
\qquad

$$
3 s^{2} 3 p^{3}
$$

Half filled configuration
7. Given below are two statements :

Statement I : Penicillin is a bacteriostatic type antibiotic.

Statement II : The general structure of Penicillin is

Choose the correct option :
(1) Statement I is incorrect but Statement II is true
(2) Statement I is correct but Statement II is false
(3) Both Statement I and Statement II are true
(4) Both Statement I and Statement II are false

Answer (1)
Sol. Penicillin is a bactericidal antibiotics.
8. The addition of silica during the extraction of copper from its sulphide ore
(1) Converts iron oxide into iron silicate
(2) Converts copper sulphide into copper silicate
(3) Reduces copper sulphide into metallic copper
(4) Reduces the melting point of the reaction mixture

Answer (1)

Sol. Silica converts iron oxide into iron silicate.
$\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$
9. Given below are two statements :

Statement I : $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-},\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ and $\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-}$ are $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridised.
Statement II : $\left[\mathrm{MnCl}_{6}\right]^{3-}$ and $\left[\mathrm{FeF}_{6}\right]^{3-}$ are paramagnetic and have 4 and 5 unpaired electrons, respectively.
In the light of the above statements, choose the correct answer from the options given below:
(1) Both statement I and statement II are true
(2) Statement I is correct but statement II is false
(3) Both statement I and statement II are false
(4) Statement I is incorrect but statement II is true

Answer (1)
Sol. $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$
$\mathrm{Mn}^{3+} \longrightarrow 3 d^{4} 4 s^{0}$
CN^{-}is a strong field ligand.

$\left[\mathrm{Co}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]^{3-} \longrightarrow d^{2} s p^{3}$ (0 unpaired electron)
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-} \longrightarrow d^{2} s p^{3}$ (1 unpaired electron)
Cl^{-}and F^{-}are weak field.
So, $\left[\mathrm{MnCl}_{6}\right]^{3-} \longrightarrow s p^{3} d^{2}$ (4 unpaired electron)
$\left[\mathrm{FeF}_{6}\right]^{3-} \longrightarrow s p^{3} d^{2}$ (5 unpaired electron)
10. Given below are two statements:

Statement I: Hyperconjugation is a permanent effect.
Statement II : Hyperconjugation in ethyl cation $\left(\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}\right)$ involves the overlapping of $\mathrm{C}_{\mathrm{sp}}{ }^{2}-\mathrm{H}_{1 \mathrm{~s}}$ bond with empty 2 p orbital of other carbon.
Choose the correct option:
(1) Both statement I and statement II are true
(2) Statement I is incorrect but statement II is true
(3) Statement I is correct but statement II is false
(4) Both statement I and statement II are false

Answer (3)
Sol. Hyperconjugation, inductive and mesomeric effect are permanent electronic effect.

Overlapping of $\mathrm{C}_{s p^{3}}-\mathrm{H}_{1 s}$ bond with empty $2 p$ orbital of other carbon takes place.
11. Number of $\mathrm{Cl}=\mathrm{O}$ bonds in chlorous acid, chloric acid and perchloric acid respectively are
(1) 1, 2 and 3
(2) 4,1 and 0
(3) 1, 1 and 3
(4) 3, 1 and 1

Answer (1) (Bonus*)

Sol.

12. Match List-I with List-II :

List-I

(a) Li
(b) Na
(c) K
(d) Cs

List-II

(i) Photoelectric cell
(ii) Absorbent of CO_{2}
(iii) Coolant in fast breeder nuclear reactor
(iv) Treatment of cancer
(v) Bearings for motor engines

Choose the correct answer from the options given below :
(1) (a)-(iv), (b)-(iii), (c)-(i), (d)-(ii)
(2) (a)-(v), (b)-(iii), (c)-(ii), (d)-(i)
(3) (a)-(v), (b)-(i), (c)-(ii), (d)-(iv)
(4) (a)-(v), (b)-(ii), (c)-(iv), (d)-(i)

Answer (2)
Sol. Li - (v) bearing for motor engines
$\mathrm{Na}-$ (iii) coolant in fast breeder reactor
$\mathrm{K}-$ (ii) absorbent of CO_{2}
Cs - (i) Photoelectric cell
13.

Consider the above reaction and identify " Y ".
(1) $-\mathrm{CH}_{2} \mathrm{NH}_{2}$
(2) -CHO
(3) -COOH
(4) $-\mathrm{CONH}_{2}$

Answer (2)

Sol. $\mathrm{R}-\mathrm{CN} \frac{\text { i) DIBAL }-\mathrm{H}}{\text { ii) } \mathrm{H}_{2} \mathrm{O}} \mathrm{R}-\mathrm{CHO}$
14. The correct sequence of correct reagents for the following transformation is

(1) (i) $\mathrm{Fe}, \mathrm{HCl}$
(ii) $\mathrm{NaNO}_{2}, \mathrm{HCl}, 0^{\circ} \mathrm{C}$
(iii) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(iv) $\mathrm{Cl}_{2}, \mathrm{FeCl}_{3}$
(2) (i) $\mathrm{Fe}, \mathrm{HCl}$
(ii) $\mathrm{Cl}_{2}, \mathrm{HCl}$
(iii) $\mathrm{NaNO}_{2}, \mathrm{HCl}, 0^{\circ} \mathrm{C}$
(iv) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(3) (i) $\mathrm{Cl}_{2}, \mathrm{FeCl}_{3}$
(ii) $\mathrm{NaNO}_{2}, \mathrm{HCl}, 0^{\circ} \mathrm{C}$
(iii) $\mathrm{Fe}, \mathrm{HCl}$
(iv) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(4) (i) $\mathrm{Cl}_{2}, \mathrm{FeCl}_{3}$
(ii) $\mathrm{Fe}, \mathrm{HCl}$
(iii) $\mathrm{NaNO}_{2}, \mathrm{HCl}, 0^{\circ} \mathrm{C}$
(iv) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$

Answer (4)

Sol.

15. Select the correct statements
(A) Crystalline solids have long range order.
(B) Crystalline solids are isotropic.
(C) Amorphous solids are sometimes called pseudo solids.
(D) Amorphous solids soften over a range of temperatures
(E) Amorphous solids have a definite heat of fusion.

Choose the most appropriate answer from the options given below
(1) (A), (C), (D) only
(2) (C), (D) only
(3) (B), (D) only
(4) (A), (B), (E) only

Answer (1)
Sol. Crystalline solids are anisotropic and having long range order.
Amorphous solids

- Pseudo solids.
- Softer over a range of temperature.
- do not have definite heat of fusion.

16. Compound A gives D-Galactose and D-Glucose on hydrolysis. The compound A is
(1) Amylose
(2) Lactose
(3) Maltose
(4) Sucrose

Answer (2)
Sol. $\underset{\text { (Reducing sugar) }}{\text { Lactose }} \xrightarrow{\text { hydrolysis }} \beta-D-$ galactose
$+\beta-\mathrm{D}-$ glucose
17.
 (Major Product)
Consider the above reaction, the major product "P" formed is,
(1)

(2)

(3)

(4)

Answer (1)

Sol.
 $\xrightarrow[-\mathrm{H}_{2} \mathrm{O}]{\mathrm{H}^{+}}$

(Major)
18. Match List-I with List-II
List-I
(compound)
(a) Carbon monoxide
(b) Sulphur dioxide
(c) Polychlorinated biphenyls
(d) Oxides of nitrogen (iv) Stiffness of flower buds Choose the correct answer from the options given below :
(1) (a) - (i), (b) - (ii), (c) - (iii), (d) - (iv)
(2) (a) - (iii), (b) - (iv), (c) - (i), (d) - (ii)
(3) (a) - (iv), (b) - (i), (c) - (iii), (d) - (ii)
(4) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

Answer (2)
Sol. (a) CO
(iii) Haemoglobin
(b) SO_{2} \qquad (iv) Stiffness to flower buds
(c) Polychlorinated biphenyls
...(i) Carcinogenic
(d) Oxides of nitrogen
...(ii) Metabolized by pyrus plants
19. Which one of the following set of elements can be detected using sodium fusion extract?
(1) Phosphorous, Oxygen, Nitrogen, Halogens
(2) Nitrogen, Phosphorous, Carbon, Sulfur
(3) Sulfur, Nitrogen, Phosphorous, Halogens
(4) Halogens, Nitrogen, Oxygen, Sulfur

Answer (3)

Sol. Lassaigne's test - Sodium fusion extract

Used for detection of $\mathrm{N}, \mathrm{S}, \mathrm{X}, \mathrm{P}$
X = halogen
20. The number of neutrons and electrons, respectively, present in the radiaoctive isotope of hydrogen is
(1) 1 and 1
(2) 2 and 1
(3) 2 and 2
(4) 3 and 1

Answer (2)

Sol. Radioactive isotope of hydrogen is Tritium

$$
\begin{aligned}
\text { Tritium } \rightarrow & 1 \text { proton } \\
& 1 \text { electron } \\
& 2 \text { neutron }
\end{aligned}
$$

SECTION - II

Numerical Value Type Questions: This section contains 10 questions. In Section II, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30$, $30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. The dihedral angle in staggered form of Newman projection of 1, 1, 1-Trichloro ethane is degree. (Round off to the Nearest Integer).

Answer (60)

Sol. dihedral angle is 60°
2. The equilibrium constant for the reaction

$$
\mathrm{A}(\mathrm{~s}) \rightleftharpoons \mathrm{M}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})
$$

is $\mathrm{K}_{\mathrm{P}}=4$. At equilibrium, the partial pressure of O_{2} is \qquad atm. (Round off to the Nearest Integer).

Answer (16)

Sol. $A(s) \rightleftharpoons M(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{P}}=\left(\mathrm{P}_{\mathrm{O}_{2}}\right)^{1 / 2}=4$
$\mathrm{P}_{\mathrm{O}_{2}}=16$
3. In a solvent 50% of an acid HA dimerizes and the rest dissociates. The van't Hoff factor of the acid is
\qquad $\times 10^{-2}$. (Round off to the Nearest Integer).

Answer (125)

Sol. $\mathrm{i}=\frac{\text { total number of particle after dissociation / association }}{\text { total number of particle before dissociation / association }}$
let 'a' is total moles of HA

4. When 400 mL of $0.2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is mixed with 600 mL of 0.1 M NaOH solution, the increase in temperature of the final solution is \qquad $\times 10^{-2} \mathrm{~K}$. (Round off to the Nearest Integer).
[Use : $\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}$:

$$
\Delta_{\gamma} \mathrm{H}=-57.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Specific heat of $\mathrm{H}_{2} \mathrm{O}=4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$
Density of $\mathrm{H}_{2} \mathrm{O}=1.0 \mathrm{~g} \mathrm{~cm}^{-3}$
Assume no change in volume of solution on mixing.]

Answer (82)

Sol. millimoles of $\mathrm{H}_{2} \mathrm{SO}_{4}=400 \times 0.2=80$
meq of $\mathrm{NaOH}=600 \times 0.1=60$

30 mmoles of product is formed.
$\mathrm{H}^{+}+\mathrm{OH}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}=-57.1 \mathrm{~kJ} / \mathrm{mol}$.
Moles of $\mathrm{H}^{+} \& \mathrm{OH}^{-}$neutralised $=\frac{60}{1000}$
$\therefore \quad \Delta \mathrm{H}=\frac{60}{1000} \times(-57.1)=3426 \mathrm{~J} / \mathrm{mol}$
Total volume $=1 \mathrm{~L}, \quad$ Mass $=1000 \mathrm{~g}$
$1000 \times 4.18 \times \Delta \mathrm{T}=3426$
$\Delta \mathrm{T}=0.8196$

$$
=81.9 \times 10^{-2} \mathrm{~K} \approx 82 \times 10^{-2} \mathrm{~K}
$$

5. For the cell $\mathrm{Cu}(\mathrm{s}) \mid \mathrm{Cu}^{2+}(\mathrm{aq})(0.1 \mathrm{M}) \| \mathrm{Ag}^{+}(\mathrm{aq})$ $(0.01 \mathrm{M}) \mid \mathrm{Ag}(\mathrm{s})$ the cell potential $\mathrm{E}_{1}=0.3095 \mathrm{~V}$
For the cell $\mathrm{Cu}(\mathrm{s}) \mid \mathrm{Cu}^{2+}(\mathrm{aq})(0.01 \mathrm{M}) \| \mathrm{Ag}^{+}(\mathrm{aq})$ $(0.001 \mathrm{M}) \mathrm{Ag}(\mathrm{s})$ the cell potential $=$ \qquad $\times 10^{-2} \mathrm{~V}$. (Round off to the Nearest Integer).
[Use : $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.059$]
Answer (28)

Sol.

$$
\begin{aligned}
& \mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\
& \frac{2 \mathrm{e}^{-}+2 \mathrm{Ag}^{+} \longrightarrow 2 \mathrm{Ag}}{2 \mathrm{Ag}^{+}+\mathrm{Cu} \longrightarrow \mathrm{Cu}^{2+}+2 \mathrm{Ag}} \\
& \mathrm{E}_{1}=0.3095=\mathrm{E}^{\circ}-\frac{\mathrm{RT}}{\mathrm{nF}} \ln \left(\frac{\left[\mathrm{Cu}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}\right) \\
& 0.3095=\mathrm{E}^{\circ}-\frac{0.059}{2} \log \left(\frac{0.1}{(0.01)^{2}}\right) \\
& \mathrm{E}^{\circ}=0.3095+\frac{0.059}{2} \log \left(10^{3}\right) \\
& \quad=0.3095+\frac{0.059}{2} \times 3=0.398 \mathrm{~V}
\end{aligned}
$$

For second cell,

$$
\begin{aligned}
\mathrm{E} & =0.398-\frac{0.059}{2} \log \left[\frac{0.01}{(0.001)^{2}}\right] \\
& =0.28 \mathrm{~V}=28 \times 10^{-2} \mathrm{~V}
\end{aligned}
$$

6. The total number of electrons in all bonding molecular orbitals of O_{2}^{2-} is \qquad .
(Round off to the Nearest Integer).

Answer (10)

Sol. O_{2}^{2-}
$\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{z}^{2}{ }^{2} \pi 2 p \pi_{\mathrm{x}}^{2} \pi^{*} 2 p_{\mathrm{y}}^{2} \pi^{*} 2 p_{\mathrm{y}}^{2} \sigma^{*} 2 p_{\mathrm{z}}{ }^{0}$
Total number of electrons in bonding molecular orbitals $=10$
7. $\quad 10.0 \mathrm{~mL}$ of $0.05 \mathrm{M} \mathrm{KMnO}_{4}$ solution was consumed in a titration with 10.0 mL of given oxalic acid dihydrate solution. The strength of given oxalic acid solution is \qquad $\times 10^{-2} \mathrm{~g} / \mathrm{L}$.
(Round off to the Nearest Integer).

Answer (1575)

Sol. At equivalence point
(Number of gram equivalence) $)_{\mathrm{OA}}$

$$
=(\text { Number of gram equivalence })_{\text {RA }}
$$

$(10 \times 0.05 \times 5) \mathrm{KMnO}_{4}=(10 \times \mathrm{M} \times 2) \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ M $=0.125$ Molar
Strength of solution $=$ molarity \times molar mass $\left(\mathrm{gL}^{-1}\right)$

$$
\begin{aligned}
& =0.125 \times 126 \\
& =1575 \times 10^{-2} \mathrm{gL}^{-1}
\end{aligned}
$$

8. 3 moles of metal complex with formula $\mathrm{Co}(e n)_{2} \mathrm{Cl}_{3}$ gives 3 moles of silver chloride on treatment with excess of silver nitrate. The secondary valency of Co in the complex is \qquad -
(Round off to the Nearest Integer).

Answer (6)
Sol. Each mole of complex gives one mole of AgCl . Which indicates two chloride ions present in coordination sphere. So, the complex is [Co(en) $\left.)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ having a coordination number of 6 . Secondary valency is equal to the coordination number
9. For the first order reaction $A \rightarrow 2 B, 1$ mole of reactant A gives 0.2 moles of B after 100 minutes. The half life of the reaction is \qquad min. (Round off to the Nearest Integer).
[Use : $\ln 2=0.69, \ln 10=2.3$
Properties of logarithms: $\ln x^{y}=y \ln x$;

$$
\left.\ln \left(\frac{x}{y}\right)=\ln x-\ln y\right]
$$

Answer (658)
Sol. $A \quad \rightarrow \quad 2 B$
$\begin{array}{lll}t=0 & 1 & 0 \\ t=100 \min & 1-x & 2 x\end{array}$
$2 x=0.2 \Rightarrow x=0.1$
$\mathrm{k}=\frac{1}{\mathrm{t}} \ln \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}$
$\mathrm{k}=\frac{\ln 2}{\mathrm{t}_{1}}$
$\frac{\ln 2}{t_{\frac{1}{2}}}=\frac{1}{100} \ln \frac{1}{0.9}$
$\mathrm{t}_{\frac{1}{2}}=\frac{\ln 2 \times 100}{\ln 10-\ln 9} \approx(600-700) \mathrm{min}^{*}$
(depending on value of $\log 3$)
10. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$

The above reaction is carried out in a vessel starting with partial pressures $\mathrm{P}_{\mathrm{SO}_{2}}=250 \mathrm{~m}$ bar, $\mathrm{P}_{\mathrm{O}_{2}}=750 \mathrm{~m}$ bar and $\mathrm{P}_{\mathrm{SO}_{3}}=0$ bar. When the reaction is complete, the total pressure in the reaction vessel is \qquad m bar. (Round off to the nearest Integer).

Answer (875)

Sol.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Initial pressures : 2507500
(in m bar)
Completion: $0 \quad 625 \quad 250$
(in m bar)

$$
\mathrm{P}_{\mathrm{T}}=875 \mathrm{~m} \text { bar }
$$

PART-C : MATHEMATICS

SECTION -I

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. A student appeared in an examination consisting of 8 true - false type questions. The student guesses the answers with equal probability. The smallest value of n, so that the probability of guessing at least ' n ' correct answers is less than $\frac{1}{2}$, is
(1) 4
(2) 3
(3) 5
(4) 6

Answer (3)
Sol. $P(x=n)={ }^{8} C_{n}\left(\frac{1}{2}\right)^{8}$
$P(x=n+1)={ }^{8} C_{n+1}\left(\frac{1}{2}\right)^{8}$
$\mathrm{P}(\mathrm{x}=8)={ }^{8} \mathrm{C}_{8}\left(\frac{1}{2}\right)^{8}$
$\left(\frac{1}{2}\right)^{8}\left({ }^{8} \mathrm{C}_{\mathrm{n}}+{ }^{8} \mathrm{C}_{\mathrm{n}+1}+\ldots . .+{ }^{8} \mathrm{C}_{8}\right)<\frac{1}{2}$
$\Rightarrow \quad 2^{8}-\left({ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{1}+\ldots .+{ }^{8} \mathrm{C}_{\mathrm{n}-1}\right)<2^{7}$
$\Rightarrow{ }^{8} \mathrm{C}_{0}+{ }^{8} \mathrm{C}_{1}+\ldots .+{ }^{8} \mathrm{C}_{\mathrm{n}-1}>2^{7}$
Minimum value of $n-1=4$

$$
n=5
$$

2. Let N be the set of natural numbers and a relation R on N be defined by
$\mathrm{R}=\left\{(x, y) \in \mathrm{N} \times \mathrm{N}: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\}$.
Then the relation R is
(1) An equivalence relation
(2) Reflexive and symmetric, but not transitive
(3) Reflexive but neither symmetric nor transitive
(4) Symmetric but neither reflexive nor transitive

Answer (3)

Sol. $x^{2}(x-3 y)-y^{2}(x-3 y)=0$

$$
\begin{equation*}
(x-y)(x+y)(x-3 y)=0 \tag{i}
\end{equation*}
$$

\therefore (i) holds for all $(x, x) \therefore \mathrm{R}$ is reflexive
if (x, y) holds then (y, x) may or may not holds for factors $(x+y),(x-3 y) \quad \therefore \mathrm{R}$ is NOT symmetric
Similarly $(x-3 y)$ factor doesn't hold for transitive
3. A possible value of ' x ', for which the ninth term in the expansion of $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left.\left(-\frac{1}{8}\right)^{\log _{3}\left(5^{x-1}+1\right.}\right)}\right\}^{10}$ in the increasing powers of ${ }_{3}\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)$ is equal to 180 , is
(1) -1
(2) 0
(3) 1
(4) 2

Answer (3)
Sol. Given expression reduces to
$\left[\left(5^{2(x-1)}+7\right)^{\frac{1}{2}}+\left(5^{x-1}+1\right)^{-\frac{1}{8}}\right]^{10}$
${ }^{10} C_{8}\left(5^{2(x-1)}+7\right)\left(5^{x-1}+1\right)^{-1}=180$
Let $5^{x-1}=\mathrm{t}$
$\left(t^{2}+7\right)(t+1)^{-1}=4$
$\mathrm{t}^{2}+7=4 \mathrm{t}+4$
$t^{2}-4 t+3=0$
$(t-3)(t-1)=0$
$5^{x-1}=1$ or 3
$x=1$ or $x=1+\log _{5} 3$
4. Let \mathbb{C} be the set of all complex numbers. Let
$S_{1}=\{z \in \mathbb{C}:|z-2| \leq 1\}$ and
$S_{2}=\{z \in \mathbb{C}: z(1+i)+\bar{z}(1-i) \geq 4\}$.
Then, the maximum value of $\left|z-\frac{5}{2}\right|^{2}$ for $z \in S_{1} \cap S_{2}$ is equal to
(1) $\frac{5+2 \sqrt{2}}{2}$
(2) $\frac{5+2 \sqrt{2}}{4}$
(3) $\frac{3+2 \sqrt{2}}{4}$
(4) $\frac{3+2 \sqrt{2}}{2}$

Answer (2)

Sol. $\mathrm{S}_{1} \equiv|z-2| \leq 1 \Rightarrow(x-2)^{2}+y^{2} \leq 1$
$\mathrm{S}_{2} \equiv x-y \geq 2$
$S_{1} \cap S_{2}$

Solving equation from (i) \& (ii), we get
$y^{2}=\frac{1}{2} \Rightarrow y=-\frac{1}{2} \quad x=2-\frac{1}{\sqrt{2}}$
$\left|z-\frac{5}{2}\right|^{2}=\left(x-\frac{5}{2}\right)^{2}+y^{2}=\left(\frac{1}{2}+\frac{1}{\sqrt{2}}\right)^{2}+\frac{1}{2}$
$=\frac{3+2 \sqrt{2}}{4}+\frac{2}{4}=\frac{5+2 \sqrt{2}}{4}$
5. Let $f:(a, b) \rightarrow R$ be twice differentiable function such that $f(x)=\int_{a}^{x} g(t) d t$ for a differentiable function $g(x)$. If $f(x)=0$ has exactly five distinct roots in (a, b), then $g(x) g^{\prime}(x)=0$ has at least
(1) Twelve roots in (a, b)
(2) Three roots in (a, b)
(3) Five roots in (a, b)
(4) Seven roots in (a, b)

Answer (4)
Sol. $f^{\prime}(x)=g(x)$
As $f(x)$ has 5 roots $f^{\prime}(x)=0,4$ times for $x \in(a, b)$
$\therefore g(x)$ has 4 roots in $x \in(a, b)$
$\therefore g^{\prime}(x)$ has 3 roots in $x \in(a, b)$
$\therefore g(x) g^{\prime}(x)$ has 7 roots in $x \in(a, b)$
6. For real numbers α and $\beta \neq 0$, if the point of intersection of the straight lines
$\frac{x-\alpha}{1}=\frac{y-1}{2}=\frac{z-1}{3}$ and $\frac{x-4}{\beta}=\frac{y-6}{3}=\frac{z-7}{3}$, lies on the plane $x+2 y-z=8$, then $\alpha-\beta$ is equal to
(1) 9
(2) 5
(3) 3
(4) 7

Answer (4)

Sol. Let point on line L_{1} be $(\lambda+\alpha, 2 \lambda+1,3 \lambda+1)$ and
a point on line L_{2} be ($\left.\mu \beta+4,3 \mu+6,3 \mu+7\right)$

$$
\begin{aligned}
\therefore & \lambda+\alpha=\mu \beta+4,2 \lambda+1=3 \mu+6 \& 3 \lambda+1=3 \mu+7 \\
& \lambda=1 \text { and } \mu=1 \\
\Rightarrow & 1+\alpha=-\beta+4 \Rightarrow \alpha+\beta=3
\end{aligned}
$$

$\therefore \quad$ Point of intersection $(1+\alpha, 3,4)$

$$
\begin{aligned}
& 1+\alpha+6-4=8 \quad \Rightarrow \alpha=5, \beta=-2 \\
& \alpha-\beta=7
\end{aligned}
$$

7. The value of $\lim _{x \rightarrow 0}\left(\frac{x}{\sqrt[8]{1-\sin x}-\sqrt[8]{1+\sin x}}\right)$ is equal to
(1) 4
(2) -4
(3) -1
(4) 0

Answer (2)
Sol. $\left.\operatorname{Lim}_{x \rightarrow 0} \frac{x}{\left((1-\sin x)^{\frac{1}{8}}-(1+\sin x)^{\frac{1}{8}}\right.}\right) \times\left(\frac{(1-\sin x)^{\frac{1}{8}}+(1+\sin x)^{\frac{1}{8}}}{(1-\sin x)^{\frac{1}{8}}+(1+\sin x)^{\frac{1}{8}}}\right)$
$\Rightarrow \lim _{x \rightarrow 0} \frac{x\left((1-\sin x)^{\frac{1}{8}}+(1+\sin x)^{\frac{1}{8}}\right)}{(1-\sin x)^{\frac{1}{4}}-(1+\sin x)^{\frac{1}{4}}}$
$\times \frac{(1-\sin x)^{\frac{1}{4}}+(1+\sin x)^{\frac{1}{4}}}{(1-\sin x)^{\frac{1}{4}}+(1+\sin x)^{\frac{1}{4}}}$
$\Rightarrow \operatorname{Lim}_{x \rightarrow 0} \frac{x 2 \cdot 2}{(1-\sin x)^{\frac{1}{2}}-(1+\sin x)^{\frac{1}{2}}}$

$$
\times \frac{(1-\sin x)^{\frac{1}{2}}+(1+\sin x)^{\frac{1}{2}}}{(1-\sin x)^{\frac{1}{2}}+(1+\sin x)^{\frac{1}{2}}}
$$

$\Rightarrow \operatorname{Lim}_{x \rightarrow 0} \frac{8 x}{1-\sin x-1-\sin x}=-4$
8. Let $\alpha=\max _{x \in \mathbb{R}}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ and
$\beta=\min _{x \in \mathbb{R}}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$.
If $8 x^{2}+b x+c=0$ is a quadratic equation whose roots are $\alpha^{\frac{1}{5}}$ and $\beta^{\frac{1}{5}}$, then the value of $c-b$ is equal to:
(1) 43
(2) 42
(3) 50
(4) 47

Answer (2)

Sol. $\alpha=\max \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}=2^{10}$

$$
\begin{aligned}
& \beta=\min \left\{2^{6 \sin 3 x+8 \cos 3 x}\right\}=2^{-10} \\
& \alpha^{\frac{1}{5}}=4 \text { and } \beta^{\frac{1}{5}}=\frac{1}{4}
\end{aligned}
$$

Sum of roots $=\frac{17}{4} \&$ Product of roots $=1$
$\frac{-\mathrm{b}}{8}=\frac{17}{4} \Rightarrow \mathrm{~b}=-34 \& \frac{\mathrm{c}}{8}=1 \Rightarrow \mathrm{c}=8$
$c-b=8+34=42$
9. Two sides of a parallelogram are along the lines $4 x+5 y=0$ and $7 x+2 y=0$. If the equation of one of the diagonals of the parallelogram is $11 x+7 y=9$, then other diagonal passes through the point
(1) $(2,2)$
(2) $(2,1)$
(3) $(1,3)$
(4) $(1,2)$

Answer (1)

Sol. On solving equation $4 x+5 y=0$

and $11 x+7 y=9$ we get
$\mathrm{B}=\left(\frac{5}{3},-\frac{4}{3}\right)$
and on solving equation
$7 x+2 y=0$ and $11 x+7 y=9$, we get
Coordinate of $\mathrm{D}=\left(-\frac{2}{3}, \frac{7}{3}\right)$
\therefore Mid point of $\mathrm{BD}=\mathrm{M}=\left(\frac{1}{2}, \frac{1}{2}\right)$
\therefore Equation of other diagonal is $y=x$
$\therefore \quad$ Point $(2,2)$ lies on other diagonal.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined as
$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1 . \quad$ Then,
the value of $\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin (\mathrm{k}) \sin (\mathrm{k}+f(\mathrm{k}))}$ is equal to
(1) $\operatorname{cosec}^{2}(21) \cos (20) \cos (2)$
(2) $\sec ^{2}(21) \sin (20) \sin (2)$
(3) $\operatorname{cosec}^{2}(1) \operatorname{cosec}(21) \sin (20)$
(4) $\sec ^{2}(1) \sec (21) \cos (20)$

Answer (3)
Sol. $\because \quad f(x+y)+f(x-y)=2 f(x) \cdot f(y)$
$\therefore f(x)=\cos (\lambda x)$
$\therefore \quad f\left(\frac{1}{2}\right)=-1$, then $\lambda=2 n \pi, n \in I$
$\therefore f(x)=\cos (2 \pi x) \Rightarrow f(k)=1, k \in I$
$\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin k \sin (\mathrm{k}+f(\mathrm{k})}=\sum_{\mathrm{k}=1}^{20} \frac{1}{\sin \mathrm{k} \cdot \sin (\mathrm{k}+1)}$
$=\sum_{k=1}^{20} \frac{1}{\sin 1} \frac{\sin \{(k+1)-k\}}{\sin k \cdot \sin (k+1)}$
$=\frac{1}{\sin 1} \sum_{\mathrm{k}=1}^{20}(\cot \mathrm{k}-\cot (\mathrm{k}+1))$
$=\frac{1}{\sin 1}(\cot 1-\cot 21)$
$=\frac{1}{\sin 1} \cdot \frac{\sin (21-1)}{\sin 1 \cdot \sin 21}=\operatorname{cosec}^{2}(1) \cdot \operatorname{cosec}(21) \cdot \sin (20)$
11. The point $P(a, b)$ undergoes the following three transformations successively :
(a) Reflection about the line $y=x$.
(b) Translation through 2 units along the positive direction of x-axis.
(c) Rotation through angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction.

It the co-ordinates of the final position of the point P are $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$, then the value of $2 a+b$ is equal to
(1) 7
(2) 9
(3) 5
(4) 13

Answer (2)

Sol. Reflection of $\mathrm{P}(\mathrm{a}, \mathrm{b})$ about line $y=x$ is $\mathrm{P}^{\prime}=(\mathrm{b}, \mathrm{a})$. After translation of 2 units the new coordinate in $P^{\prime \prime}=(b+2, a)$

On rotation of $\frac{\pi}{4}$ the new coordinate be $\left(x_{1}, y_{1}\right)$.

$$
\begin{aligned}
& \therefore \quad \frac{\left(x_{1}+i y_{1}\right)-0}{(b+2+a i)-0}=e^{i \frac{\pi}{4}} \\
& x_{1}+i y_{1}=((b+2)+a i)\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} i\right) \\
&=\frac{1}{\sqrt{2}}(b+2+(b+2) i+a i-a) \\
&=\frac{1}{\sqrt{2}}((a+b+2) i+(b-a+2))
\end{aligned}
$$

$\therefore b-a+2=-1, a+b+2=7$
$\therefore \quad a=4, b=1$
12. The area of the region bounded by $y-x=2$ and $x^{2}=y$ is equal to
(1) $\frac{2}{3}$
(2) $\frac{4}{3}$
(3) $\frac{16}{3}$
(4) $\frac{9}{2}$

Answer (4)
Sol.

On solving equations $x^{2}=y$
and $y-x=2$ we get

$$
\begin{aligned}
& x^{2}=2+x \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0
\end{aligned}
$$

\therefore Required area $=\int_{-1}^{2}\left(x+2-x^{2}\right) \mathrm{d} x$

$$
\begin{aligned}
& =\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{-1}^{2} \\
& =\left(2+4-\frac{8}{3}\right)-\left(\frac{1}{2}-2+\frac{1}{3}\right) . \\
& =\frac{9}{2} \text { square units. }
\end{aligned}
$$

13. Let the mean and variance of the frequency distribution
$x: x_{1}=2 \quad x_{2}=6 \quad x_{3}=8 \quad x_{4}=9$
$f: \begin{array}{lllll} & 4 & 4 & \alpha & \beta\end{array}$
be 6 and 6.8 respectively. If x_{3} is changed from 8 to 7 , then the mean for the new data will be :
(1) 5
(2) 4
(3) $\frac{17}{3}$
(4) $\frac{16}{3}$

Answer (3)

Sol. \because

$$
\begin{equation*}
\bar{x}=\frac{\Sigma x_{i} f_{i}}{\Sigma f_{i}}=\frac{8+24+8 \alpha+9 \beta}{8+\alpha+\beta}=6 \Rightarrow 2 \alpha+3 \beta=16 \tag{i}
\end{equation*}
$$

$$
\sigma^{2}=\frac{\Sigma x_{i}^{2} f_{i}}{\Sigma f_{i}}-(\bar{x})^{2} \Rightarrow \frac{16+144+64 \alpha+81 \beta}{8+\alpha+\beta}=42.8
$$

$$
\begin{equation*}
\Rightarrow 106 \alpha+191 \beta=912 \tag{ii}
\end{equation*}
$$

from (i) and (ii), $\alpha=5$ and $\beta=2$
Now, correct mean $=\frac{8+24+35+18}{15}=\frac{17}{3}$
14. Let A and B be two 3×3 real matrices such that $\left(A^{2}-B^{2}\right)$ is invertible matrix. If $A^{5}=B^{5}$ and $A^{3} B^{2}=$ $A^{2} B^{3}$, then the value of the determinant of the matrix $A^{3}+B^{3}$ is equal to
(1) 1
(2) 2
(3) 4
(4) 0

Answer (4)
Sol. $A^{5}=B^{5}$
$A^{3} B^{2}=A^{2} B^{3}$
$A^{5}-A^{3} B^{2}=B^{5}-A^{2} B^{3}$
$A^{3}\left(A^{2}-B^{2}\right)=B^{3}\left(B^{2}-A^{2}\right)=-B^{3}\left(A^{2}-B^{2}\right)$
$A^{3}\left(A^{2}-B^{2}\right)+B^{3}\left(A^{2}-B^{2}\right)=0$
$\left(A^{3}+B^{3}\right)\left(A^{2}-B^{2}\right)=0$
$\left|\left(A^{3}+B^{3}\right)\left(A^{2}-B^{2}\right)\right|=0$
$\left|A^{3}+B^{3}\right| \times\left|A^{2}-B^{2}\right|=0$
$\Rightarrow\left|A^{3}+B^{3}\right|=0 \quad\left(\because\left|A^{2}-B^{2} \neq 0\right|\right)$
15. Let $y=y(x)$ be the solution of the differential equation $\left(x-x^{3}\right) \mathrm{d} y=\left(y+y x^{2}-3 x^{4}\right) \mathrm{d} x, x>2$. If $y(3)=3$, then $y(4)$ is equal to
(1) 12
(2) 8
(3) 4
(4) 16

Answer (1)

Sol. $\left(x-x^{3}\right) \mathrm{d} y=y\left(1+x^{2}\right) \mathrm{d} x-3 x^{4} \mathrm{~d} x$

$$
\begin{aligned}
& \therefore \quad \frac{\mathrm{d} y}{\mathrm{~d} x}+y \frac{1+x^{2}}{x\left(x^{2}-1\right)}= \\
& =\begin{array}{l}
\therefore \quad \text { I.F. }=\mathrm{e}^{\left.\int \frac{1+x^{2}}{x^{2}-1} \mathrm{~d} \mathrm{x}^{2}-1\right)} \mathrm{dx}
\end{array}=\mathrm{e}^{\int\left(\frac{1}{x-1}+\frac{1}{x+1}-\frac{1}{x}\right) \mathrm{dx}} \\
& \\
& \\
& =\mathrm{e}^{\ln \left(\frac{x^{2}-1}{x}\right)}=\frac{x^{2}-1}{x}
\end{aligned}
$$

$\therefore \quad$ Solution is $y \cdot\left(\frac{x^{2}-1}{x}\right)=\int \frac{3 x^{3}}{x^{2}-1} \cdot \frac{x^{2}-1}{x} \mathrm{~d} x$

$$
y\left(\frac{x^{2}-1}{x}\right)=x^{3}+c
$$

$\because y(3)=3$ then $\mathrm{c}=-1$
$\therefore \quad y(x)=\frac{\left(x^{3}-19\right) \cdot x}{x^{2}-1}$
$\therefore \quad y(4)=\frac{45 \times 4}{15}=12$
16. Let $f:[0, \infty) \rightarrow[0,3]$ be a function defined by
$f(x)= \begin{cases}\max \{\sin t: 0 \leq \mathrm{t} \leq \mathrm{x}\}, & 0 \leq \mathrm{x} \leq \pi \\ 2+\cos x, & x>\pi\end{cases}$
Then which of the following is true?
(1) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$
(2) f is continuous everywhere but not differentiable exactly at one point in $(0, \infty)$
(3) f is differentiable everywhere in $(0, \infty)$
(4) f is not continuous exactly at two points in $(0, \infty)$
Answer (3)
Sol. $f:[0, \infty) \rightarrow[0,3]$
and $f(x)= \begin{cases}\max \{\operatorname{sint}: 0 \leq \mathrm{t} \leq x\}, & 0 \leq x \leq \pi \\ 2+\cos x, & x>\pi\end{cases}$

Clearly $f(x)$ is continuous everywhere and $f(x)$ is differentiable at $x=\frac{\pi}{2}$ and $x=\pi$
$\therefore f(x)$ is differentiable everywhere
17. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $\vec{a}=\vec{b} \times(\vec{b} \times \vec{c})$. If magnitudes of the vectors \vec{a}, \vec{b} and \vec{c} are $\sqrt{2}, 1$ and 2 respectively and the angle between \vec{b} and \vec{c} is $\theta\left(0<\theta<\frac{\pi}{2}\right)$, then the value of $1+\tan \theta$ is equal to
(1) 2
(2) $\frac{\sqrt{3}+1}{\sqrt{3}}$
(3) 1
(4) $\sqrt{3}+1$

Answer (1)
Sol. $\vec{a}=\vec{b} \times(\vec{b} \times \vec{c})=(\vec{b} \cdot \vec{c}) \vec{b}-|\vec{b}|^{2} \vec{c}$

$$
\begin{aligned}
& \quad=(\vec{b} \cdot \vec{c}) \vec{b}-\vec{c} \quad(\because|\vec{b}|=1) \\
& |\vec{a}|^{2}=(\vec{b} \cdot \vec{c})^{2}|\vec{b}|^{2}+|\vec{c}|^{2}-2(\vec{b} \cdot \vec{c})(\vec{b} \cdot \vec{c}) \\
& 2=|\vec{c}|^{2}-(\vec{b} \cdot \vec{c})^{2} \\
& 2=4-(2 \cos \theta)^{2} \\
& (2 \cos \theta)^{2}=2 \\
& \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \tan \theta=1
\end{aligned}
$$

18. Consider a circle C which touches the y-axis at $(0,6)$ and cuts off an intercept $6 \sqrt{5}$ on the x-axis. Then the radius of the circle C is equal to
(1) $\sqrt{53}$
(2) 9
(3) 8
(4) $\sqrt{82}$

Answer (2)
Sol.

$r^{2}=6^{2}+(3 \sqrt{5})^{2}=81$
$r=9$
19. Which of the following is the negation of the statement "for all $M>0$, there exists $x \in S$ such that $x \geq \mathrm{M}^{\prime \prime}$?
(1) There exists $M>0$, there exists $x \in S$ such that $x<M$
(2) There exists $M>0$, there exists $x \in S$ such that $x \geq \mathrm{M}$
(3) There exists $M>0$, such that $x<M$ for all $x \in S$
(4) There exists $M>0$, such that $x \geq M$ for all $x \in S$

Answer (3)

Sol. Statement : For all $M>0$, there exists $x \in S$ such that $x \geq M$.

Negation : There exist $M>0$, such that $x \nsupseteq M$ for all $x \in S$.
20. If $\tan \left(\frac{\pi}{9}\right), x, \tan \left(\frac{7 \pi}{18}\right)$ are in arithmetic progression and $\tan \left(\frac{\pi}{9}\right), y, \tan \left(\frac{5 \pi}{18}\right)$ are also in arithmetic progression, then $|x-2 y|$ is equal to
(1) 0
(2) 1
(3) 3
(4) 4

Answer (1)
Sol. $x-2 y=\frac{\tan 20^{\circ}+\tan 70^{\circ}}{2}-\left(\tan 20^{\circ}+\tan 50^{\circ}\right)$

$$
\begin{aligned}
& \frac{1}{2}\left(\tan 70^{\circ}-\tan 20^{\circ}-2 \tan 50^{\circ}\right) \\
& =\frac{1}{2}\left[\left(\tan 70^{\circ}-\tan 50^{\circ}\right)-\left(\tan 20^{\circ}+\tan 50^{\circ}\right)\right] \\
& =\frac{1}{2}\left[\frac{\sin 20^{\circ}}{\cos 70^{\circ} \cos 50^{\circ}}-\frac{\sin 70^{\circ}}{\cos 20^{\circ} \cos 50^{\circ}}\right] \\
& =\frac{1}{2}\left[\frac{1}{\cos 50^{\circ}}-\frac{1}{\cos 50^{\circ}}\right]=0
\end{aligned}
$$

SECTION - II

Numerical Value Type Questions: This section contains 10 questions. In Section II, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, $-00.33,-00.30$, $30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

1. If $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $M=A+A^{2}+A^{3}+\ldots+A^{20}$, then the sum of all the elements of the matrix M is equal to \qquad .

Answer (2020)

Sol. $\begin{aligned} A^{n} & =\left[\begin{array}{ccc}1 & n & \frac{n(n+1)}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right] \\ M & =A+A^{2}+\ldots \ldots \ldots . .+A^{20}\end{aligned}$

$$
=\left[\begin{array}{ccc}
\sum 1 & \sum \mathrm{n} & \sum \frac{\mathrm{n}(\mathrm{n}+1)}{2} \\
0 & \sum 1 & \sum \mathrm{n} \\
0 & 0 & \sum 1
\end{array}\right]=\left[\begin{array}{ccc}
20 & 210 & 1540 \\
0 & 20 & 210 \\
0 & 0 & 20
\end{array}\right]
$$

$$
\text { Because } \sum 1=20, \sum_{n=1}^{20} n=\frac{20 \times 21}{2}=210
$$

$$
\frac{1}{2} \sum_{n=1}^{20} n(n+1)=\frac{1}{2} \times \frac{20 \times 21 \times 22}{3}=1540
$$

$$
\text { Sum }=20+20+20+210+210+1540=2020
$$

2. The number of real roots of the equation $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ is equal to \qquad .

Answer (2)

Sol. Let $\mathrm{e}^{\mathrm{x}}=\mathrm{t},(\mathrm{t}>0)$

$$
\begin{aligned}
& \mathrm{t}^{4}-\mathrm{t}^{3}-4 \mathrm{t}^{2}-\mathrm{t}=1=0 \\
& \left(t^{2}+\frac{1}{t^{2}}\right)-\left(t^{3}+t\right)-4=0 \\
& \left(t+\frac{1}{t}\right)^{2}-\left(t+\frac{1}{t}\right)-6=0 \\
& \text { Let } t+\frac{1}{t}=u \quad(u>2) \\
& u^{2}-u-6=0 \\
& (u-3)(u+2)=0 \\
& u=3,-2 \text { (rejected) } \\
& \mathrm{u}=3 \\
& t+\frac{1}{t}=3 \quad \Rightarrow t^{2}-3 t+1=0 \\
& \mathrm{t}=\frac{3 \pm \sqrt{5}}{2}=\mathrm{e}^{\mathrm{x}} \\
& x=\ln \frac{3+\sqrt{5}}{2}, \ln \frac{3-\sqrt{5}}{2}
\end{aligned}
$$

3. Let n be a non-negative integer. Then the number of divisors of the form " $4 \mathrm{n}+1$ " of the number $(10)^{10} \cdot(11)^{11} \cdot(13)^{13}$ is equal to \qquad -.

Answer (924)

Sol. $N=2^{10.510 .11^{11} .13^{13}}$

Number of required divisors $=1 \times 11 \times 6 \times 14$

$$
=924
$$

4. The distance of the point $P(3,4,4)$ from the point of intersection of the line joining the points $Q(3,-4,-5)$ and $R(2,-3,1)$ and the plane $2 x+y+z=7$, is equal to \qquad .

Answer (7)

Sol. QR : $\frac{x-2}{-1}=\frac{y+3}{1}=\frac{z-1}{6}$
Let point of intersection be $S(-\lambda+2, \lambda-3,6 \lambda+1)$
$2(-\lambda+2)+\lambda-3+6 \lambda+1=7 \Rightarrow \lambda=1$
So $S(1,-2,7)$

$$
P S=\sqrt{2^{2}+6^{2}+3^{2}}=7
$$

5. Let $A=\left\{n \in N \mid n^{2} \leq n+10,000\right\}$, $B=\{3 k+1 \mid k \in$ $N\}$ and $C=\{2 k \mid k \in N\}$, then the sum of all the elements of the set $A \cap(B-C)$ is equal to \qquad _.

Answer (832)

Sol. $A=\{1,2,3, \ldots .100\}$
and $B-C=\{3 k+1 \mid k \in$ even $\}$
$\Rightarrow B-C=\{7,13,19, \ldots ., 97\}$

Sum of all elements $=\frac{16}{2}[7+97]=832$
6. Let E be an ellipse whose axes are parallel to the co-ordinates axes, having its center at $(3,-4)$, one focus at $(4,-4)$ and one vertex at $(5,-4)$. If $m x-y=4, m>0$ is a tangent to the ellipse E , then the value of $5 \mathrm{~m}^{2}$ is equal to \qquad _.

Answer (3)

Sol. $\because a e=1$ and $a=2$ so $b=\sqrt{3}$

$$
E: \frac{(x-3)^{2}}{4}+\frac{(y+4)^{2}}{3}=1
$$

Equation of tangent

$$
y+4=m(x-3) \pm \sqrt{4 m^{2}+3}
$$

$\Rightarrow y=m x-3 m-4 \pm \sqrt{4 m^{2}+3}$
Comparing with $y=m x-4$
we get $-3 \pm \sqrt{4 \mathrm{~m}^{2}+3}=0$
$\Rightarrow 9 \mathrm{~m}^{2}=4 \mathrm{~m}^{2}+3$
$\Rightarrow 5 \mathrm{~m}^{2}=3$
7. If $\int_{0}^{\pi}\left(\sin ^{3} x\right) e^{-\sin ^{2} x} d x=\alpha-\frac{\beta}{e} \int_{0}^{1} \sqrt{t} e^{t} d t$, then $\alpha+\beta$ is equal to \qquad .

Answer (5)

Sol. $\int_{0}^{\pi}\left(\sin ^{3} x\right) \cdot e^{\sin ^{-2 x}} \mathrm{~d} x=\frac{1}{e} \int_{0}^{\pi} \sin ^{2} x \cdot e^{\cos ^{2} x} \cdot \sin x d x$
Let $\cos x=t, \quad \sin d x=-d t$
$=\frac{1}{e} \int_{1}^{-1}\left(t^{2}-1\right) e^{t^{2}} d t=\frac{2}{e} \int_{0}^{1}\left(1-t^{2}\right) e^{t^{2}} d t$
Let $t^{2}=z, d t=\frac{d z}{2 \sqrt{z}}$
$=\frac{1}{e} \int_{0}^{1}\left(\frac{1}{\sqrt{z}}-\sqrt{z}\right) e^{z} d z$
$=\frac{1}{e}\left[\left.e^{z} \cdot 2 \sqrt{z}\right|_{0} ^{1}-\int_{0}^{1} 2 e^{z} \cdot \sqrt{z} d z-\int_{0}^{1} \sqrt{z} e^{z} d z\right]$
$=\frac{1}{e}\left[2 e-3 \int_{0}^{1} e^{t} \cdot \sqrt{t} d t\right]$
Clearly $\alpha=2$ and $\beta=3$
8. If the real part of the complex number $z=\frac{3+2 i \cos \theta}{1-3 i \cos \theta}, \theta \in\left(0, \frac{\pi}{2}\right)$ is zero, then the value of $\sin ^{2} 3 \theta+\cos ^{2} \theta$ is equal to \qquad .
Answer (1)
Sol. $z=\frac{(3+2 \mathrm{i} \cos \theta)(1+3 \cos \theta)}{1+9 \cos ^{2} \theta}$
$\because \quad \operatorname{Re}(z)=0=\frac{3-6 \cos ^{2} \theta}{1+9 \cos ^{2} \theta}=0$
$\Rightarrow \quad \cos ^{2} \theta=\frac{1}{2}$
$\Rightarrow \quad \theta=\frac{\pi}{4}$
$\sin ^{2} 3 \theta+\cos ^{2} \theta=\frac{1}{2}+\frac{1}{2}=1$
9. Let $\vec{a}=\hat{i}-\alpha \hat{j}+\beta \hat{k}, \vec{b}=3 \hat{i}+\beta \hat{j}-\alpha \hat{k}$ and $\overrightarrow{\mathrm{c}}=-\alpha \hat{i}-2 \hat{j}+\hat{k}$, where α and β are integers. If $\vec{a} \cdot \vec{b}=-1$ and $\vec{b} \cdot \vec{c}=10,(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to
\qquad -.

Answer (9)

Sol. $\because \vec{a} \cdot \vec{b}=-1=3-2 \alpha \beta \Rightarrow \alpha \beta=2$
$\vec{b} \cdot \vec{c}=10=-3 \alpha-2 \beta-\alpha \Rightarrow 2 \alpha+\beta=-5$
Clearly $(\alpha, \beta)=(-2,-1)$
$\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right]=\left|\begin{array}{ccc}1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 1\end{array}\right|=9$
10. Let $y=y(x)$ be the solution of the differential equation $d y=e^{\alpha x+y} d x ; \alpha \in N$. If $y\left(\log _{e} 2\right)=\log _{e} 2$ and $y(0)=\log _{e}\left(\frac{1}{2}\right)$, then the value of α is equal to
\qquad -.
Answer (2)
Sol. $e^{-y} \mathrm{~d} y=e^{\alpha x} \mathrm{~d} x$
$\Rightarrow-e^{-y}=\frac{1}{\alpha} e^{\alpha x}+c$
Put $x=y=\ln 2$ and $x=0, y=-\ln 2$

$$
-\frac{1}{2}=\frac{2^{\alpha}}{\alpha}+c \quad-2=\frac{1}{\alpha}+c
$$

$\Rightarrow \alpha=2$ and $c=-\frac{5}{2}$

