NCERT solutions for class 12 maths chapter 8 applications of integrals Exercise: 8.1

Question:1 Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x -axis in the first quadrant.

Answer:

Area of the region bounded by the curve $y^2=x$ and the lines x=1, x=4 and the x -axis in the first quadrant

$$\operatorname{Area} = \int_{1}^{4} y dy = \int_{1}^{4} \sqrt{x} dx$$

$$=\frac{2}{3}[8-1]$$

= 14/3 units

Question:2 Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x -axis in the first quadrant.

Answer:

Area of the region bounded by the curve $y^2=9x, x=2, x=4$ and the x -axis in the first quadrant

$$\operatorname{Area} = \int_2^4 y dy = \int_2^4 \sqrt{9x} dx = 3 \int_2^4 \sqrt{x} dx$$

$$= 2 \left[8 - 2\sqrt{2} \right]$$
$$= \left[16 - 4\sqrt{2} \right]$$
units

Question:3 Find the area of the region bounded by $x^2=4y,y=2,y=4$ and the y -axis in the first quadrant.

Answer:

The area bounded by the curves $x^2=4y,y=2,y=4$ and the y -axis in the first quadrant is ABCD.

$$= \int_{2}^{4} x dy$$

$$= \int_{2}^{4} 2\sqrt{y} dy$$

$$= 2 \int_{2}^{4} \sqrt{y} dy$$

$$= 2 \left\{ \frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right\}_{2}^{4}$$

$$= \frac{4}{3} \left\{ (4)^{\frac{3}{2}} - (2)^{\frac{3}{2}} \right\}$$

$$= \frac{4}{3} \left\{ 8 - 2\sqrt{2} \right\}$$

$$= \left\{ \frac{32 - 8\sqrt{2}}{3} \right\} units.$$

Question:4 Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.

Answer:

The area bounded by the ellipse : $\frac{x^2}{16} + \frac{y^2}{9} = 1.$

Area will be 4 times the area of EAB.

Therefore,
$$Area\ of\ EAB = \int_0^4 y dx$$

$$= \int_0^4 3\sqrt{1 - \frac{x^2}{16}} dx$$

$$= \frac{3}{4} \int_0^4 \sqrt{16 - x^2} dx$$

$$= \frac{3}{4} \left[\frac{x}{2} \sqrt{16 - x^2} + \frac{16}{2} \sin^{-1} \frac{x}{4} \right]_0^4$$

$$= \frac{3}{4} \left[2\sqrt{16 - 16} + 8 \sin^{-1}(1) - 0 - 8 \sin^{-1}(0) \right]$$

$$= \frac{3}{4} \left[\frac{8\pi}{2} \right]$$

$$= \frac{3}{4} \left[4\pi \right] = 3\pi$$

Therefore the area bounded by the ellipse will be $= 4 \times 3\pi = 12\pi \ units$.

Question: 5 Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$

Answer:

The area bounded by the ellipse : $\frac{x^2}{4} + \frac{y^2}{9} = 1$

The area will be 4 times the area of EAB.

Therefore,
$$Area\ of\ EAB = \int_0^2 y dx$$

$$= \int_0^2 3\sqrt{1 - \frac{x^2}{4}} dx$$

$$= \frac{3}{2} \int_0^2 \sqrt{4 - x^2} dx$$

$$= \frac{3}{2} \left[\frac{x}{2} \sqrt{4} - x^2 + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$$

$$=\frac{3}{2}\left[\frac{2\pi}{2}\right]$$

$$=\frac{3\pi}{2}$$

Therefore the area bounded by the ellipse will be
$$=4\times\frac{3\pi}{2}=6\pi\ units.$$

Question: 6 Find the area of the region in the first quadrant enclosed by x -axis, line $x=\sqrt{3}y$ and the circle $x^2+y^2=4$

Answer:

The area of the region bounded by $x = \sqrt{3}y$ and $x^2 + y^2 = 4$ is ABC shown:

The point B of the intersection of the line and the circle in the first quadrant is $(\sqrt{3},1)$.

Area ABC = Area ABM + Area BMC where, M is point in x-axis perpendicular drawn from the line.

Now,area of
$$ABM=\frac{1}{2}\times AM\times BM=\frac{1}{2}\times \sqrt{3}\times 1=\frac{\sqrt{3}}{2}$$
(1)

$$BMC = \int_{\sqrt{3}}^2 y dx$$
 and Area of

$$= \int_{\sqrt{3}}^{2} \sqrt{4 - x^{2}} dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^{2}} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{\sqrt{3}}^{2}$$

$$= \left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} \sqrt{4 - 3} - 2 \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right]$$

$$= \left[\pi - \frac{\sqrt{3}\pi}{2} - 2\frac{\pi}{3} \right]$$

$$= \left[\pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} \right]$$

$$= \left[\frac{\pi}{3} - \frac{\sqrt{3}}{2} \right]$$
(2)

then adding the area (1) and (2), we have then

The Area under ABC =
$$\frac{\sqrt{3}}{2} + \frac{\pi}{3} - \frac{\sqrt{3}}{2} = \frac{\pi}{3} \ units.$$

Question: 7 Find the area of the smaller part of the circle $x^2 + y^2 = a^2$ cut off by the line $x = \frac{a}{\sqrt{2}}$

we need to find the area of smaller part of the circle

Now,

Area of ABCD = 2 X Area of ABC

Area of ABC =

$$= \left[0 + \frac{a^2}{2} \frac{\pi}{2} - \frac{a^2}{4} - \frac{a^2}{2} \frac{\pi}{4}\right]$$
$$= \frac{a^2}{4} \left(\frac{\pi}{2} - 1\right)$$

Area of ABCD = 2 X Area of ABC

$$= 2 \times \frac{a^2}{4} \left(\frac{\pi}{2} - 1 \right) = \frac{a^2}{2} \left(\frac{\pi}{2} - 1 \right)$$

Therefore, the area of the smaller part of the circle is $\frac{a^2}{2}\left(\frac{\pi}{2}-1\right)$

Question:8 The area between $x=y^2$ and x=4 is divided into two equal parts by the line x=a, find the value of a.

we can clearly see that given area is symmetrical about x - axis

It is given that

Area of OED = Area of EFCD

Area of OED =

Area of EFCD =

Area of OED = Area of EFCD

Therefore, the value of a is $a = (4)^{\frac{2}{3}}$

Question:9 Find the area of the region bounded by the parabola $y=x^2$ and y=|x| .

Answer:

We can clearly see that given area is symmetrical about y-axis

Therefore,

Area of OCAO = Area of OBDO

Point of intersection of $y=x^2$ and y=|x| is (1, 1) and (-1, 1)

Now,

Area od OCAO = Area OAM - Area of OCMO

Area of OAM =
$$\frac{1}{2}.OM.AM = \frac{1}{2}.1.1 = \frac{1}{2}$$

Area of OCMO =
$$\int_0^1 y dx = \int_0^1 x^2 dx = \left[\frac{x^3}{3}\right]_0^1 = \frac{1}{3}$$

Therefore,

Area od OCAO
$$=$$
 $\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$

Now,

Area of the region bounded by the parabola $y=x^2$ and y=|x| is = 2 X Area od OCAO = $2\times\frac{1}{6}=\frac{1}{3}$ Units

$$OCAO = 2 \times \frac{1}{6} = \frac{1}{3}Units$$

Question: 10 Find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

Answer:

Points of intersections of $y = x^2$ and x = 4y - 2 is $A\left(-1,\frac{1}{4}\right)$ and B(2,1)

Now,

Area of OBAO = Area of OBCO + Area of OCAO

Area of OBCO = Area of OMBCO- Area of OMBO

Area of OMBCO =

Area of OMBO =

Area of OBCO = Area of OMBCO- Area of OMBO $= \frac{3}{2} - \frac{2}{3} = \frac{5}{6}$

Similarly,

Area of OCAO = Area of OCALO - Area of OALO

Area of OCALO =

Area of OALO =

Area of OCAO = Area of OCALO - Area of OALO = $\frac{3}{8} - \frac{1}{12} = \frac{9-2}{24} = \frac{7}{24}$

Now,

Area of OBAO = Area of OBCO + Area of OCAO $=\frac{5}{6}+\frac{7}{24}=\frac{20+7}{24}=\frac{27}{24}=\frac{9}{8}$

Therefore, area bounded by the curve $x^2=4y$ and the line x=4y-2 is $\frac{9}{8}$ units

Question: 11 Find the area of the region bounded by the curve $y^2=4x$ and the line x=3 .

Answer:

The combined figure of the curve $y^2 = 4x$ and x = 3

The required are is OABCO, and it is symmetrical about the horizontal axis.

Therefore, Area of OABCO = $2 \times$ Area of OAB

$$= 2\left[\int_{0}^{3} y dx\right]$$

$$= 2\int_{0}^{3} 2\sqrt{x} dx$$

$$= 4\left[\frac{x^{3/2}}{3/2}\right]_{0}^{3}$$

$$= 8\sqrt{3}$$

therefore the required area is $8\sqrt{3}$ units.

Question: 12 Choose the correct answer in the following

Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ and the lines x=0 and x=2 is

$$(A) \; \pi \; (B) \; \frac{\pi}{2} \, (C) \; \frac{\pi}{3} \, (D) \; \frac{\pi}{4}$$

The correct answer is A

The area bounded by circle C(0,0,4) and the line x=2 is

The required area = area of OAB

$$\int_0^2 y dx = \int_0^2 \sqrt{4 - x^2} dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$$

$$= 2(\pi/2)$$

$$= \pi$$

Question: 13 Choose the correct answer in the following.

Area of the region bounded by the curve $y^2=4x$, y -axis and the line y=3 is

(A) 2 (B)
$$\frac{9}{4}$$
 (C) $\frac{9}{3}$ (D) $\frac{9}{2}$

Answer:

The area bounded by the curve $\boldsymbol{y}^2 = 4\boldsymbol{x}$ and y =3

the required a
$$\int_0^3 x dy$$

$$= \int_0^3 \frac{y^2}{4} dy$$

$$= \frac{1}{4} \cdot \left[\frac{y^3}{3} \right]_0^3$$

$$= \frac{9}{4}$$

NCERT solutions for class 12 maths chapter 8 application of integrals Exercise: 8.2

Question: 1 Find the area of the circle $4x^2+4y^2=9$ which is interior to the parabola $x^2=4y$.

The area bounded by the circle $4x^2+4y^2=9$ and the parabola $x^2=4y\,$.

By solving the equation we get the intersecting point $D(-\sqrt{2},\frac{1}{2})$ and $B(\sqrt{2},\frac{1}{2})$

So, the required area (OBCDO)=2 times the area of (OBCO)

Draw a normal on the x-axis (M = $\sqrt{2}$, 0)

Thus the area of OBCO = Area of OMBCO - Area of OMBO

S0, total area =

Question:2 Find the area bounded by curves $(x-1)^2+y^2=1$ and $x^2+y^2=1$.

Given curves are
$$(x-1)^2+y^2=1$$
 and $x^2+y^2=1$

Point of intersection of these two curves are

$$A = \left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)_{\text{and}} B = \left(\frac{1}{2}, -\frac{\sqrt{3}}{2}\right)$$

We can clearly see that the required area is symmetrical about the x-axis

Therefore,

Area of OBCAO = 2 × Area of OCAO

Now, join AB such that it intersects the x-axis at M and AM is perpendicular to OC

Coordinates of M =
$$\left(\frac{1}{2},0\right)$$

Now,

Area OCAO = Area OMAO + Area CMAC

$$= \left[\int_0^{\frac{1}{2}} \sqrt{1 - (x - 1)^2} dx + \int_{\frac{1}{2}}^1 \sqrt{1 - x^2} dx \right]$$

$$= \left[-\frac{\sqrt{3}}{8} + \frac{\pi}{6} \right] + \left[\frac{\pi}{6} - \frac{\sqrt{3}}{8} \right]$$
$$= 2 \left[-\frac{\sqrt{3}}{8} + \frac{\pi}{6} \right]$$

Now,

Area of OBCAO = $2 \times$ Area of OCAO

$$= 2 \times 2 \left[-\frac{\sqrt{3}}{8} + \frac{\pi}{6} \right]$$
$$= \frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$

Therefore, the answer is
$$\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$$

Question: 3 Find the area of the region bounded by the curves $y=x^2+2, y=x, x=0$ and x=3.

The area of the region bounded by the curves,

 $y=x^2+2, y=x, x=0$ and x=3 is represented by the shaded area OCBAO as

Then, Area OCBAO will be = Area of ODBAO - Area of ODCO

which is equal to

$$\int_0^3 (x^2 + 2)dx - \int_0^3 x dx$$

$$= \left(\frac{x^3}{3} + 2x\right)_0^3 - \left(\frac{x^3}{2}\right)_0^3$$

$$= [9+6] - \left[\frac{9}{2}\right] = 15 - \frac{9}{2} = \frac{21}{2}units.$$

Question: 4 Using integration find the area of region bounded by the triangle whose vertices are (-1,0),(1,3) and (3,2).

So, we draw BL and CM perpendicular to x-axis.

Then it can be observed in the following figure that,

$$Area(\triangle ACB) = Area(ALBA) + Area(BLMCB) - Area(AMCA)$$

We have the graph as follows:

Equation of the line segment AB is:

$$y - 0 = \frac{3 - 0}{1 + 1}(x + 1)$$
 or $y = \frac{3}{2}(x + 1)$

Therefore we have Area of ALBA

$$= \int_{-1}^{1} \frac{3}{2}(x+1)dx = \frac{3}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{1}$$
$$= \frac{3}{2} \left[\frac{1}{2} + 1 - \frac{1}{2} + 1 \right] = 3units.$$

So, the equation of line segment BC is

$$y-3=\frac{2-3}{3-1}(x-1)$$
 or $y=\frac{1}{2}(-x+7)$

Therefore the area of BLMCB will be,

$$= \int_{1}^{3} \frac{1}{2}(-x+7)dx = \frac{1}{2} \left[-\frac{x^{2}}{2} + 7x \right]_{1}^{3}$$
$$= \frac{1}{2} \left[-\frac{9}{2} + 21 + \frac{1}{2} - 7 \right] = 5units.$$

Equation of the line segment AC is,

$$y - 0 = \frac{2 - 0}{3 + 1}(x + 1)$$
 or $y = \frac{1}{2}(x + 1)$

Therefore the area of AMCA will be,

$$= \frac{1}{2} \int_{-1}^{3} (x+1)dx = \frac{1}{2} \left[\frac{x^2}{2} + x \right]_{-1}^{3}$$
$$= \frac{1}{2} \left(\frac{9}{2} + 3 - \frac{1}{2} + 1 \right) = 4units.$$

Therefore, from equations (1), we get

The area of the triangle $\triangle ABC = 3 + 5 - 4 = 4units$.

Question:5 Using integration find the area of the triangular region whose sides have the equations y = 2x + 1, y = 3x + 1 and x = 4.

Answer:

The equations of sides of the triangle are $y=2x+1, y=3x+1, \ and \ x=4$.

ON solving these equations, we will get the vertices of the triangle as $A(0,1), B(4,13), \ and \ C(4,9)$

Thus it can be seen that,

$$Area(\triangle ACB) = Area(OLBAO) - Area(OLCAO)$$

$$= \int_0^4 (3x+1)dx - \int_0^4 (2x+1)dx$$

$$= \left[\frac{3x^2}{2} + x\right]_0^4 - \left[\frac{2x^2}{2} + x\right]_0^4$$

$$= (24+4) - (16+4) = 28 - 20 = 8units.$$

Question:6 Choose the correct answer.

Smaller area enclosed by the circle $x^2+y^2=4$ and the line x+y=2 is

(A)
$$2(\pi-2)$$
 (B) $\pi-2$ (C) $2\pi-1$ (D) $2(\pi+2)$

Answer:

So, the smaller area enclosed by the circle, $x^2+y^2=4$, and the line, x+y=2 , is represented by the shaded area ACBA as

Thus it can be observed that,

Area of ACBA = Area OACBO - Area of $(\triangle OAB)$

$$= \int_0^2 \sqrt{4 - x^2} dx - \int_0^2 (2 - x) dx$$

$$= \left[2.\frac{\pi}{2}\right] - \left[4-2\right]$$

$$=(\pi-2)units.$$

Thus, the correct answer is B.

Question:7 Choose the correct answer.

Area lying between the curves $y^2 = 4x$ and y = 2x is

(A)
$$\frac{2}{3}$$
 (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$

Answer:

The area lying between the curve, $y^2=4x$ and y=2x is represented by the shaded area OBAO as

The points of intersection of these curves are ${\cal O}(0,0)$ and ${\cal A}(1,2)$.

So, we draw AC perpendicular to x-axis such that the coordinates of C are (1,0).

Therefore the Area OBAO = $Area(\triangle OCA) - Area(OCABO)$

$$= 2\left[\frac{x^2}{2}\right]_0^1 - 2\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_0^1$$

$$=\left|1-\frac{4}{3}\right|=\left|-\frac{1}{3}\right|=\frac{1}{3}units.$$

Thus the correct answer is B.

NCERT solutions for class 12 maths chapter 8 application of integrals Miscellaneous: Exercise

Question:1 Find the area under the given curves and given lines:

(i)
$$y = x^2, x = 1, x = 2$$
 and x -axis

Answer:

The area bounded by the curve $y=x^2, x=1, x=2$ and x -axis

The area of the required region = area of ABCD

$$= \int_{1}^{2} y dx$$

$$= \int_{1}^{2} x^{2} dx$$

$$= \left[\frac{x^{3}}{3}\right]_{1}^{2}$$

$$= \frac{7}{3}$$

Hence the area of shaded region is 7/3 units

Question:1 Find the area under the given curves and given lines:

(ii)
$$y = x^4, x = 1, x = 5$$
 and x -axis

Answer:

The area bounded by the curvy $y=x^4, x=1, x=5$ and x -axis

The area of the required region = area of ABCD

$$= \int_{1}^{5} y dx$$

$$= \int_{1}^{2} x^{4} dx$$

$$= \left[\frac{x^{5}}{5}\right]_{1}^{2}$$

$$= 625 - \frac{1}{5}$$

$$= 624.8$$

Hence the area of the shaded region is 624.8 units

Question:2 Find the area between the curves y = x and $y = x^2$.

the area between the curves y = x and $y = x^2$.

The curves intersect at A(1,1)

Draw a normal to AC to OC(x-axis)

therefore, the required area (OBAO)= area of (OCAO) - area of (OCABO)

$$= \int_0^1 x dx - \int_0^1 x^2 dx$$

$$= \left[\frac{x^2}{2}\right]_0^1 - \left[\frac{x^3}{3}\right]_0^1$$

$$= \frac{1}{2} - \frac{1}{3}$$

$$= \frac{1}{6}$$

Thus the area of shaded region is 1/6 units

Question:3 Find the area of the region lying in the first quadrant and bounded by $y=4x^2, x=0, y=1$ and y=4.

Answer:

the area of the region lying in the first quadrant and bounded by $y=4x^2, x=0, y=1$ and y=4 .

The required area (ABCD) =

The area of the shaded region is 7/3 units

Question:4 Sketch the graph of y = |x+3| and evaluate $\int_{-6}^{0} |x+3| dx$.

Answer:

$$y = |x + 3|$$

the given modulus function can be written as

$$y=|x+3|=x+3$$

For x<-3

$$y=|x+3|=-(x+3)$$

Integral to be evaluated is

Question:5 Find the area bounded by the curve $y=\sin x$ between x=0 and $x=2\pi$.

Answer:

The graph of y=sinx is as follows

We need to find the area of the shaded region

=2ar(OAB)

$$= 2 \times \int_0^{\pi} sinx dx$$

$$= 2 \times [-cosx]_0^{\pi}$$

$$= 2 \times [-(-1) - (-1)]$$

$$= 4$$

The bounded area is 4 units.

Question:6 Find the area enclosed between the parabola $y^2=4ax$ and the line y=mx .

Answer:

We have to find the area of the shaded region OBA

The curves y=mx and y ² =4ax intersect at the following points

$$(0,0)$$
 and $\left(\frac{4a}{m^2},\frac{4a}{m}\right)$

$$y^2 = 4ax$$
$$\Rightarrow y = 2\sqrt{ax}$$

The required area is

Question:7 Find the area enclosed by the parabola $4y=3x^2$ and the line 2y=3x+12 .

Answer:

We have to find the area of the shaded region COB

$$2y = 3x + 12$$

$$\Rightarrow y = \frac{3}{2}x + 6$$

$$4y = 3x^{2}$$

$$\Rightarrow y = \frac{3x^{2}}{4}$$

The two curves intersect at points (2,3) and (4,12)

Required area is

Question:8 Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$.

Answer:

We have to find the area of the shaded region

The given ellipse and the given line intersect at following points

$$(0,2)$$
 and $(3,0)$

$$\frac{x^2}{9} + \frac{y^2}{4} = 1$$
$$y = \frac{2}{3}\sqrt{9 - x^2}$$

Since the shaded region lies above x axis we take y to be positive

$$\frac{x}{3} + \frac{y}{2} = 1$$
$$y = \frac{2}{3}(3 - x)$$

The required area is

Question:9 Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$.

Answer:

The area of the shaded region ACB is to be found

The given ellipse and the line intersect at following points

$$\left(0,b\right) and\left(a,0\right)$$

$$\begin{aligned} \frac{x^2}{a^2} + \frac{y^2}{b^2} &= 1\\ \Rightarrow y &= \frac{b}{a} \sqrt{a^2 - x^2} \end{aligned}$$

Y will always be positive since the shaded region lies above x axis

$$\frac{x}{a} + \frac{y}{b} = 1$$
$$\Rightarrow y = \frac{b}{a}(a - x)$$

The required area is

Question:10 Find the area of the region enclosed by the parabola $x^2 = y$, the line y = x + 2 and the x -axis.

Answer:

We have to find the area of the shaded region BAOB

O is(0,0)

The line and the parabola intersect in the second quadrant at (-1,1)

The line y=x+2 intersects the x axis at (-2,0)

The area of the region enclosed by the parabola $x^2=y$, the line y=x+2 and the x -axis is 5/6 units.

Question:11 Using the method of integration find the area bounded by the curve |x|+|y|=1.

[Hint: The required region is bounded by

lines
$$x + y = 1, x - y = 1, -x + y = 1$$
 and $-x - y = 1$

Answer:

We need to find the area of the shaded region ABCD

ar(ABCD)=4ar(AOB)

Coordinates of points A and B are (0,1) and (1,0)

Equation of line through A and B is y=1-x

The area bounded by the curve |x| + |y| = 1 is 2 units.

Question:12 Find the area bounded by curves $\left\{(x,y); y \geq x^2 \ and \ y = |x| \right\}$.

Answer:

We have to find the area of the shaded region

In the first quadrant

$$y=|x|=x$$

Area of the shaded region=2ar(OADO)

The area bounded by the curves is 1/3 units.

Question:13 Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2,0), B(4,5) and C(6,3).

Answer:

Equation of line joining A and B is

$$\frac{y-0}{x-2} = \frac{5-0}{4-2}$$
$$y = \frac{5x}{2} - 5$$

Equation of line joining B and C is

$$\frac{y-5}{x-4} = \frac{5-3}{4-6}$$

$$y = 9-x$$

Equation of line joining A and C is

$$\frac{y-0}{x-2} = \frac{3-0}{6-2}$$
$$y = \frac{3x}{4} - \frac{3}{2}$$

ar(ABC)=ar(ABL)+ar(LBCM)-ar(ACM)

$$ar(ABL) = \int_{2}^{4} (\frac{5x}{2} - 5)dx$$

$$= \left[\frac{5x^{2}}{4} - 5x\right]_{2}^{4}$$

$$= (20 - 20) - (5 - 10)$$

$$= 5 \text{ units}$$

$$ar(LBCM) = \int_{4}^{6} (9 - x)dx$$

$$= \left[9x - \frac{x^{2}}{2}\right]_{4}^{6}$$

$$= (54 - 18) - (36 - 8)$$

$$= 8 \text{ units}$$

Therefore the area of the triangle ABC is 7 units.

Question:14 Using the method of integration find the area of the region bounded by lines:

$$2x + y = 4$$
, $3x - 2y = 6$ and $x - 3y + 5 = 0$.

We have to find the area of the shaded region ABC

The lines intersect at points (1,2), (4,3) and (2,0)

$$x - 3y = -5$$
$$y = \frac{x}{3} + \frac{5}{3}$$

$$2x + y = 4$$
$$y = 4 - 2x$$

$$ar(ALB) = \int_{1}^{2} (4 - 2x) dx$$
$$= [4x - x^{2}]_{1}^{2}$$
$$= (8 - 4) - (4 - 1)$$
$$= 1 \ unit$$

$$3x - 2y = 6$$
$$y = \frac{3x}{2} - 3$$

$$ar(BMC) = \int_{2}^{4} (\frac{3x}{2} - 3)dx$$

$$= \left[\frac{3x^{2}}{4} - 3x\right]_{2}^{4}$$

$$= (12 - 12) - (3 - 6)$$

$$= 3 \text{ units}$$

$$ar(ABC) = \frac{15}{2} - 1 - 3$$

$$= \frac{7}{2} \text{ units}$$

Area of the region bounded by the lines is 3.5 units

Question:15 Find the area of the region $\left\{(x,y); y^2 \leq 4x, 4x^2 + 4y^2 \leq 9\right\}$.

Answer:

We have to find the area of the shaded region OCBAO

For the fist quadrant

$$4x^{2} + 4y^{2} = 9$$
$$y = \sqrt{\frac{9}{4} - x^{2}}$$

$$y^2 = 4x$$
$$y = 2\sqrt{x}$$

In the first quadrant, the curves intersect at a point $\left(\frac{1}{2},\sqrt{2}\right)$

Area of the unshaded region in the first quadrant is

The total area of the shaded region is-

= Area of half circle - area of the shaded region in the first quadrant

Question:16 Choose the correct answer.

Area bounded by the curve $y=x^3$, the x -axis and the ordinates x=-2 and x=1 is

(A)
$$-9$$
 (B) $\frac{-15}{4}$ (C) $\frac{15}{4}$ (D) $\frac{17}{4}$

Hence the required area

$$= \int_{-2}^{1} y dx$$

$$= \int_{-2}^{1} x^{3} dx = \left[\frac{x^{4}}{4} \right]_{-2}^{1}$$

$$= \left[\frac{x^{4}}{4} \right]_{-2}^{0} + \left[\frac{x^{4}}{4} \right]_{0}^{1}$$

$$= \left[0 - \frac{(-2)^{4}}{4} \right] + \left[\frac{1}{4} - 0 \right]$$

$$= -4 + \frac{1}{4} = \frac{-15}{4}$$

Therefore the correct answer is B.

Question:17 Choose the correct answer.

T he area bounded by the curve y=x|x| , x -axis and the ordinates x=-1 and x=1 is given by

(A)
$$0$$
 (B) $\frac{1}{3}$ (C) $\frac{2}{3}$ (D) $\frac{4}{3}$

[Hint :
$$y = x^2$$
 if $x > 0$ and $y = -x^2$ if $x < 0$.]

Answer:

The required area is

$$2\int_0^1 x^2 dx$$
$$= 2\left[\frac{x^3}{3}\right]_0^1$$
$$= \frac{2}{3} units$$

Question:18 Choose the correct answer.

The area of the circle $x^2 + y^2 = 16$ exterior to the parabola $y^2 = 6x$ is

(A)
$$\frac{4}{3}(4\pi - \sqrt{3})$$
 (B) $\frac{4}{3}(4\pi + \sqrt{3})$ (C) $\frac{4}{3}(8\pi - \sqrt{3})$ (D) $\frac{4}{3}(8\pi + \sqrt{3})$

The area of the shaded region is to be found.

Required area =ar(DOC)+ar(DOA)

The region to the left of the y-axis is half of the circle with radius 4 units and centre origin.

Area of the shaded region to the left of y axis is ar(1) = $\frac{\pi 4^2}{2} = 8\pi \ units$

For the region to the right of y-axis and above x axis

$$x^{2} + y^{2} = 16$$
$$y = \sqrt{16 - x^{2}}$$

$$y^2 = 6x$$
$$y = \sqrt{6x}$$

The parabola and the circle in the first quadrant intersect at point

$$(2,2\sqrt{3})$$

Remaining area is 2ar(2) is

Total area of shaded region is

$$ar(1) + 2ar(2)$$

= $8\pi + \frac{8\pi}{3} - \frac{4\sqrt{3}}{3}$
= $\frac{4}{3}(8\pi - \sqrt{3})$ units

Question:19 Choose the correct answer The area bounded by the y -axis, $y=\cos x$ and $y=\sin x$ when $0\leq x\leq \frac{\pi}{2}$ is

(A)
$$2(\sqrt{2}-1)$$
 (B) $\sqrt{2}-1$ (C) $\sqrt{2}+1$ (D) $\sqrt{2}$

Answer:

Given : $y = \cos x$ and $y = \sin x$

Area of shaded region = area of BCDB + are of ADCA

$$= \int_{\frac{1}{\sqrt{2}}}^{1} x dy + \int_{1}^{\frac{1}{\sqrt{2}}} x dy$$

$$= \int_{\frac{1}{\sqrt{2}}}^{1} \cos^{-1} y \cdot dy + \int_{1}^{\frac{1}{\sqrt{2}}} \sin^{-1} x dy$$
$$= \left[y \cdot \cos^{-1} y - \sqrt{1 - y^{2}} \right]_{\frac{1}{\sqrt{2}}}^{1} + \left[x \cdot \sin^{-1} x + \sqrt{1 - x^{2}} \right]_{1}^{\frac{1}{\sqrt{2}}}$$

$$= \frac{-\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} + \frac{\pi}{4\sqrt{2}} + \frac{1}{\sqrt{2}} - 1$$

$$= \frac{2}{\sqrt{2}} - 1$$

$$= \sqrt{2} - 1$$

Hence, the correct answer is B.