NCERT solutions for class 11 maths chapter 5 Complex Numbers and Quadratic Equations-Exercise: 5.1

Question:1 Express each of the complex number in the form $a+i b$.
(5i) $\left(-\frac{3}{5} i\right)$

Answer:

On solving
(5i) $\left(-\frac{3}{5} i\right)$
we will get
(5i) $\left(-\frac{3}{5} i\right)=5 \times\left(-\frac{3}{5}\right) \times i \times i$
$=-3 \times i^{2}\left(\because i^{2}=-1\right)$
$=-3 \times-1$
$=3$

Now, in the form of $a+i b$ we can write it as
$=3+0 i$

Question:2 Express each of the complex number in the form $a+i b$.
$i^{9}+i^{19}$

Answer:

We know that $i^{4}=1$
Now, we will reduce $i^{9}+i^{19}$ into
$i^{9}+i^{19}=\left(i^{4}\right)^{2} \cdot i+\left(i^{4}\right)^{3} \cdot i^{3}$
$=(1)^{2} \cdot i+(1)^{3} \cdot(-i)\left(\because i^{4}=1, i^{3}=-i\right.$ and $\left.i^{2}=-1\right)$
$=i-i=0$
Now, in the form of $a+i b$ we can write it as
$o+i o$
Therefore, the answer is $o+i o$

Question:3 Express each of the complex number in the form a+ib.
i^{-39}

Answer:

We know that $i^{4}=1$
Now, we will reduce i^{-39} into

$$
\begin{aligned}
& i^{-39}=\left(i^{4}\right)^{-9} \cdot i^{-3} \\
& =(1)^{-9} \cdot(-i)^{-1}\left(\because i^{4}=1, i^{3}=-i\right) \\
& =\frac{1}{-i} \\
& =\frac{1}{-i} \times \frac{i}{i} \\
& =\frac{i}{-i^{2}}\left(\because i^{2}=-1\right) \\
& =\frac{i}{-(-1)} \\
& =i
\end{aligned}
$$

Now, in the form of $a+i b$ we can write it as
$o+i 1$
Therefore, the answer is $o+i 1$

Question:4 Express each of the complex number in the form a+ib.
$3(7+7 i)+i(7+7 i)$

Answer:

Given problem is
$3(7+7 i)+i(7+7 i)$
Now, we will reduce it into

$$
\begin{aligned}
& 3(7+7 i)+i(7+7 i)=21+21 i+7 i+7 i^{2} \\
& =21+21 i+7 i+7(-1)\left(\because i^{2}=-1\right) \\
& =21+21 i+7 i-7 \\
& =14+28 i
\end{aligned}
$$

Therefore, the answer is $14+i 28$

Question:5 Express each of the complex number in the form $a+i b$.

$$
(1-i)-(-1+6 i)
$$

Answer:

Given problem is
$(1-i)-(-1+6 i)$
Now, we will reduce it into
$(1-i)-(-1+6 i)=1-i+1-6 i$
$=2-7 i$

Therefore, the answer is $2-7 i$

Question: 6 Express each of the complex number in the form $a+i b$.
$\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$

Answer:

Given problem is
$\left(\frac{1}{5}+i \frac{2}{5}\right)-\left(4+i \frac{5}{2}\right)$
Now, we will reduce it into
$=\frac{1-20}{5}+i \frac{(4-25)}{10}$
$=-\frac{19}{5}-i \frac{21}{10}$

Therefore, the answer is $-\frac{19}{5}-i \frac{21}{10}$

Question:7 Express each of the complex number in the form $a+i b$.

Answer:

Given problem is

Now, we will reduce it into
$=\frac{1+4+12}{3}+i \frac{(7+1-3)}{3}$
$=\frac{17}{3}+i \frac{5}{3}$

Therefore, the answer is $\frac{17}{3}+i \frac{5}{3}$

Question:8 Express each of the complex number in the form $a+i b$.

$$
(1-i)^{4}
$$

Answer:

The given problem is
$(1-i)^{4}$
Now, we will reduce it into

$$
\begin{aligned}
& (1-i)^{4}=\left((1-i)^{2}\right)^{2} \\
& =\left(1^{2}+i^{2}-2.1 \cdot i\right)^{2}\left(u \operatorname{sing}(a-b)^{2}=a^{2}+b^{2}-2 a b\right) \\
& =(1-1-2 i)^{2}\left(\because i^{2}=-1\right) \\
& =(-2 i)^{2} \\
& =4 i^{2} \\
& =-4
\end{aligned}
$$

Therefore, the answer is $-4+i 0$

Question:9 Express each of the complex number in the form $a+i b$.
$\left(\frac{1}{3}+3 i\right)^{3}$

Answer:

Given problem is
$\left(\frac{1}{3}+3 i\right)^{3}$
Now, we will reduce it into

$$
\begin{aligned}
& \left(u \operatorname{sing}(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}\right) \\
& =\frac{1}{27}+27 i^{3}+i+9 i^{2} \\
& =\frac{1}{27}+27(-i)+i+9(-1)\left(\because i^{3}=-i \text { and } i^{2}=-1\right) \\
& =\frac{1}{27}-27 i+i-9 \\
& =\frac{1-243}{27}-26 i \\
& =-\frac{242}{27}-26 i
\end{aligned}
$$

Therefore, the answer is
$-\frac{242}{27}-26 i$

Question:10 Express each of the complex number in the form $a+i b$.
$\left(-2-\frac{1}{3} i\right)^{3}$

Answer:

Given problem is
$\left(-2-\frac{1}{3} i\right)^{3}$
Now, we will reduce it into

$$
\begin{aligned}
& \left(\text { using }(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}\right) \\
& =-\left(8+\frac{1}{27} i^{3}+3 \cdot 4 \cdot \frac{1}{3} i+3 \cdot \frac{1}{9} i^{2} \cdot 2\right) \\
& =-\left(8+\frac{1}{27}(-i)+4 i+\frac{2}{3}(-1)\right)\left(\because i^{3}=-i \text { and } i^{2}=-1\right) \\
& =-\left(8-\frac{1}{27} i+4 i-\frac{2}{3}\right) \\
& =-\left(\frac{(-1+108)}{27} i+\frac{24-2}{3}\right) \\
& =-\frac{22}{3}-i \frac{107}{27}
\end{aligned}
$$

Therefore, the answer is $-\frac{22}{3}-i \frac{107}{27}$

Question:11 Find the multiplicative inverse of each of the complex numbers.
$4-3 i$

Answer:

Let $z=4-3 i$
Then,
$\bar{z}=4+3 i$
And
$|z|^{2}=4^{2}+(-3)^{2}=16+9=25$
Now, the multiplicative inverse is given by
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{4+3 i}{25}=\frac{4}{25}+i \frac{3}{25}$

Therefore, the multiplicative inverse is
$\frac{4}{25}+i \frac{3}{25}$

Question:12 Find the multiplicative inverse of each of the complex numbers.
$\sqrt{5}+3 i$

Answer:

Let $z=\sqrt{5}+3 i$
Then,
$\bar{z}=\sqrt{5}-3 i$
And
$|z|^{2}=(\sqrt{5})^{2}+(3)^{2}=5+9=14$
Now, the multiplicative inverse is given by
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{\sqrt{5}-3 i}{14}=\frac{\sqrt{5}}{14}-i \frac{3}{14}$

Therefore, the multiplicative inverse is $\frac{\sqrt{5}}{14}-i \frac{3}{14}$

Question:13 Find the multiplicative inverse of each of the complex numbers.
$-i$

Answer:

$$
\text { Let } z=-i
$$

Then,
$\bar{z}=i$
And
$|z|^{2}=(0)^{2}+(1)^{2}=0+1=1$
Now, the multiplicative inverse is given by
$z^{-1}=\frac{\bar{z}}{|z|^{2}}=\frac{i}{1}=0+i$

Therefore, the multiplicative inverse is $0+i 1$

Question:14 Express the following expression in the form of $a+i b$:
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$

Answer:

Given problem is
$\frac{(3+i \sqrt{5})(3-i \sqrt{5})}{(\sqrt{3}+\sqrt{2} i)-(\sqrt{3}-i \sqrt{2})}$
Now, we will reduce it into

$$
\begin{aligned}
& \left(u \operatorname{sing}(a-b)(a+b)=a^{2}-b^{2}\right) \\
& =\frac{9-5 i^{2}}{\sqrt{3}+\sqrt{2} i-\sqrt{3}+\sqrt{2} i} \\
& =\frac{9-5(-1)}{2 \sqrt{2} i}\left(\because i^{2}=-1\right) \\
& =\frac{14}{2 \sqrt{2} i} \times \frac{\sqrt{2} i}{\sqrt{2} i} \\
& =\frac{7 \sqrt{2} i}{2 i^{2}}
\end{aligned}
$$

$=-\frac{7 \sqrt{2} i}{2}$
Therefore, answer is $0-i \frac{7 \sqrt{2}}{2}$

NCERT solutions for class 11 maths chapter 5 Complex Numbers and Quadratic Equations-Exercise: 5.2

Question:1 Find the modulus and the arguments of each of the complex numbers.
$z=-1-i \sqrt{3}$

Answer:

Given the problem is
$z=-1-i \sqrt{3}$
Now, let
$r \cos \theta=-1 \quad$ and $\quad r \sin \theta=-\sqrt{3}$
Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(-1)^{2}+(-\sqrt{3})^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=1+3$
$r^{2}=4$
$r=2(\because r>0)$
Therefore, the modulus is 2
Now,
$2 \cos \theta=-1 \quad$ and $\quad 2 \sin \theta=-\sqrt{3}$
$\cos \theta=-\frac{1}{2} \quad$ and $\quad \sin \theta=-\frac{\sqrt{3}}{2}$
Since, both the values of $\cos \theta$ and $\sin \theta$ is negative and we know that they are
negative in III quadrant
Therefore,
Argument $=-\left(\pi-\frac{\pi}{3}\right)=-\frac{2 \pi}{3}$
Therefore, the argument is
$-\frac{2 \pi}{3}$

Question:2 Find the modulus and the arguments of each of the complex numbers.
$z=-\sqrt{3}+i$

Answer:

Given the problem is
$z=-\sqrt{3}+i$
Now, let
$r \cos \theta=-\sqrt{3} \quad$ and $\quad r \sin \theta=1$
Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(-\sqrt{3})^{2}+(1)^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=1+3$
$r^{2}=4$
$r=2(\because r>0)$
Therefore, the modulus is 2
Now,
$2 \cos \theta=-\sqrt{3}$ and $2 \sin \theta=1$
$\cos \theta=-\frac{\sqrt{3}}{2} \quad$ and $\quad \sin \theta=\frac{1}{2}$
Since values of $\cos \theta$ is negative and value $\sin \theta$ is positive and we know that this is the case in II quadrant

Therefore,
Argument $=\left(\pi-\frac{\pi}{6}\right)=\frac{5 \pi}{6}$
Therefore, the argument is
5π
$\overline{6}$

Question:3 Convert each of the complex numbers in the polar form:
$1-i$

Answer:

Given problem is
$z=1-i$
Now, let
$r \cos \theta=1 \quad$ and $\quad r \sin \theta=-1$
Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(1)^{2}+(-1)^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=1+1$
$r^{2}=2$
$r=\sqrt{2}(\because r>0)$
Therefore, the modulus is $\sqrt{2}$
Now,
$\sqrt{2} \cos \theta=1$ and $\sqrt{2} \sin \theta=-1$
$\cos \theta=\frac{1}{\sqrt{2}} \quad$ and $\quad \sin \theta=-\frac{1}{\sqrt{2}}$
Since values of $\sin \theta$ is negative and value $\cos \theta$ is positive and we know that this is the case in the IV quadrant

Therefore,
$\theta=-\frac{\pi}{4} \quad$ (lies in IV quadrant)
Therefore,
$1-i=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \left(-\frac{\pi}{4}\right)+i \sqrt{2} \sin \left(-\frac{\pi}{4}\right)$
$=\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)$

Therefore, the required polar form is $\sqrt{2}\left(\cos \left(-\frac{\pi}{4}\right)+i \sin \left(-\frac{\pi}{4}\right)\right)$

Question:4 Convert each of the complex numbers in the polar form:
$-1+i$

Answer:

Given the problem is
$z=-1+i$
Now, let
$r \cos \theta=-1$ and $r \sin \theta=1$
Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(1)^{2}+(-1)^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=1+1$
$r^{2}=2$
$r=\sqrt{2}(\because r>0)$
Therefore, the modulus is $\sqrt{2}$
Now,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\cos \theta=-\frac{1}{\sqrt{2}} \quad$ and $\quad \sin \theta=\frac{1}{\sqrt{2}}$

Since values of $\cos \theta$ is negative and value $\sin \theta$ is positive and we know that this is the case in II quadrant

Therefore,

Therefore,
$-1+i=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \left(\frac{3 \pi}{4}\right)+i \sqrt{2} \sin \left(\frac{3 \pi}{4}\right)$
$=\sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)$

Therefore, the required polar form is

$$
\sqrt{2}\left(\cos \left(\frac{3 \pi}{4}\right)+i \sin \left(\frac{3 \pi}{4}\right)\right)
$$

Question:5 Convert each of the complex numbers in the polar form:
$-1-i$

Answer:

Given problem is
$z=-1-i$
Now, let
$r \cos \theta=-1$ and $r \sin \theta=-1$
Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(-1)^{2}+(-1)^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=1+1$
$r^{2}=2$
$r=\sqrt{2}$ \&nbsnbsp; $(\because r>0)$
Therefore, the modulus is $\sqrt{2}$

Now,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=-1$
$\cos \theta=-\frac{1}{\sqrt{2}} \quad$ and $\quad \sin \theta=-\frac{1}{\sqrt{2}}$
Since values of both $\cos \theta$ and $\sin \theta$ is negative and we know that this is the case in III quadrant

Therefore,

Therefore,
$-1-i=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \left(-\frac{3 \pi}{4}\right)+i \sqrt{2} \sin \left(-\frac{3 \pi}{4}\right)$
$=\sqrt{2}\left(\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)$

Therefore, the required polar form is

$$
\sqrt{2}\left(\cos \left(-\frac{3 \pi}{4}\right)+i \sin \left(-\frac{3 \pi}{4}\right)\right)
$$

Question:6 Convert each of the complex numbers in the polar form:

-3

Answer:

Given problem is
$z=-3$
Now, let
$r \cos \theta=-3 \quad$ and $\quad r \sin \theta=0$
Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(-3)^{2}+(0)^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=9+0$
$r^{2}=9$
$r=3(\because r>0)$
Therefore, the modulus is 3
Now,
$3 \cos \theta=-3$ and $3 \sin \theta=0$
$\cos \theta=-1 \quad$ and $\quad \sin \theta=0$
Since values of $\cos \theta$ is negative and $\sin \theta$ is Positive and we know that this is the case in II quadrant

Therefore,
$\theta=\pi \quad$ (lies in II quadrant)
Therefore,

$$
\begin{aligned}
& -3=r \cos \theta+i r \sin \theta \\
& =3 \cos (\pi)+i 3 \sin (\pi) \\
& =3(\cos \pi+i \sin \pi)
\end{aligned}
$$

Therefore, the required polar form is $3(\cos \pi+i \sin \pi)$

Question:7 Convert each of the complex numbers in the polar form:
$\sqrt{3}+i$

Answer:

Given problem is
$z=\sqrt{3}+i$
Now, let
$r \cos \theta=\sqrt{3} \quad$ and $\quad r \sin \theta=1$

Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(\sqrt{3})^{2}+(1)^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=3+1$
$r^{2}=4$
$r=2(\because r>0)$
Therefore, the modulus is $\mathbf{2}$
Now,
$2 \cos \theta=\sqrt{3}$ and $2 \sin \theta=1$
$\cos \theta=\frac{\sqrt{3}}{2} \quad$ and $\quad \sin \theta=\frac{1}{2}$
Since values of Both $\cos \theta$ and $\sin \theta$ is Positive and we know that this is the case in I quadrant

Therefore,
$\theta=\frac{\pi}{6} \quad$ (lies in I quadr ant)
Therefore,
$\sqrt{3}+i=r \cos \theta+i r \sin \theta$
$=2 \cos \left(\frac{\pi}{6}\right)+i 2 \sin \left(\frac{\pi}{6}\right)$
$=2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$

Therefore, the required polar form is $2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)$

Question:8 Convert each of the complex numbers in the polar form:
i

Answer:

Given problem is
$z=i$
Now, let
$r \cos \theta=0 \quad$ and $\quad r \sin \theta=1$
Square and add both the sides
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(0)^{2}+(1)^{2}\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r^{2}=0+1$
$r^{2}=1$
$r=1(\because r>0)$
Therefore, the modulus is 1
Now,
$1 \cos \theta=0$ and $1 \sin \theta=1$
$\cos \theta=0 \quad$ and $\quad \sin \theta=1$
Since values of Both $\cos \theta$ and $\sin \theta$ is Positive and we know that this is the case in I quadrant

Therefore,
$\theta=\frac{\pi}{2} \quad$ (lies in I quadr ant)
Therefore,
$i=r \cos \theta+i r \sin \theta$
$=1 \cos \left(\frac{\pi}{2}\right)+i 1 \sin \left(\frac{\pi}{2}\right)$
$=\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$

Therefore, the required polar form is $\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}$

NCERT solutions for class 11 maths chapter 5 Complex Numbers and Quadratic Equations-Exercise: 5.3

Question:1 Solve each of the following equations: $x^{2}+3=0$

Answer:

Given equation is
$x^{2}+3=0$
Now, we know that the roots of the quadratic equation is given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case value of $\mathbf{a}=\mathbf{1 , b} \mathbf{b} \mathbf{0}$ and $\mathbf{c}=\mathbf{3}$
Therefore,
$\frac{-0 \pm \sqrt{0^{2}-4.1 .(3)}}{2.1}=\frac{ \pm \sqrt{-12}}{2}=\frac{ \pm 2 \sqrt{3} i}{2}= \pm \sqrt{3} i$
Therefore, the solutions of requires equation are $\pm \sqrt{3} i$

Question:2 Solve each of the following equations: $2 x^{2}+x+1=0$

Answer:

Given equation is
$2 x^{2}+x+1=0$
Now, we know that the roots of the quadratic equation are given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case value of $\mathbf{a = 2 , b = 1}$ and $\mathbf{c}=\mathbf{1}$
Therefore,

$$
\frac{-1 \pm \sqrt{1^{2}-4.2 .1}}{2.2}=\frac{-1 \pm \sqrt{1-8}}{4}=\frac{-1 \pm \sqrt{-7}}{4}=\frac{-1 \pm \sqrt{7 i}}{4}
$$

Therefore, the solutions of requires equation are
$\frac{-1 \pm \sqrt{7} i}{4}$

Question:3 Solve each of the following equations: $x^{2}+3 x+9=0$

Answer:

Given equation is
$x^{2}+3 x+9=0$
Now, we know that the roots of the quadratic equation are given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case value of $\mathbf{a}=1, \mathbf{b}=3$ and $\mathbf{c}=9$
Therefore,
$\frac{-3 \pm \sqrt{3^{2}-4.1 .9}}{2.1}=\frac{-3 \pm \sqrt{9-36}}{2}=\frac{-3 \pm \sqrt{-27}}{2}=\frac{-3 \pm 3 \sqrt{3} i}{2}$
Therefore, the solutions of requires equation are
$\frac{-3 \pm 3 \sqrt{3} i}{2}$

Question:4 Solve each of the following equations: $-x^{2}+x-2=0$

Answer:

Given equation is
$-x^{2}+x-2=0$
Now, we know that the roots of the quadratic equation is given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case value of $\mathbf{a}=-1, \mathrm{~b}=1$ and $\mathrm{c}=-\mathbf{2}$
Therefore,

Therefore, the solutions of equation are
$\frac{-1 \pm \sqrt{7} i}{-2}$
Question: 5 Solve each of the following equations: $x^{2}+3 x+5=0$

Answer:

Given equation is
$x^{2}+3 x+5=0$
Now, we know that the roots of the quadratic equation are given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case value of $\mathbf{a}=1, \mathrm{~b}=3$ and $\mathrm{c}=5$
Therefore,
$\frac{-3 \pm \sqrt{3^{2}-4.1 .5}}{2.1}=\frac{-3 \pm \sqrt{9-20}}{2}=\frac{-3 \pm \sqrt{-11}}{2}=\frac{-3 \pm \sqrt{11} i}{2}$
Therefore, the solutions of the equation are
Question: 6 Solve each of the following equations: $x^{2}-x+2=0$

Answer:

Given equation is
$x^{2}-x+2=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In this case value of $\mathrm{a}=1, \mathrm{~b}=-1$ and $\mathrm{c}=2$
Therefore,

Therefore, the solutions of equation are $\frac{1 \pm \sqrt{7} i}{2}$

Question:7 Solve each of the following equations: $\sqrt{2} x^{2}+x+\sqrt{2}=0$

Answer:

Given equation is
$\sqrt{2} x^{2}+x+\sqrt{2}=0$
Now, we know that the roots of the quadratic equation is given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In this case the value of $a=\sqrt{2}, b=1$ and $c=\sqrt{2}$
Therefore,

Therefore, the solutions of the equation are $\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}}$

Question:8 Solve each of the following equations: $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$

Answer:

Given equation is
$\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$
Now, we know that the roots of the quadratic equation are given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case the value of $a=\sqrt{3}, b=-\sqrt{2}$ and $c=3 \sqrt{3}$
Therefore,
$=\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}}$
Therefore, the solutions of the equation are $\frac{\sqrt{2} \pm \sqrt{34} i}{2 \sqrt{3}}$
Question:9 Solve each of the following equations: $x^{2}+x+\frac{1}{\sqrt{2}}=0$

Answer:

Given equation is
$x^{2}+x+\frac{1}{\sqrt{2}}=0$
Now, we know that the roots of the quadratic equation is given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case the value of

$$
a=1, b=1 \text { and } c=\frac{1}{\sqrt{2}}
$$

Therefore,

$$
\begin{aligned}
& \frac{-1 \pm \sqrt{1^{2}-4 \cdot 1 \cdot \frac{1}{\sqrt{2}}}}{2.1}=\frac{-1 \pm \sqrt{1-2 \sqrt{2}}}{2}=\frac{-1 \pm \sqrt{-(2 \sqrt{2}-1)}}{2} \\
& =\frac{-1 \pm \sqrt{(2 \sqrt{2}-1) i}}{2}
\end{aligned}
$$

Therefore, the solutions of the equation are
$\frac{-1 \pm \sqrt{(2 \sqrt{2}-1)} i}{2}$

Question:10 Solve each of the following equations:
$x^{2}+\frac{x}{\sqrt{2}}+1=0$

Answer:

Given equation is
$x^{2}+\frac{x}{\sqrt{2}}+1=0$
Now, we know that the roots of the quadratic equation are given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In this case the value of $a=1, b=\frac{1}{\sqrt{2}}$ and $c=1$
Therefore,

$$
=\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}}
$$

Therefore, the solutions of the equation are
$\frac{-1 \pm \sqrt{7} i}{2 \sqrt{2}}$

NCERT solutions for class 11 maths chapter 5 Complex Numbers and Quadratic Equations-Miscellaneous Exercise

Question:1 Evaluate $\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$.

Answer:

The given problem is
$\left[i^{18}+\left(\frac{1}{i}\right)^{25}\right]^{3}$
Now, we will reduce it into

$$
\begin{aligned}
& =\left[1^{4} \cdot(-1)+\frac{1}{1^{6} \cdot i}\right]^{3}\left(\because i^{4}=1, i^{2}=-1\right) \\
& =\left[-1+\frac{1}{i}\right]^{3} \\
& =\left[-1+\frac{1}{i} \times \frac{i}{i}\right]^{3} \\
& =\left[-1+\frac{i}{i^{2}}\right]^{3} \\
& =\left[-1+\frac{i}{-1}\right]^{3}=[-1-i]^{3}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& -(1+i)^{3}=-\left(1^{3}+i^{3}+3 \cdot 1^{2} \cdot i+3 \cdot 1 \cdot i^{2}\right) \\
& \left(u \operatorname{sing}(a+b)^{3}=a^{3}+b^{3}+3 \cdot a^{2} \cdot b+3 \cdot a \cdot b^{2}\right) \\
& =-(1-i+3 i+3(-1))\left(\because i^{3}=-i \cdot i^{2}=-1\right) \\
& =-(1-i+3 i-3)=-(-2+2 i) \\
& =2-2 i
\end{aligned}
$$

Therefore, answer is $2-2 i$

Question:2 For any two complex numbers z_{1} and z_{2}, prove that $\operatorname{Re}\left(z_{1} z_{2}\right)=\operatorname{Re} z_{1} \operatorname{Re} z_{2}-\operatorname{Im} z_{1} \operatorname{Im} z_{2}$

Answer:

Let two complex numbers are

$$
\begin{aligned}
& z_{1}=x_{1}+i y_{1} \\
& z_{2}=x_{2}+i y_{2}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& z_{1} \cdot z_{2}=\left(x_{1}+i y_{1}\right) \cdot\left(x_{2}+i y_{2}\right) \\
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}+i^{2} y_{1} y_{2}
\end{aligned}
$$

$$
\begin{aligned}
& =x_{1} x_{2}+i x_{1} y_{2}+i y_{1} x_{2}-y_{1} y_{2}\left(\because i^{2}=-1\right) \\
& =x_{1} x_{2}-y_{1} y_{2}+i\left(x_{1} y_{2}+y_{1} x_{2}\right) \\
& \operatorname{Re}\left(z_{1} z_{2}\right)=x_{1} x_{2}-y_{1} y_{2} \\
& =\operatorname{Re}\left(z_{1} z_{2}\right)-\operatorname{Im}\left(z_{1} z_{2}\right)
\end{aligned}
$$

Hence proved

Question:3 Reduce $\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$ to the standard form.

Answer:

Given problem is
$\left(\frac{1}{1-4 i}-\frac{2}{1+i}\right)\left(\frac{3-4 i}{5+i}\right)$
Now, we will reduce it into

$$
\begin{aligned}
& =\left(\frac{1+i-2+8 i}{1-4 i+i-4 i^{2}}\right)\left(\frac{3-4 i}{5+i}\right) \\
& =\left(\frac{-1+9 i}{1-3 i-4(-1)}\right)\left(\frac{3-4 i}{5+i}\right) \\
& =\left(\frac{-1+9 i}{5-3 i}\right)\left(\frac{3-4 i}{5+i}\right)
\end{aligned}
$$

Now, multiply numerator an denominator by $(14+5 i)$
$\Rightarrow \frac{33+31 i}{2(14-5 i)} \times \frac{14+5 i}{14+5 i}$
$\Rightarrow \frac{462+165 i+434 i+155 i^{2}}{2\left(14^{2}-(5 i)^{2}\right)}\left(u \operatorname{sing}(a-b)(a+b)=a^{2}-b^{2}\right)$
$\Rightarrow \frac{462+599 i-155}{2\left(196-25 i^{2}\right)}$
$\Rightarrow \frac{307+599 i}{2(196+25)}=\frac{307+599 i}{2 \times 221}=\frac{307+599 i}{442}=\frac{307}{442}+i \frac{599}{442}$

Therefore, answer is $\frac{307}{442}+i \frac{599}{442}$
Question:4 If $x-i y=\sqrt{\frac{a-i b}{c-i d}}$, prove that $\left(x^{2}+y^{2}\right)^{2}=\frac{a^{2}+b^{2}}{c^{2}+d^{2}}$.

Answer:

the given problem is
$x-i y=\sqrt{\frac{a-i b}{c-i d}}$
Now, multiply the numerator and denominator by

$$
\begin{aligned}
& \sqrt{c+i d} \\
& x-i y=\sqrt{\frac{a-i b}{c-i d} \times \frac{c+i d}{c+i d}} \\
& =\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}-i^{2} d^{2}}}=\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}
\end{aligned}
$$

Now, square both the sides

$$
\begin{aligned}
& (x-i y)^{2}=\left(\sqrt{\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}}\right)^{2} \\
& =\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}} \\
& x^{2}-y^{2}-2 i x y=\frac{(a c+b d)+i(a d-b c)}{c^{2}+d^{2}}
\end{aligned}
$$

On comparing the real and imaginary part, we obtain

$$
\begin{equation*}
x^{2}-y^{2}=\frac{a c+b d}{c^{2}+d^{2}} \quad \text { and } \quad-2 x y=\frac{a d-b c}{c^{2}+d^{2}} \tag{i}
\end{equation*}
$$

Now,

$$
\begin{aligned}
& \left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2} \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)^{2}+\left(\frac{a d-b c}{c^{2}+d^{2}}\right)^{2} \quad(u \sin g(i)) \\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+2 a c b d+a^{2} d^{2}+b^{2} c^{2}-2 a d b c}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2}}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{a^{2}\left(c^{2}+d^{2}\right)+b^{2}\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{\left(c^{2}+d^{2}\right)^{2}} \\
& =\frac{\left(a^{2}+b^{2}\right)}{\left(c^{2}+d^{2}\right)}
\end{aligned}
$$

Hence proved

Question:5(i) Convert the following in the polar form:

$$
\frac{1+7 i}{(2-i)^{2}}
$$

Answer:

Let
$z=\frac{1+7 i}{(2-i)^{2}}=\frac{1+7 i}{4+i^{2}-4 i}=\frac{1+7 i}{4-1-4 i}=\frac{1+7 i}{3-4 i}$

Now, multiply the numerator and denominator by $3+4 i$
$\Rightarrow z=\frac{1+7 i}{3-4 i} \times \frac{3+4 i}{3+4 i}=\frac{3+4 i+21 i+28 i^{2}}{3^{2}+4^{2}}=\frac{-25+25 i}{25}=-1+i$
Now,
let
$r \cos \theta=-1$ and $r \sin \theta=1$
On squaring both and then add
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(-1)^{2}+1^{2}$
$r^{2}=2$
$r=\sqrt{2}$
Now,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
Since the value of $\cos \theta$ is negative and $\sin \theta$ is positive this is the case in II quadrant Therefore,
$z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}$
$=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
Therefore, the required polar form is
$\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$

Question:5(ii) Convert the following in the polar form:
$\frac{1+3 i}{1-2 i}$

Answer:

Let
$z=\frac{1+3 i}{1-2 i}$

Now, multiply the numerator and denominator by $1+2 i$
$\Rightarrow z=\frac{1+3 i}{1-2 i} \times \frac{1+2 i}{i+2 i}=\frac{1+2 i+3 i-6}{1+4}=\frac{-5+5 i}{5}=-1+i$
Now,
let
$r \cos \theta=-1$ and $r \sin \theta=1$
On squaring both and then add
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=(-1)^{2}+1^{2}$
$r^{2}=2$
$r=\sqrt{2} \quad(\because r>0)$
Now,
$\sqrt{2} \cos \theta=-1$ and $\sqrt{2} \sin \theta=1$
$\cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$
Since the value of $\cos \theta$ is negative and $\sin \theta$ is positive this is the case in II quadrant Therefore,
$z=r \cos \theta+i r \sin \theta$
$=\sqrt{2} \cos \frac{3 \pi}{4}+i \sqrt{2} \sin \frac{3 \pi}{4}$
$=\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$
Therefore, the required polar form is
$\sqrt{2}\left(\cos \frac{3 \pi}{4}+i \sin \frac{3 \pi}{4}\right)$

Question: 6 Solve each of the equation: $3 x^{2}-4 x+\frac{20}{3}=0$

Answer:

Given equation is
$3 x^{2}-4 x+\frac{20}{3}=0$
Now, we know that the roots of the quadratic equation are given by the formula $\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

In this case the value of
$a=3, b=-4$ and $c=\frac{20}{3}$
Therefore,
$\frac{-(-4) \pm \sqrt{(-4)^{2}-4.3 \cdot \frac{20}{3}}}{2.3}=\frac{4 \pm \sqrt{16-80}}{6}=\frac{4 \pm \sqrt{-64}}{6}=\frac{4 \pm 8 i}{6}=\frac{2}{3} \pm i \frac{4}{3}$
Therefore, the solutions of requires equation are
$\frac{2}{3} \pm i \frac{4}{3}$
Question:7 Solve each of the equation: $x^{2}-2 x+\frac{3}{2}=0$

Answer:

Given equation is
$x^{2}-2 x+\frac{3}{2}=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In this case the value of $a=1, b=-2$ and $c=\frac{3}{2}$

Therefore,

$$
\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot \frac{3}{2}}}{2.1}=\frac{2 \pm \sqrt{4-6}}{2}=\frac{2 \pm \sqrt{-2}}{2}=\frac{2 \pm i \sqrt{2}}{2}=1 \pm i \frac{\sqrt{2}}{2}
$$

Therefore, the solutions of requires equation are
$1 \pm i \frac{\sqrt{2}}{2}$

Question:8 Solve each of the equation: $27 x^{2}-10 x+1=0$.

Answer:

Given equation is
$27 x^{2}-10 x+1=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In this case the value of $a=27, b=-10$ and $c=1$
Therefore,
$\frac{-(-10) \pm \sqrt{(-10)^{2}-4.27 .1}}{2.27}=\frac{10 \pm \sqrt{100-108}}{54}=\frac{10 \pm \sqrt{-8}}{54}$
$=\frac{10 \pm i 2 \sqrt{2}}{54}=\frac{5}{27} \pm i \frac{\sqrt{2}}{27}$
Therefore, the solutions of requires equation are $\frac{5}{27} \pm i \frac{\sqrt{2}}{27}$

Question:9 Solve each of the equation: $21 x^{2}-28 x+10=0$

Answer:

Given equation is
$21 x^{2}-28 x+10=0$
Now, we know that the roots of the quadratic equation are given by the formula
$\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
In this case the value of $a=21, b=-28$ and $c=10$
Therefore,
$\frac{-(-28) \pm \sqrt{(-28)^{2}-4.21 .10}}{2.21}=\frac{28 \pm \sqrt{784-840}}{42}=\frac{28 \pm \sqrt{-56}}{42}$
$=\frac{28 \pm i 2 \sqrt{14}}{42}=\frac{2}{3} \pm i \frac{\sqrt{14}}{21}$
Therefore, the solutions of requires equation are
$\frac{2}{3} \pm i \frac{\sqrt{14}}{21}$
Question:10 If $z_{1}=2-i, z_{2}=1+i$, find $\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|$.

Answer:

It is given that
$z_{1}=2-i, z_{2}=1+i$
Then,

Now, multiply the numerator and denominator by $1+i$

Now,
$|1+i|=\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2}$
Therefore, the value of
$\left|\frac{z_{1}+z_{2}+1}{z_{1}-z_{2}+1}\right|_{\text {is } \sqrt{2}}$
Question:11 If $a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$, prove that $a^{2}+b^{2}=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$.

Answer:

It is given that
$a+i b=\frac{(x+i)^{2}}{2 x^{2}+1}$
Now, we will reduce it into

On comparing real and imaginary part. we will get $a=\frac{x^{2}-1}{2 x^{2}+1}$ and $b=\frac{2 x}{2 x^{2}+1}$

Now,
$a^{2}+b^{2}=\left(\frac{x^{2}-1}{2 x^{2}+1}\right)^{2}+\left(\frac{2 x}{2 x^{2}+1}\right)^{2}$
$=\frac{x^{4}+1-2 x^{2}+4 x^{2}}{\left(2 x^{2}+1\right)^{2}}$
$=\frac{x^{4}+1+2 x^{2}}{\left(2 x^{2}+1\right)^{2}}$
$=\frac{\left(x^{2}+1\right)^{2}}{\left(2 x^{2}+1\right)^{2}}$

Hence proved

Question:12(i) Let $z_{1}=2-i, z_{2}=-2+i$. Find
$\operatorname{Re}\left(\frac{z_{1} z_{2}}{\bar{z}_{1}}\right)$

Answer:

It is given that
$z_{1}=2-i$ and $z_{2}=-2+i$
Now,
$z_{1} z_{2}=(2-i)(-2+i)=-4+2 i+2 i-i^{2}=-4+4 i+1=-3+4 i$
And
$\bar{z}_{1}=2+i$
Now,
$=\frac{-2+11 i}{5}=-\frac{2}{5}+i \frac{11}{5}$
Now,
$\operatorname{Re}\left(\frac{z_{1} z_{2}}{z_{1}}\right)=-\frac{2}{5}$
Therefore, the answer is
$-\frac{2}{5}$

Question:12(ii) Let $z_{1}=2-i, z_{2}=-2+i$. Find
$\operatorname{Im}\left(\frac{1}{z_{1} \overline{z_{1}}}\right)$

Answer:

It is given that
$z_{1}=2-i$
Therefore,
$\bar{z}_{1}=2+i$
NOw,
$z_{1} \bar{z}_{1}=(2-i)(2+i)=2^{2}-i^{2}=4+1=5\left(u \operatorname{sing}(a-b)(a+b)=a^{2}-b^{2}\right)$
Now,
$\frac{1}{z_{1} \bar{z}_{1}}=\frac{1}{5}, ~$
Therefore,
$\operatorname{Im}\left(\frac{1}{z_{1} \bar{z}_{1}}\right)=0$
Therefore, the answer is $\mathbf{0}$
Question:13 Find the modulus and argument of the complex number $\frac{1+2 i}{1-3 i}$.

Answer:

Let
$z=\frac{1+2 i}{1-3 i}$
Now, multiply the numerator and denominator by $(1+3 i)$
$=-\frac{1}{2}+i \frac{1}{2}$
Therefore,
$r \cos \theta=-\frac{1}{2}$ and $r \sin \theta=\frac{1}{2}$
Square and add both the sides
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=\left(-\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{1}{4}\right)+\left(\frac{1}{4}\right)$
$r=\frac{1}{\sqrt{2}} \quad(\because r>0)$
Therefore, the modulus is $\frac{1}{\sqrt{2}}$
Now,
$\frac{1}{\sqrt{2}} \cos \theta=-\frac{1}{2}$ and $\frac{1}{\sqrt{2}} \sin \theta=\frac{1}{2}$
$\cos \theta=-\frac{1}{\sqrt{2}}$ and $\sin \theta=\frac{1}{\sqrt{2}}$

Since the value of $\cos \theta$ is negative and the value of $\sin \theta$ is positive and we know that it is the case in II quadrant

Therefore,
Argument $=\left(\pi-\frac{\pi}{4}\right)=\frac{3 \pi}{4}$
Therefore, Argument and modulus are $\frac{3 \pi}{4}$ and $\frac{1}{\sqrt{2}}$ respectively
Question:14 Find the real numbers x andy if $(x-i y)(3+5 i)$ is the conjugate of $-6-24 i$.

Answer:

Let
$z=(x-i y)(3+5 i)=3 x+5 x i-3 y i-5 y i^{2}=3 x+5 y+i(5 x-3 y)$
Therefore,
$\bar{z}=(3 x+5 y)-i(5 x-3 y)$
Now, it is given that
$\bar{z}=-6-24 i$
Compare (i) and (ii) we will get
$(3 x+5 y)-i(5 x-3 y)=-6-24 i$
On comparing real and imaginary part. we will get
$3 x+5 y=-6$ and $5 x-3 y=24$
On solving these we will get
$x=3$ and $y=-3$

Therefore, the value of x and y are 3 and -3 respectively

Question: 15 Find the modulus of $\frac{1+i}{1-i}-\frac{1-i}{1+i}$.

Answer:

Let
$z=\frac{1+i}{1-i}-\frac{1-i}{1+i}$
Now, we will reduce it into
$z=\frac{1+i}{1-i}-\frac{1-i}{1+i}=\frac{(1+i)^{2}-(1-i)^{2}}{(1+i)(1-i)}=\frac{1^{2}+i^{2}+2 i-1^{2}-i^{2}+2 i}{1^{2}-i^{2}}$
$=\frac{4 i}{1+1}=\frac{4 i}{2}=2 i$
Now,
$r \cos \theta=0$ and $r \sin \theta=2$
square and add both the sides. we will get,
$r^{2} \cos ^{2} \theta+r^{2} \sin ^{2} \theta=0^{2}+2^{2}$
$r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=4$
$r^{2}=4$
$\left(\because \cos ^{2} \theta+\sin ^{2} \theta=1\right)$
$r=2$
$(\because r>0)$

Therefore, modulus of
$\frac{1+i}{1-i}-\frac{1-i}{1+i}$ is $\mathbf{2}$
Question:16 If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$.

Answer:

it is given that
$(x+i y)^{3}=u+i v$

Now, expand the Left-hand side
$x^{3}+(i y)^{3}+3 \cdot(x)^{2} \cdot i y+3 \cdot x \cdot(i y)^{2}=u+i v$
$x^{3}+i^{3} y^{3}+3 x^{2} i y+3 x i^{2} y^{2}=u+i v$
$x^{3}-i y^{3}+3 x^{2} i y-3 x y^{2}=u+i v\left(\because i^{3}=-i\right.$ and $\left.i^{2}=-1\right)$
$x^{3}-3 x y^{2}+i\left(3 x^{2} y-y^{3}\right)=u+i v$
On comparing real and imaginary part. we will get,
$u=x^{3}-3 x y^{2} \quad$ and $\quad v=3 x^{2} y-y^{3}$
Now,
$\frac{u}{x}+\frac{v}{y}=\frac{x\left(x^{2}-3 y^{2}\right)}{x}+\frac{y\left(3 x^{2}-y^{2}\right)}{y}$
$=x^{2}-3 y^{2}+3 x^{2}-y^{2}$
$=4 x^{2}-4 y^{2}$
$=4\left(x^{2}-y^{2}\right)$
Hence proved
Question:17 If α and β are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$.

Answer:

Let
$\alpha=a+i b$ and $\beta=x+i y$
It is given that
$|\beta|=1 \Rightarrow \sqrt{x^{2}+y^{2}}=1 \Rightarrow x^{2}+y^{2}=1$
and
$\bar{\alpha}=a-i b$
Now,

$$
\begin{aligned}
& =\left|\frac{(x-a)+i(y-b)}{(1-a x-y b)-i(b x-a y)}\right| \\
& =\frac{\sqrt{(x-a)^{2}+(y-b)^{2}}}{\sqrt{(1-a x-y b)^{2}+(b x-a y)^{2}}} \\
& =\frac{\sqrt{x^{2}+a^{2}-2 x a+y^{2}+b^{2}-y b}}{\sqrt{1+a^{2} x^{2}+b^{2} y^{2}-2 a x+2 a b x y-b y+b^{2} x^{2}+a^{2} y^{2}-2 a b x y}} \\
& =\frac{\sqrt{\left(x^{2}+y^{2}\right)+a^{2}-2 x a+b^{2}-y b}}{\sqrt{1+a^{2}\left(x^{2}+y^{2}\right)+b^{2}\left(x^{2}+y^{2}\right)-2 a x+2 a b x y-b y-2 a b x y}} \\
& =\frac{\sqrt{1+a^{2}-2 x a+b^{2}-y b}}{\sqrt{1+a^{2}+b^{2}-2 a x-b y}\left(\because x^{2}+y^{2}=1 \text { given }\right)} \\
& =1
\end{aligned}
$$

Therefore, value of $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ is 1

Question:18 Find the number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$.

Answer:

Given problem is
$|1-i|^{x}=2^{x}$
Now,
$\left(\sqrt{1^{2}+(-1)^{2}}\right)^{x}=2^{x}$
$(\sqrt{1+1})^{x}=2^{x}$
$(\sqrt{2})^{x}=2^{x}$
$2^{\frac{x}{2}}=2^{x}$
$\frac{x}{2}=x$
$\frac{x}{2}=0$
$\mathbf{x}=\mathbf{0}$ is the only possible solution to the given problem

Therefore, there are $\mathbf{0}$ number of non-zero integral solutions of the equation $|1-i|^{x}=2^{x}$

Question:19 If $(a+i b)(c+i d)(e+i f)(g+i h)=A+i B$, then show that $\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=A^{2}+B^{2}$

Answer:

It is given that

$$
(a+i b)(c+i d)(e+i f)(g+i h)=A+i B,
$$

Now, take mod on both sides

$$
\begin{aligned}
& (a+i b)(c+i d)(e+i f)(g+i h)|=|A+i B| \\
& (a+i b)||(c+i d)||(e+i f)\left||(g+i h)|=|A+i B|\left(\because\left|z_{1} z_{2}\right|=\left|z_{1}\right|\left|z_{2}\right|\right)\right. \\
& \left(\sqrt{a^{2}+b^{2}}\right)\left(\sqrt{c^{2}+d^{2}}\right)\left(\sqrt{e^{2}+f^{2}}\right)\left(\sqrt{g^{2}+h^{2}}\right)=\left(\sqrt{A^{2}+B^{2}}\right)
\end{aligned}
$$

Square both the sides. we will get

$$
\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)\left(e^{2}+f^{2}\right)\left(g^{2}+h^{2}\right)=\left(A^{2}+B^{2}\right)
$$

Hence proved

Question:20 if $\left(\frac{1+i}{1-i}\right)^{m}=1$, then find the least positive integral value of m.

Answer:

Let
$z=\left(\frac{1+i}{1-i}\right)^{m}$
Now, multiply both numerator and denominator by $(1+i)$

We will get,
$z=\left(\frac{1+i}{1-i} \times \frac{1+i}{1+i}\right)^{m}$
$=\left(\frac{(1+i)^{2}}{1^{2}-i^{2}}\right)^{m}$
$=\left(\frac{1^{2}+i^{2}+2 i}{1+1}\right)^{m}$
$=\left(\frac{1-1+2 i}{2}\right)^{m}$
$\left(\because i^{2}=-1\right)$
$=\left(\frac{2 i}{2}\right)^{m}$
$=i^{m}$
We know that $i^{4}=1$
Therefore, the least positive integral value of m is 4

