NCERT solutions for class 11 maths chapter 8 Binomial Theorem

Question:1 Expand the expression. $(1-2 x)^{5}$

Answer:

Given,

The Expression:
the expansion of this Expression is,
$(1-2 x)^{5}=$
${ }^{5} C_{0}(1)^{5}-{ }^{5} C_{1}(1)^{4}(2 x)+{ }^{5} C_{2}(1)^{3}(2 x)^{2}-{ }^{5} C_{3}(1)^{2}(2 x)^{3}+{ }^{5} C_{4}(1)^{1}(2 x)^{4}-{ }^{5} C_{5}(2 x)^{5}$
$1-5(2 x)+10\left(4 x^{2}\right)-10\left(8 x^{3}\right)+5\left(16 x^{4}\right)-\left(32 x^{5}\right)$
$1-10 x+40 x^{2}-80 x^{3}+80 x^{4}-32 x^{5}$
Question:2 Expand the expression. $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$

Answer:

Given,

The Expression:
$\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$
the expansion of this Expression is,

$$
\begin{aligned}
& \left(\frac{2}{x}-\frac{x}{2}\right)^{5} \Rightarrow \\
& +5\left(\frac{2}{x}\right)\left(\frac{x^{4}}{16}\right)-\frac{x^{5}}{32} \\
& \Rightarrow \frac{32}{x^{5}}-\frac{40}{x^{3}}+\frac{20}{x}-5 x+\frac{5 x^{2}}{8}-\frac{x^{3}}{32}
\end{aligned}
$$

Question:3 Expand the expression. $(2 x-3)^{6}$

Answer:

Given,

The Expression:
$(2 x-3)^{6}$
the expansion of this Expression is,
$(2 x-3)^{6}=$
$\Rightarrow{ }^{6} C_{0}(2 x)^{6}-{ }^{6} C_{1}(2 x)^{5}(3)+{ }^{6} C_{2}(2 x)^{4}(3)^{2}-{ }^{6} C_{3}(2 x)^{3}(3)^{3}+$
${ }^{6} C_{4}(2 x)^{2}(3)^{4}-{ }^{6} C_{5}(2 x)(3)^{5}+{ }^{6} C_{6}(3)^{6}$
$\Rightarrow 64 x^{6}-6\left(32 x^{5}\right)(3)+15\left(16 x^{4}\right)(9)-20\left(8 x^{3}\right)(27)+15\left(4 x^{2}\right)(81)-6(2 x)(243)$
$+729$
$\Rightarrow 64 x^{6}-576 x^{5}+2160 x^{4}-4320 x^{3}+4860 x^{2}-2916 x+729$

Question:4 Expand the expression. $\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$

Answer:

Given,

The Expression:
$\left(\frac{x}{3}+\frac{1}{x}\right)^{5}$
the expansion of this Expression is,
$\left(\frac{x}{3}+\frac{1}{x}\right)^{5} \Rightarrow$
$+5\left(\frac{x}{3}\right)\left(\frac{1}{x^{4}}\right)+\frac{1}{x^{5}}$
$\Rightarrow \frac{x^{5}}{243}+\frac{5 x^{3}}{81}+\frac{10 x}{27}+\frac{10}{9 x}+\frac{5}{3 x^{2}}+\frac{1}{x^{5}}$
Question:5 Expand the expression. $\left(x+\frac{1}{x}\right)^{6}$

Answer:

Given,

The Expression:
$\left(x+\frac{1}{x}\right)^{6}$
the expansion of this Expression is,
$\left(x+\frac{1}{x}\right)^{6}$

$$
\begin{aligned}
& +15\left(x^{2}\right)\left(\frac{1}{x^{4}}\right)+6(x)\left(\frac{1}{x^{5}}\right)+\frac{1}{x^{6}} \\
& \Rightarrow x^{6}+6 x^{4}+15 x^{2}+20+\frac{15}{x^{2}}+\frac{6}{x^{4}}+\frac{1}{x^{6}}
\end{aligned}
$$

Question:6 Using binomial theorem, evaluate the following: $(96)^{3}$

Answer:

As 96 can be written as (100-4);

$$
\begin{aligned}
& \Rightarrow(96)^{3} \\
& =(100-4)^{3} \\
& ={ }^{3} C_{0}(100)^{3}-{ }^{3} C_{1}(100)^{2}(4)+{ }^{3} C_{2}(100)(4)^{2}-{ }^{3} C_{3}(4)^{3} \\
& =(100)^{3}-3(100)^{2}(4)+3(100)(4)^{2}-(4)^{3} \\
& =1000000-120000+4800-64 \\
& =884736
\end{aligned}
$$

Question:7 Using binomial theorem, evaluate the following: $(102)^{5}$

Answer:

As we can write 102 in the form 100+2

$$
\begin{aligned}
& \Rightarrow(102)^{5} \\
& =(100+2)^{5} \\
& ={ }^{5} C_{0}(100)^{5}+{ }^{5} C_{1}(100)^{4}(2)+{ }^{5} C_{2}(100)^{3}(2)^{2} \\
& +{ }^{5} C_{3}(100)^{2}(2)^{3}+{ }^{5} C_{4}(100)^{1}(2)^{4}+{ }^{5} C_{5}(2)^{5} \\
& =10000000000+1000000000+40000000+800000+8000+32 \\
& =11040808032
\end{aligned}
$$

Question:8 Using binomial theorem, evaluate the following:

Answer:

As we can write 101 in the form 100+1
$\Rightarrow(101)^{4}$
$=(100+1)^{4}$
$={ }^{4} C_{0}(100)^{4}+{ }^{4} C_{1}(100)^{3}(1)+{ }^{4} C_{2}(100)^{2}(1)^{2}+{ }^{4} C_{3}(100)^{1}(1)^{3}+{ }^{4} C_{4}(1)^{4}$
$=100000000+4000000+60000+400+1$
$=104060401$

Question:9 Using binomial theorem, evaluate the following: $(99)^{5}$

Answer:

As we can write 99 in the form 100-1

$$
\begin{aligned}
& \Rightarrow(99)^{5} \\
& =(100-1)^{5} \\
& ={ }^{5} C_{0}(100)^{5}-{ }^{5} C_{1}(100)^{4}(1)+{ }^{5} C_{2}(100)^{3}(1)^{2} \\
& -{ }^{5} C_{3}(100)^{2}(1)^{3}+{ }^{5} C_{4}(100)^{1}(1)^{4}-{ }^{5} C_{5}(1)^{5} \\
& =10000000000-500000000+10000000-100000+500-1 \\
& =9509900499
\end{aligned}
$$

Question:10 Using Binomial Theorem, indicate which number is larger (1.1) ${ }^{10000}$ or 1000.

Answer:

AS we can write 1.1 as $1+0.1$,

$$
\begin{aligned}
& (1.1)^{10000}=(1+0.1)^{10000} \\
& ={ }^{10000} C_{0}+{ }^{10000} C_{1}(1.1)+\text { Other positive ter ms } \\
& =1+10000 \times 1.1+\text { Other positive term } \\
& >1000
\end{aligned}
$$

Hence,

Question:11 Find $(a+b)^{4}-(a-b)^{4}$. Hence, evaluate $(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}$.

Answer:

Using Binomial Theorem, the expressions $(a+b)^{4}$ and $(a-b)^{4}$ can be expressed as
$(a+b)^{4}={ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4}$
$(a-b)^{4}={ }^{4} C_{0} a^{4}-{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}-{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4}$

From Here,
$(a+b)^{4}-(a-b)^{4}={ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b+{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{3} a b^{3}+{ }^{4} C_{4} b^{4}$
$-{ }^{4} C_{0} a^{4}+{ }^{4} C_{1} a^{3} b-{ }^{4} C_{2} a^{2} b^{2}+{ }^{4} C_{3} a b^{3}-{ }^{4} C_{4} b^{4}$
$(a+b)^{4}-(a-b)^{4}=2 \times\left({ }^{4} C_{1} a^{3} b+{ }^{4} C_{3} a b^{3}\right)$
$(a+b)^{4}-(a-b)^{4}=8 a b\left(a^{2}+b^{2}\right)$

Now, Using this, we get
$(\sqrt{3}+\sqrt{2})^{4}-(\sqrt{3}-\sqrt{2})^{4}=8(\sqrt{3})(\sqrt{2})(3+2)=8 \times \sqrt{6} \times 5=40 \sqrt{6}$
Question:12 Find $(x+1)^{6}+(x-1)^{6}$. Hence or otherwise evaluate $(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}$.

Answer:

Using Binomial Theorem, the expressions $(x+1)^{4}$ and $(x-1)^{4}$ can be expressed as ,

$$
\begin{aligned}
& (x+1)^{6}={ }^{6} C_{0} x^{6}+{ }^{6} C_{1} x^{5} 1+{ }^{6} C_{2} x^{4} 1^{2}+{ }^{4} C_{3} x^{3} 1^{3}+{ }^{6} C_{4} x^{2} 1^{4}+{ }^{6} C_{5} x 1^{5}+{ }^{6} C_{6} 1^{6} \\
& (x-1)^{6}={ }^{6} C_{0} x^{6}-{ }^{6} C_{1} x^{5} 1+{ }^{6} C_{2} x^{4} 1^{2}-{ }^{4} C_{3} x^{3} 1^{3}+{ }^{6} C_{4} x^{2} 1^{4}-{ }^{6} C_{5} x 1^{5}+{ }^{6} C_{6} 1^{6}
\end{aligned}
$$

From Here,
$(x+1)^{6}-(x-1)^{6}={ }^{6} C_{0} x^{6}+{ }^{6} C_{1} x^{5} 1+{ }^{6} C_{2} x^{4} 1^{2}+{ }^{4} C_{3} x^{3} 1^{3}+$
${ }^{6} C_{4} x^{2} 1^{4}+{ }^{6} C_{5} x 1^{5}+{ }^{6} C_{6} 1^{6}$
$+{ }^{6} C_{0} x^{6}-{ }^{6} C_{1} x^{5} 1+{ }^{6} C_{2} x^{4} 1^{2}-{ }^{4} C_{3} x^{3} 1^{3}+{ }^{6} C_{4} x^{2} 1^{4}-{ }^{6} C_{5} x 1^{5}+{ }^{6} C_{6} 1^{6}$
$(x+1)^{6}+(x-1)^{6}=2\left({ }^{6} C_{0} x^{6}+{ }^{6} C_{2} x^{4} 1^{2}+{ }^{6} C_{4} x^{2} 1^{4}+{ }^{6} C_{6} 1^{6}\right)$
$(x+1)^{6}+(x-1)^{6}=2\left(x^{6}+15 x^{4}+15 x^{2}+1\right)$

Now, Using this, we get
$(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}=2\left((\sqrt{2})^{6}+15(\sqrt{2})^{4}+15(\sqrt{2})^{2}+1\right)$
$(\sqrt{2}+1)^{6}+(\sqrt{2}-1)^{6}=2(8+60+30+1)=2(99)=198$

Question:13 Show that $9^{n+1}-8 n-9$ is divisible by 64 , whenever n is a positive integer.

Answer:

If we want to prove that $9^{n+1}-8 n-9$ is divisible by 64 , then we have to prove that $9^{n+1}-8 n-9=64 k$

As we know, from binomial theorem,
$(1+x)^{m}={ }^{m} C_{0}+{ }^{m} C_{1} x+{ }^{m} C_{2} x^{2}+{ }^{m} C_{3} x^{3}+\ldots{ }^{m} C_{m} x^{m}$

Here putting $x=8$ and replacing m by $n+1$, we get,
$9^{n+1}={ }^{n+1} C_{0}+{ }^{n+1} C_{1} 8+{ }^{n+1} C_{2} 8^{2}+\ldots \ldots .+{ }^{n+1} C_{n+1} 8^{n+1}$
$9^{n+1}=1+8(n+1)+8^{2}\left({ }^{n+1} C_{2}+{ }^{n+1} C_{3} 8+{ }^{n+1} C_{4} 8^{2}+\ldots \ldots .+{ }^{n+1} C_{n+1} 8^{n-1}\right)$
$9^{n+1}=1+8 n+8+64(k)$

Now, Using This,
$9^{n+1}-8 n-9=9+8 n+64 k-9-8 n=64 k$

Hence
$9^{n+1}-8 n-9$ is divisible by 64 .
Question:14 Prove that $\sum_{r=0}^{n} 3^{r n} C_{r}=4^{n}$

Answer:

As we know from Binomial Theorem,
$\sum_{r=0}^{n} a^{r}{ }^{n} C_{r}=(1+a)^{n}$

Here putting $\mathrm{a}=3$, we get,
$\sum_{r=0}^{n} 3^{r}{ }^{n} C_{r}=(1+3)^{n}$
$\sum_{r=0}^{n} 3^{r n} C_{r}=4^{n}$

Hence Proved.

NCERT solutions for class 11 maths chapter 8 binomial theorem-

Exercise: 8.2

Question:1 Find the coefficient of
x^{5} in $(x+3)^{8}$

Answer:

As we know that the $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Now let's assume x^{5} happens in the $(r+1)^{t h}$ term of the binomial expansion of $(x+3)^{8}$

So,
$T_{r+1}={ }^{8} C_{r} x^{8-r} 3^{r}$

On comparing the indices of x we get,
$r=3$

Hence the coefficient of the x^{5} in $(x+3)^{8}$ is
${ }^{8} C_{3} \times 3^{3}=\frac{8!}{5!3!} \times 9=\frac{8 \times 7 \times 6}{3 \times 2} \times 9=1512$

Question:2 Find the coefficient of $a^{5} b^{7}$ in $(a-2 b)^{12}$

Answer:

As we know that the $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

Now let's assume $a^{5} b^{7}$ happens in the $(r+1)^{\text {th }}$ term of the binomial expansion of $(a-2 b)^{12}$

So,
$T_{r+1}={ }^{12} C_{r} x^{12-r}(-2 b)^{r}$

On comparing the indices of x we get,
$r=7$

Hence the coefficient of the $a^{5} b^{7}$ in $(a-2 b)^{12}$ is

Question:3 Write the general term in the expansion of
$\left(x^{2}-y\right)^{6}$

Answer:

As we know that the general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

So the general term of the expansion of $\left(x^{2}-y\right)^{6}$:

$$
T_{r+1}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r}=(-1)^{r} \times{ }^{6} C_{r} x^{12-2 r} y^{r} .
$$

Question:4 Write the general term in the expansion of
$\left(x^{2}-x y\right)^{12}, x \neq 0$

Answer:
As we know that the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
So the general term of the expansion of $\left(x^{2}-x y\right)^{12}$, is

Question:5 Find the $4{ }^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.

Answer:

As we know that the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
So the $4^{\text {th }}$ term of the expansion of $(x-2 y)^{12}$ is

$$
\begin{aligned}
& =-8 \times \frac{12 \times 11 \times 10}{3 \times 2} \times x^{9} y^{3} \\
& =-8 \times 220 \times x^{9} y^{3} \\
& =-1760 x^{9} y^{3}
\end{aligned}
$$

Question: 6 Find the $13^{\text {th }}$ term in the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}, x \neq 0$

Answer:

As we know that the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
So the $13^{\text {th }}$ term of the expansion of $\left(9 x-\frac{1}{3 \sqrt{x}}\right)^{18}$ is
$=\frac{18 \times 17 \times 16 \times 15 \times 14 \times 13}{6 \times 5 \times 4 \times 3 \times 2} \times 9^{6}\left(\frac{1}{3^{12}}\right)$
$=18564$
Question:7 Find the middle terms in the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$

Answer:

As we know that the middle terms in the expansion of $(a+b)^{n}$ when n is odd are,
$\left(\frac{n+1}{2}\right)^{t h}$ term and $\left(\frac{n+1}{2}+1\right)^{\text {th }}$ term
Hence the middle term of the expansion $\left(3-\frac{x^{3}}{6}\right)^{7}$ are
$\left(\frac{7+1}{2}\right)^{\text {th }}$ term and $\left(\frac{7+1}{2}+1\right)^{\text {th }}$ term

Which are $4^{\text {th }}$ term and $5^{\text {th }}$ term

Now,

As we know that the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
So the $4^{\text {th }}$ term of the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ is
$=-\frac{105}{8} x^{9}$
And the $5^{\text {th }}$ Term of the expansion of $\left(3-\frac{x^{3}}{6}\right)^{7}$ is, $=\frac{35}{48} x^{12}$

Hence the middle terms of the expansion of given expression are $-\frac{105}{8} x^{9}$ and $\frac{35}{48} x^{12}$.

Question:8 Find the middle terms in the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$

Answer:

As we know that the middle term in the expansion of $(a+b)^{n}$ when n is even is,
$\left(\frac{n}{2}+1\right)^{\text {th }}$ term,
Hence the middle term of the expansion $\left(\frac{x}{3}+9 y\right)^{10}$ is,
$\left(\frac{10}{2}+1\right)^{\text {th }}$ term

Which is $6^{\text {th }}$ term

Now,

As we know that the general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$
So the $6^{\text {th }}$ term of the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is
$\Rightarrow T_{6}=T_{5+1}$
$={ }^{10} C_{5}\left(\frac{x}{3}\right)^{10-5}(9 y)^{5}$
$=\left(\frac{1}{3}\right)^{5} \times 9^{5} \times{ }^{10} C_{5} \times x^{5} y^{5}$
$=\left(\frac{1}{3}\right)^{5} \times 9^{5} \times\left(\frac{10!}{5!5!}\right) \times x^{5} y^{5}$
$=61236 x^{5} y^{5}$
Hence the middle term of the expansion of $\left(\frac{x}{3}+9 y\right)^{10}$ is nbsp; $61236 x^{5} y^{5}$.

Question:9 In the expansion of $(1+a)^{m+n}$, prove that coefficients of a^{m} and a^{n} are equal

Answer:

As we know that the general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by

$$
T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}
$$

So, the general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(1+a)^{m+n}$ is given by
$T_{r+1}={ }^{m+n} C_{r} 1^{m+n-r} a^{r}={ }^{m+n} C_{r} a^{r}$

Now, as we can see a^{m} will come when $r=m$ and a^{n} will come when $r=n$

So,

Coefficient of a^{m} :
$K_{a^{m}}={ }^{m+n} C_{m}=\frac{(m+n)!}{m!n!}$

CoeficientCoefficient of a^{n} :
$K_{a^{n}}={ }^{m+n} C_{n}=\frac{(m+n)!}{m!n!}$

As we can see $K_{a^{m}}=K_{a^{n}}$.

Hence it is proved that the coefficients of a^{m} and a^{n} are equal.

Question:10 The coefficients of the $(r-1)^{\mathrm{th}}, r^{\text {th }}$ and $(r+1)$ th terms in the expansion of $(x+1)^{n}$ are in the ratio $1: 3: 5$. Find n and r.

Answer:

As we know that the general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

So,
$(r+1)^{t h}$ Term in the expansion of $(x+1)^{n}:$
$T_{r+1}={ }^{n} C_{r} x^{n-r} 1^{r}={ }^{n} C_{r} x^{n-r}$
$r^{\text {th }}$ Term in the expansion of $(x+1)^{n}$:
$T_{r}={ }^{n} C_{r-1} x^{n-r+1} 1^{r-1}={ }^{n} C_{r-1} x^{n-r+1}$
$(r-1)^{t h}$ Term in the expansion of $(x+1)^{n}$:
$T_{r-1}={ }^{n} C_{r-2} x^{n-r+2} 1^{r-2}={ }^{n} C_{r-2} x^{n-r+2}$

Now, As given in the question,
$T_{r-1}: T_{r}: T_{r+1}=1: 3: 5$
${ }^{n} C_{r-2}:{ }^{n} C_{r-1}:{ }^{n} C_{r}=1: 3: 5$
$\frac{n!}{(r-2)!(n-r+2)!}: \frac{n!}{(r-1)!(n-r+1)!}: \frac{n!}{r!(n-r)!}=1: 3: 5$

From here, we get ,
$\frac{r-1}{n-r+2}=\frac{1}{3}$ and $\frac{r}{n-r+1}=\frac{3}{5}$

Which can be written as
$n-4 r+5=0$ and $3 n-8 r+3=0$

From these equations we get,
$n=7$ and $r=3$
Question:11 Prove that the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

Answer:

As we know that the general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

So, general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(1+x)^{2 n}$ is, $T_{r+1}={ }^{2 n} C_{r} 1^{2 n-r} x^{r}$
x^{n} will come when $r=n$,

So, Coefficient of x^{n} in the binomial expansion of $(1+x)^{2 n}$ is,
$K_{1 x^{n}}={ }^{2 n} C_{n}$

Now,
the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(1+x)^{2 n-1}$ is,
$T_{r+1}={ }^{2 n-1} C_{r} 1^{2 n-1-r} x^{r}$

Here also x^{n} will come when $r=n$,

So, Coefficient of x^{n} in the binomial expansion of $(1+x)^{2 n-1}$ is,
$K_{2 x^{n}}={ }^{2 n-1} C_{n}$

Now, As we can see
${ }^{2 n-1} C_{n}=\frac{1}{2} \times{ }^{2 n} C_{n}$
$2 \times{ }^{2 n-1} C_{n}={ }^{2 n} C_{n}$
$2 \times K_{2 x^{n}}=K_{1 x^{n}}$

Hence, the coefficient of x^{n} in the expansion of $(1+x)^{2 n}$ is twice the coefficient of x^{n} in the expansion of $(1+x)^{2 n-1}$.

Question:12 Find a positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 .

Answer:

As we know that the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

So, the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(1+x)^{m}$ is
$T_{r+1}={ }^{m} C_{r} 1^{m-r} x^{r}={ }^{m} C_{r} x^{r}$
x^{2} will come when $r=2$. So,

The coeficient of x^{2} in the binomial expansion of $(1+x)^{m}=6$
$\Rightarrow^{m} C_{2}=6$
$\Rightarrow \frac{m!}{2!(m-2)!}=6$
$\Rightarrow \frac{m(m-1)}{2}=6$
$\Rightarrow m(m-1)=12$
$\Rightarrow m^{2}-m-12=0$
$\Rightarrow(m+3)(m-4)=0$
$\Rightarrow m=4$ or -3

Hence the positive value of m for which the coefficient of x^{2} in the expansion $(1+x)^{m}$ is 6 , is 4 .

NCERT solutions for class 11 maths chapter 8 binomial theoremMiscellaneous Exercise

Question:1 Find a, b and n in the expansion of $(a+b)^{n}$ if the first three terms of the expansion are 729, 7290 and 30375, respectively.

Answer:

As we know the Binomial expansion of $(a+b)^{n}$ is given by
$(a+b)^{n}={ }^{n} C_{0} a^{n}+{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} a^{n-2} b^{2}+\ldots \ldots \cdot{ }^{n} C_{n} b^{n}$

Given in the question,
${ }^{n} C_{0} a^{n}=729 \ldots \ldots$ (1)
${ }^{n} C_{1} a{ }^{n-1} b=7290 \ldots \ldots .($
${ }^{n} C_{2} a{ }^{n-2} b^{2}=30375$

Now, dividing (1) by (2) we get,
$\Rightarrow \frac{{ }^{n} C_{0} a^{n}}{{ }^{n} C_{1} a^{n-1} b}=\frac{729}{7290}$
$\Rightarrow \frac{\frac{n!}{n!0!}}{\frac{n!}{1!(n-1)!}} \times \frac{a}{b}=\frac{729}{7290}$
$\Rightarrow \frac{(n-1)!}{n!} \times \frac{a}{b}=\frac{1}{10}$
$\Rightarrow \frac{1}{n} \times \frac{a}{b}=\frac{1}{10}$
$10 a=n b \ldots \ldots$ (4)

Now, Dividing (2) by (3) we get,
$\Rightarrow \frac{{ }^{n} C_{1} a^{n-1} b}{{ }^{n} C_{2} a^{n-2} b^{2}}=\frac{7290}{30375}$
$\Rightarrow \frac{\frac{n!}{1!(n-1)!}}{\frac{n!}{2!(n-2)!}} \times \frac{a}{b}=\frac{7290}{30375}$
$\Rightarrow \frac{2(n-2)!}{(n-1)!} \times \frac{a}{b}=\frac{7290}{30375}$
$\Rightarrow \frac{2}{(n-1)} \times \frac{a}{b}=\frac{7290}{30375}$
$\Rightarrow 2 \times 30375 \times a=7290 \times b \times(n-1)$
$\Rightarrow 60750 a=7290 b(n-1)$

Now, From (4) and (5), we get,
$n=6, a=3$ and $b=5$

Question:2 Find a if the coefficients of x^{2} and x^{3} in the expansion of $(3+a x)^{9}$ are equal.

Answer:

As we know that the general $(r+1)^{t h}$ term T_{r+1} in the binomial expansion of $(a+b)^{n}$ is given by
$T_{r+1}={ }^{n} C_{r} a^{n-r} b^{r}$

So, the general $(r+1)^{\text {th }}$ term T_{r+1} in the binomial expansion of $(3+a x)^{9}$ is $T_{r+1}={ }^{n} C_{r} 3^{n-r}(a x)^{r}={ }^{n} C_{r} 3^{n-r} a^{r} x^{r}$

Now, x^{2} will come when $r=2$ and x^{3} will come when $r=3$

So, the coefficient of x^{2} is

$$
K_{x^{2}}={ }^{n} C_{2} 3^{9-2} a^{2}={ }^{n} C_{2} 3^{7} a^{2}
$$

And the coefficient of x^{3} is
$K_{x^{3}}={ }^{9} C_{3} 3^{9-3} a^{2}={ }^{9} C_{3} 3^{6} a^{3}$

Now, Given in the question,
$K_{x^{2}}=K_{x^{3}}$
${ }^{9} C_{2} 3^{7} a^{2}={ }^{9} C_{3} 3^{6} a^{3}$
$\frac{9!}{2!7!} \times 3=\frac{9!}{3!6!} \times a$
$a=\frac{18}{14}=\frac{9}{7}$

Hence the value of a is $9 / 7$.

Question:3 Find the coefficient of x^{5} in the product $(1+2 x)^{6}(1-x)^{7}$ using binomial theorem.

Answer:

First, lets expand both expressions individually,

So,
$(1+2 x)^{6}={ }^{6} C_{0}+{ }^{6} C_{1}(2 x)+{ }^{6} C_{2}(2 x)^{2}+{ }^{6} C_{3}(2 x)^{3}+{ }^{6} C_{4}(2 x)^{4}+{ }^{6} C_{5}(2 x)^{5}+$
${ }^{6} C_{6}(2 x)^{6}$
$(1+2 x)^{6}={ }^{6} C_{0}+2 \times{ }^{6} C_{1} x+4 \times{ }^{6} C_{2} x^{2}+8 \times{ }^{6} C_{3} x^{3}+16 \times{ }^{6} C_{4} x^{4}+32 \times{ }^{6} C_{5} x^{5}+$ $64 \times{ }^{6} C_{6} x^{6}$
$(1+2 x)^{6}=1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}$

And

$$
\begin{aligned}
& (1-x)^{7}={ }^{7} C_{0}-{ }^{7} C_{1} x+{ }^{7} C_{2} x^{2}-{ }^{7} C_{3} x^{3}+{ }^{7} C_{4} x^{4}-{ }^{7} C_{5} x^{5}+{ }^{7} C_{6} x^{6}-{ }^{7} C_{7} x^{7} \\
& (1-x)^{7}=1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}
\end{aligned}
$$

Now,

$$
\begin{aligned}
& (1+2 x)^{6}(1-x)^{7}=\left(1+12 x+60 x^{2}+160 x^{3}+240 x^{4}+192 x^{5}+64 x^{6}\right) \\
& \left(1-7 x+21 x^{2}-35 x^{3}+35 x^{4}-21 x^{5}+7 x^{6}-x^{7}\right)
\end{aligned}
$$

Now, for the coefficient of x^{5}, we multiply and add those terms whose product gives x^{5}.So,

The term which contain x^{5} are,
$\Rightarrow(1)\left(-21 x^{5}\right)+(12 x)\left(35 x^{4}\right)+\left(60 x^{2}\right)\left(-35 x^{3}\right)+\left(160 x^{3}\right)\left(21 x^{2}\right)+\left(240 x^{4}\right)(-7 x)$ $+\left(192 x^{5}\right)(1)$
$\Rightarrow 171 x^{5}$

Hence the coefficient of x^{5} is 171 .

Question:4 If \underline{a} and b are distinct integers, prove that $a-b$ is a factor of $a^{n}-b^{n}$, whenever n is a positive integer.
[Hint: write $a^{n}=(a-b+b)^{n}$ and expand]

Answer:

we need to prove,
$a^{n}-b^{n}=k(a-b)$ where k is some natural number.

Now let's add and subtract b from a so that we can prove the above result,
$a=a-b+b$
$a^{n}=(a-b+b)^{n}=[(a-b)+b]^{n}$
$={ }^{n} C_{0}(a-b)^{n}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots \ldots . .{ }^{n} C_{n} b^{n}$
$=(a-b)^{n}+{ }^{n} C_{1}(a-b)^{n-1} b+\ldots \ldots .{ }^{n} C_{n-1}(a-b) b^{n-1}+b^{n}$
$\Rightarrow a^{n}-b^{n}=(a-b)\left[(a-b)^{n-1}+{ }^{n} C_{2}(a-b)^{n-2}+\ldots \ldots .+{ }^{n} C_{n-1} b^{n-1}\right]$
$\Rightarrow a^{n}-b^{n}=k(a-b)$

Hence, $a-b$ is a factor of $a^{n}-b^{n}$.
Question:5 Evaluate $(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}$

Answer:

First let's simplify the expression $(a+b)^{6}-(a-b)^{6}$ using binomial theorem,

So,
$(a+b)^{6}={ }^{6} C_{0} a^{6}+{ }^{6} C_{1} a^{5} b+{ }^{6} C_{2} a^{4} b^{2}+{ }^{6} C_{3} a^{3} b^{3}+{ }^{6} C_{4} a^{2} b^{4}+{ }^{6} C_{5} a b^{5}+{ }^{6} C_{6} b^{6}$
$(a+b)^{6}=a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}$

And
$(a-b)^{6}={ }^{6} C_{0} a^{6}-{ }^{6} C_{1} a^{5} b+{ }^{6} C_{2} a^{4} b^{2}-{ }^{6} C_{3} a^{3} b^{3}+{ }^{6} C_{4} a^{2} b^{4}-{ }^{6} C_{5} a b^{5}+{ }^{6} C_{6} b^{6}$
$(a+b)^{6}=a^{6}-6 a^{5} b+15 a^{4} b^{2}-20 a^{3} b^{3}+15 a^{2} b^{4}-6 a b^{5}+b^{6}$

Now,

$$
\begin{aligned}
& (a+b)^{6}-(a-b)^{6}=a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6} \\
& -a^{6}+6 a^{5} b-15 a^{4} b^{2}+20 a^{3} b^{3}-15 a^{2} b^{4}+6 a b^{5}-b^{6} \\
& (a+b)^{6}-(a-b)^{6}=2\left[6 a^{5} b+20 a^{3} b^{3}+6 a b^{5}\right]
\end{aligned}
$$

Now, Putting $a=\sqrt{3}$ and $b=\sqrt{2}$, we get
$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=2[54 \sqrt{6}+120 \sqrt{6}+24 \sqrt{6}]$
$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=2 \times 198 \sqrt{6}$
$(\sqrt{3}+\sqrt{2})^{6}-(\sqrt{3}-\sqrt{2})^{6}=396 \sqrt{6}$
Question: 6 Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$

Answer:

First, lets simplify the expression $(x+y)^{4}-(x-y)^{4}$ using binomial expansion,
$(x+y)^{4}={ }^{4} C_{0} x^{4}+{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}+{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4}$
$(x+y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}$

And

$$
\begin{aligned}
& (x-y)^{4}={ }^{4} C_{0} x^{4}-{ }^{4} C_{1} x^{3} y+{ }^{4} C_{2} x^{2} y^{2}-{ }^{4} C_{3} x y^{3}+{ }^{4} C_{4} y^{4} \\
& (x-y)^{4}=x^{4}-4 x^{3} y+6 x^{2} y^{2}-4 x y^{3}+y^{4}
\end{aligned}
$$

Now,
$(x+y)^{4}-(x-y)^{4}=x^{4}+4 x^{3} y+6 x^{2} y^{2}+4 x y^{3}+y^{4}-$
$x^{4}+4 x^{3} y-6 x^{2} y^{2}+4 x y^{3}-y^{4}$
$(x+y)^{4}-(x-y)^{4}=2\left(x^{4}+6 x^{2} y^{2}+y^{4}\right)$
Now, Putting $x=a^{2}$ and $y=\sqrt{a^{2}-1}$ we get,

$$
\begin{aligned}
& \left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2\left[a^{8}+6 a^{4}\left(a^{2}-1\right)+\left(a^{2}-1\right)^{2}\right] \\
& \left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2 a^{8}+12 a^{6}-12 a^{4}+2 a^{4}-4 a^{2}+2 \\
& \left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}=2 a^{8}+12 a^{6}-10 a^{4}-4 a^{2}+2
\end{aligned}
$$

Question:7 Find an approximation of (0.99) ${ }^{5}$ using the first three terms of its expansion.

Answer:

As we can write 0.99 as 1-0.01,
$(0.99)^{5}=(1-0.001)^{5}={ }^{5} C_{0}(1)^{5}-{ }^{5} C_{1}(1)^{4}(0.01)+{ }^{5} C_{2}(1)^{3}(0.01)^{2}$

+ other negligible terms
$\Rightarrow(0.99)^{5}=1-5(0.01)+10(0.01)^{2}$
$\Rightarrow(0.99)^{5}=1-0.05+0.001$
$\Rightarrow(0.99)^{5}=0.951$
Hence the value of $(0.99)^{5}$ is 0.951 approximately.

Question:8 Find n , if the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$ is $\sqrt{6}: 1$

Answer:

Given, the expression
$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{n}$

Fifth term from the beginning is
$T_{5}={ }^{n} C_{4}(\sqrt[4]{2})^{n-4}\left(\frac{1}{\sqrt[4]{3}}\right)^{4}$
$T_{5}={ }^{n} C_{4} \frac{(\sqrt[4]{2})^{n}}{(\sqrt[4]{2})^{4}} \times \frac{1}{3}$
$T_{5}=\frac{n!}{4!(n-4)!} \times \frac{(\sqrt[4]{2})^{n}}{2} \times \frac{1}{3}$

And Fifth term from the end is,
$T_{n-5}={ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{1}{\sqrt[4]{3}}\right)^{n-4}$
$T_{n-5}={ }^{n} C_{n-4}(\sqrt[4]{2})^{4}\left(\frac{(\sqrt[4]{3})^{4}}{(\sqrt[4]{3})^{n}}\right)$
$T_{n-5}=\frac{n!}{4!(n-4)!} \times 2 \times\left(\frac{3}{(\sqrt[4]{3})^{n}}\right)$

Now, As given in the question,
$T_{5}: T_{n-5}=\sqrt{6}: 1$

So,

From Here ,
$\frac{(\sqrt[4]{2})^{n}}{6}: \frac{6}{(\sqrt[4]{3})^{n}}=\sqrt{6}: 1$
$\frac{(\sqrt[4]{2})^{n}(\sqrt[4]{3})^{n}}{6 \times 6}=\sqrt{6}$
$(\sqrt[4]{6})^{n}=36 \sqrt{6}$
$6^{\frac{n}{4}}=6^{\frac{5}{2}}$

From here,
$\frac{n}{4}=\frac{5}{2}$
$n=10$

Hence the value of n is 10 .
Question:9 Expand using Binomial Theorem $\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$

Answer:

Given the expression,
$\left(1+\frac{x}{2}-\frac{2}{x}\right)^{4}, x \neq 0$

Binomial expansion of this expression is

$$
\begin{align*}
& { }^{4} C_{2}\left(1+\frac{x}{2}\right)^{2}\left(\frac{2}{x}\right)^{2}-{ }^{4} C_{3}\left(1+\frac{x}{2}\right)\left(\frac{2}{x}\right)^{3}+{ }^{4} C_{4}\left(\frac{2}{x}\right)^{4} \\
& \Rightarrow\left(1+\frac{x}{2}\right)^{4}-\frac{8}{x}\left(1+\frac{x}{2}\right)^{3}+\frac{24}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \ldots \tag{1}
\end{align*}
$$

Now Applying Binomial Theorem again,

$$
\begin{align*}
& +{ }^{4} C_{4}\left(\frac{x}{2}\right)^{4} \\
& =1+2 x+\frac{3 x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{4}}{16} \tag{2}
\end{align*}
$$

And

$$
\begin{equation*}
\left(1+\frac{x}{2}\right)^{3}=1+\frac{3 x}{2}+\frac{3 x^{2}}{4}+\frac{x^{3}}{8} \tag{3}
\end{equation*}
$$

Now, From (1), (2) and (3) we get,

$$
\begin{aligned}
& +\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \\
& +\frac{8}{x^{2}}+\frac{24}{x}+6-\frac{32}{x^{3}}+\frac{16}{x^{4}} \\
& =\frac{16}{x}+\frac{8}{x^{2}}-\frac{32}{x^{3}}+\frac{16}{x^{4}}-4 x+\frac{x^{2}}{2}+\frac{x^{3}}{2}+\frac{x^{4}}{16}-5
\end{aligned}
$$

Question:10 Find the expansion of $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$ using binomial theorem .

Answer:

Given $\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}$

By Binomial Theorem It can also be written as

$$
\begin{align*}
& \left(3 x^{2}-2 a x+3 a^{2}\right)^{3}=\left(\left(3 x^{2}-2 a x\right)+3 a^{2}\right)^{3} \\
& ={ }^{3} C_{0}\left(3 x^{2}-2 a x\right)^{3}+{ }^{3} C_{1}\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)+{ }^{3} C_{2}\left(3 x^{2}-2 a x\right)\left(3 a^{2}\right)^{2}+{ }^{3} C_{3}\left(3 a^{2}\right)^{3} \\
& =\left(3 x^{2}-2 a x\right)^{3}+3\left(3 x^{2}-2 a x\right)^{2}\left(3 a^{2}\right)+3\left(3 x^{2}-2 a x\right)\left(3 a^{2}\right)^{2}+\left(3 a^{2}\right)^{3} \\
& =\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+36 a^{4} x^{2}+81 a^{4} x^{2}-54 a^{5} x+27 a^{6} \\
& =\left(3 x^{2}-2 a x\right)^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}-54 a^{5} x+27 a^{6} \ldots \ldots \ldots . . \text { (1) } \tag{1}
\end{align*}
$$

Now, Again By Binomial Theorem,
$\left(3 x^{2}-2 a x\right)^{3}={ }^{3} C_{0}\left(3 x^{2}\right)^{3}-{ }^{3} C_{1}\left(3 x^{2}\right)^{2}(2 a x)+{ }^{3} C_{2}\left(3 x^{2}\right)(2 a x)^{2}-{ }^{3} C_{3}(2 a x)^{3}$
$\left(3 x^{2}-2 a x\right)^{3}=27 x^{6}-3\left(9 x^{4}\right)(2 a x)+3\left(3 x^{2}\right)\left(4 a^{2} x^{2}\right)-8 a^{2} x^{3}$
$\left(3 x^{2}-2 a x\right)^{3}=27 x^{6}-54 x^{5}+36 a^{2} x^{4}-8 a^{3} x^{3}$

From (1) and (2) we get,
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}=27 x^{6}-54 x^{5}+36 a^{2} x^{3}+81 a^{2} x^{4}-108 a^{3} x^{3}+117 a^{4} x^{2}$ $-54 a^{5} x+27 a^{6}$
$\left(3 x^{2}-2 a x+3 a^{2}\right)^{3}=27 x^{6}-54 x^{5}+117 a^{2} x^{3}-116 a^{3} x^{3}+117 a^{4} x^{2}$ $-54 a^{5} x+27 a^{6}$

