NCERT solutions for class 9 maths chapter 10 Circles

Excercise: 10.1

Fill in the blanks:

Q1 (i) The centre of a circle lies in \qquad of the circle. (exterior/ interior)

Answer:

The centre of a circle lies in the interior of the circle.

Fill in the blanks:

Q1 (ii) A point, whose distance from the centre of a circle is greater than its radius lies
in \qquad of the circle. (exterior/ interior)

Answer:

A point, whose distance from the centre of a circle is greater than its radius lies in exterior of the circle.

Fill in the blanks:

Q1 (iii) The longest chord of a circle is a \qquad of the circle.

Answer:

The longest chord of a circle is a diameter of the circle.

Fill in the blanks:

Q1 (iv) An arc is a \qquad when its ends are the ends of a diameter.

Answer:

An arc is a semi- circle when its ends are the ends of a diameter.

Fill in the blanks:

Q1 (v) Segment of a circle is the region between an arc and \qquad of the circle.

Answer:

Segment of a circle is the region between an arc and chord of the circle.

Fill in the blanks:

Q1 (vi) A circle divides the plane, on which it lies, in \qquad parts.

Answer:

A circle divides the plane, on which it lies, in two parts.

Write True or False: Give reasons for your answers.

Q2 (i) Line segment joining the centre to any point on the circle is a radius of the circle.

Answer:

True. As line segment joining the centre to any point on the circle is a radius of the circle.

Write True or False: Give reasons for your answers.

Q2 (ii) A circle has only finite number of equal chords.

Answer:

False . As a circle has infinite number of equal chords.

Write True or False: Give reasons for your answers.

Q2 (iii) If a circle is divided into three equal arcs, each is a major arc.

Abstract

Answer:

False. If a circle is divided into three equal arcs, each arc makes angle of 120 degrees whereas major arc makes angle greater than 180 degree at centre.

Write True or False: Give reasons for your answers.

Q2 (iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.

Answer:

True.A chord of a circle, which is twice as long as its radius, is a diameter of the circle.

Write True or False: Give reasons for your answers.

Q2 (v) Sector is the region between the chord and its corresponding arc.

Answer:

False. As the sector is the region between the radii and arc.

Write True or False: Give reasons for your answers.

Q2 (vi) A circle is a plane figure.

Answer:

True. A circle is a plane figure.

Excercise: 10.2

Q1 Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.

Answer:

Given: The two circles are congruent if they have the same radii.

To prove: The equal chords of congruent circles subtend equal angles at their centres i.e. $\angle \mathrm{BAC}=\angle \mathrm{QPR}$

Proof :

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\mathrm{BC}=\mathrm{QR}$ (Given)
$\mathrm{AB}=\mathrm{PQ}($ Radii of congruent circle $)$
$\mathrm{AC}=\mathrm{PR}($ Radii of congruent circle)

Thus, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}($ By SSS rule $)$
$\angle \mathrm{BAC}=\angle \mathrm{QPR}(\mathrm{CPCT})$

Q2 Prove that if chords of congruent circles subtend equal angles at their centres, then the chords are equal.

Answer:

Given : chords of congruent circles subtend equal angles at their centres,

To prove : $\mathrm{BC}=\mathrm{QR}$

Proof :

In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{PQR}$,
$\angle \mathrm{BAC}=\angle \mathrm{QPR}$ (Given)
$\mathrm{AB}=\mathrm{PQ}($ Radii of congruent circle $)$
$\mathrm{AC}=\mathrm{PR}$ (Radii of congruent circle)

Thus, $\triangle \mathrm{ABC} \cong \triangle \mathrm{PQR}$ (By SAS rule)
$\mathrm{BC}=\mathrm{QR}(\mathrm{CPCT})$

Excercise: 10.3

Q1 Draw different pairs of circles. How many points does each pair have in common? What ii the maximum number of common points?

Answer:

(i)

(ii)

(iii)

(iv)

In (i) we do not have any common point.

In (ii) we have 1 common point.

In (iii) we have 1 common point.

In (iv) we have 2 common points.

The maximum number of common points is 2 .

Q2 Suppose you are given a circle. Give a construction to find its centre.

Answer:

Given : Points P,Q,R lies on circle.

Construction :

1. Join PR and QR
2. Draw perpendicular bisector of PR and QR which intersects at point O .
3. Taking O as centre and OP as radius draw a circle.
4. The circle obtained is required.

Q3 If two circles intersect at two points, prove that their centres lie on the perpendicular bisector of the common chord.

Answer:

Given: Two circles intersect at two points.

To prove: their centres lie on the perpendicular bisector of the common chord.

Construction: Joinpoint P and Q to midpoint M of chord AB .

Proof: AB is a chord of circle $\mathrm{C}(\mathrm{Q}, \mathrm{r})$ and QM is the bisector of chord AB .
$\therefore P M \perp A B$

Hence, $\angle P M A=90^{\circ}$

Similarly, AB is a chord of circle $\left(\mathrm{Q}, \mathrm{r}^{\prime}\right)$ and QM is the bisector of chord AB .
$\therefore Q M \perp A B$

Hence, $\angle Q M A=90^{\circ}$

Now, $\angle Q M A+\angle P M A=90^{\circ}+90^{\circ}=180^{\circ}$
$\angle \mathrm{PMA}$ and $\angle \mathrm{QMA}$ are forming linear pairs so PMQ is a straight line.

Hence, P and Q lie on the perpendicular bisector of common chord AB .

Excercise: 10.4

Q1 Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm . Find the length of the common chord.

Answer:

Given: Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm .

To find the length of the common chord.

Construction: Join OP and draw $O M \perp A B$ and $O N \perp C D$.

Proof: AB is a chord of circle $\mathrm{C}(\mathrm{P}, 3)$ and PM is the bisector of chord AB .
$\therefore P M \perp A B$

Let, $P M=x$, so $Q M=4-x$

In \triangle APM, using Pythagoras theorem
$A M^{2}=A P^{2}-P M^{2} \ldots \ldots . ~ 1 ~ 1 ~$

Also,

In $\triangle \mathrm{AQM}$, using Pythagoras theorem

$$
A M^{2}=A Q^{2}-M Q^{2}
$$

From 1 and 2, we get

$$
\begin{aligned}
& A P^{2}-P M^{2}=A Q^{2}-M Q^{2} \\
& \Rightarrow 3^{2}-x^{2}=5^{2}-(4-x)^{2} \\
& \Rightarrow 9-x^{2}=25-16-x^{2}+8 x \\
& \Rightarrow 9=9+8 x \\
& \Rightarrow 8 x=0 \\
& \Rightarrow x=0
\end{aligned}
$$

Put, $x=0$ in equation 1

$$
\begin{aligned}
& A M^{2}=3^{2}-0^{2}=9 \\
& \Rightarrow A M=3
\end{aligned}
$$

$\Rightarrow A B=2 A M=6$

Q2 If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord.

Answer:

Given: two equal chords of a circle intersect within the circle

To prove: Segments of one chord are equal to corresponding segments of the other chord i.e. AP $=\mathrm{CP}$ and $\mathrm{BP}=\mathrm{DP}$.

Construction : Join OP and draw $O M \perp A B$ and $O N \perp C D$.

Proof:

In $\triangle \mathrm{OMP}$ and $\triangle \mathrm{ONP}$,

$$
\mathrm{AP}=\mathrm{AP}(\text { Common })
$$

$\mathrm{OM}=\mathrm{ON}($ Equal chords of a circle are equidistant from the centre)
$\angle \mathrm{OMP}=\angle \mathrm{ONP}$ (Both are right angled)

Thus, \triangle OMP $\cong \triangle$ ONP $($ By SAS rule $)$

$$
\text { PM = PN........................... } 1 \text { (CPCT) }
$$

$$
\mathrm{AB}=\mathrm{CD} .2(G i v e n ~) ~(~) ~
$$

$$
\Rightarrow \frac{1}{2} A B=\frac{1}{2} C D
$$

$$
\Rightarrow A M=C N
$$.3

Adding 1 and 3, we have
$\mathrm{AM}+\mathrm{PM}=\mathrm{CN}+\mathrm{PN}$
$\Rightarrow A P=C P$

Subtract 4 from 2, we get

$$
\begin{aligned}
& \mathrm{AB}-\mathrm{AP}=\mathrm{CD}-\mathrm{CP} \\
& \Rightarrow P B=P D
\end{aligned}
$$

Q3 If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords.

Answer:

Given: two equal chords of a circle intersect within the circle.

To prove: the line joining the point of intersection to the centre makes equal angles with the chords.
i.e. $\angle \mathrm{OPM}=\angle \mathrm{OPN}$

Proof :

Construction: Join OP and draw $O M \perp A B$ and $O N \perp C D$.

In \triangle OMP and $\triangle \mathrm{ONP}$,
$\mathrm{AP}=\mathrm{AP}($ Common $)$
$\mathrm{OM}=\mathrm{ON}($ Equal chords of a circle are equidistant from the centre)
$\angle \mathrm{OMP}=\angle \mathrm{ONP}($ Both are right-angled $)$

Thus, $\triangle \mathrm{OMP} \cong \triangle$ ONP $($ By RHS rule $)$
$\angle \mathrm{OPM}=\angle \mathrm{OPN}(\mathrm{CPCT})$

Q4 If a line intersects two concentric circles (circles with the same centre) with centre O at A, B, C and D, prove that $A B=C D$ (see Fig. 10.25).

Fig. 10.25

Answer:

Given: a line intersects two concentric circles (circles with the same centre) with centre O at A , B, C and D.

To prove : $\mathrm{AB}=\mathrm{CD}$

Construction: Draw $O M \perp A D$

Proof :

BC is a chord of the inner circle and $O M \perp B C$

So, $\mathrm{BM}=\mathrm{CM}$ \qquad
(Perpendicular OM bisect BC)

Similarly,

AD is a chord of the outer circle and $O M \perp A D$

So, AM = DM 2
(Perpendicular OM bisect AD)

Subtracting 1 from 2, we get
$\mathrm{AM}-\mathrm{BM}=\mathrm{DM}-\mathrm{CM}$
$\Rightarrow A B=C D$

Q5 Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius $5 m$ drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?

Answer:

Given: From the figure, R, S, M are the position of Reshma, Salma, Mandip respectively.

So, $\mathrm{RS}=\mathrm{SM}=6 \mathrm{~cm}$

Construction : Join OR,OS,RS,RM and OM.Draw $O L \perp R S$.

Proof:

In \triangle ORS,
$\mathrm{OS}=\mathrm{OR}$ and $O L \perp R S$ (by construction)

So, $\mathrm{RL}=\mathrm{LS}=3 \mathrm{~cm}(\mathrm{RS}=6 \mathrm{~cm})$

In \triangle OLS, by pytagoras theorem,
$O L^{2}=O S^{2}-S L^{2}$
$\Rightarrow O L^{2}=5^{2}-3^{2}=25-9=16$
$\Rightarrow O L=4$

In $\triangle \mathrm{ORK}$ and $\triangle \mathrm{OMK}$,
$\mathrm{OR}=\mathrm{OM}$ (Radii)
$\angle \mathrm{ROK}=\angle \mathrm{MOK}$ (Equal chords subtend equal angle at centre)
$\mathrm{OK}=\mathrm{OK}($ Common $)$
$\triangle \mathrm{ORK} \cong \triangle \mathrm{OMK}(\mathrm{By} \mathrm{SAS})$
$R K=M K(C P C T)$

Thus, $O K \perp R M$

$$
\begin{aligned}
\text { area of } \triangle \mathrm{ORS}= & \frac{1}{2} \times R S \times O L \ldots \ldots . ~
\end{aligned} 1
$$

From 1 and 2, we get
$\frac{1}{2} \times R S \times O L=\frac{1}{2} \times O S \times K R$
$\Rightarrow R S \times O L=O S \times K R$
$\Rightarrow 6 \times 4=5 \times K R$
$\Rightarrow K R=4.8 \mathrm{~cm}$

Thus, $R M=2 K R=2 \times 4.8 \mathrm{~cm}=9.6 \mathrm{~cm}$

Q6 A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Answer:

Given: In the figure, A, S, D are positioned Ankur, Syed and David respectively.

So, $\mathrm{AS}=\mathrm{SD}=\mathrm{AD}$

Radius of circular park $=20 \mathrm{~m}$
so, $\mathrm{AO}=\mathrm{SO}=\mathrm{DO}=20 \mathrm{~m}$

Construction: $\mathrm{AP} \perp \mathrm{SD}$

Proof :

Let $\mathrm{AS}=\mathrm{SD}=\mathrm{AD}=2 \mathrm{xcm}$

In $\triangle \mathrm{ASD}$,
$\mathrm{AS}=\mathrm{AD}$ and $\mathrm{AP} \perp \mathrm{SD}$

So, $\mathrm{SP}=\mathrm{PD}=\mathrm{xcm}$

In \triangle OPD, by Pythagoras,
$O P^{2}=O D^{2}-P D^{2}$
$\Rightarrow O P^{2}=20^{2}-x^{2}=400-x^{2}$
$\Rightarrow O P=\sqrt{400-x^{2}}$

In $\triangle \mathrm{APD}$, by Pythagoras,
$A P^{2}=A D^{2}-P D^{2}$
$\Rightarrow(A O+O P)^{2}+x^{2}=(2 x)^{2}$

$$
\begin{aligned}
& \Rightarrow\left(20+\sqrt{400-x^{2}}\right)^{2}+x^{2}=4 x^{2} \\
& \Rightarrow 400+400-x^{2}+40 \sqrt{400-x^{2}}+x^{2}=4 x^{2} \\
& \Rightarrow 800+40 \sqrt{400-x^{2}}=4 x^{2} \\
& \Rightarrow 200+10 \sqrt{400-x^{2}}=x^{2} \\
& \Rightarrow 10 \sqrt{400-x^{2}}=x^{2}-200
\end{aligned}
$$

Squaring both sides,
$\Rightarrow 100\left(400-x^{2}\right)=\left(x^{2}-200\right)^{2}$
$\Rightarrow 40000-100 x^{2}=x^{4}-40000-400 x^{2}$
$\Rightarrow x^{4}-300 x^{2}=0$
$\Rightarrow x^{2}\left(x^{2}-300\right)=0$
$\Rightarrow x^{2}=300$
$\Rightarrow x=10 \sqrt{3}$

Hence, length of string of each phone $=2 x=20 \sqrt{3} \mathrm{~m}$

Excercise: 10.5

Q1 In Fig. 10.36 , A, B and C are three points on a circle with centre O such that $\angle B O C=30^{\circ}$ and $\angle A O B=60^{\circ}$. If D is a point on the circle other than the arc ABC , find $\angle A D C$.

Fig. 10.36

Answer:

Fig. 10.36
$\angle \mathrm{AOC}=\angle \mathrm{AOB}+\angle \mathrm{BOC}=60^{\circ}+30^{\circ}=90^{\circ}$
$\angle \mathrm{AOC}=2 \angle \mathrm{ADC}$ (angle subtended by an arc at the centre is double the angle subtended by it at any)
$\angle A D C=\frac{1}{2} \angle A O C$
$\Rightarrow \angle A D C=\frac{1}{2} 90^{\circ}=45^{\circ}$

Q2 A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Answer:

Given: A chord of a circle is equal to the radius of the circle i.e. $\mathrm{OA}=\mathrm{OB}$.

To find: ADB and $\angle \mathrm{ACB}$.

Solution :

In $\triangle \mathrm{OAB}$,
$\mathrm{OA}=\mathrm{AB}$ (Given)
$\mathrm{OA}=\mathrm{OB}$ (Radii of circle)

So, $\mathrm{OA}=\mathrm{OB}=\mathrm{AB}$
$\Rightarrow \mathrm{ABC}$ is a equilateral triangle.

So, $\angle \mathrm{AOB}=60^{\circ}$
$\angle \mathrm{AOB}=2 \angle \mathrm{ADB}$
$\Rightarrow \angle A D B=\frac{1}{2} \angle A O B$
$\Rightarrow \angle A D B=\frac{1}{2} 60^{\circ}=30$

ACBD is a cyclic quadrilateral .

So, $\angle \mathrm{ACB}+\angle \mathrm{ADB}=180^{\circ}$
$\Rightarrow \angle A C B+30^{\circ}=180^{\circ}$
$\Rightarrow \angle A C B=180^{\circ}-30^{\circ}=150^{\circ}$

Q3 In Fig. 10.37, $\angle P Q R=100^{\circ}$, where P, Q and R are points on a circle with centre O . Find $\angle O P R$.

Answer:

Construction: Join PS and RS.

PQRS is a cyclic quadrilateral.

So, $\angle \mathrm{PSR}+\angle \mathrm{PQR}=180^{\circ}$
$\Rightarrow \angle P S R+100^{\circ}=180^{\circ}$
$\Rightarrow \angle P S R=180^{\circ}-100^{\circ}=80^{\circ}$

Here, $\angle \mathrm{POR}=2 \angle \mathrm{PSR}$
$\Rightarrow \angle P O R=2 \times 80^{\circ}=160^{\circ}$

In $\triangle \mathrm{OPR}$,
$\mathrm{OP}=\mathrm{OR}$ (Radii)
$\angle \mathrm{ORP}=\angle \mathrm{OPR}$ (the angles opposite to equal sides)

In $\triangle \mathrm{OPR}$,
$\angle \mathrm{OPR}+\angle \mathrm{ORP}+\angle \mathrm{POR}=180^{\circ}$
$\Rightarrow 2 \angle O P R+160^{\circ}=180^{\circ}$
$\Rightarrow 2 \angle O P R=180^{\circ}-160^{\circ}$
$\Rightarrow 2 \angle O P R=20^{\circ}$
$\Rightarrow \angle O P R=10^{\circ}$

Q4 In Fig. $10.38, \angle A B C=69^{\circ}, \angle A C B=31^{\circ}$, find $\angle B D C$

Fig. 10.38

Answer:

Fig. 10.38

In $\triangle \mathrm{ABC}$,
$\angle \mathrm{A}+\angle \mathrm{ABC}+\angle \mathrm{ACB}=180^{\circ}$
$\Rightarrow \angle A+69^{\circ}+31^{\circ}=180^{\circ}$
$\Rightarrow \angle A+100^{\circ}=180^{\circ}$
$\Rightarrow \angle A=180^{\circ}-100^{\circ}$
$\Rightarrow \angle A=80^{\circ}$
$\angle \mathrm{A}=\angle \mathrm{BDC}=80^{\circ}$ (Angles in same segment)

Q5 In Fig. 10.39 , A, B, C and D are four points on a circle. AC and BD intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$

Fig. 10.39

Answer:

Fig. 10.39

$$
\begin{aligned}
& \angle \mathrm{DEC}+\angle \mathrm{BEC}=180^{\circ} \text { (linear pairs) } \\
& \Rightarrow \angle \mathrm{DEC}+130^{\circ}=180^{\circ}\left(\angle \mathrm{BEC}=130^{\circ}\right) \\
& \Rightarrow \angle \mathrm{DEC}=180^{\circ}-130^{\circ} \\
& \Rightarrow \angle \mathrm{DEC}=50^{\circ}
\end{aligned}
$$

$$
\text { In } \triangle \mathrm{DEC}
$$

$$
\angle \mathrm{D}+\angle \mathrm{DEC}+\angle \mathrm{DCE}=180^{\circ}
$$

$$
\Rightarrow \angle D+50^{\circ}+20^{\circ}=180^{\circ}
$$

$$
\Rightarrow \angle D+70^{\circ}=180^{\circ}
$$

$$
\Rightarrow \angle D=180^{\circ}-70^{\circ}=110^{\circ}
$$

$$
\angle \mathrm{D}=\angle \mathrm{BAC} \text { (angles in same segment are equal })
$$

$$
\angle \mathrm{BAC}=110^{\circ}
$$

Q6 ABCD is a cyclic quadrilateral whose diagonals intersect at a point E .
If $\angle D B C=70^{\circ}, \angle B A C$ is 30°, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$.

Answer:

$\angle B D C=\angle B A C$ (angles in the same segment are equal)

$$
\begin{aligned}
& \angle B D C=30^{\circ} \\
& \text { In } \triangle B D C \\
& \angle B C D+\angle B D C+\angle D B C=180^{\circ} \\
& \Rightarrow \angle B C D+30^{\circ}+70^{\circ}=180^{\circ} \\
& \Rightarrow \angle B C D+100^{\circ}=180^{\circ} \\
& \Rightarrow \angle B C D=180^{\circ}-100^{\circ}=80^{\circ} \\
& \text { If } \mathrm{AB}=\mathrm{BC} \text {, then } \\
& \angle B C A=\angle B A C \\
& \Rightarrow \angle B C A=30^{\circ}
\end{aligned}
$$

Here, $\angle E C D+\angle B C E=\angle B C D$
$\Rightarrow \angle E C D+30^{\circ}=80^{\circ}$
$\Rightarrow \angle E C D=80^{\circ}-30^{\circ}=50^{\circ}$

Q7 If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle.

Answer:

AC is the diameter of the circle.

Thus, $\angle A D C=90^{\circ}$ and $\angle A B C=90^{\circ}$............................1(Angle in a semi-circle is right angle)

Similarly, BD is the diameter of the circle.

Thus, $\angle B A D=90^{\circ}$ and $\angle B C D=90^{\circ}$............................2(Angle in a semi-circle is right angle)

From 1 and 2, we get
$\angle B C D=\angle A D C=\angle A B C=\angle B A D=90^{\circ}$

Hence, ABCD is a rectangle.

Q8 If the non-parallel sides of a trapezium are equal, prove that it is cyclic.

Answer:

Given: ABCD is a trapezium.

Construction: Draw AD || BE.

Proof: In quadrilateral ABED,

AB || DE (Given)

AD || BE (By construction)

Thus, ABED is a parallelogram.
$\mathrm{AD}=\mathrm{BE}$ (Opposite sides of parallelogram)
$\mathrm{AD}=\mathrm{BC}$ (Given $)$
so, $\mathrm{BE}=\mathrm{BC}$

In $\triangle \mathrm{EBC}$,
$B E=B C($ Proved above $)$

Thus, $\angle C=\angle 2 \ldots \ldots \ldots . .1$ (angles opposite to equal sides)
$\angle A=\angle 1 \ldots \ldots2$ (Opposite angles of the parallelogram)

From 1 and 2, we get

$$
\angle 1+\angle 2=180^{\circ} \text { (linear pair) }
$$

$$
\Rightarrow \angle A+\angle C=180^{\circ}
$$

Thus, ABED is a cyclic quadrilateral.

Q9 Two circles intersect at two points B and C. Through B, two line segments ABD and PBQ are drawn to intersect the circles at A, D and P, Q respectively (see Fig. 10.40). Prove that $\angle A C P=\angle Q C D$.

Answer:

$\angle A B P=\angle Q B D \ldots \ldots \ldots \ldots1$ (vertically opposite angles)
$\angle A C P=\angle A B P \ldots \ldots2($ Angles in the same segment are equal)
$\angle Q B D=\angle Q C D \ldots \ldots3($ angles in the same segment are equal)

From 1,2,3 ,we get
$\angle A C P=\angle Q C D$

Q10 If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side.

Answer:

Given: circles are drawn taking two sides of a triangle as diameters.

Construction: Join AD.

Proof: AB is the diameter of the circle and $\angle \mathrm{ADB}$ is formed in a semi-circle.
$\angle \mathrm{ADB}=90^{\circ}$ \qquad 1 (angle in a semi-circle)

Similarly,

AC is the diameter of the circle and $\angle \mathrm{ADC}$ is formed in a semi-circle.
$\angle \mathrm{ADC}=90^{\circ} \ldots \ldots2($ angle in a semi-circle)

From 1 and 2, we have
$\angle \mathrm{ADB}+\angle \mathrm{ADC}=90^{\circ}+90^{\circ}=180^{\circ}$
$\angle \mathrm{ADB}$ and $\angle \mathrm{ADC}$ are forming a linear pair. $\mathrm{So}, \mathrm{BDC}$ is a straight line.

Hence, point D lies on this side.

Q11 ABC and ADC are two right triangles with common hypotenuse AC. Prove that $\angle C A D=\angle C B D$.

Answer:

Given: ABC and ADC are two right triangles with common hypotenuse AC .

To prove : $\angle C A D=\angle C B D$

Proof :

Triangle ABC and ADC are on common base BC and $\angle \mathrm{BAC}=\angle \mathrm{BDC}$.

Thus, point $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ lie in the same circle.
(If a line segment joining two points subtends equal angles at two other points lying on the same side of line containing line segment, four points lie on the circle.)
$\angle \mathrm{CAD}=\angle \mathrm{CBD}$ (Angles in same segment are equal)

Q12 Prove that a cyclic parallelogram is a rectangle.
Answer:

Given: ABCD is a cyclic quadrilateral.

To prove: ABCD is a rectangle.

Proof :

In cyclic quadrilateral ABCD .
$\angle A+\angle C=180^{\circ}$ \qquad 1(sum of either pair of opposite angles of a cyclic quadrilateral)
$\angle A=\angle C$ \qquad 2(opposite angles of a parallelogram are equal)

From 1 and 2,

$$
\begin{aligned}
& \angle A+\angle A=180^{\circ} \\
& \Rightarrow 2 \angle A=180^{\circ} \\
& \Rightarrow \angle A=90^{\circ}
\end{aligned}
$$

We know that a parallelogram with one angle right angle is a rectangle.

Hence, $A B C D$ is a rectangle.

Excercise: 10.6

Q1 Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.

Answer:

Given: Circle $\mathrm{C}(\mathrm{P}, \mathrm{r})$ and circle $\mathrm{C}\left(\mathrm{Q}, \mathrm{r}^{\prime}\right)$ intersect each other at A and B .

To prove : $\angle \mathrm{PAQ}=\angle \mathrm{PBQ}$

Proof : In $\triangle \mathrm{APQ}$ and $\triangle \mathrm{BPQ}$,
$\mathrm{PA}=\mathrm{PB}$ (radii of same circle)
$P Q=P Q($ Common $)$
$\mathrm{QA}=\mathrm{QB}$ (radii of same circle)

So, $\triangle \mathrm{APQ} \cong \triangle \mathrm{BPQ}(\mathrm{By} \mathrm{SSS})$
$\angle \mathrm{PAQ}=\angle \mathrm{PBQ}(\mathrm{CPCT})$

Q2 Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm , find the radius of the circle.

Answer:

Given : $\mathrm{AB}=5 \mathrm{~cm}, \mathrm{CD}=11 \mathrm{~cm}$ and $\mathrm{AB} \| \mathrm{CD}$.

To find Radius (OA).

Construction: Draw $O M \perp C D$ and $O N \perp A B$

Proof:

Proof: CD is a chord of circle and $O M \perp C D$

Thus, $\mathrm{CM}=\mathrm{MD}=5.5 \mathrm{~cm}$ (perpendicular from centre bisects chord)
and $\mathrm{AN}=\mathrm{NB}=2.5 \mathrm{~cm}$

Let OM be x .

So, $\mathrm{ON}=6-\mathrm{x}(\mathrm{MN}=6 \mathrm{~cm})$

In $\triangle \mathrm{OCM}$, using Pythagoras,

and

In \triangle OAN, using Pythagoras,
$O A^{2}=A N^{2}+O N^{2} \ldots \ldots \ldots \ldots2$

From 1 and 2,
$C M^{2}+O M^{2}=A N^{2}+O N^{2}(\mathrm{OC}=\mathrm{OA}=$ radii $)$

$$
\begin{aligned}
& 5.5^{2}+x^{2}=2.5^{2}+(6-x)^{2} \\
& \Rightarrow 30.25+x^{2}=6.25+36+x^{2}-12 x \\
& \Rightarrow 30.25-42.25=-12 x \\
& \Rightarrow-12=-12 x \\
& \Rightarrow x=1
\end{aligned}
$$

From 2, we get
$O C^{2}=5.5^{2}+1^{2}=30.25+1=31.25$
$\Rightarrow O C=\frac{5}{2} \sqrt{5} \mathrm{~cm}$
$\mathrm{OA}=\mathrm{OC}$

Thus, the radius of the circle is $\overline{2}$

Q3 The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?

Answer:

Given : $\mathrm{AB}=8 \mathrm{~cm}, \mathrm{CD}=6 \mathrm{~cm}, \mathrm{OM}=4 \mathrm{~cm}$ and $\mathrm{AB} \| \mathrm{CD}$.

To find: Length of ON

Construction: Draw $O M \perp C D$ and $O N \perp A B$

Proof :

Proof: CD is a chord of circle and $O M \perp C D$

Thus, $\mathrm{CM}=\mathrm{MD}=3 \mathrm{~cm}$ (perpendicular from centre bisects chord)
and $\mathrm{AN}=\mathrm{NB}=4 \mathrm{~cm}$

Let MN be x .

So, $\mathrm{ON}=4-\mathrm{x}(\mathrm{MN}=4 \mathrm{~cm})$

In $\triangle \mathrm{OCM}$, using Pythagoras,
$O C^{2}=C M^{2}+O M^{2} \ldots \ldots . ~ 1 ~$
and

In $\triangle \mathrm{OAN}$, using Pythagoras,
$O A^{2}=A N^{2}+O N^{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.

From 1 and 2,
$C M^{2}+O M^{2}=A N^{2}+O N^{2}(\mathrm{OC}=\mathrm{OA}=$ radii $)$
$\Rightarrow 3^{2}+4^{2}=4^{2}+(4-x)^{2}$
$\Rightarrow 9+16=16+16+x^{2}-8 x$
$\Rightarrow 9=16+x^{2}-8 x$
$\Rightarrow x^{2}-8 x+7=0$
$\Rightarrow x^{2}-7 x-x+7=0$
$\Rightarrow x(x-7)-1(x-7)=0$
$\Rightarrow(x-1)(x-7)=0$
$\Rightarrow x=1,7$

So, $\mathrm{x}=1($ since $x \neq 7>O M)$
$\mathrm{ON}=4-\mathrm{x}=4-1=3 \mathrm{~cm}$

Hence, second chord is 3 cm away from centre.

Q4 Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that $\angle A B C$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.

Answer:

Given : $\mathrm{AD}=\mathrm{CE}$
To prove : $\angle A B C=\frac{1}{2}(\angle A O C-\angle D O E)$

Construction: Join AC and DE.

Proof :

Let $\angle \mathrm{ADC}=\mathrm{x}, \angle \mathrm{DOE}=\mathrm{y}$ and $\angle \mathrm{AOD}=\mathrm{z}$
$\mathrm{So}, \angle \mathrm{EOC}=\mathrm{z}$ (each chord subtends equal angle at centre)
$\angle \mathrm{AOC}+\angle \mathrm{DOE}+\angle \mathrm{AOD}+\angle \mathrm{EOC}=360^{\circ}$
$\Rightarrow x+y+z+z=360^{\circ}$
$\Rightarrow x+y+2 z=360^{\circ}$ \qquad

In $\triangle \mathrm{OAD}$,
$\mathrm{OA}=\mathrm{OD}$ (Radii of the circle)
$\angle \mathrm{OAD}=\angle \mathrm{ODA}$ (angles opposite to equal sides)
$\angle \mathrm{OAD}+\angle \mathrm{ODA}+\angle \mathrm{AOD}=180^{\circ}$
$\Rightarrow 2 \angle O A D+z=180^{\circ}$
$\Rightarrow 2 \angle O A D=180^{\circ}-z$
$\Rightarrow \angle O A D=\frac{180^{\circ}-z}{2}$
$\Rightarrow \angle O A D=90^{\circ}-\frac{z}{2}$

Similarly,
$\Rightarrow \angle O C E=90^{\circ}-\frac{x}{2}$
$\Rightarrow \angle O E D=90^{\circ}-\frac{y}{2}$.. 3
$\angle \mathrm{ODB}$ is exterior of triangle OAD. So,
$\angle \mathrm{ODB}=\angle \mathrm{OAD}+\angle \mathrm{ODA}$
$\Rightarrow \angle O D B=90^{\circ}-\frac{z}{2}+z_{(\text {from 2) }}$
$\Rightarrow \angle O D B=90^{\circ}+\frac{z}{2}$.5
similarly,
$\angle \mathrm{OBE}$ is exterior of triangle OCE . So,
$\angle \mathrm{OBE}=\angle \mathrm{OCE}+\angle \mathrm{OEC}$
$\Rightarrow \angle O E B=90^{\circ}-\frac{z}{2}+z_{(\text {from } 3)}$
$\Rightarrow \angle O E B=90^{\circ}+\frac{z}{2}$.6

From 4,5,6 ;we get

$$
\begin{aligned}
& \angle \mathrm{BDE}=\angle \mathrm{BED}=\angle \mathrm{OEB}-\angle \mathrm{OED} \\
& \Rightarrow \angle B D E=\angle B E D=90^{\circ}+\frac{z}{2}-\left(90-\frac{y}{2}\right)=\frac{y+z}{2} \\
& \Rightarrow \angle B D E+\angle B E D=y+z \ldots \ldots . ~
\end{aligned} 7
$$

In $\triangle \mathrm{BDE}$,
$\angle \mathrm{DBE}+\angle \mathrm{BDE}+\angle \mathrm{BED}=180^{\circ}$
$\Rightarrow \angle D B E+y+z=180^{\circ}$
$\Rightarrow \angle D B E=180^{\circ}-(y+z)$
$\Rightarrow \angle A B C=180^{\circ}-(y+z)$. 8

Here, from equation 1,
$\frac{x-y}{2}=\frac{360^{\circ}-y-2 x-y}{2}$
$\Rightarrow \frac{x-y}{2}=\frac{360^{\circ}-2 y-2 x}{2}$
$\Rightarrow \frac{x-y}{2}=180^{\circ}-y-x$.9

From 8 and 9,we have
$\angle A B C=\frac{x-y}{2}=\frac{1}{2}(\angle A O C-\angle D O E)$

Q5 Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.

Answer:

Given : ABCD is rhombus.

To prove : the circle drawn with AB as diameter, passes through the point O .

Proof :

ABCD is rhombus.

Thus, $\angle A O C=90^{\circ}$ (diagonals of a rhombus bisect each other at 90°)

So, a circle drawn AB as diameter will pass through point O .

Thus, the circle is drawn with any side of a rhombus as diameter passes through the point of intersection of its diagonals.

Q6 ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that $A E=A D$.

Answer:

Given: ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E .

To prove : $\mathrm{AE}=\mathrm{AD}$

Proof :

$\angle \mathrm{ADC}=\angle 3, \angle \mathrm{ABC}=\angle 4, \angle \mathrm{ADE}=\angle 1$ and $\angle \mathrm{AED}=\angle 2$
$\angle 3+\angle 1=180^{\circ}$ \qquad . (linear pair)
$\angle 2+\angle 4=180^{\circ} \ldots \ldots2$ (sum of opposite angles of cyclic quadrilateral)
$\angle 3=\angle 4$ (oppsoite angles of parallelogram)

From 1 and 2,
$\angle 3+\angle 1=\angle 2+\angle 4$

From $3, \angle 1=\angle 2$

From $4, \triangle \mathrm{AQB}, \angle 1=\angle 2$

Therefore, $\mathrm{AE}=\mathrm{AD}$ (In an isosceles triangle , angles oppsoite to equal sides are equal)

Q7 (i) AC and BD are chords of a circle which bisect each other. Prove that AC and BD are diameters

Answer:

Given: AC and BD are chords of a circle which bisect each other.

To prove: AC and BD are diameters.

Construction : Join AB,BC,CD,DA.

Proof :

In $\triangle \mathrm{ABD}$ and $\triangle \mathrm{CDO}$,
$\mathrm{AO}=\mathrm{OC}($ Given $)$
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ (Vertically opposite angles)
$\mathrm{BO}=\mathrm{DO}($ Given $)$

So, $\triangle \mathrm{ABD} \cong \triangle \mathrm{CDO}(\mathrm{By}$ SAS $)$
$\angle \mathrm{BAO}=\angle \mathrm{DCO}(\mathrm{CPCT})$
$\angle \mathrm{BAO}$ and $\angle \mathrm{DCO}$ are alternate angle and are equal.

So, AB || DC 1

Also AD || BC 2

From 1 and 2,
$\angle A+\angle C=180^{\circ}$.......................3(sum of opposite angles)

From 3 and 4,
$\angle A+\angle A=180^{\circ}$
$\Rightarrow 2 \angle A=180^{\circ}$
$\Rightarrow \angle A=90^{\circ}$

BD is a diameter of the circle.

Similarly, AC is a diameter.

Q7 (ii) AC and BD are chords of a circle which bisect each other. Prove that $A B C D$ is a rectangle.

Answer:

Given: AC and BD are chords of a circle which bisect each other.

To prove: ABCD is a rectangle.

Construction : Join AB,BC,CD,DA.

Proof :

ABCD is a parallelogram. (proved in (i))
$\angle A=90^{\circ}$ (proved in (i))

A parallelogram with one angle 90°, is a rectangle)

Thus, ABCD is rectangle.

Q8 Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively. Prove that the angles of the triangle DEF
are $90^{\circ}-\frac{1}{2} C, 90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} A$

Answer:

Given : Bisectors of angles A, B and C of a triangle ABC intersect its circumcircle at D, E and F respectively.

To prove : the angles of the triangle DEF are $90^{\circ}-\frac{1}{2} C, 90^{\circ}-\frac{1}{2} B$ and $90^{\circ}-\frac{1}{2} A$

Proof :

$\angle 1$ and $\angle 3$ are angles in same segment.therefore,
$\angle 1=\angle 3 \ldots \ldots1$ (angles in same segment are equal)
and $\angle 2=\angle 4$.2

Adding 1 and 2,we have
$\angle 1+\angle 2=\angle 3+\angle 4$
$\Rightarrow \angle D=\frac{1}{2} \angle B+\frac{1}{2} \angle C$,
$\Rightarrow \angle D=\frac{1}{2}(\angle B+\angle C)$
$\Rightarrow \angle D=\frac{1}{2}\left(180^{\circ}+\angle C\right)$
and $\Rightarrow \angle D=\frac{1}{2}\left(180^{\circ}-\angle A\right)$
$\Rightarrow \angle D=90^{\circ}-\frac{1}{2} \angle A$
Similarly, $\Rightarrow \angle E=90^{\circ}-\frac{1}{2} \angle B$ and $\angle F=90^{\circ}-\frac{1}{2} \angle C$

Q9 Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that $B P=B Q$.

Answer:

Given: Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles.

To prove : $\mathrm{BP}=\mathrm{BQ}$

Proof :

AB is a common chord in both congruent circles.
$\therefore \angle A P B=\angle A Q B$

In $\triangle B P Q$,
$\angle A P B=\angle A Q B$
$\therefore B Q=B P$ (Sides opposite to equal of the triangle are equal)

Q10 In any triangle ABC , if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC .

Answer:

Given :In any triangle ABC , if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect.

To prove: D lies on perpendicular bisector BC .

Construction: Join BD and DC.

Proof :

Let $\angle \mathrm{ABD}=\angle 1, \angle \mathrm{ADC}=\angle 2, \angle \mathrm{DCB}=\angle 3, \angle \mathrm{CBD}=\angle 4$
$\angle 1$ and $\angle 3$ lies in same segment.So,
$\angle 1=\angle 3$ \qquad 1 (angles in same segment)
similarly, $\angle 2=\angle 4$...................... 2
also, $\angle 1=\angle 2$..............3(given)

From 1,2,3, we get
$\angle 3=\angle 4$

Hence, $\mathrm{BD}=\mathrm{DC}$ (angles opposite to equal sides are equal)

All points lying on perpendicular bisector BC will be equidistant from B and C .

Thus, point D also lies on perpendicular bisector BC .

