NCERT solutions for class 9 maths chapter 12 Heron's Formula

Excercise: 12.1

Q1 A traffic signal board, indicating 'SCHOOL AHEAD', is an equilateral triangle with side ' a '. Find the area of the signal board, using Heron's formula. If its perimeter is 180 cm , what will be the area of the signal board?

Answer:

Given the perimeter of an equilateral triangle is 180 cm .

So, $3 a=180 \mathrm{~cm}$ or $a=60 \mathrm{~cm}$.

Hence, the length of the side is 60 cm .

Now,

Calculating the area of the signal board by the Heron's Formula:
$A=\sqrt{s(s-a)(s-b)(s-c)}$

Where, s is the half-perimeter of the triangle and a, b and c are the sides of the triangle.

Therefore,
$s=\frac{1}{2}$ Perimeter $=\frac{1}{2} 180 \mathrm{~cm}=90 \mathrm{~cm}$
$a=b=c=60 \mathrm{~cm}$ as it is an equilateral triangle.

Substituting the values in the Heron's formula, we obtain
$\Longrightarrow A=\sqrt{90(90-60)(90-60)(90-60)}=900 \sqrt{3} \mathrm{~cm}^{2}$.

Q2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are $122 \mathrm{~m}, 22 \mathrm{~m}$ and 120 m (see Fig. 12.9). The advertisements yield an earning of Rs. 5000 per m ${ }^{2}$ per year. A company hired one of its walls for 3 months. How much rent did it pay?

Fig. 12.9

Answer:

From the figure,

The sides of the triangle are:
$a=122 m, b=120 m$ and $c=22 m$

The semi perimeter, s will be
$s=\frac{a+b+c}{2}=\frac{122+120+22}{2}=\frac{264}{2}=132 \mathrm{~m}$

Therefore, the area of the triangular side wall will be calculated by the Heron's Formula,

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{132(132-122)(132-120)(132-22)} \mathrm{m}^{2}
\end{aligned}
$$

$=\sqrt{132(10)(12)(110)} m^{2}$
$=\sqrt{(12 \times 11)(10)(12)(11 \times 10)} \mathrm{m}^{2}=1320 \mathrm{~m}^{2}$

Given the rent for 1 year (i.e., 12 months) per meter square is Rs. 5000 .

Rent for 3 months per meter square will be:
Rs. $5000 \times \frac{3}{12}$

Therefore, for 3 months for $1320 \mathrm{~m}^{2}$:
Rs. $5000 \times \frac{3}{12} \times 1320=$ Rs. $16,50,000$.

Q3 There is a slide in a park. One of its side walls has been painted in some colour with a message "KEEP THE PARK GREEN AND CLEAN" (see Fig. 12.10). If the sides of the wall are $15 \mathrm{~m}, 11 \mathrm{~m}$ and 6 m , find the area painted in colour.

Answer:

Given the sides of the triangle are:
$a=15 m, b=11 m$ and $c=6 m$.

So, the semi perimeter of the triangle will be:
$s=\frac{a+b+c}{2}=\frac{15+11+6}{2}=\frac{32}{2}=16 \mathrm{~m}$

Therefore, Heron's formula will be:

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{16(16-15)(16-11)(16-6)} \\
& =\sqrt{16(1)(5)(10)} \\
& =\sqrt{(4 \times 4)(1)(5)(5 \times 2)} \\
& =4 \times 5 \sqrt{2}=20 \sqrt{2} m^{2}
\end{aligned}
$$

Hence, the area painted in colour is $20 \sqrt{2} \mathrm{~m}^{2}$.

Q4 Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42 cm .

Answer:

Given the perimeter of the triangle is 42 cm and the sides
length $a=18 \mathrm{~cm}$ and $b=10 \mathrm{~cm}$

So, $a+b+c=42 \mathrm{~cm}$

Or, $c=42-18-10=14 \mathrm{~cm}$

So, the semi perimeter of the triangle will be:
$s=\frac{P}{2}=\frac{42 \mathrm{~cm}}{2}=21 \mathrm{~cm}$

Therefore, the area given by the Heron's Formula will be,
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{21(21-18)(21-10)(21-14)}$
$=\sqrt{(7 \times 3)(3)(11)(7)}$
$=21 \sqrt{11} \mathrm{~cm}^{2}$
Hence, the area of the triangle is $21 \sqrt{11} \mathrm{~cm}^{2}$.

Q5 Sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm . Find its area.

Answer:

Given the sides of a triangle are in the ratio of $12: 17: 25$ and its perimeter is 540 cm

Let us consider the length of one side of the triangle be $a=12 x$

Then, the remaining two sides are $b=17 x$ and $c=25 x$.

So, by the given perimeter, we can find the value of x :

Perimeter $=a+b+c=12 x+17 x+25 x=540 \mathrm{~cm}$
$\Longrightarrow 54 x=540 \mathrm{~cm}$
$\Longrightarrow x=10$

So, the sides of the triangle are:
$a=12 \times 10=120 \mathrm{~cm}$
$b=17 \times 10=170 \mathrm{~cm}$
$c=25 \times 10=250 \mathrm{~cm}$

So, the semi perimeter of the triangle is given by
$s=\frac{540 \mathrm{~cm}}{2}=270 \mathrm{~cm}$

Therefore, using Heron's Formula, the area of the triangle is given by

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{270(270-120)(270-170)(270-250)} \\
& =\sqrt{270(150)(100)(20)} \\
& =\sqrt{81000000}=9000 \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the triangle is $9000 \mathrm{~cm}^{2}$.

Q6 An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm . Find the area of the triangle.

Answer:

The perimeter of an isosceles triangle is 30 cm (Given).

The length of the sides which are equal is 12 cm .

Let the third side length be 'a cm'.

Then, Perimeter $=a+b+c$
$\Rightarrow 30=a+12+12$
$\Rightarrow a=6 \mathrm{~cm}$

So, the semi-perimeter of the triangle is given by,
$s=\frac{1}{2}$ Perimeter $=\frac{1}{2} \times 30 \mathrm{~cm}=15 \mathrm{~cm}$

Therefore, using Herons' Formula, calculating the area of the triangle

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{15(15-6)(15-12)(15-12)} \\
& =\sqrt{15(9)(3)(3)} \\
& =9 \sqrt{15} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the triangle is $9 \sqrt{15} \mathrm{~cm}^{2}$.

Excercise: 12.2

Q1 A park, in the shape of a quadrilateral $A B C D$, has $\angle C=90^{\circ}, A B=9 \mathrm{~m}, B C=12 \mathrm{~m}, C D=5 \mathrm{~m}$ and $A D=8 \mathrm{~m}$. How much area does it occupy?

Answer:

From the figure:

We have joined the BD to form two triangles so that the calculation of the area will be easy.

In triangle BCD, by Pythagoras theorem

$$
\begin{aligned}
& B D^{2}=B C^{2}+C D^{2} \\
& \Rightarrow B D^{2}=12^{2}+5^{2}=144+25=169 \\
& \Rightarrow B D=13 \mathrm{~cm}
\end{aligned}
$$

The area of triangle BCD can be calculated by,
$\operatorname{Area}_{(B C D)}=\frac{1}{2} \times B C \times D C=\frac{1}{2} \times 12 \times 5=30 \mathrm{~cm}^{2}$
and the area of the triangle DAB can be calculated by Heron's Formula:

So, the semi-perimeter of the triangle $D A B$,
$s=\frac{a+b+c}{2}=\frac{9+8+13}{2}=\frac{30}{2}=15 \mathrm{~cm}$

Therefore, the area will be:
$A=\sqrt{s(s-a)(s-b)(s-c)}$
where, $a=9 \mathrm{~cm}, b=8 \mathrm{~cm}$ and $c=13 \mathrm{~cm}$.
$=\sqrt{15(15-9)(15-8)(15-13)}$
$=\sqrt{12(6)(7)(2)}=\sqrt{1260}=35.5 \mathrm{~cm}^{2}$ (Approximately)

Then, the total park area will be:
$=$ Area of triangle $B C D+$ Area of triangle $D A B$
\Rightarrow Total area of Park $=30+35.35=65.5 \mathrm{~cm}^{2}$

Hence, the total area of the park is $65.5 \mathrm{~cm}^{2}$.

Q2 Find the area of a quadrilateral $A B C D$ in which $A B=3 \mathrm{~cm}, B C=4 \mathrm{~cm}, C D=4 \mathrm{~cm}$, $D A=5 \mathrm{~cm}$ and $A C=5 \mathrm{~cm}$.

Answer:

From the figure:

We have joined the AC to form two triangles so that the calculation of the area will be easy.

The area of the triangle ABC can be calculated by Heron's formula:

So, the semi-perimeter, where $a=3 \mathrm{~cm}, b=4 \mathrm{~cm}$ and $c=5 \mathrm{~cm}$.
$s=\frac{a+b+c}{2}=\frac{3+4+5}{2}=6 \mathrm{~cm}$

Heron's Formula for calculating the area:
$A=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{6(6-3)(6-4)(6-5)}=\sqrt{6(3)(2)(1)}=\sqrt{36}=6 \mathrm{~cm}^{2}$

And the sides of the triangle ACD are $a^{\prime}=4 \mathrm{~cm}, b^{\prime}=5 \mathrm{~cm}$ and $c^{\prime}=5 \mathrm{~cm}$.

So, the semi-perimeter of the triangle:
$s^{\prime}=\frac{a^{\prime}+b^{\prime}+c^{\prime}}{2}=\frac{4+5+5}{2}=\frac{14}{2}=7 \mathrm{~cm}$

Therefore, the area will be given by, Heron's formula

$$
\begin{aligned}
& A=\sqrt{s^{\prime}\left(s^{\prime}-a^{\prime}\right)\left(s^{\prime}-b^{\prime}\right)\left(s^{\prime}-c^{\prime}\right)} \\
& =\sqrt{7(7-4)(7-5)(7-5)} \\
& =\sqrt{7(3)(2)(2)}=2 \sqrt{21}=9.2 \mathrm{~cm}^{2} \quad(\text { Approx. })
\end{aligned}
$$

Then, the total area of the quadrilateral will be:
$=$ Area of triangle $A B C+$ Area of triangle $A C D$
\Rightarrow Total area of quadrilater al $A B C D=6+9.2=15.2 \mathrm{~cm}^{2}$

Hence, the area of the quadrilateral $\mathbf{A B C D}$ is $15.2 \mathrm{~cm}^{2}$.

Q3 Radha made a picture of an aeroplane with coloured paper as shown in Fig 12.15. Find the total area of the paper used.

Fig. 12.15

Answer:

The total area of the paper used will be the sum of the area of the sections I, II, III, IV, and V. i.e., Total area $=I+I I+I I I+I V+V$

For section I:

Here, the sides are $a=1 \mathrm{~cm}$ and $b=c=5 \mathrm{~cm}$.

So, the Semi-perimeter will be:
$s=\frac{a+b+c}{2}=\frac{5+5+1}{2}=5.5 \mathrm{~cm}$

Therefore, the area of section I will be given by Heron's Formula,

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{5.5(5.5-1)(5.5-5)(5.5-5)} \\
& =\sqrt{5.5(4.5)(0.5)(0.5)}=\sqrt{6.1875}=2.5 \mathrm{~cm}^{2} \quad(\text { Approx. })
\end{aligned}
$$

For section II:

Here the sides of the rectangle are $l=6.5 \mathrm{~cm}$ and $b=1 \mathrm{~cm}$.

Therefore, the area of the rectangle is $=l \times b=6.5 \times 1=6.5 \mathrm{~cm}^{2}$.

For section III:

From the figure:

Drawing the parallel line $A F$ to $D C$ and a perpendicular line $A E$ to $B C$.

We have the quadrilateral ADCF,
$A F \| D C$..........................by construction.

So, ADCF is a parallelogram.

Therefore, $A F=D C=1 \mathrm{~cm}$ and $A D=F C=1 \mathrm{~cm}$
$[\because$ Opposite sides of a parallelogram $]$

Therefore, $B F=B C-F C=2-1=1 \mathrm{~cm}$.
$\Longrightarrow \mathrm{ABF}$ is an equilateral triangle. $[\because A B=B F=A F=1 \mathrm{~cm}]$

Then, the area of the equilateral triangle ABF is given by:
$\Longrightarrow \frac{\sqrt{3}}{4} a^{2}=\frac{\sqrt{3}}{4} 1^{2}=\frac{\sqrt{3}}{4}$
$=\frac{1}{2} \times B F \times A E$
$=\frac{1}{2} \times 1 \mathrm{~cm} \times A E=\frac{\sqrt{3}}{4}$
$\Longrightarrow A E=\frac{\sqrt{3}}{2}=\frac{1.732}{2}=0.866 \approx 0.9$

Hence, the area of trapezium ABCD will be:
$=\frac{1}{2} \times(A D+B C) \times A E$

$$
\begin{aligned}
& =\frac{1}{2} \times(1+2) \times 0.9 \\
& =1.35=1.4 \mathrm{~cm}^{2} \quad(\text { Approx. })
\end{aligned}
$$

For Section IV:

Here, the base is 1.5 cm and the height is 6 cm .

Therefore, the area of the triangle is :
$=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 1.5 \times 6=4.5 \mathrm{~cm}^{2}$

For section V:

The base length $=1.5 \mathrm{~cm}$ and the height is 6 cm .

Therefore, the area of the triangle will be:
$=\frac{1}{2} \times 1.5 \times 6=4.5 \mathrm{~cm}^{2}$

Hence, the total area of the paper used will be:

Total area $=I+I I+I I I+I V+V$
$=2.5+6.5+1.4+4.5+4.5=19.4 \mathrm{~cm}^{2}$

Q4 A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are $26 \mathrm{~cm}, 28 \mathrm{~cm}$ and 30 cm , and the parallelogram stands on the base 28 cm , find the height of the parallelogram.

Answer:

From the figure:

The sides of the triangle are $a=26 \mathrm{~cm}, b=28 \mathrm{~cm}$ and $c=30 \mathrm{~cm}$.

Then, calculating the area of the triangle:

So, the semi-perimeter of triangle $A B E$,
$s=\frac{a+b+c}{2}=\frac{28+26+30}{2}=42 \mathrm{~cm}$.

Therefore, its area will be given by the Heron's formula:

$$
\begin{aligned}
& A=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{42(42-28)(42-26)(42-30)} \\
& =\sqrt{42(14)(16)(12)}=\sqrt{112896}=336 \mathrm{~cm}^{2}
\end{aligned}
$$

Given that the area of the parallelogram is equal to the area of the triangle:

Area of Parallelogram $=$ Area of Triangle
\Longrightarrow base \times corresponding height $=336 \mathrm{~cm}^{2}$
$\Longrightarrow 28 \times$ corresponding height $=336 \mathrm{~cm}^{2}$
\Rightarrow height $=\frac{336}{28}=12 \mathrm{~cm}$.

Hence, the height of the parallelogram is 12 cm .

Q5 A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m , how much area of grass field will each cow be getting?

Answer:

To find the area of the rhombus:

We first join the diagonal $A C$ of quadrilateral $A B C D$. (See figure)

Here, the sides of triangle ABC are,
$a=30 \mathrm{~m}, b=30 \mathrm{~m}$ and $\mathrm{c}=48 \mathrm{~m}$.

So, the semi-perimeter of the triangle will be:
$s=\frac{a+b+c}{2}=\frac{30+30+48}{2}=\frac{108}{2}=54 \mathrm{~m}$

Therefore, the area of the triangle given by the Heron's formula,
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{54(54-30)(54-30)(54-48)}$
$=\sqrt{54(24)(24)(6)}=\sqrt{186624}=432 \mathrm{~m}^{2}$

Hence, the area of the quadrilateral will be:
$=2 \times 432 \mathrm{~m}^{2}=864 \mathrm{~m}^{2}$

Therefore, the area grazed by each cow will be given by,
$=\frac{\text { Total area }}{\text { Number of cows }}=\frac{864}{18}=48 \mathrm{~m}^{2}$.

Q6 An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see Figure), each piece measuring $20 \mathrm{~cm}, 50 \mathrm{~cm}$ and 50 cm . How much cloth of each colour is required for the umbrella?

Answer:

The sides of the triangle are:
$a=20 \mathrm{~cm}, b=50 \mathrm{~cm}$ and $c=50 \mathrm{~cm}$.

So, the semi-perimeter of the triangle is given by,
$s=\frac{a+b+c}{2}=\frac{20+50+50}{2}=\frac{120}{2}=60 \mathrm{~cm}$.

Therefore, the area of the triangle can be found by using Heron's formula:

$$
\begin{aligned}
& \text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{60(60-20)(60-50)(60-50)} \\
& =\sqrt{60(40)(10)(10)}=200 \sqrt{6} \mathrm{~cm}^{2}
\end{aligned}
$$

Now, for the 10 triangular pieces of cloths, the area will be,
$=10 \times 200 \sqrt{6}=2000 \sqrt{6} \mathrm{~cm}^{2}$
$=\frac{2000 \sqrt{6}}{2}=1000 \sqrt{6} \mathrm{~cm}^{2}$.

Q7 A kite in the shape of a square with a diagonal 32 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in

Figure How much paper of each shade has been used in it?

Answer:

From the figure:

Calculation of the area for each shade:

The shade I: Triangle ABD

Here, base $B D=32 \mathrm{~cm}$ and the height $A O=16 \mathrm{~cm}$.

Therefore, the area of triangle ABD will be:
$=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 32 \times 16$
$=256 \mathrm{~cm}^{2}$
Hence, the area of paper used in shade I is $256 \mathrm{~cm}^{2}$.

Shade II: Triangle CBD

Here, base $B D=32 \mathrm{~cm}$ and height $C O=16 \mathrm{~cm}$.

Therefore, the area of triangle CBD will be:
$=\frac{1}{2} \times$ base \times height $=\frac{1}{2} \times 32 \times 16$
$=256 \mathrm{~cm}^{2}$
Hence, the area of paper used in shade II is $256 \mathrm{~cm}^{2}$.

Shade III: Triangle CEF
Here, the sides are of lengths, $a=6 \mathrm{~cm}, b=6 \mathrm{~cm}$ and $c=8 \mathrm{~cm}$.

So, the semi-perimeter of the triangle:
$s=\frac{a+b+c}{2}=\frac{6+6+8}{2}=\frac{20}{2}=10 \mathrm{~cm}$.

Therefore, the area of the triangle can be found by using Heron's formula:

$$
\begin{aligned}
& \text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{10(10-6)(10-6)(10-8)} \\
& =\sqrt{10(4)(6)(2)} \\
& =8 \sqrt{5} \mathrm{~cm}^{2}
\end{aligned}
$$

Hence, the area of the paper used in shade III is $8 \sqrt{5} \mathrm{~cm}^{2}$.
Q8 A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being $9 \mathrm{~cm}, 28 \mathrm{~cm}$ and 35 cm (see Fig. 12.18). Find the cost of polishing the tiles at the rate of 50 p per cm^{2}.

Fig. 12.18

Answer:

Glven the sides of the triangle are:
$a=9 \mathrm{~cm}, b=28 \mathrm{~cm}$ and $c=35 \mathrm{~cm}$.

So, its semi-perimeter will be:
$s=\frac{a+b+c}{2}=\frac{9+28+35}{2}=36 \mathrm{~cm}$

Therefore, the area of the triangle using Heron's formula is given by,
Area $=\sqrt{s(s-a)(s-b)(s-c)}$
$=\sqrt{36(36-9)(36-28)(36-35)}=\sqrt{36(27)(8)(1)}$
$=\sqrt{7776} \approx 88.2 \mathrm{~cm}^{2}$

So, we have the area of each triangle tile which is $88.2 \mathrm{~cm}^{2}$.

Therefore, the area of each triangular 16 tiles will be:
$=16 \times 88.2 \mathrm{~cm}^{2}=1411.2 \mathrm{~cm}^{2}$

Hence, the cost of polishing the tiles at the rate of 50 paise per cm^{2} will be:
$=R s .0 .50 \times 1411.2 \mathrm{~cm}^{2}=$ Rs. 705.60

Q9 A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m . The non-parallel sides are 14 m and 13 m . Find the area of the field.

Answer:

The trapezium field is shown below in figure:

Drawing line CF parallel to $A D$ and a line perpendicular to $A B$, we obtain

Then in quadrilateral ADCF,
$C F \| A D$ \qquad $[\because$ by construction $]$
$C D \| A F$ \qquad $[\because A B C D$ is a trapezium $]$

Therefore, ADCF is a parallelogram.

So, $A D=C F=13 \mathrm{~m}$ and $C D=A F=10 \mathrm{~m}$
(\because Opposite sides of a parallelogram)

Therefore, $B F=A B-A F=25-10=15 m$

Now, the sides of the triangle;
$a=13 \mathrm{~m}, b=14 \mathrm{~m}$ and $c=15 \mathrm{~m}$.

So, the semi-perimeter of the triangle will be:
$s=\frac{a+b+c}{2}=\frac{13+14+15}{2}=\frac{42}{2}=21 \mathrm{~m}$

Therefore, the area of the triangle can be found by using Heron's Formula:

$$
\begin{aligned}
& \text { Area }=\sqrt{s(s-a)(s-b)(s-c)} \\
& =\sqrt{21(21-13)(21-14)(21-15)} \\
& =\sqrt{21(8)(7)(6)} \\
& =\sqrt{7056}=84 \mathrm{~m}^{2} .
\end{aligned}
$$

Also, the area of the triangle is given by,

$$
\text { Area }=\frac{1}{2} \times B F \times C G
$$

$$
\Rightarrow \frac{1}{2} \times B F \times C G=84 \mathrm{~m}^{2}
$$

$$
\Rightarrow \frac{1}{2} \times 15 \times C G=84 \mathrm{~m}^{2}
$$

Or,
$\Rightarrow C G=\frac{84 \times 2}{15}=11.2 \mathrm{~m}$

Therefore, the area of the trapezium ABCD is:

$$
\begin{aligned}
& =\frac{1}{2} \times(A B+C D) \times C G \\
& =\frac{1}{2} \times(25+10) \times 11.2 \\
& =35 \times 5.6 \\
& =196 \mathrm{~m}^{2}
\end{aligned}
$$

Hence, the area of the trapezium field is $196 \mathrm{~m}^{2}$.

