## NCERT solutions for class 9 Maths Chapter 2 Polynomials

Q1 (i) Is the following expression polynomial in one variable? State reasons for your answer. $4 x^{2}-3 x+7$

## Answer:

## YES

Given polynomial $4 x^{2}-3 x+7$ has only one variable which is $\mathbf{x}$

Q1 (ii) Is the following expression polynomial in one variable? State reasons for your answer. $y^{2}+\sqrt{2}$

## Answer:

## YES

Given polynomial has only one variable which is $\mathbf{y}$

Q1 (iii) Is the following expression polynomial in one variable? State reasons for your answer. $3 \sqrt{t}+t \sqrt{2}$

## Answer:

NO
Because we can observe that the exponent of variable t in term $3 \sqrt{t}$ is $\frac{1}{2}$ which is not a whole number.

Therefore this expression is not a polynomial.

Q1 (iv) Is the following expression polynomial in one variable? State reasons for your answer. $y+\frac{2}{y}$

## Answer:

NO

Because we can observe that the exponent of variable y in term $y$ is -1 which is not a whole number. Therefore this expression is not a polynomial.

Q1 (v) Is the following expression polynomial in one variable? State reasons for your answer. $x^{10}+y^{3}+t^{50}$

## Answer:

NO
Because in the given polynomial $x^{10}+y^{3}+t^{50}$ there are 3 variables which are $\mathbf{x}, \mathbf{y}, \mathbf{t}$. That's why this is polynomial in three variable not in one variable.

Q2 (i) Write the coefficients of $x^{2}$ in the following: $2+x^{2}+x$

Answer:

Coefficient of $x^{2}$ in polynomial $2+x^{2}+x$ is $\mathbf{1}$.

Q2 (ii) Write the coefficients of $x^{2}$ in the following: $2-x^{2}+x^{3}$

## Answer:

Coefficient of $x^{2}$ in polynomial $2-x^{2}+x^{3}$ is $\mathbf{- 1}$.
Q2 (iii) Write the coefficients of $x^{2}$ in the following: $\frac{\pi}{2} x^{2}+x$

## Answer:

Coefficient of $x^{2}$ in polynomial $\frac{\pi}{2} x^{2}+x$ is $\frac{\pi}{2}$

Q2 (iv) Write the coefficients of $x^{2}$ in the following: $\sqrt{2} x-1$

## Answer:

Coefficient of $x^{2}$ in polynomial $\sqrt{2} x-1$ is $\mathbf{0}$

Q3 Give one example each of a binomial of degree 35, and of a monomial of degree 100 .

## Answer:

Degree of a polynomial is the highest power of the variable in the polynomial.
In binomial, there are two terms
Therefore, binomial of degree 35 is
Eg:- $x^{35}+1$
In monomial, there is only one term in it.
Therefore, monomial of degree 100 can be written as $y^{100}$

Q4 (i) Write the degree the following polynomial: $5 x^{3}+4 x^{2}+7 x$

## Answer:

Degree of a polynomial is the highest power of the variable in the polynomial.
Therefore, the degree of polynomial $5 x^{3}+4 x^{2}+7 x$ is $\mathbf{3}$.

Q4 (ii) Write the degree the following polynomial: $4-y^{2}$

## Answer:

Degree of a polynomial is the highest power of the variable in the polynomial.

Therefore, the degree of polynomial $4-y^{2}$ is $\mathbf{2}$.

Q4 (iii) Write the degree the following polynomial: $5 t-\sqrt{7}$

## Answer:

Degree of a polynomial is the highest power of the variable in the polynomial.

Therefore, the degree of polynomial $5 t-\sqrt{7}$ is $\mathbf{1}$

Q4 (iv) Write the degree the following polynomial: 3

## Answer:

Degree of a polynomial is the highest power of the variable in the polynomial.

In this case, only a constant value 3 is there and the degree of a constant polynomial is always $\mathbf{0}$.

Q5 (i) Classify the following as linear, quadratic and cubic polynomial: $x^{2}+x$

## Answer:

Linear polynomial, quadratic polynomial, and cubic polynomial has its degrees as 1,2 , and 3 respectively

Given polynomial is $x^{2}+x$ with degree 2

Therefore, it is a quadratic polynomial.

Q5 (ii) Classify the following as linear, quadratic and cubic polynomial: $x-x^{3}$

## Answer:

Linear polynomial, quadratic polynomial, and cubic polynomial has its degrees as 1,2 , and 3 respectively

Given polynomial is $x-x^{3}$ with degree 3

Therefore, it is a cubic polynomial

Q5 (iii) Classify the following as linear, quadratic and cubic polynomial: $y+y^{2}+4$

## Answer:

Linear polynomial, quadratic polynomial, and cubic polynomial has its degrees as 1,2 , and 3 respectively

Given polynomial is $y+y^{2}+4$ with degree 2

Therefore, it is quadratic polynomial.

Q5 (iv) Classify the following as linear, quadratic and cubic polynomial: $1+x$

## Answer:

Linear polynomial, quadratic polynomial, and cubic polynomial has its degrees as 1,2 , and 3 respectively

Given polynomial is $1+x$ with degree 1

Therefore, it is linear polynomial

Q5 (v) Classify the following as linear, quadratic and cubic polynomial: $3 t$


#### Abstract

Answer:

Linear polynomial, quadratic polynomial, and cubic polynomial has its degrees as 1, 2, and 3 respectively


Given polynomial is $3 t$ with degree 1

Therefore, it is linear polynomial

Q5 (vi) Classify the following as linear, quadratic and cubic polynomial: $r^{2}$

## Answer:

Linear polynomial, quadratic polynomial, and cubic polynomial has its degrees as 1, 2, and 3 respectively

Given polynomial is $r^{2}$ with degree 2

Therefore, it is quadratic polynomial

Q5 (vii) Classify the following as linear, quadratic and cubic polynomial: $7 x^{3}$

## Answer:

Linear polynomial, quadratic polynomial, and cubic polynomial has its degrees as 1,2 , and 3 respectively

Given polynomial is $7 x^{3}$ with degree 3

Therefore, it is a cubic polynomial

NCERT solutions for class 9 maths chapter 2 Polynomials Excercise: 2.2

Q1 (i) Find the value of the polynomial $5 x-4 x^{2}+3$ at $x=0$

## Answer:

Given polynomial is $5 x-4 x^{2}+3$

Now, at $x=0$ value is
$\Rightarrow 5(0)-4(0)^{2}+3=0-0+3=3$

Therefore, value of polynomial $5 x-4 x^{2}+3$ at $\mathrm{x}=0$ is $\mathbf{3}$

Q1 (ii) Find the value of the polynomial $5 x-4 x^{2}+3$ at $x=-1$

## Answer:

Given polynomial is $5 x-4 x^{2}+3$

Now, at $x=-1$ value is
$\Rightarrow 5(-1)-4(-1)^{2}+3=-5-4+3=-6$

Therefore, value of polynomial $5 x-4 x^{2}+3$ at $\mathrm{x}=-1$ is $\mathbf{- 6}$

Q1 (iii) Find the value of the polynomial $5 x-4 x^{2}+3$ at $x=2$

## Answer:

Given polynomial is $5 x-4 x^{2}+3$

Now, at $x=2$ value is
$\Rightarrow 5(2)-4(2)^{2}+3=10-16+3=-3$

Therefore, value of polynomial $5 x-4 x^{2}+3$ at $\mathbf{x}=2$ is $\mathbf{- 3}$

Q2 (i) Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials: $p(y)=y^{2}-y+1$

## Answer:

Given polynomial is
$p(y)=y^{2}-y+1$

Now,
$p(0)=(0)^{2}-0+1=1$
$p(1)=(1)^{2}-1+1=1$
$p(2)=(2)^{2}-2+1=3$

Therefore, values of $p(0), p(1)$ and $p(2)$ are 1,1 and 3 respectively.

Q2 (ii) Find $p(0), p(1)$ and $p(2)$ for each of the following polynomials: $p(t)=2+t+2 t^{2}-t^{3}$

## Answer:

Given polynomial is
$p(t)=2+t+2 t^{2}-t^{3}$

Now,
$p(0)=2+0+2(0)^{2}-(0)^{3}=2$
$p(1)=2+1+2(1)^{2}-(1)^{3}=4$
$p(2)=2+2+2(2)^{2}-(2)^{3}=4$

Therefore, values of $p(0), p(1)$ and $p(2)$ are 2,4 and 4 respectively

Q2 (iii) Find $\mathrm{p}(0), \mathrm{p}(1)$ and $\mathrm{p}(2)$ for each of the following polynomials: $p(x)=x^{3}$

Answer:

Given polynomial is
$p(x)=x^{3}$

Now,
$p(0)=(0)^{3}=0$
$p(1)=(1)^{3}=1$
$p(2)=(2)^{3}=8$

Therefore, values of $p(0), p(1)$ and $p(2)$ are 0,1 and 8 respectively

Q2 (iv) Find $\mathrm{p}(0), \mathrm{p}(1)$ and $\mathrm{p}(2)$ for each of the following polynomials: $p(x)=(x-1)(x+1)$

## Answer:

Given polynomial is
$p(x)=(x-1)(x+1)=x^{2}-1$

Now,
$p(0)=(0)^{2}-1=-1$
$p(1)=(1)^{2}-1=0$
$p(2)=(2)^{2}-1=3$

Therefore, values of $p(0), p(1)$ and $p(2)$ are $-1,0$ and 3 respectively

Q3 (i) Verify whether the following are zeroes of the polynomial, indicated against it. $p(x)=3 x+1, x=-\frac{1}{3}$

## Answer:

Given polynomial is $p(x)=3 x+1$

Now, at $x=-\frac{1}{3}$ it's value is
$p\left(-\frac{1}{3}\right)=3 \times\left(-\frac{1}{3}\right)+1=-1+1=0$

Therefore, yes $x=-\frac{1}{3}$ is a zero of polynomial $p(x)=3 x+1$

Q3 (ii) Verify whether the following are zeroes of the polynomial, indicated against it. $p(x)=5 x-\pi, x=\frac{4}{5}$

## Answer:

Given polynomial is $p(x)=5 x-\pi$

Now, at $x=\frac{4}{5}$ it's value is
$p\left(\frac{4}{5}\right)=5 \times\left(\frac{4}{5}\right)-\pi=4-\pi \neq 0$
Therefore, no $x=\frac{4}{5}$ is not a zero of polynomial $p(x)=5 x-\pi$

Q3 (iii) Verify whether the following are zeroes of the polynomial, indicated against it. $p(x)=x^{2}-1, x=1,-1$

## Answer:

Given polynomial is $p(x)=x^{2}-1$

Now, at $\mathbf{x}=\mathbf{1}$ it's value is
$p(1)=(1)^{2}-1=1-1=0$

And at $\mathbf{x}=\mathbf{- 1}$
$p(-1)=(-1)^{2}-1=1-1=0$
Therefore, yes $\mathrm{x}=1,-1$ are zeros of polynomial $p(x)=x^{2}-1$

Q3 (iv) Verify whether the following are zeroes of the polynomial, indicated against
it. $p(x)=(x+1)(x-2), x=-1,2$

## Answer:

Given polynomial is $p(x)=(x+1)(x-2)$

Now, at $\mathbf{x}=\mathbf{2}$ it's value is

$$
p(2)=(2+1)(2-2)=0
$$

And at $\mathbf{x}=\mathbf{- 1}$
$p(-1)=(-1+1)(-1-2)=0$

Therefore, yes $\mathrm{x}=2,-1$ are zeros of polynomial $p(x)=(x+1)(x-2)$

Q3 (v) Verify whether the following are zeroes of the polynomial, indicated against it. $p(x)=x^{2} \cdot x=0$

## Answer:

Given polynomial is $p(x)=x^{2}$

Now, at $\mathbf{x}=\mathbf{0}$ it's value is
$p(0)=(0)^{2}=0$

Therefore, yes $\mathbf{x}=\mathbf{0}$ is a zeros of polynomial $p(x)=(x+1)(x-2)$

Q3 (vi) Verify whether the following are zeroes of the polynomial, indicated against ${ }_{\text {it. }} p(x)=l x+m, x=-\frac{m}{l}$

## Answer:

Given polynomial is $p(x)=l x+m$

Now, at $x=-\frac{m}{l}$ it's value is
$p\left(-\frac{m}{l}\right)=l \times\left(-\frac{m}{l}\right)+m=-m+m=0$

Therefore, yes $x=-\frac{m}{l}$ is a zeros of polynomial $p(x)=l x+m$

Q3 (vii) Verify whether the following are zeroes of the polynomial, indicated against $p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}}$

## Answer:

Given polynomial is $p(x)=3 x^{2}-1$

Now, at $x=-\frac{1}{\sqrt{3}}$ it's value is
$p\left(-\frac{1}{\sqrt{3}}\right)=3 \times\left(-\frac{1}{\sqrt{3}}\right)^{2}-1=1-1=0$

And at $x=\frac{2}{\sqrt{3}}$
$p\left(\frac{2}{\sqrt{3}}\right)=3 \times\left(\frac{2}{\sqrt{3}}\right)^{2}-1=4-1=3 \neq 0$

$$
x=-\frac{1}{\sqrt{3}} \text { is a zeros of polynomial } p(x)=3 x^{2}-1 .
$$

whereas $x=\frac{2}{\sqrt{3}}$ is not a zeros of polynomial $p(x)=3 x^{2}-1$

Q3 (viii) Verify whether the following are zeroes of the polynomial, indicated against it. $p(x)=2 x+1, x=\frac{1}{2}$

## Answer:

Given polynomial is $p(x)=2 x+1$

Now, at $x=\frac{1}{2}$ it's value is
$p\left(\frac{1}{2}\right)=2 \times\left(\frac{1}{2}\right)+1=1+1=2 \neq 0$

Therefore, $\quad x=\frac{1}{2}$ is not a zeros of polynomial $p(x)=2 x+1$

Q4 (i) Find the zero of the polynomial in each of the following cases: $p(x)=x+5$

## Answer:

Given polynomial is $p(x)=x+5$

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

Now,
$p(x)=0$
$\Rightarrow x+5=0$
$\Rightarrow x=-5$

Therefore, $\mathbf{x}=\mathbf{- 5}$ is the zero of polynomial $p(x)=x+5$

Q4 (ii) Find the zero of the polynomial in each of the following cases: $p(x)=x-5$

## Answer:

Given polynomial is $p(x)=x-5$

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

Now,
$p(x)=0$
$\Rightarrow x-5=0$
$\Rightarrow x=5$

Therefore, $\mathbf{x}=\mathbf{5}$ is a zero of polynomial $p(x)=x-5$

Q4 (iii) Find the zero of the polynomial in each of the following cases: $p(x)=2 x+5$

Answer:

Given polynomial is $p(x)=2 x+5$

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

Now,
$p(x)=0$
$\Rightarrow 2 x+5=0$
$\Rightarrow x=-\frac{5}{2}$

Therefore, $x=-\frac{5}{2}$ is a zero of polynomial $p(x)=2 x+5$

Q4 (iv) Find the zero of the polynomial in each of the following cases: $p(x)=3 x-2$

## Answer:

Given polynomial is $p(x)=3 x-2$

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

Now,
$p(x)=0$
$\Rightarrow 3 x-2=0$
$\Rightarrow x=\frac{2}{3}$
Therefore, $\quad x=\frac{2}{3}$ is a zero of polynomial $p(x)=3 x-2$

Q4 (v) Find the zero of the polynomial in each of the following cases: $p(x)=3 x$

## Answer:

Given polynomial is $p(x)=3 x$

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

Now,
$p(x)=0$
$\Rightarrow 3 x=0$
$\Rightarrow x=0$

Therefore, $x=0$ is a zero of polynomial $p(x)=3 x$

Q4 (vi) Find the zero of the polynomial in each of the following cases: $p(x)=a x, a \neq 0$

## Answer:

Given polynomial is $p(x)=a x$

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

Now,
$p(x)=0$
$\Rightarrow a x=0$
$\Rightarrow x=0$

Therefore, $x=0$ is a zero of polynomial $p(x)=a x$

Q4 (vii) Find the zero of the polynomial in each of the following cases: $p(x)=c x+d, c \neq 0, c, d$ are real numbers

## Answer:

Given polynomial is $p(x)=c x+d$

Zero of a polynomial is that value of the variable at which the value of the polynomial is obtained as 0 .

Now,

$$
p(x)=0
$$

$\Rightarrow c x+d=0$
$\Rightarrow x=-\frac{d}{c}$

Therefore, $x=-\frac{d}{c}$ is a zero of polynomial $p(x)=c x+d$

## NCERT solutions for class 9 maths chapter 2 Polynomials Excercise: 2.3

Q1 (i) Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x+1$

## Answer:

When we divide $x^{3}+3 x^{2}+3 x+1$ by $x+1$.

By long division method, we will get

$$
\begin{array}{r}
\begin{array}{r}
x^{2}+2 x+1 \\
x+1 \\
x^{3}+3 x^{2}+3 x+1 \\
x^{3}+x^{2} \\
-\quad- \\
\frac{2 x^{2}+3 x+1}{2 x^{2}+2 x} \\
-\quad- \\
\frac{-}{x+1} \\
\frac{-}{0}
\end{array}
\end{array}
$$

Therefore, remainder is 0 .
Q1 (ii) Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x-\frac{1}{2}$

## Answer:

When we divide $x^{3}+3 x^{2}+3 x+1$ by $x-\frac{1}{2}$.

By long division method, we will get

$$
\begin{array}{r}
\begin{array}{r}
x^{2}+\frac{7}{2} x+\frac{19}{4} \\
x - \frac { 1 } { 2 } \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 3 x + 1 } \\
x^{3}-\frac{x^{2}}{2} \\
\frac{-}{\frac{7}{2} x^{2}+3 x+1} \\
\frac{-\frac{7}{2} x^{2}-\frac{7}{4} x}{}+ \\
\frac{-19}{4} x+1 \\
\frac{19}{4} x-\frac{19}{8} \\
+\frac{27}{8}
\end{array}
\end{array}
$$

Therefore, the remainder is $\frac{27}{8}$

Q1 (iii) Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x$

## Answer:

When we divide $x^{3}+3 x^{2}+3 x+1$ by $x$.

By long division method, we will get

$$
\begin{aligned}
& \frac{x^{2}+3 x+3}{x \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 3 x + 1 }} \\
& \frac{x^{3}}{-\quad 3 x^{2}+3 x+1} \\
& \frac{3 x^{2}}{-\quad 3 x+1} \\
& \frac{-}{1}
\end{aligned}
$$

Therefore, remainder is 1 .
Q1 (iv) Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $x+\pi$

## Answer:

When we divide $x^{3}+3 x^{2}+3 x+1$ by $x+\pi$.

By long division method, we will get

$$
\begin{aligned}
& \begin{array}{l}
\quad x^{2}+(3-\pi) x+\left(3-3 \pi+\pi^{2}\right) \\
x + \pi \longdiv { x ^ { 3 } + 3 x ^ { 2 } + 3 x + 1 }
\end{array} \\
& x^{3}+\pi x^{2} \\
& -\quad-\quad \\
& (3-\pi) x^{2}+3 x+1 \\
& (3-\pi) x^{2}+(3-\pi) \pi x \\
& \frac{-}{\left[3-3 \pi+\pi^{2}\right] x+1} \\
& {\left[3-3 \pi+\pi^{2}\right] x+\left(3-3 \pi+\pi^{2}\right) \pi} \\
& \begin{array}{c}
-\quad- \\
\hline
\end{array}
\end{aligned}
$$

Therefore, the remainder is $1-3 \pi+3 \pi^{2}-\pi^{3}$

Q1 (v) Find the remainder when $x^{3}+3 x^{2}+3 x+1$ is divided by $5+2 x$

## Answer:

When we divide $x^{3}+3 x^{2}+3 x+1$ by $5+2 x$.

By long division method, we will get

$$
\begin{array}{r}
\frac{x^{2}}{2}+\frac{x}{4}+\frac{7}{8} \\
\frac{x^{3}+\frac{5}{2} x^{2}}{x^{3}+3 x^{2}+3 x+1} \\
\frac{-}{\frac{x^{2}}{2}+3 x+1} \\
\frac{x^{2}}{2}+\frac{5 x}{4} \\
\frac{-7 x}{4}+1 \\
\frac{-7}{4} x+\frac{35}{8}
\end{array}
$$

Therefore, the remainder is $-\frac{27}{8}$

Q2 Find the remainder when $x^{3}-a x^{2}+6 x-a$ is divided by $x-a$.

## Answer:

When we divide $x^{3}-a x^{2}+6 x-a$ by $x-a$.

By long division method, we will get

$$
\begin{array}{r}
x^{2}+6 \\
x - a \longdiv { x ^ { 3 } - a x ^ { 2 } + 6 x - a } \\
\frac{x^{3}-a x^{2}}{6 x-a} \begin{array}{r}
6 x-6 a \\
-+\quad 5 a
\end{array}
\end{array}
$$

Therefore, remainder is $5 a$

Q3 Check whether $7+3 x$ is a factor of $3 x^{3}+7 x$.

Answer:

When we divide $3 x^{3}+7 x$ by $7+3 x$.

We can also write $3 x^{3}+7 x$ as $3 x^{3}+0 x^{2}+7 x$

By long division method, we will get

$$
\begin{array}{r}
x^{2}-\frac{7}{3} x+\frac{70}{9} \\
3 x + 7 \longdiv { 3 x ^ { 3 } + 0 x ^ { 2 } + 7 x } \\
\frac{-7 x^{3}+7 x^{2}+7 x}{-\quad-} \\
\frac{-7 x^{2}-\frac{49 x}{3}}{+\quad+\quad-\frac{70 x}{3}} \\
\frac{70 x}{3}+\frac{490}{9} \\
-\quad-\frac{490}{9} \\
\hline
\end{array}
$$

Since, remainder is not equal to 0

Therefore, $7+3 x$ is not a factor of $3 x^{3}+7 x$

## NCERT solutions for class 9 maths chapter 2 Polynomials Excercise: 2.4

Q1 (i) Determine which of the following polynomials has $(x+1)$ a factor : $x^{3}+x^{2}+x+1$

Answer:

Zero of polynomial $(x+1)$ is $\mathbf{- 1}$.

If $(x+1)$ is a factor of polynomial $p(x)=x^{3}+x^{2}+x+1$

Then, $p(-1)$ must be equal to zero

Now,
$\Rightarrow p(-1)=(-1)^{3}+(-1)^{2}-1+1$
$\Rightarrow p(-1)=-1+1-1+1=0$

Therefore, $(x+1)$ is a factor of polynomial $p(x)=x^{3}+x^{2}+x+1$

Q1 (ii) Determine which of the following polynomials has $(x+1)$ a factor $: x^{4}+x^{3}+x^{2}+x+1$

## Answer:

Zero of polynomial $(x+1)$ is $\mathbf{- 1}$.

If $(x+1)$ is a factor of polynomial $p(x)=x^{4}+x^{3}+x^{2}+x+1$

Then, $p(-1)$ must be equal to zero

Now,
$\Rightarrow p(-1)=(-1)^{4}+(-1)^{3}+(-1)^{2}-1+1$
$\Rightarrow p(-1)=1-1+1-1+1=1 \neq 0$

Therefore, $(x+1)$ is not a factor of polynomial $p(x)=x^{4}+x^{3}+x^{2}+x+1$

Q1 (iii) Determine which of the following polynomials has $(x+1)$ a factor
$: x^{4}+3 x^{3}+3 x^{2}+x+1$

Answer:

Zero of polynomial $(x+1)$ is $\mathbf{- 1}$.

If $(x+1)$ is a factor of polynomial $p(x)=x^{4}+3 x^{3}+3 x^{2}+x+1$

Then, $p(-1)$ must be equal to zero

Now,
$\Rightarrow p(-1)=(-1)^{4}+3(-1)^{3}+3(-1)^{2}-1+1$
$\Rightarrow p(-1)=1-3+3-1+1=1 \neq 0$

Therefore, $(x+1)$ is not a factor of polynomial $p(x)=x^{4}+3 x^{3}+3 x^{2}+x+1$

Q1 (iv) Determine which of the following polynomials has $(x+1)$ a factor

$$
x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}
$$

## Answer:

Zero of polynomial $(x+1)$ is $\mathbf{- 1}$.

If $(x+1)$ is a factor of polynomial $p(x)=x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Then, $p(-1)$ must be equal to zero

Now,

$$
\begin{aligned}
& \Rightarrow p(-1)=(-1)^{3}-(-1)^{2}-(2+\sqrt{2})(-1)+\sqrt{2} \\
& \Rightarrow p(-1)=-1-1+2+\sqrt{2}+\sqrt{2}=2 \sqrt{2} \neq 0
\end{aligned}
$$

Therefore, $(x+1)$ is not a factor of polynomial $p(x)=x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2}$

Q2 (i) Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in the following case: $p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1$

## Answer:

Zero of polynomial $g(x)=x+1$ is -1

If $g(x)=x+1$ is factor of polynomial $p(x)=2 x^{3}+x^{2}-2 x-1$

Then, $p(-1)$ must be equal to zero

Now,
$\Rightarrow p(-1)=2(-1)^{3}+(-1)^{2}-2(-1)-1$
$\Rightarrow p(-1)=-2+1+2-1=0$

Therefore, $g(x)=x+1$ is factor of polynomial $p(x)=2 x^{3}+x^{2}-2 x-1$

Q2 (ii) Use the Factor Theorem to determine whether $\mathrm{g}(\mathrm{x})$ is a factor of $\mathrm{p}(\mathrm{x})$ in the following case: $p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2$

Answer:

Zero of polynomial $g(x)=x+2$ is -2

If $g(x)=x+2$ is factor of polynomial $p(x)=x^{3}+3 x^{2}+3 x+1$

Then, $p(-2)$ must be equal to zero

Now,
$\Rightarrow p(-2)=(-2)^{3}+3(-2)^{2}+3(-2)+1$
$\Rightarrow p(-2)=-8+12-6+1=-1 \neq 0$

Therefore, $g(x)=x+2$ is not a factor of polynomial $p(x)=x^{3}+3 x^{2}+3 x+1$

Q2 (iii) Use the Factor Theorem to determine whether $g(x)$ is a factor of $p(x)$ in the following case: $p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3$

## Answer:

Zero of polynomial $g(x)=x-3$ is 3

If $g(x)=x-3$ is factor of polynomial $p(x)=x^{3}-4 x^{2}+x+6$

Then, $p(3)$ must be equal to zero

Now,
$\Rightarrow p(3)=(3)^{3}-4(3)^{2}+3+6$
$\Rightarrow p(3)=27-36+3+6=0$

Therefore, $g(x)=x-3$ is a factor of polynomial $p(x)=x^{3}-4 x^{2}+x+6$

Q3 (i) Find the value of $k$, if $x-1$ is a factor of $\mathrm{p}(\mathrm{x})$ in the following case: $p(x)=x^{2}+x+k$

## Answer:

Zero of polynomial $x-1$ is 1

If $x-1$ is factor of polynomial $p(x)=x^{2}+x+k$

Then, $p(1)$ must be equal to zero

Now,
$\Rightarrow p(1)=(1)^{2}+1+k$
$\Rightarrow p(1)=0$
$\Rightarrow 2+k=0$
$\Rightarrow k=-2$

Therefore, value of $k$ is -2

Q3 (ii) Find the value of $k$, if $x-1$ is a factor of $\mathrm{p}(\mathrm{x})$ in the following case: $p(x)=2 x^{2}+k x+\sqrt{2}$

## Answer:

Zero of polynomial $x-1$ is 1

If $x-1$ is factor of polynomial $p(x)=2 x^{2}+k x+\sqrt{2}$

Then, $p(1)$ must be equal to zero

Now,
$\Rightarrow p(1)=2(1)^{2}+k(1)+\sqrt{2}$
$\Rightarrow p(1)=0$
$\Rightarrow 2+k+\sqrt{2}=0$
$\Rightarrow k=-(2+\sqrt{2})$

Therefore, value of k is $-(2+\sqrt{2})$

Q3 (iii) Find the value of $k$, if $x-1$ is a factor of $\mathrm{p}(\mathrm{x})$ in the following case: $p(x)=k x^{2}-\sqrt{2} x+1$

## Answer:

Zero of polynomial $x-1$ is 1

If $x-1$ is factor of polynomial $p(x)=k x^{2}-\sqrt{2} x+1$

Then, $p(1)$ must be equal to zero

Now,
$\Rightarrow p(1)=k(1)^{2}-\sqrt{2}(1)+1$
$\Rightarrow p(1)=0$
$\Rightarrow k-\sqrt{2}+1=0$
$\Rightarrow k=-1+\sqrt{2}$

Therefore, value of k is $-1+\sqrt{2}$

Q3 (iv) the value of $k$, if $x-1$ is a factor of $\mathrm{p}(\mathrm{x})$ in the following case: $p(x)=k x^{2}-3 x+k$

Answer:

Zero of polynomial $x-1$ is 1

If $x-1$ is factor of polynomial $p(x)=k x^{2}-3 x+k$

Then, $p(1)$ must be equal to zero

Now,
$\Rightarrow p(1)=k(1)^{2}-3(1)+k$
$\Rightarrow p(1)=0$
$\Rightarrow k-3+k=0$
$\Rightarrow k=\frac{3}{2}$
Therefore, value of k is $\frac{3}{2}$

Q4 (i) Factorise : $12 x^{2}-7 x+1$

## Answer:

Given polynomial is $12 x^{2}-7 x+1$

We need to factorise the middle term into two terms such that their product is equal to $12 \times 1=12$ and their sum is equal to -7

We can solve it as
$\Rightarrow 12 x^{2}-7 x+1$
$\Rightarrow 12 x^{2}-3 x-4 x+1(\because-3 \times-4=12$ and $-3+(-4)=-7)$
$\Rightarrow 3 x(4 x-1)-1(4 x-1)$
$\Rightarrow(3 x-1)(4 x-1)$
Q4 (ii) Factorise : $2 x^{2}+7 x+3$

## Answer:

Given polynomial is $2 x^{2}+7 x+3$

We need to factorise the middle term into two terms such that their product is equal to $2 \times 3=6$ and their sum is equal to 7

We can solve it as
$\Rightarrow 12 x^{2}-7 x+1$
$\Rightarrow 2 x^{2}+6 x+x+3(\because 6 \times 1=6$ and $6+1=7)$
$\Rightarrow 2 x(x+3)+1(x+3)$
$\Rightarrow(2 x+1)(x+3)$

Q4 (iii) Factorise : $6 x^{2}+5 x-6$

## Answer:

Given polynomial is $6 x^{2}+5 x-6$

We need to factorise the middle term into two terms such that their product is equal to $6 \times-6=-36$ and their sum is equal to 5

We can solve it as
$\Rightarrow 6 x^{2}+5 x-6$
$\Rightarrow 6 x^{2}+9 x-4 x-6(\because 9 \times-4=-36$ and $9+(-4)=5)$
$\Rightarrow 3 x(2 x+3)-2(2 x+3)$
$\Rightarrow(2 x+3)(3 x-2)$

Q4 (iv) Factorise : $3 x^{2}-x-4$

## Answer:

Given polynomial is $3 x^{2}-x-4$

We need to factorise the middle term into two terms such that their product is equal to $3 \times-4=-12$ and their sum is equal to -1

We can solve it as

$$
\Rightarrow 3 x^{2}-x-4
$$

$$
\Rightarrow 3 x^{2}-4 x+3 x-4(\because 3 \times-4=-12 \text { and } 3+(-4)=-1)
$$

$$
\Rightarrow x(3 x-4)+1(3 x-4)
$$

$$
\Rightarrow(x+1)(3 x-4)
$$

Q5 (i) Factorise : $x^{3}-2 x^{2}-x+2$

## Answer:

Given polynomial is $x^{3}-2 x^{2}-x+2$

Now, by hit and trial method we observed that $(x+1)$ is one of the factors of the given polynomial.

By long division method, we will get

| $x^{2}-3 x+2$ |
| ---: |
| $x + 1 \longdiv { x ^ { 3 } - 2 x ^ { 2 } - x + 2 }$ |
| $x^{3}+x^{2}$ |
| $-\quad-$ |
| $-3 x^{2}-x+2$ <br> $-3 x^{2}-3 x$ <br> $+\quad+$ <br> $2 x+2$ <br> $2 x+2$ <br> $-\quad-$ <br> 0 |

We know that Dividend $=($ Divisor $\times$ Quotient $)+$ Remainder

$$
\begin{aligned}
& x^{3}-2 x^{2}-x+2=(x+1)\left(x^{2}-3 x+2\right)+0 \\
& =(x+1)\left(x^{2}-2 x-x+2\right) \\
& =(x+1)(x-2)(x-1)
\end{aligned}
$$

Therefore, on factorization of $x^{3}-2 x^{2}-x+2$ we will get $(x+1)(x-2)(x-1)$

Q5 (ii) Factorise : $x^{3}-3 x^{2}-9 x-5$

## Answer:

Given polynomial is $x^{3}-3 x^{2}-9 x-5$

Now, by hit and trial method we observed that $(x+1)$ is one of the factors of the given polynomial.

By long division method, we will get

$$
\begin{array}{r}
x^{2}-4 x-5 \\
x + 1 \longdiv { x ^ { 3 } - 3 x ^ { 2 } - 9 x - 5 } \\
x^{3}+x^{2} \\
\hline \begin{array}{r}
-4 x^{2}-9 x-5 \\
-4 x^{2}-4 x \\
+\quad+ \\
\quad+5 x-5 \\
-5 x-5
\end{array} \\
+\quad+ \\
\hline
\end{array}
$$

We know that Dividend $=($ Divisor $\times$ Quotient $)+$ Remainder
$x^{3}-3 x^{2}-9 x-5=(x+1)\left(x^{2}-4 x-5\right)$
$=(x+1)\left(x^{2}-5 x+x-5\right)$
$=(x+1)(x-5)(x+1)$

Therefore, on factorization of $x^{3}-3 x^{2}-9 x-5$ we will get $(x+1)(x-5)(x+1)$

Q5 (iii) Factorise : $x^{3}+13 x^{2}+32 x+20$

Answer:

Given polynomial is $x^{3}+13 x^{2}+32 x+20$

Now, by hit and trial method we observed that $(x+1)$ is one of the factore of given polynomial.

By long division method, we will get
$\frac{x^{2}+12 x+20}{x + 1 \longdiv { x ^ { 3 } + 1 3 x ^ { 2 } + 3 2 x + 2 0 }}$

$$
x^{3}+x^{2}
$$

| $-\quad-$ |
| ---: |
| $12 x^{2}+32 x$ <br> $12 x^{2}+12 x$ <br> - <br> $20 x+20$ <br> $20 x+20$ <br> $-\quad-$ |

We know that Dividend $=($ Divisor $\times$ Quotient $)+$ Remainder
$x^{3}+13 x^{2}+32 x+20=(x+1)\left(x^{2}+12 x+20\right)$
$=(x+1)\left(x^{2}+10 x+2 x+20\right)$
$=(x+1)(x+10)(x+2)$

Therefore, on factorization of $x^{3}+13 x^{2}+32 x+20$ we will get $(x+1)(x+10)(x+2)$
Q5 (iv) Factorise : $2 y^{3}+y^{2}-2 y-1$

## Answer:

Given polynomial is $2 y^{3}+y^{2}-2 y-1$

Now, by hit and trial method we observed that $(y-1)$ is one of the factors of the given polynomial.

By long division method, we will get


We know that Dividend $=($ Divisor $\times$ Quotient $)+$ Remainder
$2 y^{3}+y^{2}-2 y-1=(y-1)\left(2 y^{2}+3 y+1\right)$
$=(y-1)\left(2 y^{2}+2 y+y+1\right)$
$=(y-1)(2 y+1)(y+1)$

Therefore, on factorization of $2 y^{3}+y^{2}-2 y-1$ we will get $(y-1)(2 y+1)(y+1)$

## NCERT solutions for class 9 maths chapter 2 Polynomials Excercise: 2.5

Q1 (i) Use suitable identities to find the following product: $(x+4)(x+10)$

## Answer:

We will use identity
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Put $a=4 \quad$ and $\quad b=10$
$(x+4)(x+10)=x^{2}+(10+4) x+10 \times 4$
$=x^{2}+14 x+40$

Therefore, $(x+4)(x+10)$ is equal to $x^{2}+14 x+40$

Q1 (ii) Use suitable identities to find the following product: $(x+8)(x-10)$

## Answer:

We will use identity
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Put $a=8$ and $b=-10$
$(x+8)(x-10)=x^{2}+(-10+8) x+8 \times(-10)$
$=x^{2}-2 x-80$

Therefore, $(x+8)(x-10)$ is equal to $x^{2}-2 x-80$

Q1 (iii) Use suitable identities to find the following product: $(3 x+4)(3 x-5)$

## Answer:

We can write $(3 x+4)(3 x-5)$ as
$(3 x+4)(3 x-5)=9\left(x+\frac{4}{3}\right)\left(x-\frac{5}{3}\right)$

We will use identity
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Put $a=\frac{4}{3}$ and $b=-\frac{5}{3}$

$$
=9 x^{2}-3 x-20
$$

Therefore, $(3 x+4)(3 x-5)$ is equal to $9 x^{2}-3 x-20$
Q1 (iv) Use suitable identities to find the following product: $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$

## Answer:

We will use identity
$(x+a)(x-a)=x^{2}-a^{2}$

Put $x=y^{2} \quad$ and $\quad a=\frac{3}{2}$
$\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)=\left(y^{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}$
$=y^{4}-\frac{9}{4}$

Therefore, $\left(y^{2}+\frac{3}{2}\right)\left(y^{2}-\frac{3}{2}\right)$ is equal to $y^{4}-\frac{9}{4}$
Q1 (v) Use suitable identities to find the following product: $(3-2 x)(3+2 x)$

Answer:

We can write $(3-2 x)(3+2 x)$ as
$(3-2 x)(3+2 x)=-4\left(x-\frac{3}{2}\right)\left(x+\frac{3}{2}\right)$

We will use identity
$(x+a)(x-a)=x^{2}-a^{2}$

Put $a=\frac{3}{2}$
$-4\left(x+\frac{3}{2}\right)\left(x-\frac{3}{2}\right)=-4\left((x)^{2}-\left(\frac{3}{2}\right)^{2}\right)$
$=9-4 x^{2}$

Therefore, $(3-2 x)(3+2 x)$ is equal to $9-4 x^{2}$

Q2 (i) Evaluate the following product without multiplying directly: $103 \times 107$

## Answer:

We can rewrite $103 \times 107$ as
$\Rightarrow 103 \times 107=(100+3) \times(100+7)$

We will use identity

$$
(x+a)(x+b)=x^{2}+(a+b) x+a b
$$

Put $x=100, a=3$ and $b=7$
$(100+3) \times(100+7)=(100)^{2}+(3+7) 100+3 \times 7$
$=10000+1000+21=11021$

Therefore, value of $103 \times 107$ is 11021

Q2 (ii) Evaluate the following product without multiplying directly: $95 \times 96$

## Answer:

We can rewrite $95 \times 96$ as
$\Rightarrow 95 \times 96=(100-5) \times(100-4)$

We will use identity
$(x+a)(x+b)=x^{2}+(a+b) x+a b$

Put $x=100, a=-5$ and $b=-4$
$(100-5) \times(100-4)=(100)^{2}+(-5-4) 100+(-5) \times(-4)$
$=10000-900+20=9120$

Therefore, value of $95 \times 96$ is 9120

Q2 (iii) Evaluate the following product without multiplying directly: $104 \times 96$

## Answer:

We can rewrite $104 \times 96$ as
$\Rightarrow 104 \times 96=(100+4) \times(100-4)$

We will use identity
$(x+a)(x-a)=x^{2}-a^{2}$

Put $x=100$ and $a=4$
$(100+4) \times(100-4)=(100)^{2}-(4)^{2}$
$=10000-16=9984$

Therefore, value of $104 \times 96$ is 9984

Q3 (i) Factorise the following using appropriate identities: $9 x^{2}+6 x y+y^{2}$

Answer:

We can rewrite $9 x^{2}+6 x y+y^{2}$ as
$\Rightarrow 9 x^{2}+6 x y+y^{2}=(3 x)^{2}+2 \times 3 x \times y+(y)^{2}$

Using identity $\Rightarrow(a+b)^{2}=(a)^{2}+2 \times a \times b+(b)^{2}$

Here, $a=3 x$ and $b=y$

Therefore,
$9 x^{2}+6 x y+y^{2}=(3 x+y)^{2}=(3 x+y)(3 x+y)$

Q3 (ii) Factorise the following using appropriate identities: $4 y^{2}-4 y+1$

## Answer:

We can rewrite $4 y^{2}-4 y+1$ as
$\Rightarrow 4 y^{2}-4 y+1=(2 y)^{2}-2 \times 2 y \times 1+(1)^{2}$

Using identity $\Rightarrow(a-b)^{2}=(a)^{2}-2 \times a \times b+(b)^{2}$

Here, $a=2 y$ and $b=1$

Therefore,
$4 y^{2}-4 y+1=(2 y-1)^{2}=(2 y-1)(2 y-1)$

Q3 (iii) Factorise the following using appropriate identities: $x^{2}-\frac{y^{2}}{100}$

## Answer:


$\Rightarrow x^{2}-\frac{y^{2}}{100}=(x)^{2}-\left(\frac{y}{10}\right)^{2}$

Using identity $\Rightarrow a^{2}-b^{2}=(a-b)(a+b)$

Here, $a=x$ and $b=\frac{y}{10}$

Therefore,
$x^{2}-\frac{y^{2}}{100}=\left(x-\frac{y}{10}\right)\left(x+\frac{y}{10}\right)$

Q4 (i) Expand each of the following, using suitable identities: $(x+2 y+4 z)^{2}$

## Answer:

Given is $(x+2 y+4 z)^{2}$

We will Use identity
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Here, $a=x, b=2 y$ and $c=4 z$

Therefore,

$$
\begin{aligned}
& (x+2 y+4 z)^{2}=(x)^{2}+(2 y)^{2}+(4 z)^{2}+2 \cdot x .2 y+2.2 y \cdot 4 z+2 \cdot 4 z \cdot x \\
& =x^{2}+4 y^{2}+16 z^{2}+4 x y+16 y z+8 z x
\end{aligned}
$$

Q4 (ii) Expand each of the following, using suitable identities: $(2 x-y+z)^{2}$

## Answer:

Given is $(2 x-y+z)^{2}$

We will Use identity
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Here, $a=2 x, b=-y$ and $c=z$

Therefore,
$(2 x-y+z)^{2}=(2 x)^{2}+(-y)^{2}+(z)^{2}+2 \cdot 2 x \cdot(-y)+2 \cdot(-y) \cdot z+2 \cdot z \cdot 2 x$
$=4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 z x$

Q4 (iii) Expand each of the following, using suitable identities: $(-2 x+3 y+2 z)^{2}$

Answer:

Given is $(-2 x+3 y+2 z)^{2}$

We will Use identity
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Here, $a=-2 x, b=3 y$ and $c=2 z$

Therefore,
$(-2 x+3 y+2 z)^{2}=(-2 x)^{2}+(3 y)^{2}+(2 z)^{2}+2 \cdot(-2 x) \cdot 3 y+2 \cdot 3 y \cdot 2 z+2 \cdot z \cdot(-2 x)$
$=4 x^{2}+9 y^{2}+4 z^{2}-12 x y+12 y z-8 z x$
Q4 (iv) Expand each of the following, using suitable identities: $(3 a-7 b-c)^{2}$

## Answer:

Given is $(3 a-7 b-c)^{2}$

We will Use identity
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$

Here, $x=3 a, y=-7 b$ and $z=-c$

Therefore,
$(3 a-7 b-c)^{2}=(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+2 \cdot 3 a \cdot(-7 b)+2 \cdot(-7 b) \cdot(-c)+2 \cdot(-c) \cdot 3 a$
$=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 c a$

Q4 (v) Expand each of the following, using suitable identities: $(-2 x+5 y-3 z)^{2}$

## Answer:

Given is $(-2 x+5 y-3 z)^{2}$

We will Use identity
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Here, $a=-2 x, b=5 y$ and $c=-3 z$

Therefore,

$$
\begin{aligned}
& (-2 x+5 y-3 z)^{2} \\
& =(-2 x)^{2}+(5 y)^{2}+(-3 z)^{2}+2 \cdot(-2 x) \cdot 5 y+2 \cdot 5 y \cdot(-3 z)+2 \cdot(-3 z) \cdot(-2 x)
\end{aligned}
$$

$=4 x^{2}+25 y^{2}+9 z^{2}-20 x y-30 y z+12 z x$
Q4 (vi) Expand each of the following, using suitable identities: $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

Answer:

Given is $\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$

We will Use identity
$(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x$

Here, $\quad x=\frac{a}{4}, y=-\frac{b}{2}$ and $z=1$

Therefore,
$\left[\frac{1}{4} a-\frac{1}{2} b+1\right]^{2}$
$=\frac{a^{2}}{16}+\frac{b^{2}}{4}+1-\frac{a b}{4}-b+\frac{a}{2}$
Q5 (i) Factorise: $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$

## Answer:

We can rewrite $4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$ as
$\Rightarrow 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z$
$=(2 x)^{2}+(3 y)^{2}+(-4 z)^{2}+2 \cdot 2 x \cdot 3 y+2 \cdot 3 y \cdot(-4 z)+2 \cdot(-4 z) \cdot 2 x$

We will Use identity
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Here, $a=2 x, b=3 y$ and $c=-4 z$

Therefore,
$4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z=(2 x+3 y-4 z)^{2}$
$=(2 x+3 y-4 z)(2 x+3 y-4 z)$
Q5 (ii) Factorise: $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$

## Answer:

We can rewrite $2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$ as
$\Rightarrow 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z$
$=(-\sqrt{2} x)^{2}+(y)^{2}+(2 \sqrt{2} z)^{2}+2 \cdot(-\sqrt{2}) \cdot y+2 \cdot y \cdot 2 \sqrt{2} z+2 \cdot(-\sqrt{2} x) \cdot 2 \sqrt{2} z$

We will Use identity
$(a+b+c)^{2}=a^{2}+b^{2}+c^{2}+2 a b+2 b c+2 c a$

Here, $a=-\sqrt{2} x, b=y$ and $c=2 \sqrt{2} z$

Therefore,
$2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z=(-\sqrt{2} x+y+2 \sqrt{2} z)^{2}$
$=(-\sqrt{2} x+y+2 \sqrt{2} z)(-\sqrt{2} x+y+2 \sqrt{2} z)$

Q6 (i) Write the following cubes in expanded form: $(2 x+1)^{3}$

Answer:

Given is $(2 x+1)^{3}$

We will use identity

$$
(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}
$$

Here, $a=2 x$ and $b=1$

Therefore,
$(2 x+1)^{3}=(2 x)^{3}+(1)^{3}+3 \cdot(2 x)^{2} \cdot 1+3 \cdot 2 x \cdot(1)^{2}$
$=8 x^{3}+1+12 x^{2}+6 x$

Q6 (ii) Write the following cube in expanded form: $(2 a-3 b)^{3}$

## Answer:

Given is $(2 a-3 b)^{3}$

We will use identity
$(x-y)^{3}=x^{3}-y^{3}-3 x^{2} y+3 x y^{2}$

Here, $x=2 a$ and $y=3 b$

Therefore,
$(2 a-3 b)^{3}=(2 a)^{3}-(3 b)^{3}-3 \cdot(2 a)^{2} \cdot 3 b+3 \cdot 2 a \cdot(3 b)^{2}$
$=8 a^{3}-9 b^{3}-36 a^{2} b+54 a b^{2}$

Q6 (iii) Write the following cube in expanded form:
$\left[\frac{3}{2} x+1\right]^{3}$

## Answer:

Given is $\left[\frac{3}{2} x+1\right]^{3}$

We will use identity
$(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}$

Here, $a=\frac{3 x}{2}$ and $b=1$

Therefore,
$=\frac{27 x^{3}}{8}+1+\frac{27 x^{2}}{4}+\frac{9 x}{2}$
Q6 (iv) Write the following cube in expanded form: $\left[x-\frac{2}{3} y\right]^{3}$

Answer:
Given is $\left[x-\frac{2}{3} y\right]^{3}$

We will use identity
$(a-b)^{3}=a^{3}-b^{3}-3 a^{2} b+3 a b^{2}$

Here, $a=x$ and $b=\frac{2 y}{3}$

Therefore,
$=x^{3}-\frac{8 y^{3}}{27}-2 x^{2} y+\frac{4 x y^{2}}{3}$
Q7 (i) Evaluate the following using suitable identities: $(99)^{3}$

## Answer:

We can rewrite $(99)^{3}$ as
$\Rightarrow(99)^{3}=(100-1)^{3}$

We will use identity

$$
(a-b)^{3}=a^{3}-b^{3}-3 a^{2} b+3 a b^{2}
$$

Here, $a=100$ and $b=1$

Therefore,
$(100-1)^{1}=(100)^{3}-(1)^{3}-3 .(100)^{2} .1+3.100 .1^{2}$
$=1000000-1-30000+300=970299$

Q7 (ii) Evaluate the following using suitable identities: $(102)^{3}$

## Answer:

We can rewrite $(102)^{3}$ as
$\Rightarrow(102)^{3}=(100+2)^{3}$

We will use identity

$$
(a+b)^{3}=a^{3}+b^{3}+3 a^{2} b+3 a b^{2}
$$

Here, $a=100$ and $b=2$

Therefore,
$(100+2)^{1}=(100)^{3}+(2)^{3}+3 \cdot(100)^{2} \cdot 2+3 \cdot 100 \cdot 2^{2}$
$=1000000+8+60000+1200=1061208$

Q7 (iii) Evaluate the following using suitable identities: $(998)^{3}$

## Answer:

We can rewrite $(998)^{3}$ as
$\Rightarrow(998)^{3}=(1000-2)^{3}$

We will use identity

$$
(a-b)^{3}=a^{3}-b^{3}-3 a^{2} b+3 a b^{2}
$$

Here, $a=1000$ and $b=2$

Therefore,

$$
(1000-2)^{1}=(1000)^{3}-(2)^{3}-3 .(0100)^{2} \cdot 2+3.1000 .2^{2}
$$

$$
=1000000000-8-6000000+12000=994011992
$$

Q8 (i) Factorise the following: $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$

## Answer:

We can rewrite $8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}$ as
$\Rightarrow 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}=(2 a)^{3}+(b)^{3}+3 \cdot(2 a)^{2} \cdot b+3 \cdot 2 a \cdot(b)^{2}$

We will use identity
$(x+y)^{3}=x^{3}+y^{3}+3 x^{2} y+3 x y^{2}$

Here, $x=2 a$ and $y=b$

Therefore,

$$
\begin{aligned}
& 8 a^{3}+b^{3}+12 a^{2} b+6 a b^{2}=(2 a+b)^{3} \\
& =(2 a+b)(2 a+b)(2 a+b)
\end{aligned}
$$

Q8 (ii) Factorise the following: $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$

Answer:
We can rewrite $8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}$ as

$$
\Rightarrow 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}=(2 a)^{3}-(b)^{3}-3 \cdot(2 a)^{2} \cdot b+3 \cdot 2 a \cdot(b)^{2}
$$

We will use identity

$$
(x-y)^{3}=x^{3}-y^{3}-3 x^{2} y+3 x y^{2}
$$

Here, $x=2 a$ and $y=b$

Therefore,

$$
\begin{aligned}
& 8 a^{3}-b^{3}-12 a^{2} b+6 a b^{2}=(2 a-b)^{3} \\
& =(2 a-b)(2 a-b)(2 a-b)
\end{aligned}
$$

Q8 (iii) Factorise the following: $27-125 a^{3}-135 a+225 a^{2}$

## Answer:

We can rewrite $27-125 a^{3}-135 a+225 a^{2}$ as
$\Rightarrow 27-125 a^{3}-135 a+225 a^{2}=(3)^{3}-(25 a)^{3}-3 \cdot(3)^{2} \cdot 5 a+3.3 \cdot(5 a)^{2}$

We will use identity
$(x-y)^{3}=x^{3}-y^{3}-3 x^{2} y+3 x y^{2}$

Here, $x=3$ and $y=5 a$

Therefore,
$27-125 a^{3}-135 a+225 a^{2}=(3-5 a)^{3}$
$=(3-5 a)(3-5 a)(3-5 a)$

Q8 (iv) Factorise the following: $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$

## Answer:

We can rewrite $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$ as
$\Rightarrow 64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}=(4 a)^{3}-(3 b)^{3}-3 \cdot(4 a)^{2} \cdot 3 b+3 \cdot 4 a \cdot(3 b)^{2}$

We will use identity
$(x-y)^{3}=x^{3}-y^{3}-3 x^{2} y+3 x y^{2}$

Here, $x=4 a$ and $y=3 b$

Therefore,
$64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}=(4 a-3 b)^{2}$
$=(4 a-3 b)(4 a-3 b)(4 a-3 b)$
Q8 (v) Factorise the following: $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$

## Answer:

We can rewrite $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$ as
$\Rightarrow 27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p=(3 p)^{3}-\left(\frac{1}{6}\right)^{3}-3 \cdot(3 p)^{2} \cdot \frac{1}{6}+3 \cdot 3 p \cdot\left(\frac{1}{6}\right)^{2}$

We will use identity
$(x-y)^{3}=x^{3}-y^{3}-3 x^{2} y+3 x y^{2}$

Here, $x=3 p$ and $y=\frac{1}{6}$

Therefore,
$27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p=\left(3 p-\frac{1}{6}\right)^{3}$
$=\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)\left(3 p-\frac{1}{6}\right)$

Q9 (i) Verify: $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$

## Answer:

We know that

$$
(x+y)^{3}=x^{3}+y^{3}+3 x y(x+y)
$$

Now,

$$
\begin{aligned}
& \Rightarrow x^{3}+y^{3}=(x+y)^{3}-3 x y(x+y) \\
& \Rightarrow x^{3}+y^{3}=(x+y)\left((x+y)^{2}-3 x y\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}+2 x y-3 x y\right)\left(\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right) \\
& \Rightarrow x^{3}+y^{3}=(x+y)\left(x^{2}+y^{2}-x y\right)
\end{aligned}
$$

## Hence proved.

Q9 (ii) Verify: $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

## Answer:

We know that

$$
(x-y)^{3}=x^{3}-y^{3}-3 x y(x-y)
$$

Now,
$\Rightarrow x^{3}-y^{3}=(x-y)^{3}+3 x y(x-y)$
$\Rightarrow x^{3}-y^{3}=(x-y)\left((x-y)^{2}+3 x y\right)$
$\Rightarrow x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}-2 x y+3 x y\right)\left(\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right)$
$\Rightarrow x^{3}-y^{3}=(x-y)\left(x^{2}+y^{2}+x y\right)$

Hence proved.

Q10 (i) Factorise the following: $27 y^{3}+125 z^{3}$

## Answer:

We know that
$a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)$

Now, we can write $27 y^{3}+125 z^{3}$ as
$\Rightarrow 27 y^{3}+125 z^{3}=(3 y)^{3}+(5 z)^{3}$

Here, $a=3 y$ and $b=5 z$

Therefore,
$27 y^{3}+125 z^{3}=(3 y+5 z)\left((3 y)^{2}+(5 z)^{2}-3 y .5 z\right)$
$27 y^{3}+125 z^{3}=(3 y+5 z)\left(9 y^{2}+25 z^{2}-15 y z\right)$

Q10 (ii) Factorise the following: $64 m^{3}-343 n^{3}$

## Answer:

We know that
$a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right)$

Now, we can write $64 m^{3}-343 n^{3}$ as
$\Rightarrow 64 m^{3}-343 n^{3}=(4 m)^{3}-(7 n)^{3}$

Here, $a=4 m$ and $b=7 n$

Therefore,
$64 m^{3}-343 n^{3}=(4 m-7 n)\left((4 m)^{2}+(7 n)^{2}+4 m .7 n\right)$
$64 m^{3}-343 n^{3}=(4 m-7 n)\left(16 m^{2}+49 n^{2}+28 m n\right)$

Q11 Factorise: $27 x^{3}+y^{3}+z^{3}-9 x y z$

## Answer:

Given is $27 x^{3}+y^{3}+z^{3}-9 x y z$

Now, we know that
$a^{3}+b^{3}+c^{3}-3 a b c=(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right)$

Now, we can write $27 x^{3}+y^{3}+z^{3}-9 x y z$ as
$\Rightarrow 27 x^{3}+y^{3}+z^{3}-9 x y z=(3 x)^{3}+(y)^{3}+(z)^{3}-3.3 x . y . z$

Here, $a=3 x, b=y$ and $c=z$

Therefore,
$27 x^{3}+y^{3}+z^{3}-9 x y z=(3 x+y+z)\left((3 x)^{2}+(y)^{2}+(z)^{2}-3 x . y-y . z-z .3 x\right)$
$=(3 x+y+z)\left(9 x^{2}+y^{2}+z^{2}-3 x y-y z-3 z x\right)$

Q12 Verify
that $x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right]$

## Answer:

We know that

$$
x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)
$$

Now, multiply and divide the R.H.S. by 2

$$
\begin{aligned}
& x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left(2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x\right) \\
& =\frac{1}{2}(x+y+z)\left(x^{2}+y^{2}-2 x y+x^{2}+z^{2}-2 z x+y^{2}+z^{2}-2 y z\right) \\
& =\frac{1}{2}(x+y+z)\left((x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right)\left(\because a^{2}+b^{2}-2 a b=(a-b)^{2}\right)
\end{aligned}
$$

## Hence proved.

Q13 If $x+y+z=0$, show that $x^{3}+y^{3}+z^{3}=3 x y z$.

## Answer:

We know that
$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

Now, It is given that $x+y+z=0$

Therefore,
$x^{3}+y^{3}+z^{3}-3 x y z=0\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$
$x^{3}+y^{3}+z^{3}-3 x y z=0$
$x^{3}+y^{3}+z^{3}=3 x y z$

## Hence proved.

Q14 (i) Without actually calculating the cubes, find the value of each of the
following: $(-12)^{3}+(7)^{3}+(5)^{3}$

## Answer:

Given is $(-12)^{3}+(7)^{3}+(5)^{3}$

We know that

If $x+y+z=0$ then, $x^{3}+y^{3}+z^{3}=3 x y z$

Here, $x=-12, y=7$ and $z=5$
$\Rightarrow x+y+z=-12+7+5=0$

Therefore,
$(-12)^{3}+(7)^{3}+(5)^{3}=3 \times(-12) \times 7 \times 5=-1260$

Therefore, value of $(-12)^{3}+(7)^{3}+(5)^{3}$ is -1260

Q14 (ii) Without actually calculating the cubes, find the value of the following: $(28)^{3}+(-15)^{3}+(-13)^{3}$

## Answer:

Given is $(28)^{3}+(-15)^{3}+(-13)^{3}$

We know that

If $x+y+z=0$ then, $x^{3}+y^{3}+z^{3}=3 x y z$

Here, $x=28, y=-15$ and $z=-13$
$\Rightarrow x+y+z=28-15-13=0$

Therefore,
$(28)^{3}+(-15)^{3}+(-13)^{3}=3 \times(28) \times(-15) \times(-13)=16380$

Therefore, value of $(28)^{3}+(-15)^{3}+(-13)^{3}$ is 16380

Q15 (i) Give possible expressions for the length and breadth of the following rectangle, in which its area is given:

$$
25 a^{2}-35 a+12
$$

## Answer:

We know that

Area of rectangle is $=$ length $\times$ breadth

It is given that area $=25 a^{2}-35 a+12$

Now, by splitting middle term method
$\Rightarrow 25 a^{2}-35 a+12=25 a^{2}-20 a-15 a+12$
$=5 a(5 a-4)-3(5 a-4)$
$=(5 a-3)(5 a-4)$
Therefore, two answers are possible
case (i): $:$ Length $=(5 a-4)$ and Breadth $=(5 a-3)$
case (ii) :- Length $=(5 a-3)$ and Breadth $=(5 a-4)$

Q15 (ii) Give possible expressions for the length and breadth of the following rectangle, in which its area is given:

$$
35 y^{2}+13 y-12
$$

## Answer:

We know that

Area of rectangle is $=$ length $\times$ breadth

It is given that area $=35 y^{2}+13 y-12$

Now, by splitting the middle term method
$\Rightarrow 35 y^{2}+13 y-12=35 y^{2}+28 y-15 y-12$
$=7 y(5 y+4)-3(5 y+4)$
$=(7 y-3)(5 y+4)$

Therefore, two answers are possible
case (i) :- Length $=(5 y+4)$ and Breadth $=(7 y-3)$
case (ii) :- Length $=(7 y-3)$ and Breadth $=(5 y+4)$

Q16 (i) What are the possible expressions for the dimensions of the cuboid whose volumes is given below?

Volume : $3 x^{2}-12 x$

## Answer:

We know that

Volume of cuboid is $=$ length $\times$ breadth $\times$ height

It is given that volume $=3 x^{2}-12 x$

Now,
$\Rightarrow 3 x^{2}-12 x=3 \times x \times(x-4)$

Therefore, one of the possible answer is possible

Length $=3$ and Breadth $=x$ and Height $=(x-4)$

Q16 (ii) What are the possible expressions for the dimensions of the cuboid whose volumes is given below?

Volume $: 12 k y^{2}+8 k y-20 k$

## Answer:

We know that

Volume of cuboid is $=$ length $\times$ breadth $\times$ height

It is given that volume $=12 k y^{2}+8 k y-20 k$

Now,
$\Rightarrow 12 k y^{2}+8 k y-20 k=k\left(12 y^{2}+8 y-20\right)$
$=k\left(12 y^{2}+20 y-12 y-20\right)$
$=k(4 y(3 y+5)-4(3 y+5))$
$=k(3 y+5)(4 y-4)$
$=4 k(3 y+5)(y-1)$

Therefore, one of the possible answer is possible

Length $=4 k$ and Breadth $=(3 y+5)$ and Height $=(y-1)$

