

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- If [H+] in concentration is increased by a factor of 1000. Then pH?
 - (1) Decreased by 3
 - (2) Increased by 3
 - (3) There is no change in pH
 - (4) Decreased by 1

Answer (1)

- **Sol.** If [H⁺] is increased by 1000 times then pH will be decreased by 3.
- Arrange the following elements in increasing order of metallic character
 - Si, K, Mg and Be
 - (1) Si < Mg < Be < K
- (2) Be < Mg < Si < K
- (3) Si < Be < Mg < K
- (4) K < Mg < Si < Be

Answer (3)

Sol. Based on the electronegativity of the given elements, the correct increasing order of metallic character is

- 3. Which of the following has two chiral centres
 - (1) 2- Bromo 3- deutro butane
 - (2) 1- Bromo 2- deutro butane
 - (3) 1- Bromo 3- deutro butane
 - (4) 1- Bromo 4- deutro butane

Answer (1)

Sol.

2 - Bromo - 3 deutro butane has two chiral centres.

- 4. **A**: Carbon form two oxides CO and CO₂, where CO is neutral while CO₂ is acidic.
 - R: CO₂ will combine with water to give carbonic acid and CO is soluble in water
 - (1) [A] and [R] both are correct and [R] is correct explanation of [A]
 - (2) [A] and [R] both are correct and [R] is not correct explanation of [A]
 - (3) [A] is correct while [R] is false
 - (4) [A] is false while [R] is correct

Answer (2)

- **Sol.** CO₂ will form carbonic acid with water and it is acidic in nature, while CO is neutral but there is no relation of neutrality with solubility.
- 5. Which of the following element is the weakest reducing agent in aqueous solution.
 - (1) Na
- (2) K

(3) Li

(4) Rb

Answer (1)

- **Sol.** As per the standard reduction potential values, Na is the weakest reducing agent.
- 6. Match List-I with List-II

IVIC	ton Liot i with Liot ii		
	(List-I)		List-II
	Amine		pK _b (Aqueous medium)
(a)	Aniline	1.	9.0
(b)	Ethanamine	2.	3.29
(c)	N-ethylethanamine	3.	3.25
(d)	N, N-diethylethanamine	4.	3.0
(1)	$a \rightarrow 1$, $b \rightarrow 2$, $c \rightarrow 4$, $d \rightarrow$	→ 3	
(2)	$a \rightarrow 1$, $b \rightarrow 4$, $c \rightarrow 3$, $d \rightarrow$	→ 2	
(3)	$a \rightarrow 1$, $b \rightarrow 2$, $c \rightarrow 3$, $d \rightarrow$	→ 4	
(4)	$a \rightarrow 2$, $b \rightarrow 3$, $c \rightarrow 4$, $d \rightarrow$	→ 1	
	443		

Answer (1)

Sol. The order of basicity is:

 \therefore pK_b order is : \rightarrow c < d < b < a

JEE (Main)-2023 : Phase-1 (25-01-2023)-Evening

- 7. Select the correct match.
 - A. Hexan-2-one and hexan-3-one Position isomers
 - B. Pentan-3-one and pentan-2-one Functional isomers
 - C. 2-pentene and 1-pentene Metamers
 - Pentanoic acid and hexanoic acid Functional isomers
 - (1) A

(2) B

(3) C

(4) D

Answer (1)

- **Sol.** Hexan-2-one and hexan-3-one are position isomers.
- 8. Chloride salt of M is treated with excess of AgNO₃. It forms curdly white precipitate 'A'. When 'A' is treated with NH₄OH, it forms a soluble salt 'B'. The A and B respectively is
 - (1) AgCl, [Ag(NH₃)₂]⁺
- (2) AgBr, [Ag(OH)₂]-
- (3) AgCl, [Ag(OH)₄]²⁻
- (4) AgBr, [Ag(OH)₄]²⁻

Answer (1)

- **Sol.** AgCl forms white ppt. which is soluble in NH₄OH. The correct answer of this question is (1).
- 9. Consider the following reaction

$$\begin{array}{c}
CH_{3} \\
OH \\
CH_{3}
\end{array}$$

$$\xrightarrow{H^{+}, \Delta} Product (P)$$

The correct product 'P' is

(1)
$$CH_3$$
 CH_3 $CH_$

Answer (1)

Sol.
$$\xrightarrow{\text{OH}} \xrightarrow{\text{H}^{+}} \xrightarrow{\text{H}_{2}\text{O}} \xrightarrow{\text{OH}} \xrightarrow{\text{$$

- 10. Final oxidation number of Cr when K₂Cr₂O₇ is used in acidic medium during titration.
 - (1) +6

(2) +2

(3) +3

(4) +4

Answer (3)

Sol.
$$Cr_2O_7^{2-} + 14H^+ + 6\bar{e} \rightarrow 2Cr^{3+} + 7H_2O$$

11. Match the following

(I)	Neoprene	(a)	Synthetic Wool
(II)	Acrolein	(b)	Paint
(III)	LDP	(c)	Flexible Pipes
(IV)	Glyptal	(d)	Gaskets

- (1) II-(d), IV-(b), III-(a), I-(c)
- (2) II-(d), IV-(b), III-(c), I-(a)
- (3) II-(a), IV-(b), III-(c), I-(d)
- (4) II-(b), IV-(c), III-(d), I-(a)

Answer (3)

Sol. Neoprene is a synthetic rubber. It is used for manufacturing of gaskets.

Acrolein is used for making synthetic wool. LDP is used for making flexible pipes. Glyptal is used for making paints.

12. **Assertion :** BHA is added to butter to increase shelf life.

Reason: BHA reacts with oxygen more than butter.

- (1) Assertion is correct Reason is correct
- (2) Assertion is correct Reason is incorrect
- (3) Assertion is incorrect Reason is correct
- (4) Assertion is incorrect Reason is incorrect

Answer (1)

- **Sol.** Butylated hydroxy anisole (BHA) is an antioxidant. It is added to butter to increase its shelf life from months to years. BHA reacts with O₂ present in air in preference to butter. So, both the assertion and reason are correct.
- 13. A hydrocarbon is having molar mass 84 g mol⁻¹ and 85.8% C by mass. Calculate the number of H atoms in the molecule?
 - (1) 8

(2) 10

(3) 12

(4) 14

Answer (3)

Sol. C 85.8%
$$\frac{85.8}{12} = 7 = 1$$

H 14.2
$$\frac{14.2}{1} = 14 = 2$$

Empirical formula = CH₂

molecular formula = n x empirical formula

$$n = \frac{\text{molar mass}}{\text{empirical mass}} = \frac{84}{14} = 6$$

∴ molecular formula = C₆H₁₂

14. Which of the following options contains the correct match.

	List-I		List-II
(A)	Adiabatic	(P)	$\Delta T = 0$
(B)	Isothermal	(Q)	Heat exchange is zero
(C)	Isochoric	(R)	$\Delta P = 0$
(D)	Isobaric	(S)	Work done is zero

- (1) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$
- (2) $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- (3) $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$
- (4) $A \rightarrow P$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow Q$

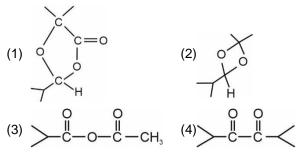
Answer (1)

Sol. Adiabatic Heat exchange is zero

> Isothermal $\Delta T = 0$

> Isobaric $\Delta P = 0$

Isochoric Work done is zero


15. Consider the following reaction:

$$\begin{array}{c|c}
O & OH \\
C & H + \\
\hline
\end{array}$$

$$\begin{array}{c}
OH \\
COOH \\
\hline
\end{array}$$

$$\begin{array}{c}
H^{\oplus}
\end{array}$$
Product 'P

The product 'P' is

Answer (1)

Sol.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} \begin{array}{c} \begin{array}{c} \\ \\ \\ \end{array} \end{array} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\$$

- 16. Find out mass ratio of ethylene glycol (62 g) required to make 500 ml, 0.25 m and 250 M, 0.25 M solution.
 - (1) 1:1

(2) 1:2

(3) 2:1

(4) 4:1

Answer (3)

Sol. Millimoles of ethylene glycol in 1st case

$$= 500 \times 0.25$$

Millimoles of ethylene glycol in second case

$$= 250 \times 0.25$$

$$\therefore \text{ Molar ratio} = \frac{50}{25} = \frac{10}{5}$$

Mass ratio = $\frac{2}{1}$

- 17. A: Alkali metals show characteristic colour in reducing flame.
 - R: They can be identified by flame test
 - (1) Assertion is true and reason is false
 - (2) Assertion is false and reason is true
 - (3) Both assertion and reason are true reason is the correct explanation of assertion
 - (4) Both assertion and reason are true. But reason is not the correct explanation of assertion

Answer (2)

- Sol. Alkali metals show characteristic colour in oxidising flame.
- 18. Which of the following option contains the correct match?

	List-I (Complex)		List-II (λ, absorbed)
(A)	[Co(CN) ₆] ³⁻	(P)	535 nm
(B)	[Co(NH ₃) ₆] ³⁺	(Q)	375 nm
(C)	[Co(NH ₃) ₅ Cl] ²⁺	(S)	600 nm

- (1) $A \rightarrow S, B \rightarrow P, C \rightarrow Q$
- (2) $A \rightarrow P, B \rightarrow Q, C \rightarrow S$
- (3) $A \rightarrow Q, B \rightarrow P, C \rightarrow S$
- (4) $A \rightarrow S, B \rightarrow Q, C \rightarrow P$

Answer (3)

Sol. The CFSE value order of the given complexes are: $[Co(CN)_6]^{3-} > [Co(NH_3)_6]^{3+} > [Co(NH_3)_5Cl]^{2+}$

 \therefore λ , absorbed will be in the reverse order.

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. How many of the following orbitals is/are considered as axial orbital(s).

$$p_{x}, p_{y}, p_{z}, d_{xy}, d_{yz}, d_{zx}, d_{x^{2}-v^{2}}, d_{z^{2}}$$

Answer (5)

Sol. p_x , p_y , p_z , $d_{x^2-y^2}$ and d_{z^2} orbitals are called axial orbitals.

22. Consider the following cell:

If the value of $\frac{[M^{3+}]}{[M^{+}]}$ is 10^{x} , then find the value of

'x'. [Given : $E^{o}_{M^{3+}/M^{+}} = 2 \text{ V} \text{ and } E_{cell} = 1.1 \text{ V}]$

Answer (30)

Sol.
$$1.1 = 2 - \frac{0.06}{2} \log \frac{[M^{3+}]}{[M^{+}]}$$

$$0.9 = 0.03 log \frac{[M^{3+}]}{[M^{+}]}$$

$$\therefore \quad \frac{[M^{3+}]}{[M^{+}]} = 10^{30}$$

$$\therefore x = 30$$

23. For a reaction $A \longrightarrow B$

$$k = 2 \times 10^{-3} \text{ s}^{-1}$$

Consider the following statements for the above reaction.

SI: The reaction is complete in 1000 sec.

SII: Half life of the reaction is 500 sec.

SIII: Units of rate constant is same as that of rate

SIV : Degree of dissociation is $(1 - e^{-kt})$

SV: It is a zero order reaction.

How many statements are incorrect?

Answer (4)

Sol. Except (4), all statements are incorrect

As
$$[B] = a(1 - e^{-kt})$$

$$\therefore, \boxed{\alpha = \frac{[B]}{a} = 1 - e^{-kt}}$$

24. Consider a mixture of CH₄ and C₂H₄ having volume 16.8 L at 273 k and 1 atm.

It undergoes combustion to form CO₂ with total volume 28 L at the same temperature and pressure.

If the enthalpy of combustion of CH_4 is -900 kJ/mol and enthalpy of combustion of C_2H_4 is -1400 kJ/mol then find the magnitude of heat released on combustion of given mixture in kJ

Answer (925)

Sol.
$$CH_4 + 2O_2 \longrightarrow CO_2 + 2H_2O$$

$$C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O_16.8-x$$

$$x + 2(16.8 - x) = 28$$

$$x = 5.6 L$$

∴ Heat released =
$$\frac{1}{4} \times 900 + \frac{1}{2} \times 1400$$

= 225 + 700
= 925 kJ

25.

26.

27.

28.

29.

30.