

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- Caprolactam when heated at high temperature, gives
 - (1) Nylon 6, 6
 - (2) Dacron
 - (3) Teflon
 - (4) Nylon 6

Answer (4)

- **Sol.** Caprolactam on heating at high temperature gives Nylon-6 polymer.
- 2. Molarity of CO₂ in soft drink is 0.01 M. The volume of soft drink is 300 mL. Mass of CO₂ in soft drink is
 - (1) 0.132 g
 - (2) 0.481 g
 - (3) 0.312 g
 - (4) 0.190 g

Answer (1)

Sol. Moles = $0.01 \times 0.3 = 0.003$

Mass = $0.003 \times 44 = 0.132$ gm

- 3. During the qualitative analysis of SO_3^{-2} using dilute H_2SO_4 , SO_2 gas evolved which turns $K_2Cr_2O_7$ solution (acidified H_2SO_4)
 - (1) Green
- (2) Black
- (3) Blue
- (4) Red

Answer (1)

Sol. Orange colour of dichromate solution (K₂Cr₂O₇) converts to green (Cr³⁺).

4. Number of lone pair of electrons on central atom?

	Column-I		Column-II
(A)	IF ₇	(P)	0
(B)	ICI ₄ -	(Q)	1
(C)	XeF ₂	(R)	2
(D)	XeF ₆	(S)	3

Match the following

- (1) $(A)\rightarrow(P)$; $(B)\rightarrow(Q)$; $(C)\rightarrow(R)$; $(D)\rightarrow(S)$
- (2) $(A)\rightarrow(P)$; $(B)\rightarrow(R)$; $(C)\rightarrow(S)$; $(D)\rightarrow(Q)$
- (3) $(A)\rightarrow(R)$; $(B)\rightarrow(S)$; $(C)\rightarrow(P)$; $(D)\rightarrow(Q)$
- (4) $(A)\rightarrow(S)$; $(B)\rightarrow(R)$; $(C)\rightarrow(Q)$; $(D)\rightarrow(P)$

Answer (2)

Sol. Molecule/species No. of lone pair

 $\begin{array}{ccc} \text{IF}_7 & \rightarrow 0 \\ \text{ICI}_4 & \rightarrow 2 \\ \text{XeF}_2 & \rightarrow 3 \\ \text{XeF}_6 & \rightarrow 1 \end{array}$

- 5. Which one of the following is water soluble?
 - (a) BeSO₄
 - (b) MgSO₄
 - (c) CaSO₄
 - (d) SrSO₄
 - (e) BaSO₄
 - (1) Only a and b
- (2) Only a, b, c
- (3) Only d and e
- (4) Only a and e

Answer (1)

- **Sol.** Solubility of sulphates of group-2 elements decreases down the group. BeSO₄ and MgSO₄ are appreciably soluble in water. CaSO₄, SrSO₄ and BaSO₄ are practically insoluble in water.
- 6. Shape of OF₂ molecule is?
 - (1) Bent
- (2) Linear
- (3) Tetrahedral
- (4) T-shaped

Answer (1)

Sol.

It is sp^3 hybridised therefore its shape will be bent or V-shaped.

JEE (Main)-2023 : Phase-1 (30-01-2023)-Morning

- 7. Inhibitor of cancer growth
 - (1) Cisplatin
 - (2) EDTA
 - (3) Cobalt
 - (4) Ethane 1, 2 diamine

Answer (1)

- Sol. Cisplatin acts as an anticancer agent.
- 8. Speed of e^- in 7th orbit is 3.6×10^6 m/s then find the speed in 3rd orbit
 - (1) 3.6×10^6 m/s
 - (2) 8.4×10^6 m/s
 - (3) 7.5×10^6 m/s
 - (4) 1.8×10^6 m/s

Answer (2)

 $\textbf{Sol.}\,$ Speed of electron in n^{th} orbit of a Bohr atom is given

by

$$v_n = (v_1)_H \frac{Z}{n}$$

If n = 7

$$v_7 = (v_1)_H \frac{Z}{7} = 3.6 \times 10^6 \text{ m/s}$$

If n = 3

$$v_3 = \left(v_1\right)_H \frac{Z}{3}$$

$$=\frac{7\times3.6\times10^6}{3}$$

- $= 8.4 \times 10^6 \text{ m/s}$
- 9. Match the following:

Atomic Number

(i) 52

(p) s-block

(ii) 37

(q) p-block

(iii) 65

(r) d-block

(iv) 74

- (s) f-block
- (1) (i) \rightarrow (q); (ii) \rightarrow (p); (iii) \rightarrow (r); (iv) \rightarrow (s)
- (2) (i) \rightarrow (q); (ii) \rightarrow (p); (iii) \rightarrow (s); (iv) \rightarrow (r)
- (3) (i) \rightarrow (s); (ii) \rightarrow (r); (iii) \rightarrow (p); (iv) \rightarrow (q)
- (4) (i) \rightarrow (r); (ii) \rightarrow (p); (iii) \rightarrow (q); (iv) \rightarrow (s)

Answer (2)

- Sol. 37 is Rubidium belonging to 1st group of s-block.
- 10. Consider the following reactions

$$NO_2 \xrightarrow{UV} A + B$$

$$A + O_2 \longrightarrow C$$

$$B + C \longrightarrow NO_2 + O_2$$

- A, B and C are respectively
- (1) O, NO, O₃
- (2) NO, O, O₃
- (3) NO, O₃, O
- (4) O₃, O, NO

Answer (1)

Sol.
$$NO_2 \xrightarrow{UV} NO + O_{(B)} (A)$$

$$O + O_2 \longrightarrow O_3(C)$$

$$NO + O_3 \longrightarrow NO_2 + O_2$$

11. Which of the following option contains the correct match:

(List-I) (Reactions)

(List-II) (Products)

- (A) Wurtz
- $(P) \langle O \rangle \langle O \rangle$
- (B) Fittig
- (Q) R R
- (C) Wurtz Fittig
- $(R) \langle O \rangle R$
- (D) Sandmeyer
- (S) (O)
- (1) $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow S$
- (2) $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- (3) $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$
- (4) $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow Q$

Answer (1)

- Sol. The correct matches are
 - (A) Wurtz $\rightarrow R R$
 - (B) Fittig $\rightarrow \langle \bigcirc \rangle \langle \bigcirc \rangle$
 - (C) Wurtz fittig $\rightarrow \langle O \rangle R$
 - (D) Sandmeyer $\rightarrow \bigcirc$
- If volume of ideal gas is increased isothermally, then its internal energy
 - (1) Increased
 - (2) Remains constant
 - (3) Is decreased
 - (4) Can be increased or decreased

Answer (2)

- Sol. Internal energy of ideal gas depends only upon temperature.
- 13. Arrange the following ligands according to their increasing order of field strength

(1)
$$S^{2-} < CO < NH_3 < en < C_2O_4^{2-}$$

(2)
$$S^{2-} < NH_3 < en < CO < C_2O_4^{2-}$$

(3)
$$S^{2-} < C_2 O_4^{2-} < NH_3 < en < CO$$

(4)
$$CO < en < NH_3 < C_2O_4^{2-} < S^{2-}$$

Answer (3)

Sol. The correct order of field strength is

$$S^{2-} < C_2 O_4^{2-} < NH_3 < en < CO$$

14. Consider the following molecule

Select the correct order of acidic strength

- (1) $H_A > H_D > H_B > H_C$ (2) $H_B > H_A > H_D > H_C$
- (3) $H_A > H_B > H_C > H_D$ (4) $H_C > H_B > H_D > H_A$

Answer (1)

Sol. The correct order of acidic strength is

 $H_A > H_D > H_B > H_C$

- 15. Which of the following compound is used as the antacid?
 - (1) Ranitidine
 - (2) Prontosil
 - (3) Norethindrone
 - (4) Codeine

Answer (1)

- Sol. Ranitidine is used as the antacid.
- 16. The role of SiO₂ in Cu extraction is
 - (1) Converts FeO to FeSiO₃
 - (2) Converts CaO to CaSiO₃
 - (3) Reduces Cu₂S to Cu
 - (4) None of these

Answer (1)

- Sol. It converts FeO to FeSiO3
- 17. Assertion: Ketoses gives seliwanoff test.

Reason: Ketoses undergo β- elimination to form furfural.

- (1) Assertion and reason both are correct and reason is the correct explanation of assertion
- (2) Assertion and reason both are correct but reason is not the correct explanation of assertion.
- (3) Assertion is correct and reason is incorrect
- (4) Assertion is incorrect but reason is correct.

Answer (1)

- **Sol.** Assertion and reason both are correct and reason is the correct explanation of assertion.
- 18. Consider the following reactions:

The products P and Q respectively are? CH OH

(4) HCOOH and CH₂—C—CH₃

Answer (2)

Sol.

$$CH_{3} = C - CH_{3} - CH_{3}$$

19.

20.

Aakash

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. For given cell, at T K

Pt
$$|H_2(g)|H^+||Fe^{3+}; Fe^{2+}|Pt$$

(1 bar) (1 M)

$$E_{cell} = .712 \text{ V}$$

$$E_{cell}^{\circ} = .770 \text{ V}$$

if
$$\frac{\left[Fe^{2+}\right]}{\left[Fe^{3+}\right]}$$
 is $t \left(\frac{2.303 \, RT}{F} = .058\right)$

then find
$$\left(\frac{t}{5}\right)$$

Answer (2)

Sol. .712 = .770 -
$$\frac{.058}{2}$$
log $\left[\frac{\text{Fe}^{2+}}{\text{Fe}^{3+}}\right]^2$

$$-.058 = -.058 log \frac{\left\lceil Fe^{2+} \right\rceil}{\left\lceil Fe^{3+} \right\rceil}$$

$$\frac{Fe^{2+}}{Fe^{3+}} = 10 = t$$

$$\frac{t}{5} = 2$$

22. How many moles of electrons are required to reduce 1 mole of permanganate ions into manganese dioxide

Answer (3)

Sol.
$$\frac{MnO_4}{+7}$$
 \longrightarrow $\frac{MnO_2}{+4}$

3 mole of e- are required

 600 mL of 0.04 M HCl is mixed with 400 mL of 0.02 M H₂SO₄. Find out the pH of resulting solution (Nearest integer).

Answer (01.00)

Sol. m moles of H⁺ from HCI = 0.04×600

m moles of H⁺ from $H_2SO_4 = 0.02 \times 2 \times 400$

Total m moles of $H^+ = 24 + 16 = 40$

Final volume of solution = 1000 mL

$$[H^+] = \frac{40}{1000} = 0.04 \text{ M}$$

$$pH = - log 0.04 = 1.4$$

24. A solution of 2 g of a solute and 20 g water has boiling point 373.52 K. Then find the molar mass of solute in grams? [Given: K_b = 0.52 K kg/mole and solute is non-electrolyte].

Answer (100)

Sol.
$$\Delta T_b = K_b.m$$

$$0.52 = 0.52 \times \frac{2 / M}{.02}$$

$$M = 100 g$$

25. When first order kinetic, rate constant is 2.011×10^{-3} sec⁻¹, the time taken in decomposition of substance from 7 g to 2 g will be. [Use log7 = 0.845 and log2 = 0.301]

Answer (623)

Sol. $A \rightarrow Products$

Initial moles of $A = \frac{7}{M}$ (M is molar mass of A)

Final moles of A =
$$\frac{2}{M}$$

Rate constant K = $2.011 \times 10^{-3} \text{ s}^{-1}$

$$t = \frac{2.303}{k} \log \frac{7}{2}$$

$$= \frac{2.303}{2.011 \times 10^{-3}} [0.845 - 0.301]$$

$$= 623 \text{ s}$$

- 26.
- 27.
- 28.
- 29.
- 30.