31/01/2023
Morning

Memory Based Answers \& Solutions

Time : $\mathbf{3}$ hrs.

JEE (Main)-2023 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The ratio of molar specific heat capacity at constant pressure $\left(C_{P}\right)$ to that at constant volume (C_{V}) varies with temperature (T) as: [Assume temperature to be low]
(1) T^{0}
(2) $T^{1 / 2}$
(3) T
(4) $T^{3 / 2}$

Answer (1)
Sol. $\frac{C_{P}}{C_{V}}=\frac{f+2}{f}=v=1+\frac{2}{f}=$ constant
We take ' f to be constant for molecule at low temperature.
$\frac{C_{P}}{C_{V}} \propto T^{0}$
2. If n : Number density of charge carriers

A : Cross-sectional area of conductor
q : Charge on each charge carrier
I: Current through the conductor
then the expression of drift velocity is
(1) $\frac{n A q}{l}$
(2) $\frac{I}{n A q}$
(3) nAql
(4) $\frac{I A}{n q}$

Answer (2)

Sol. We Know $\quad I=n A e v_{d}$

$$
\Rightarrow \quad v_{d}=\frac{1}{n A q}
$$

3. If R, X_{L} and X_{C} denote resistance, inductive reactance and capacitive reactance respectively. Then which of the following options shows the dimensionless physical quantity.
(1) $\frac{X_{L} X_{C}}{R}$
(2) $\frac{R}{\sqrt{X_{L} X_{C}}}$
(3) $\frac{R}{X_{L} X_{C}}$
(4) $\frac{R}{\left(X_{L} X_{C}\right)^{2}}$

Answer (2)

Sol. $X_{L}=$ Inductive reactance $=[R]=$ dimension of R
$X_{C}=$ Capacitive reactance $=[R]=$ dimension of R
$R=$ Resistance
$\frac{R}{\sqrt{X_{L} X_{C}}}=$ dimensionless
4. A drop of water of 10 mm radius is divided into 1000 droplets. If surface tension of water surface is equal to $0.073 \mathrm{~J} / \mathrm{m}^{2}$ then increment in surface energy while breaking down the bigger drop in small droplets as mentioned is equal to
(1) $8.25 \times 10^{-5} \mathrm{~J}$
(2) $9.17 \times 10^{-4} \mathrm{~J}$
(3) $9.17 \times 10^{-5} \mathrm{~J}$
(4) $8.25 \times 10^{-4} \mathrm{~J}$

Answer (4)

Sol. Let the radius of one small droplet is r then

$$
\begin{aligned}
& 1000 \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(10)^{3} \\
& \Rightarrow \quad r=1 \mathrm{~mm} \\
& U_{f}=10004 \pi r^{2} \mathrm{~T}=1000 \times 4 \pi \times 10^{-6} \times 0.073 \\
& \quad=9.17 \times 10^{-4} \mathrm{~J} \\
& U_{i}=4 \pi \times\left(10^{-2}\right)^{2} \mathrm{~T}=9.17 \times 10^{-5} \mathrm{~J} \\
& \text { So } \Delta U=8.25 \times 10^{-4} \mathrm{~J}
\end{aligned}
$$

5. A force 200 N is exerted on a disc of mass 70 kg as shown. Find the normal reaction given by ground on the disc.

(1) 200 N
(2) 600 N
(3) 800 N
(4) $\frac{200}{\sqrt{3}} \mathrm{~N}$

Answer (3)

Sol. $F_{1}=100 \mathrm{~N}$

$$
\begin{aligned}
N & =M g+F_{\perp} \\
& =700+100 \\
& =800 \mathrm{~N}
\end{aligned}
$$

6. At depth d from surface of earth acceleration due to gravity is same as its value at height d above the surface of earth. If earth is a sphere of radius 6400 km , then value of d is equal to
(1) 2975 km
(2) 3955 km
(3) 2525 km
(4) 4915 km

Answer (2)
Sol. $g_{0}\left(1-\frac{d}{R}\right)=\frac{g_{0}}{\left(1+\frac{d}{R}\right)^{2}}$
$\left(1-\frac{d}{R}\right)\left(1+\frac{d}{R}\right)^{2}=1$
On solving
$\frac{d}{R}=0,-\left(\frac{\sqrt{5}+1}{2}\right), \frac{\sqrt{5}-1}{2}$
So, $d=\frac{\sqrt{5}-1}{2} R$
$\Rightarrow d=3955 \mathrm{~km}$
7. Which of the following graphs depicts the variation of electric potential with respect to radial distance from centre of a conducting sphere charged with positive charge.
(1)

(2)

(3)

(4)

Answer (3)
Sol. $V(r)= \begin{cases}\frac{q}{4 \pi \varepsilon_{0} R} & \text { if } r<R \\ \frac{q}{4 \pi \varepsilon_{0} r} & \text { if } r>R\end{cases}$
Where r is radial distance and R is radius of sphere, as charge will be on the surface because the sphere is conducting. So graph will be

8. In a sample of hydrogen atoms, one atom goes through a transition $n=3 \rightarrow$ ground state with emitted wavelength λ_{1}. Another atom goes through a transition $n=2 \rightarrow$ ground state with emitted wavelength λ_{2}. Find $\frac{\lambda_{1}}{\lambda_{2}}$.
(1) $\frac{6}{5}$
(2) $\frac{5}{6}$
(3) $\frac{27}{32}$
(4) $\frac{32}{27}$

Answer (3)

Sol. $\frac{1}{\lambda_{1}}=R Z^{2}\left[1-\frac{1}{9}\right]$
$\frac{1}{\lambda_{2}}=R Z^{2}\left[1-\frac{1}{4}\right]$
$\Rightarrow \frac{\lambda_{1}}{\lambda_{2}}=\frac{\frac{3}{8}}{\frac{4}{9}}=\frac{27}{32}$
9. A block of mass m is connected to two identical springs of force constant K as shown. Find total number of oscillations of block per unit time.

(1) $2 \pi \sqrt{\frac{2 m}{K}}$
(2) $\frac{1}{2 \pi} \sqrt{\frac{K}{m}}$
(3) $2 \pi \sqrt{\frac{m}{2 K}}$
(4) $\frac{1}{2 \pi} \sqrt{\frac{2 K}{m}}$

Answer (4)
Sol.

$K_{\text {eq }}=2 K$
$\omega=\sqrt{\frac{K_{\text {eq }}}{m}}=\sqrt{\frac{2 K}{m}}$
$f=\frac{\omega}{2 \pi}=\frac{1}{2 \pi} \sqrt{\frac{2 K}{m}}$ oscillation per second.
10. Consider the two statements:

Assertion : The beam of electrons shows wave nature and exhibits interference and diffraction.
Reason : Davisson-Germer experiment verified the wave nature of electrons.
(1) Both are correct. Reason correctly explains assertion
(2) Both are incorrect
(3) Assertion is correct but Reason is incorrect
(4) Both are correct. Reason does not explain assertion.

Answer (1)

Sol. Davisson Germer experiment verified wave nature of electrons.
Option (1) is correct.
11. A projectile is launched on horizontal surface such that if thrown with initial velocity of u, it has velocity of $\frac{\sqrt{3} u}{2}$ at maximum height. Then time of flight of the projectile is equal to
(1) $\frac{\sqrt{3} u}{g}$
(2) $\frac{2 u}{g}$
(3) $\frac{u}{g}$
(4) $\frac{u}{2 g}$

Answer (3)

Sol. $u \cos \theta=\frac{\sqrt{3} u}{2}$
$\Rightarrow \theta=\frac{\pi}{6}$ angle of projection
$T=\frac{2 u \sin \theta}{g}=\frac{u}{g}$
12. A diatomic gas is taken from point A to point B in a thermodynamic process as described in the Pressure-Volume graph shown. The change in internal energy is equal to

(1) $3.75 \times 10^{6} \mathrm{~J}$
(2) $2.25 \times 10^{6} \mathrm{~J}$
(3) $7.5 \times 10^{6} \mathrm{~J}$
(4) $4.5 \times 10^{6} \mathrm{~J}$

Answer (1)

Sol. $\Delta U=\frac{f}{2} n R \Delta T$
$=\frac{5}{2}\left(P_{f} V_{f}-P_{i} V_{i}\right)$
$=\frac{5}{2}\left(200 \times 20 \times 10^{3}-50 \times 50 \times 10^{3}\right) \mathrm{J}$
$=\frac{5}{2} \times 1500 \times 10^{3} \mathrm{~J}=3.75 \times 10^{6} \mathrm{~J}$
13. A conductor of length / and cross-sectional area A has drift velocity v_{d} when used across a potential difference V. When another conductor of same material and length I but double cross-sectional area than first is used across same potential difference than drift velocity is equal to
(1) $\frac{V_{d}}{2}$
(2) v_{d}
(3) $2 v_{d}$
(4) $4 v_{d}$

Answer (2)
Sol. $I=\eta e v_{d} A$
$\frac{V}{2}=\eta e v_{d} A$
$\frac{V A}{\rho l}=\eta e v_{d} A$
$\Rightarrow v_{d}$ is independent of area of cross-sectional of conductor.
14. A swimmer swims perpendicular to river flow and reaches point B. If velocity of swimmer in still water is $4 \mathrm{~km} / \mathrm{h}$, find velocity of river flow.

(1) $3 \mathrm{~km} / \mathrm{hr}$
(2) $5 \mathrm{~km} / \mathrm{hr}$
(3) $2 \mathrm{~km} / \mathrm{hr}$
(4) $6 \mathrm{~km} / \mathrm{hr}$

Answer (1)

Sol.

$\Rightarrow \frac{v}{4}=\tan \theta=\frac{750}{1000}$
$\Rightarrow \quad v=3 \mathrm{~km} / \mathrm{hr}$
15. A bar magnet with magnetic moment of $5 \mathrm{Am}^{2}$ is lying at stable equilibrium in external uniform magnetic field of strength 0.4 T . Work done in slowly rotating the bar magnet to the position of unstable equilibrium is equal to
(1) 1 J
(2) 2 J
(3) 3 J
(4) 4 J

Answer (4)
Sol. $U_{i}=-M B \cos 0^{\circ}$
$U_{f}=-M B \cos 180^{\circ}$
so, $W=\Delta U$

$$
\begin{aligned}
& =2 M B \\
& =2 \times 5 \times 0.4 \\
& =4 \mathrm{~J}
\end{aligned}
$$

16. Unpolarised light (of intensity 10) is incident on a polarizer A and subsequently on polarizer B whose pass axis is perpendicular to that of A. Now a polarizer C is introduced between A and B such that pass axis of C is at 45° with pass axis of A. Find intensity that comes out of B.
(1) $\frac{l_{0}}{8}$
(2) $\frac{I_{0}}{4}$
(3) Zero
(4) $\frac{3 I_{0}}{8}$

Answer (1)

Sol. $I_{\text {net }}=I_{0} \times \frac{1}{2} \times \cos ^{2} 45^{\circ} \times \cos ^{2} 45^{\circ}$

$$
=\frac{I_{0}}{8}
$$

17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. A solid sphere is rolling on a smooth surface with kinetic energy $=7 \times 10^{-3} \mathrm{~J}$. If mass of the sphere is 1 kg , find the speed of centre of mass in cm/s. (Consider pure rolling)

Answer (10.00)

Sol. $\frac{1}{2} m v_{\mathrm{cm}}^{2}+\frac{1}{2} \cdot \frac{2}{5} m v^{2}=7 \times 10^{-3}$

$$
\Rightarrow \frac{7}{10} m v^{2}=\frac{7}{1000}
$$

$$
\Rightarrow \quad v=\frac{1}{10} \mathrm{~m} / \mathrm{s}=10 \mathrm{~cm} / \mathrm{s}
$$

22. A lift of mass 500 kg starts moving downwards with initial speed $2 \mathrm{~m} / \mathrm{s}$ and accelerates at $2 \mathrm{~ms}^{-2}$. The kinetic energy of the lift when it has moved 6 m down is \qquad kJ .

Answer (07.00)

Sol. $u=2 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& a=2 \mathrm{~m} / \mathrm{s}^{2} \\
& s=6 \mathrm{~m} \\
& v^{2}-u^{2}=2 a s \\
& \Rightarrow v^{2}=u^{2}+2 a s=4+2 \times 2 \times 6=28 \\
& \text { K.E. } \begin{aligned}
& \frac{1}{2} M V^{2}
\end{aligned}=\frac{1}{2} \times 500 \times(28) \\
& \\
& =500 \times 14 \\
& \\
& =7000 \mathrm{~J} \\
& \\
& =7 \mathrm{~kJ}
\end{aligned}
$$

23. Electric field in a region is $4000 x^{2} \hat{i} \mathrm{~N} / \mathrm{C}$. The flux through the cube is $\frac{x}{5} \mathrm{Nm}^{2} / \mathrm{C}$. Find x.

Answer (32)

Sol. $\phi=4000(0.2)^{2} \times$ Area

$$
\begin{aligned}
& =4000(0.2)^{2} \times(0.2)^{2} \\
& =\frac{4000 \times 16}{10000} \\
& =6.4 \mathrm{Nm}^{2} / \mathrm{C}
\end{aligned}
$$

24. For an series LCR circuit across an A.C source, current and voltage are in same phase. Given the resistance of 20Ω and voltage of the source is 220 V . Find current (in A) in the circuit.

Answer (11.00)

Sol. The given circuit is in resonance
$\therefore i=\frac{220}{20}=11 \mathrm{~A}$
25. For a particle performing SHM, maximum potential energy is 25 J . The kinetic energy (in J) at half the amplitude is $\frac{x}{4}$. Find x

Answer (75.00)

Sol. $\mathrm{KE}=\frac{1}{2} k A^{2}-\frac{1}{2} k\left(\frac{A}{2}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{2} k A^{2}\left[\frac{3}{4}\right] \\
& =\frac{3}{4} \times 25 \mathrm{~J} \\
& =\frac{75}{4} \mathrm{~J}
\end{aligned}
$$

26. The current through a 5Ω resistance remains same, irrespective of its connection across series or parallel combination of two identical cells. Find the internal resistance (in Ω) of the cell.

Answer (05.00)

Sol.

$\frac{\varepsilon_{\mathrm{eq}}}{\left(\frac{r}{2}\right)}=\frac{\varepsilon}{r}+\frac{\varepsilon}{r}$
$\varepsilon_{\text {eq }}=\varepsilon$
$r_{\text {eq }}=\left(\frac{r}{2}\right)$
current $=i=\frac{\varepsilon}{R+\left(\frac{r}{2}\right)}$
When connected in series

$\varepsilon_{\text {eq }}=2 \varepsilon$
$i=\left(\frac{2 \varepsilon}{R+2 r}\right)$
$\Rightarrow \quad \frac{\varepsilon}{R+\frac{r}{2}}=\frac{2 \varepsilon}{R+2 r}$
$\Rightarrow R+2 r=2 R+r$
$\Rightarrow \quad r=R=5 \Omega$
27.
28.
29.
30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Electronic configuration of Nd^{2+} is
(1) $4 f^{2}$
(2) $4 f^{3}$
(3) $4 f^{4}$
(4) $4 \digamma^{5}$

Answer (3)

Sol. $\mathrm{Nd}^{2+}=[\mathrm{Xe}] 44^{4}$
2. Following values of K (Rate constants) are given at different temperatures. Find out (E_{a}) Activation energy
$\mathrm{T}=200 \mathrm{~K} \rightarrow \mathrm{~K}_{1}=0.03$
$\mathrm{T}=300 \mathrm{~K} \rightarrow \mathrm{~K}_{2}=0.05$
(1) 2.548 kJ
(2) 11.488 kJ
(3) 1.106 kJ
(4) 51.437 kJ

Answer (1)

Sol. $\log \left(\frac{0.05}{0.03}\right)=\frac{E_{a}}{2.303 \times 8.314}\left(\frac{1}{200}-\frac{1}{300}\right)$

$$
=\frac{\mathrm{E}_{\mathrm{a}}}{2.303 \times 8.314}\left(\frac{1}{600}\right)
$$

$\mathrm{E}_{\mathrm{a}}=2.548 \mathrm{~kJ}$
3. Basic strength of oxides of V
$\mathrm{V}_{2} \mathrm{O}_{3} \quad \mathrm{~V}_{2} \mathrm{O}_{5} \quad \mathrm{~V}_{2} \mathrm{O}_{4}$
(1) $\mathrm{V}_{2} \mathrm{O}_{3}<\mathrm{V}_{2} \mathrm{O}_{5}<\mathrm{V}_{2} \mathrm{O}_{4}$
(2) $\mathrm{V}_{2} \mathrm{O}_{3}<\mathrm{V}_{2} \mathrm{O}_{4}<\mathrm{V}_{2} \mathrm{O}_{5}$
(3) $\mathrm{V}_{2} \mathrm{O}_{3}>\mathrm{V}_{2} \mathrm{O}_{4}>\mathrm{V}_{2} \mathrm{O}_{5}$
(4) $\mathrm{V}_{2} \mathrm{O}_{3}=\mathrm{V}_{2} \mathrm{O}_{4}=\mathrm{V}_{2} \mathrm{O}_{5}$

Answer (3)

Sol. As oxidation state of V increases than other acidic nature increases

4. $\mathrm{XeF}_{4}, \mathrm{SF}_{4}$ and BrCl_{3} show hybridizations respectively
(1) $s p^{3}, s p^{3}, s p^{3}$
(2) $d s p^{2}, s p^{3}, s p^{3}$
(3) $s p^{3} d^{2}, s p^{3} d, s p^{3} d$
(4) $d^{2} s p^{2}, s p^{3} d, s p^{3} d$

Answer (3)

Sol.

5. $\mathrm{Cu}^{2+}+\mathrm{I}^{-} \rightarrow \mathrm{A} \xrightarrow[\Delta]{\longrightarrow} \mathrm{B}+\mathrm{C}$
B and C are
(1) $\mathrm{I}_{2}, \mathrm{Cu}_{2} \mathrm{I}_{2}$
(2) $\left[\mathrm{Cul}_{4}\right]$
(3) Cul_{3}^{-}
(4) $\mathrm{I}, \mathrm{Cul}_{2}$

Answer (1)
Sol. $\mathrm{Cu}^{2+}+2 \mathrm{I}^{-} \rightarrow \underset{\text { (A) }}{\left[\mathrm{Cul}_{2}\right] \xrightarrow{\Delta}} \underset{\text { (B) }}{\frac{1}{2}} \mathrm{Cu}_{2} \mathrm{I}_{2}+\frac{1}{2} \mathrm{I}_{2}$
\therefore Products
(B) and
(C) are $\mathrm{Cu}_{2} \mathrm{I}_{2}$ and I_{2} respectively
6. When phenol reacts with Br_{2} in low polarity solvent, it produces as a major product \qquad ?
(1)

(2)

(3)

(4)

Sol.

7. Choose the correct information regarding products obtained on electrolysis of Brine solution
(1) Cl_{2} at cathode
(2) O_{2} at cathode
(3) H_{2} at cathode
(4) OH^{-}at anode

Answer (3)

Sol. Anode

$$
2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}
$$

Cathode: $\quad 2 \mathrm{e}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$

Net reaction $2 \mathrm{Cl}^{-}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \underset{\text { anode }}{\mathrm{Cl}_{2}}+\underbrace{\mathrm{H}_{2}+2 \mathrm{OH}^{-}}_{\text {cathode }}$
8. Melting point order of

A

B

C
(1) A $>$ B $>$ C
(2) $\mathrm{C}>\mathrm{A}>\mathrm{B}$
(3) B $>$ A $>$ C
(4) A $>$ C $>$ B

Answer (1)

Sol.

9. Consider the following reaction :

$$
\mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{3}(\mathrm{~g})
$$

If $K_{p}=2 \times 10^{12}$ and $K_{c}=x \times 10^{13}$, the value of x in terms of RT will be
(1) $\frac{\sqrt{R T}}{4}$
(2) $\frac{\sqrt{R T}}{5}$
(3) $\frac{\sqrt{R T}}{10}$
(4) $10 \sqrt{R T}$

Answer (2)

Sol. $K_{p}=K_{c}(R T)^{-1 / 2}$
$2 \times 10^{12}=x \times 10^{13}(R T)^{-1 / 2}$
$x=\frac{2 \times 10^{12}}{10^{13} \times(R T)^{-1 / 2}}=\frac{2 \sqrt{R T}}{10}=\frac{\sqrt{R T}}{5}$
10. Arrange the following ions in the increasing order of their ionic radii.
$\mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{K}^{+}$and Ca^{2+}
(1) $\mathrm{S}^{2-}<\mathrm{Cl}^{-}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
(2) $\mathrm{Cl}^{-}<\mathrm{S}^{2-}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
(3) $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
(4) $\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$

Answer (4)

Sol. The given ionic species are isoelectronic species. The radii of isoelectronic ionic species increases as the atomic of the ion decreases. Therefore, the correct increasing order of radii of ionic species is
$\mathrm{Ca}^{2+}<\mathrm{K}^{+}<\mathrm{Cl}^{-}<\mathrm{S}^{2-}$
11. Which of the following option contains the compound which has highest sweetening value?
(1) Aspartame
(2) Saccharin
(3) Sucralose
(4) Alitame

Answer (4)

Sol. Alitame has the highest sweetening value.
12. Which of the following method is not a concentration of ore?
(1) Electrolysis
(2) Leaching
(3) Froth floatation
(4) Hydraulic washing

Answer (1)

Sol. The following methods are commonly used for concentration of ore

1. Hydraulic washing
2. Leaching

3. Froth floatation

But electrolysis is used for refining of the crude metal.
13. In which of the following reactions, $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reducing agent
(1) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{Mn}^{2+} \rightarrow \mathrm{MnO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{NaOCl}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{NaCl}+\mathrm{O}_{2}$
(3) $\mathrm{Fe}^{2+}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{PbS}+\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{PbSO}_{4}+\mathrm{H}_{2} \mathrm{O}$

Answer (2)
Sol.

In Option (2), oxidation of $\mathrm{H}_{2} \mathrm{O}_{2}$ is taking place and hence $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reducing agent.
14. Consider the following sequence of reaction:

(iii) $\mathrm{H}_{3} \mathrm{O}^{\oplus}$

The product ' P ' is?
(1)

(2)

(3)

(4)

Answer (2)

Sol.

15. Which of the following transition emits the same wavelength as that for ($\mathrm{n}=4 \rightarrow \mathrm{n}=2$) for He^{+}Ion
(1) $\mathrm{H}(\mathrm{n}=3 \rightarrow \mathrm{n}=1)$
(2) $\mathrm{H}(\mathrm{n}=2 \rightarrow \mathrm{n}=1$)
(3) $\mathrm{Li}^{2+}(\mathrm{n}=4 \rightarrow \mathrm{n}=3)$
(4) $\mathrm{He}^{+}(\mathrm{n}=6 \rightarrow 3)$

Answer (2)
Sol. $\frac{\Delta E_{(H-\text { atom })}}{n=2 \rightarrow n=1}=\frac{(\Delta E)_{\text {He lon }^{+}}}{n=4 \rightarrow n=2}=\frac{(\Delta E)_{L^{++} \text {lon }}}{n=6 \rightarrow n=3}$
16. A complex compound of Co (X) is pink colour in water. On reaction with conc. HCl forms (Y) of deep blue colour and has geometry (Z). Identify (X), (Y) and (Z).
(1) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{CoCl}_{6}\right]^{3-}$, Octahedral
(2) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{CoCl}_{4}\right]^{2-}$, Tetrahedral
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},[\mathrm{CoCl}]^{2-}$, Tetrahedral
(4) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{CoCl}_{6}\right]^{3-}$, Octahedral

Answer (3)

Sol. Co^{2+} ions in aqueous medium are pink in colour. On addition of conc. HCl to it, the solution becomes blue due to formation of $\left[\mathrm{CoCl}_{4}\right]^{2-}$ which is tetrahedral.

$$
\underset{\substack{(\mathrm{Y}) \\ \text { (Blue) }}}{\left[\mathrm{CoCl}_{4}\right]^{2-}}+4 \mathrm{H}^{+}+6 \mathrm{H}_{2} \mathrm{O}
$$

Geometry of (Y) is tetrahedral (Z).
17. Which of the following option contains the correct match?

List-I

(A) XeF_{4}
(P) T-shape
(B) SF_{4}
(Q) Seesaw
(C) NH_{4}^{\oplus}
(R) Square planar
(D) BrF_{3}
(1) $A \rightarrow P, B \rightarrow Q, C \rightarrow R, D \rightarrow S$
(2) $A \rightarrow R, B \rightarrow Q, C \rightarrow S, D \rightarrow P$
(3) $\mathrm{A} \rightarrow \mathrm{Q}, \mathrm{B} \rightarrow \mathrm{P}, \mathrm{C} \rightarrow \mathrm{S}, \mathrm{D} \rightarrow \mathrm{R}$
(4) $\mathrm{A} \rightarrow \mathrm{S}, \mathrm{B} \rightarrow \mathrm{R}, \mathrm{C} \rightarrow \mathrm{P}, \mathrm{D} \rightarrow \mathrm{Q}$

Answer (2)
Sol. $\mathrm{XeF}_{4} \rightarrow$ Square planar
$\mathrm{SF}_{4} \rightarrow$ Seesaw
$\mathrm{NH}_{4}^{\oplus} \rightarrow$ Tetrahedral
$\mathrm{BrF}_{3} \rightarrow$ T-shaped
18. A detergent is dissolved in non-polar solvent. The structure of micelle in non-polar solvent
Detergent molecule

(1)

(2)

(3)

(4)

Answer (1)
Sol. In non-polar-solvent, non-polar part will be outside.
19. Consider the following reaction :

A, B and C are respectively
(1) $\mathrm{ClONO}_{2}(\mathrm{~g}) ; \mathrm{HOCl}(\mathrm{g}) ; \mathrm{HNO}_{3}(\mathrm{~g})$
(2) $\mathrm{ClONO}_{2}(\mathrm{~g}) ; \mathrm{HOCl}(\mathrm{g}) ; \mathrm{NO}_{2}(\mathrm{~g})$
(3) $\mathrm{CINO}_{2}(\mathrm{~g}) ; \mathrm{HCl} ; \mathrm{Cl}_{2}$
(4) $\mathrm{CINO}_{2}(\mathrm{~g}) ; \mathrm{HCl}(\mathrm{g}) ; \mathrm{HNO}_{3}(\mathrm{~g})$

Answer (1)

Sol.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30)$ using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. 2.56 g of a non-electrolyte solute is dissolved in one litre of a solution, it has osmotic pressure (π) equal to 4 bar at 300 K temperature. Then find the molar mass of the compound.
[Given : R = 0.083 bar] (Round off to the nearest integer)

Answer (16)

Sol. $\mathrm{p}=\mathrm{CRT}$
$4=\frac{2.56}{M} \times 0.083 \times 300$
$\approx 16 \mathrm{~g}$
22. Weight of an organic compounds is 0.492 g , when the hydrocarbon undergoes combustion it produces $0.792 \mathrm{~g} \mathrm{CO}_{2}$. Find the $\%$ of carbon in the given hydrocarbon (Round off to the nearest integer)

Answer (44)

Sol. $\% \mathrm{C}=\frac{12}{44} \times \frac{0.792}{0.492} \times 100$
= 43.90\%
23. The oxidation state of phosphorus atom in the hypophosphoric acid is \qquad ?

Answer (4)
Sol. The hypophosphoric acid is :

24. What is the volume of Hydrogen Gas produced (in litre) when 11.2 gm of Zn metal reacts with excess of dil. HCl (Closest Integer)

Given: Molar volume of $\mathrm{H}_{2}=22.7 \mathrm{~L} /$ mole
Molar mass of Zn is $65 \mathrm{gm} / \mathrm{mole}$

Answer (4)

Sol. $\underset{11.2 \mathrm{gm}}{\mathrm{Zn}}+2 \mathrm{HCl} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$

$$
\begin{aligned}
\left(\frac{11.2}{65}\right) \quad \frac{11.2}{65} & \times 22.7 \text { litre } \\
& =3.911 \text { litre } \\
& \approx 4 \text { litre }
\end{aligned}
$$

25. The value of logarithm of the equilibrium constant of the following reaction is $\frac{X}{3}$. Then ' X ' is
$\mathrm{Pd}^{2+}+4 \mathrm{Cl}^{-} \rightleftharpoons \mathrm{PdCl}_{4}^{2-}$

Given: $\quad\left[\mathrm{Pd}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pd} \quad ; \quad \mathrm{E}^{\circ}=0.83 \mathrm{~V}\right.$

$$
\mathrm{PdCl}_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Pd}+4 \mathrm{Cl}^{-} ; \mathrm{E}^{\circ}=0.63 \mathrm{~V}
$$

and $\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06$]

Answer (20)

Sol. $\Delta \mathbf{G}_{3}^{\circ}=\Delta \mathbf{G}_{1}^{\circ}-\Delta \mathbf{G}_{2}^{\circ}$
$-2.303 \times R$ Tlogk $=-0.83 \times 2 \times F+0.63 \times 2 \times F$
logk $=\frac{0.2 \times 2 \times F}{2.303 \times R T}$
$=\frac{0.2 \times 2}{0.06}=\frac{20}{3}$
26. Find the value of $|\Delta \mathrm{H}|$ in kJ for
$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})$

Given:
$\Delta \mathrm{H}_{\text {diss }} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cl}(\mathrm{g}) \quad 240 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{H}_{\mathrm{eg}} \mathrm{Cl}(\mathrm{g})+\mathrm{e} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) \quad-320 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta \mathrm{H}_{\text {hydration }} \mathrm{Cl}^{-}(\mathrm{g})+\mathrm{aq} \rightarrow \mathrm{Cl}^{-}(\mathrm{aq}) \quad-340 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer (540)

Sol.

$$
\begin{array}{ll}
\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}(\mathrm{~g}) & \Delta \mathrm{H}_{1}=\frac{240}{2}=120 \mathrm{~kJ} \\
\mathrm{Cl}(\mathrm{~g})+\mathrm{e} \rightarrow \mathrm{Cl}^{-}(\mathrm{g}) & \Delta \mathrm{H}_{2}=-320 \mathrm{~kJ} \\
\mathrm{Cl}^{-}(\mathrm{g})+\mathrm{aq} \rightarrow \mathrm{Cl}^{-}(\mathrm{aq}) & \Delta \mathrm{H}_{3}=-340 \mathrm{~kJ}
\end{array}
$$

$\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{e}^{-}+\mathrm{aq} \rightarrow \mathrm{Cl}^{-}(\mathrm{aq}) \Delta \mathrm{H}$
$\Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}$
$=120-320-340$
$=-540 \mathrm{~kJ}$
$|\Delta \mathrm{H}|=540 \mathrm{~kJ}$
27.

28
29.
30.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. $\int_{\pi / 6}^{\pi / 3} \frac{2+3 \sin x}{\sin x(1+\cos x)} d x$ is equal to
(1) $\ln (\sqrt{3}+2)-\frac{\ln 3}{2}+6 \sqrt{3}-\frac{28}{3}$
(2) $\ln (\sqrt{3}+2)-\frac{\ln 3}{2}$
(3) $\ln (\sqrt{3}+2)-\frac{\ln 3}{2}-\frac{28}{3}$
(4) $6 \sqrt{3}-\frac{28}{3}$

Answer (1)

Sol. $I=\int \frac{2}{\sin x(1+\cos x)} d x+\int \frac{3}{1+\cos x} d x$

$$
=\underbrace{\int \frac{2 \sin x}{\sin ^{2} x(1+\cos x)} d x}_{l_{1}}+\underbrace{\int \frac{3}{2 \cos ^{2} \frac{x}{2}} d x}_{l_{2}}
$$

Let $\cos x=t$

$$
\begin{aligned}
& I_{1}=\int \frac{-2 d t}{\left(1-t^{2}\right)(1+t)} \\
& =-2\left(\frac{\ln |t+1|}{4}+\frac{1}{2 t+2}-\frac{\ln |t-1|}{4}\right)+C
\end{aligned}
$$

$$
=-2\left(\frac{\ln |\cos x+1|}{4}+\frac{1}{2 \cos x+2}-\frac{\ln |\cos x-1|}{4}\right)+C
$$

$$
I_{2}=\frac{3}{2} 2 \tan \frac{x}{2}+C
$$

So,

$$
\int_{\pi / 6}^{\pi / 3} \frac{2+3 \sin x}{\sin x(1+\cos x)} d x=\ln (2+\sqrt{3})-\ln \frac{3}{2}+6 \sqrt{3}-\frac{28}{3}
$$

2. The product and sum of first four terms of G.P. is 1296 and 126 respectively, then sum of the possible values of common difference is \qquad
(1) 14
(2) $\frac{10}{3}$
(3) $\frac{7}{2}$
(4) 3

Answer (4)

Sol. $\frac{a}{r^{3}} \cdot \frac{a}{r} \cdot a r \cdot a r^{3}=1296$

$$
\Rightarrow \quad a=6
$$

Now, $\frac{a}{r^{3}}+\frac{a}{r}+a r+a r^{3}=126$

$$
\begin{aligned}
& \Rightarrow \frac{1}{r^{3}}+\frac{1}{r}+r+r^{3}=21 \\
& \Rightarrow\left(r+\frac{1}{r}\right)\left(\left(r+\frac{1}{r}\right)^{2}-3\right)+\left(r+\frac{1}{r}\right)=21
\end{aligned}
$$

Let $r+\frac{1}{r}=t$

$$
\begin{aligned}
& \beta-3 t+t=21 \\
\Rightarrow & \beta-2 t-21=0 \\
\Rightarrow & t=3 \\
\Rightarrow & r+\frac{1}{r}=3 \\
\Rightarrow & r^{2}-3 r+1=0 \\
& r_{1}+r_{2}=3
\end{aligned}
$$

Sum of possible values of r is 3
3. If $B=\ln (1-a)$ and $P(a)$

$$
=\left(a+\frac{a^{2}}{2}+\frac{a^{3}}{3}+\ldots . .+\frac{a^{50}}{50}\right)
$$

then $\int_{0}^{a} \frac{t^{50}}{1-t} d t$ equals
(1) $-(B+P(a))$
(2) $-B+P(a)$
(3) $B-P(a)$
(4) $B+P(a)$

Answer (3)

Sol. $\int_{0}^{a}\left(\frac{t^{50}-1}{1-t}+\frac{1}{1-t}\right) d t$
$\Rightarrow \int_{0}^{a}\left(-\left(1+t+t^{2}+\ldots .+t^{49}\right)+\frac{1}{1-t}\right) d t$
$\Rightarrow \ln (1-t)-\left.\left(t+\frac{t^{2}}{2}+\frac{t^{3}}{3}+\ldots . . \frac{t^{50}}{50}\right)\right|_{0} ^{2}$
$\Rightarrow \ln (1-a)-\left(a+\frac{a^{2}}{2}+\frac{a^{3}}{3}+\ldots .+\frac{a^{50}}{50}\right)$
$\Rightarrow B-P(a)$
4. $\sin ^{-1}\left(\frac{a}{17}\right)+\cos ^{-1}\left(\frac{4}{5}\right)-\tan ^{-1}\left(\frac{77}{36}\right)=0$, then the value of $\sin ^{-1}(\sin a)+\cos ^{-1}(\cos a)$ is
(1) 0
(2) $16-2 \pi$
(3) π
(4) 5

Answer (3)

Sol. $\sin ^{-1}\left(\frac{a}{17}\right)=-\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{77}{36}\right)$
Let $\cos ^{-1} \frac{4}{5}=\beta$ and $\tan ^{-1}\left(\frac{77}{36}\right)=\alpha$
$\Rightarrow \sin \left(\sin ^{-1} \frac{a}{17}\right)=\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$
$\Rightarrow \quad \frac{a}{17}=\frac{77}{85} \cdot \frac{4}{5}-\frac{36}{85} \cdot \frac{3}{5}$
$\Rightarrow a=\frac{200}{25} \Rightarrow a=8$
$\therefore \quad \sin ^{-1} \sin 8+\cos ^{-1} \cos 8=3 \pi-8+8-2 \pi$
5. The range of $\frac{[x]}{x^{2}+1}$ if domain is $[-2,6]$ is ([.] represents G.I.F)
(1) $\left[-4, \frac{-5}{2}\right] \cup\left[\frac{5}{37}, \frac{1}{2}\right] \cup\{0\}$
(2) $\left(-1, \frac{-2}{5}\right) \cup\left[0, \frac{5}{37}\right]$
(3) $\left(-1, \frac{-2}{5}\right] \cup\left[\frac{5}{37}, \frac{1}{2}\right) \cup\{0\}$
(4) $\left[-1, \frac{-2}{5}\right) \cup\left[0, \frac{5}{37}\right)$

Answer (3)

Sol. $x \in[-2,-1), f(x)=\frac{-2}{x^{2}+1}, f(x) \in\left[\frac{-2}{5},-1\right]$
$x \in[-1,0), f(x)=\frac{-1}{x^{2}+1}, f(x) \in\left[\frac{-1}{2},-1\right]$
$x \in[0,1), f(x)=0$
$x \in[1,2), f(x)=\frac{1}{x^{2}+1}, f(x) \in\left(\frac{1}{5}, \frac{1}{2}\right]$
$x \in[2,3), f(x)=\frac{2}{x^{2}+1}, f(x) \in\left(\frac{1}{5}, \frac{2}{5}\right]$
$x \in[3,4), f(x)=\frac{3}{x^{2}+1}, f(x) \in\left(\frac{3}{17}, \frac{3}{10}\right]$
$x \in[4,5), f(x)=\frac{4}{x^{2}+1}, f(x) \in\left(\frac{4}{26}, \frac{4}{17}\right]$
$x \in[5,6), f(x)=\frac{5}{x^{2}+1}, f(x) \in\left(\frac{5}{37}, \frac{5}{26}\right]$
$x=6, f(x)=\frac{6}{37}$
$\therefore \quad$ range of $f(x)$ is $\left(-1, \frac{-2}{5}\right] \cup\{0\} \cup\left(\frac{5}{37}, \frac{1}{2}\right]$
6. If maximum distance of a normal to the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{b^{2}}=1$ from $(0,0)$ is 1 , then find the eccentricity of the ellipse.
(1) $\frac{\sqrt{3}}{4}$
(2) $\frac{1}{\sqrt{2}}$
(3) $\frac{1}{2}$
(4) $\frac{\sqrt{3}}{2}$

Answer (4)
Sol. Equation of normal is
$(2 \sec \theta) x-(b \operatorname{cosec} \theta) y=4-b^{2}$
Perpendicular distance from $(0,0)$ is
$D=\left|\frac{4-b^{2}}{\sqrt{4 \sec ^{2} \theta+b^{2} \operatorname{cosec}^{2} \theta}}\right|$
$=\frac{4-b^{2}}{\sqrt{\left(4+b^{2}\right)+4 \tan ^{2} \theta+b^{2} \cot ^{2} \theta}}$
$\leq \frac{4-b^{2}}{\sqrt{b^{2}+4+4 b}}$
[Using $A M \geq G M$]
$D_{\max }=2-b=1 \Rightarrow b=1$
$e^{2}=1-\frac{1}{4}$
$e=\frac{\sqrt{3}}{2}$
7. Let the curve C_{1} be represented by $|z|=2$ and C_{2} by $\left|z+\frac{1}{z}\right|=\frac{15}{4}$ then
(1) C_{1} lies inside C_{2}
(2) C_{2} lies inside C_{1}
(3) C_{1} and C_{2} has 2 points of intersection
(4) C_{1} and C_{2} has 4 points of intersection

Answer (1)

Sol. Let $z=x+i y$

$C_{1} \Rightarrow x^{2}+y^{2}=4$
$C_{2} \Rightarrow\left|x+i y+\frac{1}{x+i y}\right|=\frac{15}{4}$
OR $\left|x+i y+\frac{x-i y}{4}\right|=\frac{15}{4}$
$\mathrm{OR}\left(\frac{5 x}{4}\right)^{2}+\left(\frac{3 y}{4}\right)^{2}=\frac{225}{16}$
OR $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
$e=\sqrt{1-\frac{1}{4}}=\frac{\sqrt{3}}{2}$
8. Find the number of real solution(s) of

$$
\sqrt{x^{2}-4 x+3}+\sqrt{x^{2}-9}=\sqrt{4 x^{2}-14 x+6} \text { is }
$$

(1) 1
(2) 2
(3) 3
(4) 4

Answer (1)

Sol. $x^{2}-4 x+3 \geq 0$

$$
\begin{align*}
& (x-1)(x-3) \geq 0 \\
& x \in(-\infty, 1] \cup[3, \infty) \tag{i}\\
& x^{2}-9 \geq 0 \Rightarrow x \in(-\infty,-3] \cup[3, \infty) \tag{ii}\\
& 4 x^{2}-14 x+6 \geq 0 \Rightarrow(2 x-1)(x-3) \geq 0 \\
& \Rightarrow \quad x \in\left(-\infty, \frac{1}{2}\right] \cup[3, \infty) \tag{iii}\\
& \text { (i) } \cap \text { (ii) } \cap \text { (iii) } \\
& x \in(-\infty,-3] \cup[3, \infty)
\end{align*}
$$

Now squaring both sides of given equation:
$\left(x^{2}-4 x+3\right)+\left(x^{2}-9\right)+2$
$\sqrt{\left(x^{2}-4 x+3\right)\left(x^{2}-9\right)}=4 x^{2}-14 x+6$
$\Rightarrow 2 \sqrt{\left(x^{2}-4 x+3\right)(x-3)(x+3)}=2\left(x^{2}-5 x+6\right)$
$\Rightarrow\left(x^{2}-4 x+3\right)(x-3)(x+3)=(x-3)^{2}(x-2)^{2}$
$x=3$ is one solution
$\Rightarrow\left(x^{2}-4 x+3\right)(x+3)=\left(x^{2}-4 x+4\right)(x-3)$
$\Rightarrow x^{3}-4 x^{2}+3 x+3 x^{2}-12 x+9$
$=x^{3}-4 x^{2}+4 x-3 x^{2}+12 x-12$
$\Rightarrow 6 x^{2}-25 x+21=0$
$\Rightarrow \quad x=3, \frac{7}{6}$
Only one real solution $x=3$ as $x=\frac{7}{6}$, is not is the domain.
9. If $f(x)=\sin ^{3}\left(\frac{\pi}{3} \cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)$ then $f(1)$ is
(1) $\frac{3 \pi^{2}}{8}$
(2) $\frac{3 \pi^{2}}{4}$
(3) $\frac{3 \pi^{2}}{16}$
(4) $\frac{\pi^{2}}{2}$

Answer (3)

Sol. $f^{\prime}(x)=3 \sin ^{2}\left(\frac{\pi}{3} \cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)$

$$
\begin{array}{r}
\cdot \cos \left(\frac{\pi}{3} \cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right) \\
\cdot \frac{\pi}{3}\left(-\sin \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)
\end{array}
$$

$$
\begin{aligned}
& \quad \frac{\pi}{3 \sqrt{2}} \cdot \frac{3}{2}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{1}{2}} \cdot\left(-12 x^{2}+10 x\right) \\
& f^{\prime}(1)=3 \sin ^{2}\left(\frac{\pi}{3} \cos \left(\frac{2 \pi}{3}\right)\right) \cdot \cos \left(\frac{\pi}{3} \cos \left(\frac{2 \pi}{3}\right)\right) \\
& \cdot \frac{\pi}{3}\left(-\sin \frac{2 \pi}{3}\right) \cdot \frac{\pi}{2 \sqrt{2}}(\sqrt{2})(-2) \\
& =3 \sin ^{2}\left(\frac{-\pi}{6}\right) \cdot \cos \left(\frac{-\pi}{6}\right) \cdot \frac{\pi}{3}\left(-\frac{\sqrt{3}}{2}\right)(-\pi) \\
& =\frac{3}{4} \cdot \frac{\sqrt{3}}{2} \cdot \frac{\pi}{3} \cdot \frac{\sqrt{3}}{2} \cdot \pi=\frac{3 \pi^{2}}{16}
\end{aligned}
$$

10. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that $|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}|$ and $\vec{b} \cdot \vec{c}=0$ then

Statement-I: $|\vec{a}+\lambda \vec{c}| \geq 0$ for all $\lambda \in \boldsymbol{R}$.
Statement-II : \vec{a} is always parallel to \vec{c}.
(1) Statement-I is true, statement-II is false
(2) Statement-I is true, statement-II is true
(3) Statement-I is false, statement-II is true
(4) Statement-I is false, statement-II is false

Answer (1)
Sol. $|\vec{a}+\vec{b}+\vec{c}|^{2}=|\vec{a}+\vec{b}-\vec{c}|^{2}$
$\Rightarrow \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}=\vec{a} \cdot \vec{b}-\vec{b} \cdot \vec{c}-\vec{c} \cdot \vec{a}$
$\Rightarrow \vec{c} \cdot \vec{a}=0$
$\therefore \vec{a}$ is perpendicular to \vec{c}
$|\vec{a}+\lambda \vec{c}| \geq 0 \quad$ (However, it is always true) and statement-II is false.
11. $A=\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 1 & 1\end{array}\right]$, then find sum of diagonal elements of $(A-)^{11}$
(1) 4096
(2) 4097
(3) 2048
(4) 2049

Answer (2)

Sol. $A-I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$
$(A-I)^{11}=\left[\begin{array}{llll}\underline{1^{11}} & & \\ & \underline{2^{11}} & \\ & & \underline{0^{11}}\end{array}\right]$
(Calculating only for diagonal elements)
trace $(A-)^{11}=2^{11}+1^{11}$

$$
=4097
$$

12. Circle $x^{2}+y^{2}-4 x-6 y+11=0$ is rolled up by 4 units along a tangent to it at the point $(3,2)$.

Let this be circle C_{1}, C_{2} is the mirror image of circle C_{1} about the tangent. A and B are centres of circles C_{1} and $C_{2} . C$ and D are the feet of perpendicular from A and B respectively upon X-axis. The area of the trapezium $A B C D$ equals to
(1) $4(1+\sqrt{2})$
(2) $2(1+\sqrt{2})$
(3) $3(1+\sqrt{2})$
(4) $1+\sqrt{2}$

Answer (1)

Sol. Given circle is
$x^{2}+y^{2}-4 x-6 y+11=0$, centre $E(2,3)$
Tangent at $(3,2)$ is
$x-y-1=0$
After rolling up by 4 units,
Centre of C_{1} is A

$$
\begin{aligned}
& \text { Where } A \equiv\left(2+4 \times \frac{1}{\sqrt{2}}, 3+4 \times \frac{1}{\sqrt{2}}\right) \\
& \equiv(2+2 \sqrt{2}, 3+2 \sqrt{2})
\end{aligned}
$$

B is image of A

$\frac{x-(2+\sqrt{2})}{1}=\frac{y-(3+2 \sqrt{2})}{-1}=-2\left(\frac{-2}{2}\right)=2$
$B(4+2 \sqrt{2}, 1+2 \sqrt{2})$
Area of $A B C D$
$=\frac{1}{2} \times(4+4 \sqrt{2}) \times((4+2 \sqrt{2})-(2+2 \sqrt{2}))$
$=4(1+\sqrt{2})$
13. Let the relation $R,(a, b) R(c, d)$ be such that $a b(d-c)=c d(a-b)$, then R is
(1) Reflexive only
(2) Symmetric
(3) Transitive but not symmetric
(4) Reflexive and symmetric but not transitive

Answer (2)
Sol. Checking for reflexive
$\therefore \quad(a, b) R(a, b)$
$\Rightarrow a b(b-a)=a b(a-b)$

$$
1=-1 \quad \therefore \text { Not reflexive }
$$

Checking for $(a, b) R(c, d)$ then $(c, d) R(a, b)$
$\Rightarrow \quad c d(b-a)=a b(c-d)$
$\Rightarrow a b(d-c)=c d(a-b) \quad \therefore$ Symmetric
$\therefore \quad R$ is symmetric
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Find the number of 5 -digit numbers formed using the digits $0,3,4,7,9$ when repetition of digits is allowed is

Answer (2500)
Sol.

Total number of numbers $=4 \times 5 \times 5 \times 5 \times 5$

$$
=2500
$$

22. Find remainder when 5^{99} is divided by 11.

Answer (09)

Sol. $5^{99}=\left(5^{5}\right)^{19} \cdot 5^{4}$

$$
\begin{aligned}
& =(3125)^{19} \cdot 5^{4} \\
& =(11 \lambda+1)^{19} \cdot 5^{4} \\
& =(11 K+1) 5^{4} \\
& =11 K_{1}+5^{4}
\end{aligned}
$$

When 5^{4} is divided by 11 , we get remainder $=9$
23. If $f(x)+\int_{3}^{x} \frac{f(t)}{t} d t=\sqrt{x+1}$ then value of $12 f(8)$ equals.

Answer (17)

Sol. Differentiating both sides we get

$$
\begin{aligned}
& f^{\prime}(x)+\frac{f(x)}{x}=\frac{1}{2 \sqrt{x+1}} \\
& \Rightarrow \quad \frac{d y}{d x}+\frac{y}{x}=\frac{1}{2 \sqrt{x+1}} \\
& \text { I.F. }=e^{\int \frac{1}{x} d x}=x \\
& \therefore \quad x y=\frac{1}{2} \int \frac{x}{\sqrt{x+1}} d x \\
& \Rightarrow x y=\frac{1}{2} \int\left(\sqrt{x+1}-\frac{1}{\sqrt{x+1}}\right) d x \\
& \Rightarrow \quad x y=\frac{1}{2}\left(\frac{2}{3}(x+1)^{3 / 2}-2 \sqrt{x+1}\right)+c
\end{aligned}
$$

Put $x=3$ in $f(x)+\int_{3}^{x} \frac{f(t)}{t} d t=\sqrt{x+1}$ we get $f(3)=2$
$\therefore \quad c=\frac{16}{3}$
$\Rightarrow 8 f(8)=\frac{1}{2}\left(\frac{27}{3} \cdot 2-2 \cdot 3\right)+\frac{16}{3}$
$\Rightarrow 12 f(8)=17$
24. $y=f(x)$ is a parabola with focus $\left(-\frac{1}{2}, 0\right)$ and directrix $y=-\frac{1}{2}$

Given that $\tan ^{-1} \sqrt{f(x)}+\sin ^{-1} \sqrt{f(x)+1}=\frac{\pi}{2}$
Then number of solutions for x is
Answer (02)

Sol. $S P=S Q$

$$
\begin{aligned}
& \left(x+\frac{1}{2}\right)^{2}+y^{2}=\left(y+\frac{1}{2}\right)^{2} \\
& x^{2}+\frac{1}{4}+x+y^{2}=y^{2}+\frac{1}{4}+y \\
& \Rightarrow \text { Eqn. of parabola } y=x^{2}+x \\
& f(x)=x^{2}+x \\
& \tan ^{-1} \sqrt{x^{2}+x}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} \\
& \tan ^{-1} \sqrt{x^{2}+x}=\cos ^{-1} \sqrt{x^{2}+x+1} \\
& \cos ^{-1} \frac{1}{\sqrt{x^{2}+x+1}}=\cos ^{-1} \sqrt{x^{2}+x+1} \\
& \Rightarrow \frac{1}{\sqrt{x^{2}+x+1}}=\sqrt{x^{2}+x+1} \\
& \Rightarrow x^{2}+x+1=1 \\
& \text { Or } x=0,-1
\end{aligned}
$$

25. The direction ratio's of two lines which are parallel are given by $\langle 2,1,-1>$ and $\langle\alpha+\beta, 1+\beta, 2>$. Find $|2 \alpha+3 \beta|$

Answer (11)

Sol. $\frac{\alpha+\beta}{2}=\frac{1+\beta}{1}=\frac{2}{-1}$
$\Rightarrow \alpha+\beta=-4,1+\beta=-2$
So, $\beta=-3, \alpha=-1$
$|2 \alpha+3 \beta|=11$
26. Given $|\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{6},|\vec{a} \times \vec{b}|=\sqrt{48}$. Find $(\vec{a} \cdot \vec{b})^{2}$

Answer (36.00)

Sol. $(\vec{a} \cdot \vec{b})^{2}=|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \times \vec{b})^{2}$

$$
=14 \cdot 6-48
$$

$$
=36
$$

27.
28.
29.
30.
