CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. Which one of the following species is linear in shape?
(1) \vdash_{3}^{-}
(2) I_{3}^{+}
(3) ICl_{3}
(4) ICl_{2}^{+}

Answer (1)

Sol. The shapes of the given species are
$I_{3}^{-}:$

I_{3}^{+}:

ICl_{3} :

(T-shape)
ICl_{2}^{+}:

(Angular bent)
2. For a given hydrocarbon, 11 moles of O_{2} is used and produces 4 moles of $\mathrm{H}_{2} \mathrm{O}$. Then the formula of the hydrocarbon is
(1) $\mathrm{C}_{11} \mathrm{H}_{8}$
(2) $\mathrm{C}_{9} \mathrm{H}_{8}$
(3) $\mathrm{C}_{11} \mathrm{H}_{16}$
(4) $\mathrm{C}_{6} \mathrm{H}_{14}$

Answer (2)
Sol. $C_{x} H_{y}+\left(x+\frac{y}{4}\right) \mathrm{O}_{2} \longrightarrow x \mathrm{CO}_{2}+\frac{y}{2} \mathrm{H}_{2} \mathrm{O}$
$\frac{\mathrm{y}}{2}=4 \quad \therefore \mathrm{y}=8$
$x+\frac{8}{4}=11$
$\therefore \quad \mathrm{x}=9$
\therefore Hydrocarbon will be $=\mathrm{C}_{9} \mathrm{H}_{8}$
3. Which of the following plays an important role in neuromuscular functions?
(1) Ca
(2) Mg
(3) Be
(4) Li

Answer (1)

Sol. Calcium plays an important role in neuromuscular functions.
4. Which of the following compound contain maximum number of chlorine atoms?
(1) Chloropicrin
(2) Chloral
(3) Gammexane
(4) Freon-12

Answer (3)

Sol. Compounds

Number of

Chlorine atoms

Chloropicrin	3
Chloral	3
Gammexane	6
Freon-12	2

5. Decreasing order of Lewis acid character is
(1) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}>\mathrm{Bl}_{3}$
(2) $\mathrm{Bl}_{3}>\mathrm{BBr}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}$
(3) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{Bl}_{3}>\mathrm{BBr}_{3}$
(4) $\mathrm{Bl}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}>\mathrm{BBr}_{3}$

Answer (2)

Sol. Extent of back bonding
$\frac{\mathrm{BF}_{3}}{2 p-2 p}>\frac{\mathrm{BCl}_{3}}{2 p-3 p}>\frac{\mathrm{BBr}_{3}}{2 p-4 p}>\frac{\mathrm{BI}_{3}}{2 p-5 p}$
6. pH of acid rain is 5.6 . Which of the following reaction is involved in acid rain?
(1) $\mathrm{H}_{2} \mathrm{O}+\mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
(2) $\mathrm{N}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}$
(3) $\mathrm{N}_{2} \mathrm{O}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{HNO}_{3}$
(4) None of these

Answer (1)

Sol. The correct answer of this equation is option 1
7. Which of the following metals of F-block have halffilled f-subshell?
(a) Samarium (Sm)
(b) Gadolinium (Gd)
(c) Europium (Eu)
(d) Terbium (Tb)
(1) (a) and (b)
(2) (b) and (c)
(3) (c) and (d)
(4) (a) and (c)
[Atomic numbers : $\mathrm{Sm}=62, \mathrm{Eu}=63, \mathrm{Gd}=64$, $\mathrm{Tb}=65]$

Answer (2)

Sol. The valence shell electronic configuration of the given F-Block metals are
(a) $\mathrm{Sm}: 4 \neq 6 s^{2}$
(b) Gd : $4 f^{\prime} s d^{\prime \prime} 6 s^{2}$
(c) $\mathrm{Eu}: 4 f^{\prime} 6 s^{2}$
(d) $\mathrm{Tb}:: 4 \rho 6 s^{2}$

Therefore, Gd and Eu have half-filled f -subshell.
8. If lonisation energy of H -atom is 13.6 eV . Find out Ionisation energy of Li^{2+} ions.
(1) 54.4 eV
(2) 122.4 eV
(3) 13.6 eV
(4) 3.4 eV

Answer (2)

Sol. IE $=13.6 \times$ Z 2

$$
=13.6 \times(3)^{2}
$$

$$
=13.6 \times 9
$$

$$
=122.4 \mathrm{eV}
$$

9. Which of the following compound is not a disinfectant?
(1) Chloroxylenol
(2) Bithionol
(3) Terpineol
(4) Peracetic acid

Answer (4)

Sol. Chloroxylenol, bithionol and terpineol are the disinfectants.
10. A reaction follows $1^{\text {st }}$ order kinetics with rate constant $(k)=20 \mathrm{~min}^{-1}$. Calculate the time required to reach to concentration to $\frac{1}{32}$ times of initial concentration
(1) 0.17325 min
(2) 1.7325 min
(3) 17.325 min
(4) 173.25 min

Answer (1)

Sol. $C=\frac{C_{0}}{(2)^{n}}=\frac{C_{0}}{32}$
$\mathrm{n}=5$
$\mathrm{t}=5 \mathrm{t}_{1 / 2}$
$=\frac{5 \times 0.693}{20}=\frac{0.693}{4}$
$=0.17325 \mathrm{~min}$
11. If solubility of AgCl in aqueous solution is $1.434 \times 10^{-3} \mathrm{M}$, then find the value of $\left[-\log \mathrm{K}_{\mathrm{sp}}\right]$, where K_{sp} is the solubility product of AgCl .
(1) 3.7
(2) 5.7
(3) 6.7
(4) 7.7

Answer (2)

Sol. Solubility of AgCl in water $=1.434 \times 10^{-3} \mathrm{M}$
Solubility product $\left(\mathrm{K}_{\text {sp }}\right)$ of $\mathrm{AgCl}=\left(1.434 \times 10^{-3}\right)^{2}$

$$
\begin{aligned}
\therefore \quad \mathrm{K}_{\mathrm{sp}}=2 \times & \times 10^{-6} \\
-\log \mathrm{K}_{\mathrm{sp}} & =-\log 2+6 \\
& =5.7
\end{aligned}
$$

12. Consider the following combination of n, I and m values.
(i) $\mathrm{n}=3 ; \mathrm{I}=0 ; \mathrm{m}=0$
(ii) $\mathrm{n}=4 ; \mathrm{I}=0 ; \mathrm{m}=0$
(iii) $\mathrm{n}=3$; $\mathrm{I}=1$; $\mathrm{m}=0$
(iv) $\mathrm{n}=3$; $\mathrm{I}=2$; $\mathrm{m}=0$

The correct order of energy of the corresponding orbitals for multielectron species is
(1) (ii) $>$ (i) $>$ (iv) $>$ (iii)
(2) (iv) $>$ (ii) $>$ (iii) $>$ (i)
(3) (i) $>$ (iii) $>$ (iv) $>$ (ii)
(4) (iv) $>$ (iii) $>$ (i) $>$ (ii)

Answer (2)

Sol. (i) $\mathrm{n}=3 ; \mathrm{I}=0 ; \mathrm{m}=0 \Rightarrow 3 s$ orbital
(ii) $\mathrm{n}=4 ; \mathrm{I}=0 ; \mathrm{m}=0 \Rightarrow 4 s$ orbital
(iii) $n=3 ; \mathrm{I}=1$; $\mathrm{m}=0 \Rightarrow 3 p$ orbital
(iv) $\mathrm{n}=3$; $\mathrm{I}=2$; $\mathrm{m}=0 \Rightarrow 3 d$ orbital

The correct order of energy is $3 d>4 s>3 p>3 s$
Hence correct answer is (2)
13. Two metals are given,

Metal - 1 Work function $=4.8 \mathrm{ev}$
Metal -2 Work function $=2.8 \mathrm{ev}$
Photons of wavelength 350 nm are incident on both metals separately which metal will eject electrons at this wavelength?
(1) Metal - 1 only
(2) Metal - 2 only
(3) Both metal - 1 and metal - 2
(4) None of metal - 1 and metal - 2

Answer (2)

Sol. $E_{\text {photon }}=\frac{12400}{3500}=3.54 \mathrm{ev}$
$W_{\text {metal-1 }}>$ Ephoton $>W_{\text {metal-2 }}$
\Rightarrow Only metal - 2 will emit photons
14. A biomolecule gives following observations
(i) With $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ it gives monocarboxylic acid.
(ii) With acetate it gives tetraacetate.
(iii) With $\mathrm{HI} /$ RedP it gives isopentane.

The correct structure of the biomolecule is
(1)

(2)

(3)

(4)

Answer (4)
Sol.

gives monocarboxylic acid with $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ and tetraacetate with acetate and isopentane with RedP/HI.
15. Which of the following has more relative lowering in vapour pressure at the same temperature.
(1) 0.1 M urea
(2) 0.1 M NaCl
(3) 0.1 M sucrose
(4) $0.1 \mathrm{M} \mathrm{CaCl}_{2}$

Answer (4)

Sol. Relative lowering in vapour pressure is a colligative property and colligative property depends only on the amount of solute from the given, CaCl_{2} will have maximum amount, hence its solution will show maximum relative lowering in vapour pressure hence the correct answer is option (4)
16. Assertion : First ionisation energy of 4d series elements is always greater than those of 3d series elements.

Reason : 4d series elements have much more nuclear charge than those of 3d series elements.
(1) Assertion is correct but Reason is incorrect.
(2) Assertion is incorrect but Reason is correct.
(3) Both the Assertion and Reason are correct.
(4) Both the Assertion and Reason are incorrect.

Answer (2)
Sol. The first ionisation energy of 4d series elements is not always greater than those of 3d series elements. So Assertion is incorrect. The Reason is correct because 4d series elements have much more nuclear charge than those of 3 d series elements.
17. What is the structural formula of compound $\mathrm{C}_{4} \mathrm{H}_{11} \mathrm{~N}$, which reacts with HNO_{2} and is optically active?
(1)

(2)

(3)

(4)

Answer (1)
Sol.

18. Energy of a radiation $\varepsilon=\frac{\mathrm{hc}}{\lambda_{\text {absorb }}}$. If $\varepsilon=+96 \mathrm{~kJ} / \mathrm{mole}$ thus find $\lambda_{\text {absorbed }}($ in \AA)
(1) $12471 \AA$
(2) $124.71 \AA$
(3) $1247.1 \AA$
(4) $1.2471 \AA$

Answer (1)
Sol. $\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{96 \times 10^{3}} \times 6.023 \times 10^{23}=\lambda$
$\lambda=1.2471 \times 10^{-6} \mathrm{M}$
$=12471 \AA$
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. How many of the following compound(s) can give iodoform test?

Answer (4)

Sol.

and

will give iodoform test
22. For the given reaction

$$
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

12 gm of C is reacted with 48 gm of O_{2} to give CO_{2}.
If volume of CO_{2} gas produced at STP is t litre.
Find out 2 t (closest integer).
Given: Molar volume at STP $=22.4 \mathrm{~L} / \mathrm{mole}$
Answer (45)

Sol.

Volume $=t=22.4$ litre

$$
\begin{aligned}
2 \mathrm{t} & =44.8 \text { litre } \\
& \approx 45 \mathrm{~L}
\end{aligned}
$$

23. The non-stoichiometry compounds $\mathrm{M}_{0.83} \mathrm{O}$. M exists in 2 states +2 and +3 . Calculate the $\%$ of M^{2+} ion in the compound. (Round off to nearest integer)

Answer (59)

Sol. Let M^{2+} is x .
Then M^{3+} will be $83-\mathrm{x}$.
$\therefore \quad x+2+(83-x) \times 3=200$

$$
x=49
$$

$$
M^{2+}=\frac{49}{83} \times 100 \simeq 59 \%
$$

24. The resistivity of 0.8 M solution of an electrolyte is $5 \times 10^{-3} \Omega$.cm. If λ_{m} is $2.5 \times 10^{\times}$. Find out x.

Answer (05.00)

Sol. $k=\frac{10^{3}}{5} \mathrm{~S} \mathrm{~cm}^{-1}$

$$
\begin{aligned}
& \lambda_{\mathrm{m}}=\frac{\mathrm{k} \times 1000}{\mathrm{~m}}=\frac{\frac{10^{3}}{5} \times 1000}{0.8} \\
& \Rightarrow \frac{200 \times 10^{3}}{0.8} \\
& =\frac{2}{0.8} \times 10^{5}=2.5 \times 10^{5} \\
& x=5
\end{aligned}
$$

25.
26.
27.
28.
29.
30.
