

# **CHEMISTRY**

## **SECTION - A**

**Multiple Choice Questions:** This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

#### Choose the correct answer:



- (P) Number of intermediates = 2
- (Q) Number of transition states = 3
- (R) Reaction is endothermic

Correct statement is

- (1) P & Q only
- (2) P & R only
- (3) Q & R only
- (4) P, Q, R

# Answer (1)

Sol. 3-step reaction

Number of transition states = 3

Number of intermediates = 2

Reaction is exothermic

As ∆H < 0

2. Which of the following compound is most acidic?



Answer (2)

Sol. NO.

is most acidic due to -I effect of

-NO<sub>2</sub> group.

- 3. Which of the following is most basic
  - (1) Tl<sub>2</sub>O<sub>3</sub>
  - (2) TI<sub>2</sub>O
  - (3) Cr<sub>2</sub>O<sub>3</sub>
  - (4)  $B_2O_3$

#### Answer (2)

**Sol.** TI<sup>+</sup> oxide is more basic than TI<sup>3+</sup> Cr<sub>2</sub>O<sub>3</sub> is amphoteric

- 4. Which of the following element is not present in Nessler's reagent?
  - (1) K
  - (2) Hg
  - (3) N
  - (4) I

## Answer (3)

Sol. Nessler's reagent is alkaline solution of K2Hgl4

- 5. Which of the following is not obtained on electrolysis of brine solution
  - (1) NaOH
  - (2) H<sub>2</sub> gas
  - (3) Cl<sub>2</sub> gas
  - (4) Na

## Answer (4)

#### Sol. Anode

$$2CI^{-} \longrightarrow CI_2 + 2e^{-}$$

#### Cathode

$$2e^- + 2H_2O \longrightarrow H_2 + 2OH^-$$

Na metal is not obtained on electrolysis of brine.

- 6. BeCl<sub>2</sub> exists as in solid state, vapour phase and at high temperature of the order of 1200 K in that order.
  - (1) Polymer, Dimer and Monomer
  - (2) Dimer, Polymer and Monomer
  - (3) Monomer, Dimer and Polymer
  - (4) Polymer, Monomer and Dimer

# Answer (1)

# JEE (Main)-2023: Phase-2 (06-04-2023)-Evening



**Sol.** BeCl<sub>2</sub> has a linear polymeric chain structure with Be-atom undergoing  $sp^3$  hybridisation. In the vapour phase BeCl<sub>2</sub> tends to form a chloro-bridged dimer,

which dissociates into the linear monomer at high temperature of the order of 1200 K.

- 7. Which of the following has highest hydration energy.
  - (1) Be<sup>+2</sup>
  - (2) Mg<sup>+2</sup>
  - (3) Ca++
  - (4) Ba+2

## Answer (1)

- **Sol.** Hydration energy decreases down the group in the 2<sup>nd</sup> group metal cation.
- 8. Oxidation state of Mn in KMnO<sub>4</sub> changes by 3 units in which medium?
  - (1) Strongly acidic
  - (2) Strongly basic
  - (3) Aqueous neutral
  - (4) Weakly acidic

### Answer (3)

**Sol.** KMnO<sub>4</sub> in aqueous neutral medium reduces to MnO<sub>2</sub>.

$$2KMnO_4 + H_2O \rightarrow 2MnO_2 + 2KOH + \frac{3}{2}O_2$$

- .. Oxidation state of Mn in KMnO<sub>4</sub> changes from +7 to +4 i.e., by 3 units.
- 9. IUPAC name of the compound K<sub>3</sub>[Co(C<sub>2</sub>O<sub>4</sub>)<sub>3</sub>] is
  - (1) Potassium trioxalatocobalt (III)
  - (2) Potassium trioxalatocobaltate (III)
  - (3) Potassium cobalttrioxalate (II)
  - (4) Potassium oxalatocobaltate (III)

#### Answer (2)

**Sol.** IUPAC name of  $K_3[Co(C_2O_4)_3]$  is Potassium trioxalatocobaltate (III).

10. Consider the following reaction

$$\begin{array}{c}
 & \xrightarrow{H^+} Product (P)
\end{array}$$



## Answer (1)

Sol.

11. During detection of Lead.

Formation of which of following compound is not used as confirmatory test.

- (1) PbSO<sub>4</sub>
- (2) Pb(NO<sub>3</sub>)<sub>2</sub>
- (3) PbCrO<sub>4</sub>
- (4) Pbl<sub>2</sub>

#### Answer (2)

**Sol.** PbSO<sub>4</sub> - White ppt

PbCrO<sub>4</sub> - Yellow ppt

Pbl<sub>2</sub> - Yellow ppt

Pb(NO<sub>3</sub>)<sub>2</sub> - Soluble



12. Identify the final product (B) formed in the following sequence of reactions.

## Answer (3)

$$\begin{array}{c} O \\ \\ \\ \\ CH_{3} \end{array} \xrightarrow{CH_{3}Mgl} \begin{array}{c} O \\ \\ \\ \\ CH_{3} \end{array} \xrightarrow{CH_{3}CH_{2}CH_{2}-1} \\ \\ CH_{3} \end{array}$$

#### Sol.

- 13. Consider the following:
  - (i) D.D.T.
  - (ii) Aldrin
  - (iii) Sodium arsenite
  - (iv) Sodium chlorate

How many of these are pesticides?

- (1) 1
- (2) 2
- (3) 3
- (4) 4

## Answer (2)

**Sol.** D.D.T. and Aldrin are pesticides while sodium arsenite and sodium chlorate are herbicides.

# Amino Acid Letter code A. Alanine P. N B. Asparagine Q. A C. Aspartic acid R. R D. Arginine S. D (1) A - Q; B - S; C - P; D - R (2) A - Q; B - S; C - R; D - P (3) A - S; B - P; C - R; D - Q (4) A - S; B - P; C - P; D - R

#### Answer (1)

| Sol. Alanine  | - | Α |
|---------------|---|---|
| Arginine      | - | R |
| Aspartic acid | _ | D |
| Asparagine    | - | Ν |

- 15.
- 16.
- 17.
- 18.
- 19.
- 20.

#### **SECTION - B**

**Numerical Value Type Questions:** This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, –00.33, –00.30, 30.27, –27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. The number of compounds that give iodoform test

# JEE (Main)-2023: Phase-2 (06-04-2023)-Evening



Answer (02.00)

give iodoform test.

22. If  $a_0$  is the radius of H-atom de-Broglie wavelength of  $e^-$  in  $3^{rd}$  orbit of  $Li^{2+}$  ion is  $x\pi a_0$ . Find out x.

# Answer (02.00)

**Sol.** 
$$r_3 = \frac{a_0 \times (3)^2}{(3)} = 3a_0$$

$$2\pi r=3\lambda$$

$$2\pi(3a_0) = 3\lambda$$

$$\Rightarrow \lambda = 2\pi a_0$$

$$x = 2$$

- 23. How many of the following will have same relative lowering in vapour pressure?
  - (A) 1 M NaCl
  - (B) 1 M Urea
  - (C) 1.5 M AICI<sub>3</sub>
  - (D) 2 M Na<sub>2</sub>SO<sub>4</sub>

## Answer (02.00)

$$\textbf{Sol.} \ \frac{\Delta P}{p_{solvent}} = i(x_{solute})$$

i.M should be same

- (A)  $1 \times 2 = 2$
- (B)  $1 \times 1 = 1$
- (C)  $1.5 \times 4 = 6$
- (D)  $2 \times 3 = 6$
- (C) & (D) will have same RLVP
- 24. We are given with 7 type of lattice.
  - A. Cubic
  - B. tetragonal

- C. Orthorhombic
- D. Hexagonal
- E. Rhombohedral
- F. Monoclinic
- G. Triclinic

How many of them can have BCC unit cell?

#### Answer (03.00)

- **Sol.** Cubic, tetragonal and orthorhombic can have BCC unit cell
- 25. How many of the given molecules are square planar in shape?

 $XeF_4$ ,  $SF_4$ ,  $[Ni(CO)_4]$ ,  $[Ni(CN)_4]^{2-}$ ,  $[NiCl_4]^{2-}$ ,  $[FeCl_4]^{2-}$ ,  $[Cu(NH_3)_4]^{2+}$ ,  $[PdCl_4]^{2-}$ 

## Answer (04.00)

**Sol.** XeF<sub>4</sub> : square planar

SF<sub>4</sub> : see saw

[Ni(CO)<sub>4</sub>] : tetrahedral

 $[Ni(CN)_4]^{2-}$  : square planar

[NiCl<sub>4</sub>]<sup>2-</sup> : tetrahedral

[FeCl<sub>4</sub>]<sup>2-</sup> : tetrahedral

[Cu(NH<sub>3</sub>)<sub>4</sub>]<sup>2+</sup> : square planar

[PdCl<sub>4</sub>]<sup>2-</sup> : square planar

26. Volume of HBr (0.02 M) (in ml) needed to completely neutralise Ba(OH)<sub>2</sub> (0.01 M, 10 ml)

## Answer (10)

**Sol.** mEq of HBr = mEq of  $Ba(OH)_2$ 

$$0.02 \times V = 0.01 \times 10 \times 2$$

$$V = \frac{0.02 \times 10}{0.02} = 10 \text{ mJ}$$

- 27.
- 28.
- 29.
- 30.