Date: 15/03/2024

MATHEMATICS
 ICSE Board Class X Exam (2024) Answers \& Solutions

GENERAL INSTRUCTIONS

Read the following instructions very carefully and follow them:
(i) You will not be allowed to write during first 15 minutes.
(ii) Attempt all questions from Section A and any four questions from Section B.
(iii) Omission of essential working will result in loss of marks.
(iv) The intended marks for questions or parts of questions are given in brackets [].
(v) Mathematical tables and graph papers are provided.

SECTION-A (40 Marks)

(Attempt all questions from this Section.)

1. Choose the correct answers to the questions from the given options.
(i) For an Intra-state sale, the CGST paid by a dealer to the Central government is ₹120. If the marked price of the article is ₹2000, the rate of GST is
(a) 6%
(b) 10%
(c) 12%
(d) 16.67%

Answer (c)

Sol. Rate of G.S.T. $=\frac{2 \times 120}{2000} \times 100$

$$
=12 \%
$$

(ii) What must be subtracted from the polynomial $x^{3}+x^{2}-2 x+1$, so that the result is exactly divisible by $(x-3)$?
(a) -31
(b) -30
(c) 30
(d) 31

Answer (d)

Sol. $3^{3}+3^{2}-2(3)+1=31$
(iii) The roots of the quadratic equation $p x^{2}-q x+r=0$ are real and equal if:
(a) $p^{2}=4 q r$
(b) $q^{2}=4 p r$
(c) $-q^{2}=4 p r$
(d) $p^{2}>4 q r$

Answer (b)

Sol. $(-q)^{2}-4 p r=0$
$\Rightarrow \quad q^{2}=4 p r$
(iv) If matrix $A=\left[\begin{array}{ll}2 & 2 \\ 0 & 2\end{array}\right]$ and $A^{2}=\left[\begin{array}{ll}4 & x \\ 0 & 4\end{array}\right]$, then the value of x is
(a) 2
(b) 4
(c) 8
(d) 10

Answer (c)
Sol. $A^{2}=\left[\begin{array}{ll}4 & 8 \\ 0 & 4\end{array}\right]=\left[\begin{array}{ll}4 & x \\ 0 & 4\end{array}\right]$
$x=8$
(v) The median of the following observations arranged in ascending order is 64 .

Find the value of x :

$$
27,31,46,52, x, x+4,71,79,85,90
$$

(a) 60
(b) 61
(c) 62
(d) 66

Answer (c)

Sol. $\frac{x+(x+4)}{2}=64 \Rightarrow x=62$
(vi) Points $A(x, y), B(3,-2)$ and $C(4,-5)$ are collinear. The value of y in terms of x is
(a) $3 x-11$
(b) $11-3 x$
(c) $3 x-7$
(d) $7-3 x$

Answer (d)

[1]
Sol. $\frac{3-x}{-2-y}=\frac{4-3}{-5+2} \Rightarrow y=7-3 x$
(vii) The given table shows the distance covered and the time taken by a train moving at a uniform speed along a straight track.

Distance (in m)	60	90	y
Time (in sec)	2	x	5

The values of x and y are:
(a) $x=4, y=150$
(b) $x=3, y=100$
(c) $x=4, y=100$
(d) $x=3, y=150$

Answer (d)

Sol. Distance and time are directly proportional
$x=3$ seconds
$y=150$ meters
(viii) The $7^{\text {th }}$ term of the given Arithmetic Progression (A.P.)
$\frac{1}{a},\left(\frac{1}{a}+1\right),\left(\frac{1}{a}+2\right) \ldots$ is
(a) $\left(\frac{1}{a}+6\right)$
(b) $\left(\frac{1}{a}+7\right)$
(c) $\left(\frac{1}{a}+8\right)$
(d) $\left(\frac{1}{a}+7^{7}\right)$

Answer (a)

Sol. $a_{7}=a+(7-1) d$

$$
\begin{aligned}
& =\frac{1}{a}+6(1) \\
& =\frac{1}{a}+6
\end{aligned}
$$

(ix) The sum invested to purchase 15 shares of a company of nominal value ₹75 available at a discount of 20% is
(a) ₹60
(b) ₹90
(c) ₹1350
(d) ₹900

Answer (d)

Sol. Money invested $=$ Number of shares \times Market value of 1 share

$$
\begin{aligned}
& =15 \times(75-20 \% \text { of } 75) \\
& =15 \times 60 \\
& =₹ 900
\end{aligned}
$$

(x) The circumcentre of a triangle is the point which is
(a) at equal distance from the three sides of the triangle.
(b) at equal distance from the three vertices of the triangle.
(c) the point of intersection of the three medians.
(d) the point of intersection of the three altitudes of the triangle.

Answer (b)

Sol. Circumcentre of a triangle is the point which is at equal distance from the three vertices of the triangle.
(xi) Statement $1: \sin ^{2} \theta+\cos ^{2} \theta=1$

Statement 2: $\operatorname{cosec}^{2} \theta+\cot ^{2} \theta=1$
Which of the following is valid?
(a) Only 1
(b) Only 2
(c) Both 1 and 2
(d) Neither 1 nor 2

Answer (a)
Sol. We know that, $\sin ^{2} \theta+\cos ^{2} \theta=1$ and
$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
$\therefore \quad$ Only Statement 1 is valid.
(xii) In the given diagram, $P S$ and $P T$ are the tangents to the circle. $S Q \| P T$ and $\angle S P T=80^{\circ}$. The value of $\angle Q S T$ is

(a) 140°
(b) 90°
(c) 80°
(d) 50°

Answer (d)

Sol.

Let $\angle Q S T=\theta$
$\Rightarrow \quad \angle S T P=\angle Q S T=\theta$
[Alternate interior angles]
$\Rightarrow \quad \angle S Q T=\angle S T P=\theta \quad$ [Alternate segment theorem]
$\Rightarrow \quad \angle P S T=\angle S Q T=\theta \quad$ [Alternate segment theorem]
Now,
In $\triangle P S T$,
$\theta+\theta+80^{\circ}=180^{\circ}$
$\Rightarrow \quad \theta=50^{\circ}$
(xiii) Assertion (A): A die is thrown once and the probability of getting an even number is $\frac{\mathbf{2}}{\mathbf{3}}$.

Reason (\mathbf{R}): The sample space for even numbers on a die is $\{\mathbf{2 , 4 , 6 \}}$
(a) A is true, R is false
(b) A is false, R is true
(c) Both A and R are true
(d) Both A and R are false

Answer (b)

Sol. A is false, R is true
(xiv) A rectangular sheet of paper of size $11 \mathrm{~cm} \times 7 \mathrm{~cm}$ is first rotated about the side $\mathbf{1 1} \mathbf{~ c m}$ and then about the side $\mathbf{7 ~ c m}$ to form a cylinder, as shown in the diagram. The ratio of their curved surface areas is

(a) $1: 1$
(b) $7: 11$
(c) $11: 7$
(d) $\frac{11 \pi}{7}: \frac{7 \pi}{11}$

Answer (a)

Sol. 1:1
(xv) In the given diagram, $\triangle A B C \sim \triangle P Q R$. If $A D$ and $P S$ are bisectors of $\angle B A C$ and $\angle Q P R$ respectively then

(a) $\triangle A B C \sim \triangle P Q S$
(b) $\triangle A B D \sim \triangle P Q S$
(c) $\triangle A B D \sim \triangle P S R$
(d) $\triangle A B C \sim \triangle P S R$

Answer (b)

Sol. $\triangle A B D \sim \triangle P Q S$
2. (i) $A=\left[\begin{array}{ll}x & 0 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}4 & 0 \\ y & 1\end{array}\right]$ and $C=\left[\begin{array}{ll}4 & 0 \\ x & 1\end{array}\right]$

Find the values of x and y, if $A B=C$.
(ii) A solid metallic cylinder is cut into two identical halves along its height (as shown in the diagram). The diameter of the cylinder is 7 cm and the height is 10 cm . Find :
(a) The total surface area (both the halves)
(b) The total cost of painting the two halves at the rate of ₹ 30 per cm^{2}. (Use $\pi=\frac{22}{7}$)

(iii) $15,30,60,120 \ldots$ are in G.P. (Geometric Progression).
(a) Find the $n^{\text {th }}$ term of this G.P. in terms of n.
(b) How many terms of the above G.P. will give the sum 945?

Sol. (i) $A B=C$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
x & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
y & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
x & 1
\end{array}\right]} \\
& \Rightarrow \quad\left[\begin{array}{cc}
4 x & 0 \\
4+y & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 0 \\
x & 1
\end{array}\right] \\
& \Rightarrow \quad 4 x=4 \\
& \quad x=1 \\
& 4+y=x=1 \\
& \Rightarrow \quad y=-3
\end{aligned}
$$

(ii) (a) Total surface area of (both halves)
$=2 \times$ Total surface area of one half
$=2 \pi r(r+h)+2 \times 2 r \times h$
$=2 \times \frac{22}{7} \times \frac{7}{2}\left[\frac{7}{2}+10\right]+2 \times 7 \times 10$
$=437 \mathrm{~cm}^{2}$
(b) Total cost of painting
$=30 \times 437$
$=₹ 13,110$
(iii) (a) $a=15$

$$
r=\frac{30}{15}=2
$$

$a_{n}=a r^{n-1}$
$a_{n}=15(2)^{n-1}$
(b) $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$

$$
\begin{aligned}
& \text { Now, } 945=\frac{15\left(2^{n}-1\right)}{2-1} \\
& \Rightarrow \quad 945=15\left(2^{n}-1\right) \\
& \Rightarrow \quad 2^{n}=64 \\
& \Rightarrow \quad n=6
\end{aligned}
$$

3. (i) Factorize : $\sin ^{3} \theta+\cos ^{3} \theta$

Hence, prove the following identity : $\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \cos \theta=1$
(ii) In the given diagram, O is the centre of the circle. $P R$ and $P T$ are two tangents drawn from the external point P and touching the circle at Q and S respectively. $M N$ is a diameter of the circle. Given $\angle P Q M=42^{\circ}$ and $\angle P S M=25^{\circ}$.

Find:
(a) $\angle O Q M$
(b) $\angle Q N S$
(c) $\angle Q O S$
(d) $\angle Q M S$
(iii) Use graph sheet for this question. Take $2 \mathrm{~cm}=1$ unit along the axes.
(a) Plot $A(0,3), B(2,1)$ and $C(4,-1)$.
(b) Reflect point B and C in y-axis and name their images as B^{\prime} and C^{\prime} respectively. Plot and write coordinates of the points B^{\prime} and C^{\prime}.
(c) Reflect point A in the line $B B^{\prime}$ and name its images as A^{\prime}.
(d) Plot and write coordinates of point A^{\prime}.
(e) Join the points $A B A^{\prime} B^{\prime}$ and give the geometrical name of the closed figure so formed.

Sol. (i) $\quad \sin ^{3} \theta+\cos ^{3} \theta=(\sin \theta+\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta-\sin \theta \cos \theta\right) \quad\left[U \operatorname{sing} a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right]\right.$

$$
=(\sin \theta+\cos \theta)(1-\sin \theta \cos \theta) \ldots \text { (i) } \quad\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
$$

Now, LHS
$\frac{\sin ^{3} \theta+\cos ^{3} \theta}{\sin \theta+\cos \theta}+\sin \theta \cos \theta$
$=\frac{(\sin \theta+\cos \theta)(1-\sin \theta \cos \theta)}{(\sin \theta+\cos \theta)}+\sin \theta \cos \theta \quad[U \operatorname{sing}(i)]$
$=1-\sin \theta \cos \theta+\sin \theta \cos \theta$
$=1$ = RHS
Hence proved
(ii) (a)

Join OQ,
$\angle O Q P=90^{\circ}$
[radius \perp tangent]
$\Rightarrow \quad \angle P Q M+\angle O Q M=90^{\circ}$
$\Rightarrow \quad 42^{\circ}+\angle O Q M=90^{\circ}$
$\Rightarrow \quad \angle O Q M=48^{\circ}$
(b) $\angle S N M=\angle P S M$
$\Rightarrow \quad \angle S N M=25^{\circ}$
Also, $\angle Q N M=\angle P Q M$
[Alternate segment theorem]
$\Rightarrow \quad \angle Q N M=42^{\circ}$
Now, $\angle Q N S=\angle S N M+\angle Q N M$

$$
=25^{\circ}+42^{\circ}=67^{\circ}
$$

(c) $\angle Q O S=2 \angle Q N S$
[Angle made by an arc at the centre is double the angle made by it on remaining part of circle]

$$
\begin{aligned}
\therefore \quad & \angle Q O S=2 \times 67^{\circ} \quad\left[\because \angle Q N S=67^{\circ}\right] \\
& =134^{\circ}
\end{aligned}
$$

(d) $\angle Q M S+\angle Q N S=180^{\circ}$
[\because Opposite angles of cyclic quadrilateral are supplementary]
$\Rightarrow \quad \angle Q M S+67^{\circ}=180^{\circ}$
$\left[\because \angle Q N S=67^{\circ}\right]$
$\Rightarrow \quad \angle Q M S=113^{\circ}$
(iii)

(a) Points $A(0,3), B(2,1)$ and $C(4,-1)$ are plotted.
(b) Coordinates of B^{\prime} are $(-2,1)$ and coordinates of C^{\prime} are $(-4,-1)$.
(c) Reflection of point $A(0,3)$ about $B B^{\prime}$ is shown.
(d) $A^{\prime}(0,-1)$
(e) On joining $A B A^{\prime} B^{\prime}$, the figure formed is square.

SECTION-B (40 Marks)

(Attempt any four questions from this Section.)
4. (i) Suresh has a recurring deposit account in a bank. He deposits ₹ 2000 per month and the bank pays interest at the rate of 8% per annum. If he gets ₹1040 as interest at the time of maturity, find in years total time for which the account was held.
(ii) The following table gives the duration of movies in minutes.

Duration (in minutes)	$100-110$	$110-120$	$120-130$	$130-140$	$140-150$	$150-160$
No. of movies	5	10	17	8	6	4

Using step - deviation method, find the mean duration of the movies.
(iii) If $\frac{(a+b)^{3}}{(a-b)^{3}}=\frac{64}{27}$
(a) Find $\frac{a+b}{a-b}$
(b) Hence using properties of proportion, find $a: b$.

Sol. (i) Money deposited = ₹2000 per month
$r=8 \%$ p.a
$\mathrm{SI}=1040$

$$
n=?
$$

$\mathrm{SI}=\frac{P \times n(n+1) \times r}{2 \times 12 \times 100}$
[1/2]
$1040=\frac{2000 \times n(n+1) \times 8}{2 \times 12 \times 100}$
$n(n+1)=156$
$n^{2}+n-156=0$
$n^{2}+13 n-12 n-156=0$
$n(n+13)-12(n+13)=0$
[1/2]
$n=12, n=-13$ (not possible)
$n=12$ months
$[1 / 2]$
(ii)

Duration (in minutes)	No. of movies $\left(f_{i}\right)$	Mid point $\left(x_{i}\right)$	$v_{i}=\frac{x_{i}-125}{10}$	$f_{i} v_{i}$
$100-110$	5	105	-2	-10
$110-120$	10	115	-1	-10
$120-130$	8	$125=A$	0	0
$130-140$	6	145	155	2
$140-150$	4		3	12
$150-160$	$\Sigma f_{i}=50$			12

Mean, $\bar{x}=A+h \times \frac{\Sigma f_{i} v_{i}}{\Sigma f_{i}}$

$$
\begin{aligned}
& =125+10 \times \frac{12}{50} \\
& =125+\frac{12}{5} \\
& =127.4
\end{aligned}
$$

(iii)

$$
\text { (a) } \begin{aligned}
& \frac{(a+b)^{3}}{(a-b)^{3}}=\frac{64}{27} \\
& \Rightarrow \quad \frac{(a+b)^{3}}{(a-b)^{3}}=\frac{4^{3}}{3^{3}} \\
& \Rightarrow \quad \frac{a+b}{a-b}=\frac{4}{3}
\end{aligned}
$$

[By taking cube root on both sides]
(b) $\frac{a+b}{a-b}=\frac{4}{3}$

Using componendo and dividendo rule :
$\frac{a+b+(a-b)}{a+b-(a-b)}=\frac{4+3}{4-3}$
[1]
$\frac{a+b+a-b}{a+b-a+b}=\frac{7}{1}$
$\frac{2 a}{2 b}=\frac{7}{1}$

$$
a: b=7: 1
$$

5. (i) The given graph with a histogram represents the number of plants of different heights grown in a school campus. Study the graph carefully and answer the following questions:

(a) Make a frequency table with respect to the class boundaries and their corresponding frequencies.
(b) State the modal class.
(c) Identify and note down the mode of the distributions.
(d) Find the number of plants whose height range is between 80 cm to 90 cm .
(ii) The angle of elevation of the top of a 100 m high tree from two points A and B on the opposite side of the tree are 52° and 45° respectively. Find the distance $A B$, to the nearest metre.

Sol. (i) (a) Required frequency table:

Height (in cm)	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$
No. of plants	4	2	8	12	6	3	4

(b) Since the modal class is the class with the highest frequency,
$\therefore \quad 60-70$ is the modal class.
(c) Mode of the distribution is given by

$$
\begin{equation*}
\text { Mode }=I+\left(\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right) \times h \tag{1/2}
\end{equation*}
$$

where $I=60$
$f_{1}=12$
$f_{0}=8$
$f_{2}=6$

$$
h=10
$$

$$
\therefore \quad \text { Mode }=60+\left(\frac{12-8}{24-8-6}\right) \times 10
$$

$$
=64
$$

(d) Number of plants whose height range is between 80 cm to 90 cm is 3 .
(ii)

$\ln \triangle A C D$,

$$
\begin{align*}
& \quad \tan 52^{\circ}=\frac{100}{A C} \\
& \Rightarrow \quad A C=\frac{100}{\tan 52^{\circ}} \\
& \Rightarrow \quad A C=\frac{100}{1.28} \\
& A C=78.125 \mathrm{~m} \tag{i}
\end{align*}
$$

In $\triangle B C D$,

$$
\begin{aligned}
& \tan 45^{\circ}=\frac{100}{B C} \\
\Rightarrow & B C=\frac{100}{1}
\end{aligned}
$$

$\Rightarrow \quad B C=100 \mathrm{~m}$
$A C+B C=78.125+100$
$A B=178.125 \mathrm{~m}$
[From (i) and (ii)]
$\therefore \quad$ Distance $A B=178$ metres approximately.
6. (i) Solve the following quadratic equation for x and give your answer correct to three significant figures:
$2 x^{2}-10 x+5=0$
(Use mathematical tables if necessary)
(ii) The $\boldsymbol{n}^{\text {th }}$ term of an Arithmetic Progression (A.P.) is given by the relation $\left.\boldsymbol{T}_{\boldsymbol{n}} \mathbf{= 6 (7 - \boldsymbol { n }}\right)$.

Find:
(a) its first term and common difference
(b) sum of its first 25 terms
(iii) In the given diagram $\triangle A D B$ and $\triangle A C B$ are two right angled triangles with $\angle A D B=\angle B C A=90^{\circ}$. If $A B=10 \mathrm{~cm}$, $A D=6 \mathrm{~cm}, B C=2.4 \mathrm{~cm}$ and $D P=4.5 \mathrm{~cm}$

(a) Prove that $\triangle A P D \sim \triangle B P C$
(b) Find the length of $B D$ and $P B$
(c) Hence, find the length of $P A$
(d) Find area $\triangle A P D$: area $\triangle B P C$

Sol. (i) $2 x^{2}-10 x+5=0$

$$
\because \quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

where $a=2, b=-10, c=5$

$$
\begin{aligned}
\therefore \quad x & =\frac{-(-10) \pm \sqrt{(-10)^{2}-(4 \cdot 2 \cdot 5)}}{2 \cdot 2} \\
& =\frac{10 \pm \sqrt{100-40}}{4} \\
& =\frac{10 \pm \sqrt{60}}{4} \\
& =\frac{10 \pm 2 \sqrt{15}}{4} \\
& =\frac{10 \pm 2(3.873)}{4} \\
& =\frac{10 \pm 7.746}{4}
\end{aligned}
$$

(ii) $\quad T_{n}=6(7-n)$
[Given]
(a) $\quad T_{1}=6(7-1)$

$$
\begin{aligned}
& =6 \times 6 \\
& =36
\end{aligned}
$$

Also, common difference $=T_{2}-T_{1}$

$$
\begin{aligned}
& =6(7-2)-6(7-1) \\
& =30-36 \\
& =-6
\end{aligned}
$$

(b) $\quad T_{n}=6(7-n)$
$\because \quad T_{1}=36$ and common difference ' d ' $=-6$
$\therefore \quad S_{25}=\frac{25}{2}[2 \times 36+(25-1)(-6)]$
$=\frac{25}{2}[72+24 \times(-6)]$
$=\frac{25}{2}[72-144]$
$=\frac{-25}{2} \times 72$
$=-900$
(iii)

$$
\because \quad \angle A D P=\angle B C P=90^{\circ}
$$

[Given]
Also, $\angle A P D=\angle B P C$
[Vertically opposite angles]
[1/2]
$\therefore \quad$ By AA similarity,

$$
\triangle A P D \sim \triangle B P C
$$

(b) $\because \quad \triangle A P D \sim \triangle B P C$
$\Rightarrow \quad \frac{A P}{B P}=\frac{P D}{P C}=\frac{A D}{B C}$
$\Rightarrow \quad \frac{A P}{B P}=\frac{4.5}{P C}=\frac{6}{2.4}$
$\therefore \quad \Rightarrow P C=1.8 \mathrm{~cm}$

In $\triangle B C P$,

$$
\begin{aligned}
& B P^{2}=B C^{2}+P C^{2}=(2.4)^{2}+(1.8)^{2} \\
& B P=3 \mathrm{~cm}
\end{aligned}
$$

$\therefore \quad B D=B P+P D$
$=3 \mathrm{~cm}+4.5 \mathrm{~cm}$
$B D=7.5 \mathrm{~cm}$
(c) $\ln \triangle P D A$,
$A P^{2}=A D^{2}+P D^{2}$
$=6^{2}+(4.5)^{2}$
$A P=7.5 \mathrm{~cm}$
(d) $\frac{\text { ar. } \triangle A P D}{\text { ar. } \triangle B P C}=\frac{\frac{1}{2} \times 6 \times 4.5}{\frac{1}{2} \times 2.4 \times 1.8}$

$$
=\frac{27}{4.32}
$$

$$
=\frac{25}{4}
$$

* This question has ambiguity. Since the triangles are similar therefore $A B=10 \mathrm{~cm}$ is not possible but it is not required to find other sides.

So, the question can be considered as bonus.
7. (i) In the given diagram, an isosceles $\triangle A B C$ is inscribed in a circle with centre O. $P Q$ is a tangent to the circle at C. $O M$ is perpendicular to chord $A C$ and $\angle C O M=65^{\circ}$.

Find:
(a) $\angle A B C$
(b) $\angle B A C$
(c) $\angle B C Q$
(ii) Solve the following inequation, write down the solution set and represent it on the real number line.

$$
-3+x \leq \frac{7 x}{2}+2<8+2 x, x \in I
$$

(iii) In the given diagram, $A B C$ is a triangle, where $B(4,-4)$ and $C(-4,-2)$. D is a point on $A C$.

(a) Write down the coordinates of A and D.
(b) Find the coordinates of the centroid of $\triangle A B C$.
(c) If D divides $A C$ in the ratio $\boldsymbol{k}: \mathbf{1}$, find the value of \boldsymbol{k}.
(d) Find the equation of the line $B D$.

Sol. (i)

(a) $\angle O A M=\angle O C M=90^{\circ}-65^{\circ}=25^{\circ}$
$[\because O M \perp A C]$
$\Rightarrow \quad \angle A C P=90^{\circ}-25^{\circ}=65^{\circ}$
$[\because O C \perp P Q]$
$[1 / 2]$
$\therefore \quad \angle A B C=\angle A C P=65^{\circ} \quad$ [Alternate Segment Theorem]
$\Rightarrow \quad \angle A C B=65^{\circ}$
$[\because A B=A C]$
[1/2]
(b) $\angle B A C+\angle A B C+\angle A C B=180^{\circ}$
[Angle sum property of triangle]
$\Rightarrow 65^{\circ}+65^{\circ}+\angle B A C=180^{\circ}$
$\Rightarrow \quad \angle B A C=180^{\circ}-130^{\circ}=50^{\circ}$
(c) $\angle B C Q=\angle B A C=50^{\circ}$
[Alternate segment Theorem]
(ii) $-3+x \leq \frac{7 x}{2}+2<8+2 x, x \in I$

$$
\begin{array}{ll}
\Rightarrow & -3+x \leq \frac{7 x}{2}+2 \text { and } \frac{7 x}{2}+2<8+2 x \\
\Rightarrow & -6+2 x \leq 7 x+4 \text { and } 7 x+4<16+4 x \\
\Rightarrow & -10 \leq 5 x \text { and } 3 x<12 \\
\Rightarrow & x \geq-2 \text { and } x<4
\end{array}
$$

$\Rightarrow \quad x \in[-2,4)$ and $x \in I$
$\Rightarrow \quad x=\{-2,-1,0,1,2,3\}$
$\therefore \quad$ Solution set $=\{-2,-1,0,1,2,3\}$

(iii)

(a) Coordinates of A are $(0,6)$

Coordinates of D are $(-3,0)$
(b) Coordinates of centroid of $\triangle A B C$ are $\left(\frac{0-4+4}{3}, \frac{6-2-4}{3}\right)=(0,0)$
(c) Coordinates of D are $(-3,0)=\left(\frac{-4 k+0}{k+1}, \frac{-2 k+6}{k+1}\right)$

$$
\begin{aligned}
& \Rightarrow \quad(-3,0)=\left(\frac{-4 k}{k+1}, \frac{-2 k+6}{k+1}\right) \\
& \Rightarrow \quad 0(k+1)=-2 k+6 \\
& \Rightarrow \quad k=3
\end{aligned}
$$

(d) Coordinates of B and D are $(4,-4)$ and $(-3,0)$ respectively.
$\therefore \quad$ Equation of line $B D$ is given by,

$$
\begin{aligned}
& (y-0)=\left(\frac{0-(-4)}{-3-4}\right)(x-(-3)) \quad\left[\because \text { slope of } B D=\frac{0-(-4)}{-3-4}\right] \\
& \Rightarrow \quad y=\frac{-4}{7}(x+3) \\
& \Rightarrow \quad 7 y=-4 x-12 \\
& \Rightarrow \quad 4 x+7 y+12=0
\end{aligned}
$$

8. (i) The polynomial $\mathbf{3} \boldsymbol{x}^{3}+\mathbf{8} \boldsymbol{x}^{2}-\mathbf{1 5 x} \boldsymbol{+} \boldsymbol{k}$ has $(\boldsymbol{x}-\mathbf{1})$ as a factor. Find the value of \boldsymbol{k}. Hence factorize the resulting polynomial completely.
(ii) The following letters $\mathbf{A}, \mathbf{D}, \mathbf{M}, \mathbf{N}, \mathbf{O}, \mathbf{S}, \mathbf{U}, \mathbf{Y}$ of the English alphabet are written on separate cards and put in a box. The cards are well shuffled and one card is drawn at random. What is the probability that the card drawn is a letter of the word,
(a) MONDAY?
(b) which does not appear in MONDAY?
(c) which appears both in SUNDAY and MONDAY?
(iii) Oil is stored in a spherical vessel occupying $\mathbf{3 / 4}$ of its full capacity. Radius of this spherical vessel is $\mathbf{2 8} \mathbf{~ c m}$. This oil is then poured into a cylindrical vessel with a radius of $\mathbf{2 1} \mathbf{~ c m}$. Find the height of the oil in the cylindrical vessel (correct to the nearest cm).
Take $\pi=\frac{22}{7}$

Sol. (i) If $(x-1)$ is factor of $3 x^{3}+8 x^{2}-15 x+k$, then $3(1)^{3}+8(1)^{2}-15(1)+k=0$
$3+8-15+k=0$
$k=15-11$
$k=4$
$f(x)=3 x^{3}+8 x^{2}-15 x+4$
$x - 1 \longdiv { 3 x ^ { 3 } + 8 x ^ { 2 } - 1 5 x + 4 } (3 x ^ { 2 } + 1 1 x - 4$

$$
\begin{array}{r}
\frac{-3 x^{3}-3 x^{2}}{11 x^{2}}-15 x \\
\frac{11 x^{2}-11 x}{+} \\
\frac{-4 x+4}{-4 x+4} \\
\frac{+}{0}
\end{array}
$$

$\because \quad(x-1)$ is a factor of $3 x^{3}+8 x^{2}-15 x+4$
$\therefore \quad 3 x^{3}+8 x^{2}-15 x+4=(x-1)\left(3 x^{2}+11 x-4\right)$

$$
\begin{align*}
& =(x-1)\left(3 x^{2}+12 x-x-4\right) \tag{1/2}\\
& =(x-1)[3 x(x+4)-1(x+4)] \\
& =(x-1)(3 x-1)(x+4)
\end{align*}
$$

(ii) (a) Letters given are A, D, M, N, O, S, U, Y which are 8 in count.

To form MONDAY, 6 letters are desired letters.

$$
\begin{aligned}
\therefore \quad \text { Probability } & =\frac{\text { Favourable number of cases }}{\text { Total number of cases }} \\
& =\frac{6}{8} \\
& =\frac{3}{4}
\end{aligned}
$$

(b) Probability (Not appear in MONDAY)

$$
\begin{aligned}
& =\frac{2}{8} \\
& =\frac{1}{4}
\end{aligned} \quad \text { [As } S, U \text { are not there is MONDAY] }
$$

(c) Probability (appear in SUNDAY and MONDAY)

$$
\begin{aligned}
& =\frac{4}{8} \\
& =\frac{1}{2}
\end{aligned} \quad \text { [As } 4 \text { letters } N, D, A, Y \text { are common] }
$$

(iii) Volume of oil in spherical vessel = Volume of oil in cylindrical vessel
$\frac{3}{4} \times \frac{4}{3} \pi r^{3}=\pi R^{2} h$; where r, R, h are the radius of sphere, radius of cylinder and height upto which oil is filled in the cylinder.
$\pi(28)^{3}=\pi(21)^{2} h$

$$
\begin{aligned}
h=\frac{28^{3}}{21^{2}}= & 49.777 \mathrm{~cm} \\
& \approx 50 \mathrm{~cm} \text { (approximately) }
\end{aligned}
$$

9. (i) The figure shows a circle of radius 9 cm with O as the centre. The diameter $A B$ produced meets the tangent $P Q$ at P. If $P A=24 \mathrm{~cm}$, find the length of tangent $P Q$.

(ii) Mr. Gupta invested ₹ 33000 in buying ₹ 100 shares of a company at 10% premium. The dividend declared by the company is 12%. Find:
(a) the number of shares purchased by him.
(b) his annual dividend.
(iii) A life insurance agent found the following data for distribution of ages of 100 policy holders:

Age in years	Policy Holders (frequency)	Cumulative frequency
$20-25$	2	2
$25-30$	4	6
$30-35$	12	18
$35-40$	20	38
$40-45$	28	66
$45-50$	22	88
$50-55$	8	96
$55-60$	4	100

On a graph sheet draw an ogive using the given data. Take $2 \mathrm{~cm}=5$ years along one axis and $2 \mathrm{~cm}=10$ policy holders along the other axis. Use your graph to find:
(a) The median age.
(b) Number of policy holders whose age is above 52 years.

Sol. (i) $P A=24 \mathrm{~cm}$
$P B=24-2(9)$

$$
=6 \mathrm{~cm}
$$

Now,

$$
\begin{aligned}
& P Q^{2}=P A \times P B \\
& P Q^{2}=24 \times 6 \\
& P Q^{2}=144 \\
& P Q=12 \mathrm{~cm}
\end{aligned}
$$

(ii) (a) Nominal value of each share $=₹ 100$

Dividend $=12 \%$
(Number of shares) $\times 110=33000$
Number of shares $=\frac{33000}{110}$

$$
=300
$$

(b) Total amount of dividend $=$ Dividend on one share \times Number of shares

$$
\begin{aligned}
& =(12 \% \text { of } ₹ 100) \times 300 \\
& =₹ 3600
\end{aligned}
$$

(iii) (a) From the given table, we have $N=100$ (even)

The position of median is given by $\frac{N}{2}=50$

Median age $=42.14$ (approximately)
(b) Number of policy holders whose age is above 52 years $=100-92$

$$
=8 \text { people }
$$

10. (i) Rohan bought the following eatables for his friends:

Soham Sweet Mart : Bill				
S. No.	Item	Price	Quantity	Rate of GST
1	Laddu	₹500 per kg	2 kg	5%
2	Pastries	₹100 per piece	12 pieces	18%

Calculate :
(a) Total GST paid.
(b) Total bill amount including GST.
(ii) (a) If the lines $k x-y+4=0$ and $2 y=6 x+7$ are perpendicular to each other, find the value of k.
(b) Find the equation of a line parallel to $2 y=6 x+7$ and passing through $(-1,1)$
(iii) Use ruler and compass to answer this question. Construct $\angle A B C=90^{\circ}$, where $A B=6 \mathrm{~cm}, B C=8 \mathrm{~cm}$.
(a) Construct the locus of points equidistant from B and C.
(b) Construct the locus of points equidistant from A and B.
(c) Mark the point which satisfies both the conditions (a) and (b) as O. Construct the locus of point keeping a fixed distance $O A$ from the fixed point O.
(d) Construct the locus of points which are equidistant from $B A$ and $B C$.

Sol. (i)

Soham Sweet Mart : Bill							
$\mathrm{S} .$ No.	Item	Price	Quantity	Rate of GST	Item Price	GST Paid	Price with GST
1	Laddu	$\begin{aligned} & \text { ₹500 } \\ & \text { per kg } \end{aligned}$	2 kg	5\%	$2 \times 500=₹ 1000$	$\begin{aligned} & 5 \% \text { of } 1000 \\ = & \frac{5}{100} \times 1000 \\ = & ₹ 50 \end{aligned}$	$\begin{aligned} & ₹(1000+50) \\ & =₹ 1050 \end{aligned}$
2	Pastries	$\begin{gathered} \text { ₹100 } \\ \text { per } \\ \text { piece } \end{gathered}$	12 pieces	18\%	$12 \times 100=₹ 1200$	$\begin{aligned} & 18 \% \text { of } 1200 \\ & =\frac{18}{100} \times 1200 \\ & =₹ 216 \end{aligned}$	$\begin{aligned} & ₹(1200+216) \\ & =₹ 1416 \end{aligned}$
	Total				= ₹2200	= ₹ 266	= ₹2466

[2]
(a) $\quad \therefore$ Total GST paid $=$ ₹ 266
(b) Total bill amount including GST $=$ ₹ 2466
(ii) (a) Here, $k x-y+4=0$

$$
\begin{aligned}
& \text { Slope }=\frac{- \text { Coefficient of } x}{\text { Coefficient of } y} \\
& \quad=\frac{-k}{-1}=k \\
& \therefore \quad 2 y=6 x+7 \\
& \Rightarrow \quad 6 x-2 y+7=0 \\
& \text { Slope }=\frac{-6}{-2}=3
\end{aligned}
$$

If lines are perpendicular, then
$k \times 3=-1$
$\Rightarrow \quad k=\frac{-1}{3}$
(b) $2 y=6 x+7$
$\Rightarrow \quad y=3 x+\frac{7}{2}$
$\Rightarrow \quad y=m x+c$
$\therefore \quad m=3$
When lines are parallel,

$$
m_{1}=m_{2}=3
$$

Now,
Equation of line

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
\Rightarrow & y-1=3[x-(-1)] \\
\Rightarrow & y-1=3(x+1) \\
\Rightarrow & y-1=3 x+3 \\
\Rightarrow & y=3 x+4
\end{aligned}
$$

(iii)

$\angle A B C=90^{\circ}, A B=6 \mathrm{~cm}$ and $B C=8 \mathrm{~cm}$ is drawn.
(a) Perpendicular bisector of $B C$ is locus of points equidistant from B and C represented by $L P$ in figure.
(b) Line $S R$ represents locus of points equidistant from $A B$ which is perpendicular bisector of $A B$.
(c) Point ' O ' which is intersection of $S R$ and $L P$ satisfies both (a) and (b). Circle with radius $O A$ represents locus of points with fixed distance $O A$.
(d) $T M$ as angle bisector of $\angle A B C$ is drawn which is locus of points which are equidistant from $B A$ and $B C$.

