Question Paper Code

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Time: 21/2 Hrs.

MATHEMATICS

Max. Marks: 80

ICSE Board Class X Exam (2024) Answers & Solutions

GENERAL INSTRUCTIONS

Read the following instructions very carefully and follow them:

- (i) You will not be allowed to write during first 15 minutes.
- (ii) Attempt all questions from Section A and any four questions from Section B.
- (iii) Omission of essential working will result in loss of marks.
- (iv) The intended marks for questions or parts of questions are given in brackets [].
- (v) Mathematical tables and graph papers are provided.

kash Mathematics (ICSE)_Class X SECTION-A (40 Marks) (Attempt all questions from this Section.) Choose the correct answers to the questions from the given options. 1. [15] For an Intra-state sale, the CGST paid by a dealer to the Central government is ₹120. If the marked price (i) of the article is ₹2000, the rate of GST is (a) 6% (b) 10% (c) 12% 16.67% (d) Answer (c) [1] **Sol.** Rate of G.S.T. = $\frac{2 \times 120}{2000} \times 100$ = 12% (ii) What must be subtracted from the polynomial $x^3 + x^2 - 2x + 1$, so that the result is exactly divisible by (x - 3)?(a) -31 (b) -30 (c) 30 (d) 31 Answer (d) [1] **Sol.** $3^3 + 3^2 - 2(3) + 1 = 31$ (iii) The roots of the quadratic equation $px^2 - qx + r = 0$ are real and equal if: (b) $q^2 = 4pr$ (d) $p^2 > 4qr$ (a) $p^2 = 4qr$ (c) $-q^2 = 4pr$ Answer (b) [1] **Sol.** $(-q)^2 - 4pr = 0$ $\Rightarrow q^2 = 4pr$ (iv) If matrix $A = \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}$ and $A^2 = \begin{bmatrix} 4 & x \\ 0 & 4 \end{bmatrix}$, then the value of x is (a) 2 (b) 4 (d) (c) 8 10 Answer (c) [1] **Sol.** $A^2 = \begin{bmatrix} 4 & 8 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 4 & x \\ 0 & 4 \end{bmatrix}$ x = 8(v) The median of the following observations arranged in ascending order is 64. Find the value of x: 27, 31, 46, 52, *x*, *x* + 4, 71, 79, 85, 90 (a) 60 (b) 61 62 (d) 66 (c) Answer (c) [1] **Sol.** $\frac{x+(x+4)}{2} = 64 \implies x = 62$

(vi) Points A(x, y), B(3, -2) and C(4, -5) are collinear. The value of y in terms of x is

- (a) 3*x* 11
- (c) 3x 7

Answer (d)

Sol.
$$\frac{3-x}{-2-y} = \frac{4-3}{-5+2} \implies y = 7-3x$$

(vii) The given table shows the distance covered and the time taken by a train moving at a uniform speed along a straight track.

(b) 11 – 3x

(d) 7 - 3x

Distance (in m)	60	90	У
Time (in sec)	2	x	5

The values of *x* and *y* are:

(a)	x = 4, y = 150	(b)	x = 3, y = 100
(c)	x = 4, y = 100	(d)	x = 3, y = 150

Answer (d)

Sol. Distance and time are directly proportional

x = 3 seconds

- y = 150 meters
- (viii) The 7th term of the given Arithmetic Progression (A.P.)
 - $\frac{1}{a}, \left(\frac{1}{a}+1\right), \left(\frac{1}{a}+2\right)... \text{ is}$ (a) $\left(\frac{1}{a}+6\right)$ (c) $\left(\frac{1}{a}+8\right)$

Answer (a)

Sol. $a_7 = a + (7 - 1)d$

$$= \frac{1}{a} + 6(1)$$
$$= \frac{1}{a} + 6$$

(ix) The sum invested to purchase 15 shares of a company of nominal value ₹75 available at a discount of 20% is

Foundation

 $\frac{1}{a}$ +7

(b)

(d)

(a)	₹60	(b)	₹90
(C)	₹1350	(d)	₹900

Answer (d)

Sol. Money invested = Number of shares × Market value of 1 share

Aakash Medical IIT-JEE|Foundations

[1]

[1]

[1]

- The circumcentre of a triangle is the point which is (x)
 - (a) at equal distance from the three sides of the triangle.
 - at equal distance from the three vertices of the triangle. (b)
 - (c) the point of intersection of the three medians.
 - (d) the point of intersection of the three altitudes of the triangle.

Answer (b)

[1]

[1]

[1]

- Sol. Circumcentre of a triangle is the point which is at equal distance from the three vertices of the triangle.
- (xi) Statement 1: $\sin^2 \theta + \cos^2 \theta = 1$
 - Statement 2: $\csc^2 \theta + \cot^2 \theta = 1$

Which of the following is valid?

- (a) Only 1 (b) Only 2
- (c) Both 1 and 2
- Neither 1 nor 2 (d)

Answer (a)

Sol. We know that, $\sin^2\theta + \cos^2\theta = 1$ and

 $\csc^2\theta - \cot^2\theta = 1$

- Only Statement 1 is valid. *.*..
- (xii) In the given diagram, PS and PT are the tangents to the circle. SQ || PT and \angle SPT = 80°. The value of ∠QST is

(C) Answer (d)

(a)

140°

80°

 $\angle STP = \angle QST = \theta$ \Rightarrow

[Alternate interior angles]

 $\angle SQT = \angle STP = \theta$ [Alternate segment theorem] \Rightarrow $\angle PST = \angle SQT = \theta$ [Alternate segment theorem] \Rightarrow Now, In ∆PST, $\theta + \theta + 80^\circ = 180^\circ$ $\theta = 50^{\circ}$ \Rightarrow (xiii) Assertion (A): A die is thrown once and the probability of getting an even number is $\frac{2}{3}$. Reason (R): The sample space for even numbers on a die is {2, 4, 6} (a) A is true, R is false (b) A is false, R is true Both A and R are false (c) Both A and R are true (d) [1]

Answer (b)

Sol. A is false, R is true

(xiv) A rectangular sheet of paper of size 11 cm × 7 cm is first rotated about the side 11 cm and then about the side 7 cm to form a cylinder, as shown in the diagram. The ratio of their curved surface areas is

Sol. 1:1

(xv) In the given diagram, $\triangle ABC \sim \triangle PQR$. If AD and PS are bisectors of $\angle BAC$ and $\angle QPR$ respectively then

[1]

[1]

 $\triangle ABC \sim \triangle PSR$ (d)

Answer (b)

Sol. $\triangle ABD \sim \triangle PQS$

2.

(i)
$$A = \begin{bmatrix} x & 0 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} 4 & 0 \\ y & 1 \end{bmatrix} \text{ and } C = \begin{bmatrix} 4 & 0 \\ x & 1 \end{bmatrix}$$

Mathematics (ICSE)_Class X

Find the values of x and y, if AB = C.

- (ii) A solid metallic cylinder is cut into two identical halves along its height (as shown in the diagram). The diameter of the cylinder is 7 cm and the height is 10 cm. Find : [4]
 - (a) The total surface area (both the halves)
 - (b) The total cost of painting the two halves at the rate of ₹30 per cm². (Use $\pi = \frac{22}{7}$)

(iii) 15, 30, 60, 120... are in G.P. (Geometric Progression).

[4]

- (a) Find the n^{th} term of this G.P. in terms of n.
- (b) How many terms of the above G.P. will give the sum 945?

Sol. (i)
$$AB = C$$

	[<i>x</i> 1	$ \begin{array}{c} 0\\1 \end{array} \begin{bmatrix} 4 & 0\\y & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0\\x & 1 \end{bmatrix} $	[½]
	\Rightarrow	$\begin{bmatrix} 4x & 0 \\ 4+y & 1 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ x & 1 \end{bmatrix}$	[1]
	\Rightarrow	4x = 4	[1]
		x = 1	[½]
		4 + <i>y</i> = <i>x</i> = 1	[½]
	\Rightarrow	<i>y</i> = -3	[½]
(ii)	(a)	Total surface area of (both halves)	
		= $2 \times \text{Total surface area of one half}$	
		$= 2\pi r(r+h) + 2 \times 2r \times h$	[1]
		$= 2 \times \frac{22}{7} \times \frac{7}{2} \left[\frac{7}{2} + 10 \right] + 2 \times 7 \times 10$	[1]
		$= 437 \text{ cm}^2$	[1]
	(b)	Total cost of painting	
		= 30 × 437	[1/2]
		= ₹13,110	[1/2]
(iii)	(a)	<i>a</i> = 15	
		$r = \frac{30}{15} = 2$	[½]
		$a_n = ar^{n-1}$	[1]
		$a_n = 15(2)^{n-1}$	[½]

Now,
$$945 = \frac{15(2^n - 1)}{2 - 1}$$
 [1/2]

$$\Rightarrow 945 = 15(2^n - 1)$$
 [½]

$$\Rightarrow 2^n = 64$$

$$\Rightarrow n=6$$
 [½]

3. (i) Factorize : $sin^{3}\theta + cos^{3}\theta$

-

Hence, prove the following identity : $\frac{\sin^3 \theta + \cos^3 \theta}{\sin \theta + \cos \theta} + \sin \theta \cos \theta = 1$

In the given diagram, O is the centre of the circle. PR and PT are two tangents drawn from the external (ii) point P and touching the circle at Q and S respectively. MN is a diameter of the circle. Given $\angle PQM = 42^{\circ}$ and $\angle PSM = 25^{\circ}$. [4]

Find :

- ∠QNS (b)
- ∠QOS (c)
- (d) ∠QMS
- (iii) Use graph sheet for this question. Take 2 cm = 1 unit along the axes.

[5]

[1]

[4]

- (a) Plot A(0, 3), B(2, 1) and C(4, -1).
- (b) Reflect point B and C in y-axis and name their images as B' and C' respectively. Plot and write coordinates of the points B' and C'.
- (c) Reflect point A in the line BB' and name its images as A'.
- Plot and write coordinates of point A'. (d)
- Join the points ABA'B' and give the geometrical name of the closed figure so formed. (e)

Sol. (i)
$$\sin^3\theta + \cos^3\theta = (\sin\theta + \cos\theta)(\sin^2\theta + \cos^2\theta - \sin\theta\cos\theta)$$
 [Using $a^3 + b^3 = (a + b)(a^2 + b^2 - ab]$ [1]

 $= (\sin\theta + \cos\theta) (1 - \sin\theta\cos\theta) \dots (i)$

[\because sin² θ + cos² θ = 1]

	Nov	v, LHS	
		$\frac{^{3}\theta + \cos^{3}\theta}{^{1}\theta + \cos\theta} + \sin\theta\cos\theta$	
	= (5	$\frac{\sin\theta + \cos\theta}{(\sin\theta + \cos\theta)} + \sin\theta\cos\theta \text{[Using (i)]}$	[1]
	= 1	$-\sin\theta\cos\theta + \sin\theta\cos\theta$	
	= 1	= RHS	[1]
	Her	ice proved	
		R	
(ii)	(a)		
		P S T	
		Join OQ,	
		$\angle OQP = 90^{\circ}$ [radius \perp tangent]	
		$\Rightarrow \angle PQM + \angle OQM = 90^{\circ}$	[1⁄2]
		$\Rightarrow 42^\circ + \angle OQM = 90^\circ$	
		$\Rightarrow \angle OQM = 48^{\circ}$	[1⁄2]
	(b)	$\angle SNM = \angle PSM$ [Alternate segment theorem]	
		$\Rightarrow \angle SNM = 25^{\circ}$	
		Also, $\angle QNM = \angle PQM$ [Alternate segment theorem]	F1 / 7
		$\Rightarrow \angle QNM = 42^{\circ}$ Now, $\angle QNS = \angle SNM + \angle QNM$	[½]
		$= 25^{\circ} + 42^{\circ} = 67^{\circ}$	[½]
	(c)	$\angle QOS = 2 \angle QNS$	[1/2]
	(0)	[Angle made by an arc at the centre is double the angle made by it on remaining part of circle]	[,-]
		$\therefore \angle QOS = 2 \times 67^{\circ} \qquad \qquad [\because \angle QNS = 67^{\circ}]$	
		= 134°	[½]
	(d)	$\angle QMS + \angle QNS = 180^{\circ}$	
		[.: Opposite angles of cyclic quadrilateral are supplementary]	[½]
		$\Rightarrow \angle QMS + 67^\circ = 180^\circ \qquad [\because \angle QNS = 67^\circ]$	
		$\Rightarrow \angle QMS = 113^{\circ}$	[½]

SECTION-B (40 Marks)

(Attempt any four questions from this Section.)

- 4. (i) Suresh has a recurring deposit account in a bank. He deposits ₹2000 per month and the bank pays interest at the rate of 8% per annum. If he gets ₹1040 as interest at the time of maturity, find in years total time for which the account was held.
 - (ii) The following table gives the duration of movies in minutes.

Duration (in minutes)	100 - 110	110 - 120	120 - 130	130- 140	140 -150	150 - 160
No. of movies	5	10	17	8	6	4

Using step - deviation method, find the mean duration of the movies.

(iii) If
$$\frac{(a+b)^3}{(a-b)^3} = \frac{64}{27}$$

(a) Find $\frac{a+b}{a-b}$

(b) Hence using properties of proportion, find *a* : *b*.

[4]

[3]

Sol. (i) Money deposited = ₹2000 per month

$$r = 8\% \text{ p.a}$$

 $SI = 1040$
 $n = ?$
 $SI = \frac{P \times n(n+1) \times r}{2 \times 12 \times 100}$ [½]
 $1040 = \frac{2000 \times n(n+1) \times 8}{2 \times 12 \times 100}$ [½]
 $n(n+1) = 156$ [1]
 $n^2 + n - 156 = 0$
 $n^2 + 13n - 12n - 156 = 0$
 $n(n+13) - 12(n+13) = 0$ [½]
 $n = 12, n = -13 \text{ (not possible)}$

$$n = 12$$
 months

(ii)

[½]

Duration (in minutes)	No. of movies (<i>f</i> ,)	Mid point (x_i)	$v_i = \frac{x_i - 125}{10}$	f _i v _i
100 - 110	5	105	-2	-10
110 - 120	10	115	-1	-10
120 - 130	17	125 = A	0, office	0
130 - 140	8	135	Indf	8
140 - 150	6	145	2	12
150 - 160	4	155	3	12
	$\Sigma f_i = 50$			$\Sigma f_i v_i = 12$

[2]

Mean, $\overline{x} = A + h \times \frac{\Sigma f_i v_i}{\Sigma f_i}$ $= 125 + 10 \times \frac{12}{50}$ $= 125 + \frac{12}{5}$ = 127.4(iii) (a) $\frac{(a+b)^3}{(a-b)^3} = \frac{64}{27}$ $\Rightarrow \frac{(a+b)^3}{(a-b)^3} = \frac{4^3}{3^3}$ $\Rightarrow \frac{a+b}{a-b} = \frac{4}{3}$ (By taking cube root on both sides]
(1/2) (b) $\frac{a+b}{a-b} = \frac{4}{3}$ Using componendo and dividendo rule : $\frac{a+b+(a-b)}{a+b-(a-b)} = \frac{4+3}{4-3}$ [1] $\frac{a+b+a-b}{a+b-a+b} = \frac{7}{4}$ [1]

$$a+b-a+b = 1$$

 $\frac{2a}{2b} = \frac{7}{1}$
 $a: b = 7:1$
[1]

(i) The given graph with a histogram represents the number of plants of different heights grown in a school campus. Study the graph carefully and answer the following questions: [5]

- (a) Make a frequency table with respect to the class boundaries and their corresponding frequencies.
- (b) State the modal class.
- (c) Identify and note down the mode of the distributions.
- (d) Find the number of plants whose height range is between 80 cm to 90 cm.
- (ii) The angle of elevation of the top of a 100 m high tree from two points *A* and *B* on the opposite side of the tree are 52° and 45° respectively. Find the distance *AB*, to the nearest metre.

[1]

[1]

Required frequency table : Sol. (i) (a)

Height (in cm)	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80	80 - 90	90 - 100	
No. of plants	4	2	8	12	6	3	4	[1]

- Since the modal class is the class with the highest frequency, (b)
 - ÷. 60 - 70 is the modal class.
- Mode of the distribution is given by (C)

Mode =
$$I + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$
 [½]
where $I = 60$

$$f_1 = 12$$

 $f_0 = 8$
 $f_2 = 6$
 $h = 10$
[½]

$$\therefore \quad Mode = 60 + \left(\frac{12 - 8}{24 - 8 - 6}\right) \times 10$$
[1/2]

(d) Number of plants whose height range is between 80 cm to 90 cm is 3. [1]

$$\int_{A}^{D} \int_{C}^{D} \int_{C}^{D} \int_{B}^{D} \int_{C}^{D} \int_{C}^{$$

$$\tan 52^\circ = \frac{100}{AC}$$
 [½]

$$\Rightarrow AC = \frac{100}{\tan 52^{\circ}}$$

$$\Rightarrow AC = \frac{100}{1.28}$$

AC = 78.125 m

In $\triangle BCD$,

$$\tan 45^\circ = \frac{100}{BC}$$
 [½]

$$\Rightarrow BC = \frac{100}{1}$$

...(i)

Mathem	natics (ICSE)_Class X	Aakash Medial III' YEEI romatai
	$\Rightarrow BC = 100 \text{ m}$ (ii)	
	AC + BC = 78.125 + 100 [From (i) and	(ii)] [½
	<i>AB</i> = 178.125 m	[½
	\therefore Distance <i>AB</i> = 178 metres approximately.	[½
6. (i)	Solve the following quadratic equation for x and give your	answer correct to three significant figures: [3
	$2x^2 - 10x + 5 = 0$	
	(Use mathematical tables if necessary)	
(ii)	The <i>n</i>th term of an Arithmetic Progression (A.P.) is given b	y the relation $T_n = 6(7 - n)$. [3
	Find:	
	(a) its first term and common difference	
	(b) sum of its first 25 terms	
(iii)	In the given diagram $\triangle ADB$ and $\triangle ACB$ are two right angled tr $AD = 6$ cm, $BC = 2.4$ cm and $DP = 4.5$ cm	angles with $\angle ADB = \angle BCA = 90^\circ$. If $AB = 10$ cm [4]
Sol. (i)	(a) Prove that $\triangle APD \sim \triangle BPC$ (b) Find the length of <i>BD</i> and <i>PB</i> (c) Hence, find the length of <i>PA</i> (d) Find area $\triangle APD$: area $\triangle BPC$ $2x^2 - 10x + 5 = 0$ [Given]	2.4 cm B Foundations
	$\therefore x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ where $a = 2, b = -10, c = 5$	[½
		F1/
	*	[½
	$\therefore \qquad x = \frac{-(-10) \pm \sqrt{(-10)^2 - (4 \cdot 2 \cdot 5)}}{2 \cdot 2}$	[½
	$=\frac{10\pm\sqrt{100-40}}{4}$	
	$=\frac{10\pm\sqrt{60}}{4}$	
	$10 + 2\sqrt{15}$	
	$=\frac{10\pm 2\sqrt{15}}{4}$	[½
	10±2(3.873)	_
	$=rac{10\pm2(3.873)}{4}$	[½
	10±7.746	
	$=\frac{10\pm7.746}{4}$	
	\therefore x = 4.436 or x = 0.563	[½]

In $\triangle BCP$, $BP^2 = BC^2 + PC^2 = (2.4)^2 + (1.8)^2$ BP = 3 cm $\therefore BD = BP + PD$ = 3 cm + 4.5 cm BD = 7.5 cm[½]

(c) In
$$\triangle PDA$$
,

$$AP^2 = AD^2 + PD^2$$

$$= 6^2 + (4.5)^2$$

[½]

(d)
$$\frac{\operatorname{ar.} \Delta APD}{\operatorname{ar.} \Delta BPC} = \frac{\frac{1}{2} \times 6 \times 4.5}{\frac{1}{2} \times 2.4 \times 1.8}$$

$$= \frac{27}{4.32}$$

$$= \frac{25}{4}$$
[½]

* This question has ambiguity. Since the triangles are similar therefore *AB* = 10 cm is not possible but it is not required to find other sides.

So, the question can be considered as bonus.

7. (i) In the given diagram, an isosceles △ABC is inscribed in a circle with centre O. PQ is a tangent to the circle at C. OM is perpendicular to chord AC and ∠COM = 65°. [3]

Find :

- (a) ∠ABC
- (b) $\angle BAC$
- (c) ∠BCQ
- (ii) Solve the following inequation, write down the solution set and represent it on the real number line. [3]

$$-3 + x \le \frac{7x}{2} + 2 < 8 + 2x, \ x \in I$$

[4]

(iii) In the given diagram, ABC is a triangle, where B(4, -4) and C(-4, -2). D is a point on AC.

- (a) Write down the coordinates of A and D.
- (b) Find the coordinates of the centroid of $\triangle ABC$.
- TEEFoundations If D divides AC in the ratio k: 1, find the value of k. (c)
- Find the equation of the line BD. (d)

(c)	$\angle BCQ = \angle BAC = 50^{\circ}$	[Alternate segment Theorem]	[1]
	$\Rightarrow \angle BAC = 180^\circ - 130^\circ = 50^\circ$		[1⁄2]
	\Rightarrow 65° + 65° + $\angle BAC$ = 180°		[½]
(b)	$\angle BAC + \angle ABC + \angle ACB = 180^{\circ}$	[Angle sum property of triangle]	
	$\Rightarrow \angle ACB = 65^{\circ}$	[:: AB = AC]	[1/2]
	$\therefore \angle ABC = \angle ACP = 65^{\circ}$	[Alternate Segment Theorem]	
	$\Rightarrow \angle ACP = 90^\circ - 25^\circ = 65^\circ$	$[:: OC \perp PQ]$	[1/2]
(a)	$\angle OAM = \angle OCM = 90^\circ - 65^\circ = 25^\circ$	$[:: OM \perp AC]$	

Nedica

$$\Rightarrow \quad k=3$$

]

akas

- (d) Coordinates of *B* and *D* are (4, -4) and (-3, 0) respectively.
 - \therefore Equation of line *BD* is given by,

$$(y-0) = \left(\frac{0-(-4)}{-3-4}\right)(x-(-3)) \qquad \left[\because \text{ slope of } BD = \frac{0-(-4)}{-3-4}\right] \qquad [1/2]$$

$$\Rightarrow \quad y = \frac{-4}{7}(x+3)$$

$$\Rightarrow \quad 7y = -4x - 12$$

$$\Rightarrow \quad 4x + 7y + 12 = 0 \qquad [1/2]$$

- 8. (i) The polynomial 3x³ + 8x² 15x + k has (x 1) as a factor. Find the value of k. Hence factorize the resulting polynomial completely.
 [3]
 - (ii) The following letters A, D, M, N, O, S, U, Y of the English alphabet are written on separate cards and put in a box. The cards are well shuffled and one card is drawn at random. What is the probability that the card drawn is a letter of the word,
 - (a) MONDAY?
 - (b) which does not appear in MONDAY?
 - (c) which appears both in SUNDAY and MONDAY?
 - (iii) Oil is stored in a spherical vessel occupying 3/4 of its full capacity. Radius of this spherical vessel is 28 cm. This oil is then poured into a cylindrical vessel with a radius of 21 cm. Find the height of the oil in the cylindrical vessel (correct to the nearest cm).

Take
$$\pi = \frac{22}{7}$$

Sol. (i) If (x - 1) is factor of $3x^3 + 8x^2 - 15x + k$, then $3(1)^3 + 8(1)^2 - 15(1) + k = 0$ [1/2] 3 + 8 - 15 + k = 0 k = 15 - 11 $\boxed{k = 4}$ $f(x) = 3x^3 + 8x^2 - 15x + 4$

$$x-1)3x^{3}+8x^{2}-15x+4(3x^{2}+11x-4)$$
[1]

$$\underbrace{\begin{array}{c}
 \underline{-3x^{3} + 3x^{2}} \\
 11x^{2} - 15x \\
 \underline{-11x^{2} + 11x} \\
 -4x + 4 \\
 \underline{-4x + 4} \\
 \underline{-4x + 4} \\
 \underline{-0} \\
 \end{array}$$

	alloo		Medical IIT-JEE Foundations
	\cdot	$(x - 1)$ is a factor of $3x^3 + 8x^2 - 15x + 4$	
		$3x^3 + 8x^2 - 15x + 4 = (x - 1)(3x^2 + 11x - 4)$	
		$=(x-1)(3x^2+12x-x-4)$	[½]
		= (x-1)[3x(x+4) - 1(x+4)]	
		= (x - 1)(3x - 1)(x + 4)	[½]
(ii)	(a)	Letters given are A, D, M, N, O, S, U, Y which are 8 in count.	
		To form MONDAY, 6 letters are desired letters.	
		$\therefore \text{Probability} = \frac{\text{Favourable number of cases}}{\text{Total number of cases}}$	
		$=\frac{6}{8}$	
		$=\frac{3}{4}$	[1]
	(b)	Probability (Not appear in MONDAY)	
		$=\frac{2}{8}$ [As S, U are not there is MONDAY]	
		1	
		$=\frac{1}{4}$	[1]
	(c)	Probability (appear in SUNDAY and MONDAY)	
		$=\frac{4}{8}$ [As 4 letters N, D, A, Y are common]	
		8	
		$=\frac{1}{2}$	[1]
(:::)	Val		
(iii)	•	ume of oil in spherical vessel = Volume of oil in cylindrical vessel	
	$\frac{3}{4} \times$	$\frac{4}{3}\pi r^3 = \pi R^2 h$; where r, R, h are the radius of sphere, radius of cylinder and height upto v	which oil is
	fille	d in the cylinder.	[2]
	π(2	$(28)^3 = \pi (21)^2 h$	[1]
	h=	$=\frac{28^3}{21^2}=49.777$ cm	[½]
		\approx 50 cm (approximately)	[½]
(i)	The	e figure shows a circle of radius 9 cm with O as the centre. The diameter AB produced meets t	he tangent

akash

9. (i) The figure shows a circle of radius 9 cm with O as the centre. The diameter AB produced meets the tangent PQ at P. If PA = 24 cm, find the length of tangent PQ. [3]

- 19 -

[½]

[1/2]

[½]

- Mr. Gupta invested ₹33000 in buying ₹100 shares of a company at 10% premium. The dividend declared (ii) by the company is 12%. Find: [3]
 - (a) the number of shares purchased by him.
 - (b) his annual dividend.
- (iii) A life insurance agent found the following data for distribution of ages of 100 policy holders: [4]

Age in years	Policy Holders (frequency)	Cumulative frequency
20 - 25	2	2
25 - 30	4	6
30 - 35	12	18
35 - 40	20	38
40 - 45	28	66
45 - 50	22	88
50 - 55	8	96
55 - 60	4	100

On a graph sheet draw an ogive using the given data. Take 2 cm = 5 years along one axis and 2 cm = 10 policy holders along the other axis. Use your graph to find:

- (a) The median age.
- (b) Number of policy holders whose age is above 52 years.

PA = 24 cm Sol. (i)

PB = 24 - 2(9)

= 6 cm

Now,

= 6 cm		[1/2]
3		
$PQ^2 = PA \times PB$	A	[1]
$PQ^2 = 24 \times 6$		[½]
<i>P</i> Q ² = 144		[½]

- *PQ* = 12 cm
- (ii) (a) Nominal value of each share = ₹100

Dividend = 12%

(Number of shares) \times 110 = 33000

Number of shares
$$=\frac{33000}{110}$$

(b) Total amount of dividend = Dividend on one share × Number of shares	[1/2]
= (12% of ₹100) × 300	[1/2]
= ₹3600	[½]

[2]

[2]

[3]

10. (i) Rohan bought the following eatables for his friends :

Soham Sweet Mart : Bill							
S. No.	Item	Price	Quantity	Rate of GST			
1	Laddu	₹500 per kg	2 kg	5%			
2	Pastries	€₹100 per piece	12 pieces	18%			

= 8 people

Calculate :

- (a) Total GST paid.
- (b) Total bill amount including GST.
- (ii) (a) If the lines kx y + 4 = 0 and 2y = 6x + 7 are perpendicular to each other, find the value of k. [3]
 - (b) Find the equation of a line parallel to 2y = 6x + 7 and passing through (-1, 1)
- (iii) Use ruler and compass to answer this question. Construct $\angle ABC = 90^{\circ}$, where AB = 6 cm, BC = 8 cm. [4]
 - (a) Construct the locus of points equidistant from *B* and *C*.
 - (b) Construct the locus of points equidistant from A and B.
 - (c) Mark the point which satisfies both the conditions (a) and (b) as *O*. Construct the locus of point keeping a fixed distance *OA* from the fixed point *O*.
 - (d) Construct the locus of points which are equidistant from *BA* and *BC*.

Soham Sweet Mart : Bill									
S. No.	ltem	Price	Quantity	Rate of GST	Item Price	GST Paid	Price with GST		
1	Laddu	₹500 per kg	2 kg	5%	2 × 500 = ₹1000	5% of 1000 = $\frac{5}{100}$ ×1000 = ₹50	₹(1000 + 50) = ₹1050		
2	Pastries	₹100 per piece	12 pieces	18%	12 x 100 = ₹1200	18% of 1200 = $\frac{18}{100}$ ×1200 = ₹216	₹(1200 + 216) = ₹1416		
	Total				=₹2200	= ₹266	= ₹2466		

[2]
(a)
$$\therefore$$
 Total GST paid = ₹266 [½]
(b) Total bill amount including GST = ₹2466 [½]
(ii) (a) Here, $kx - y + 4 = 0$
Slope = $\frac{-Coefficient of x}{Coefficient of y}$
 $= \frac{-k}{-1} = k$
 $\therefore 2y = 6x + 7$
 $\Rightarrow 6x - 2y + 7 = 0$
Slope = $\frac{-6}{-2} = 3$ [½]
If lines are perpendicular, then $k \times 3 = -1$

Nedir

$$\Rightarrow k = \frac{-1}{3}$$

[½]

(b) 2y = 6x + 7

$$\Rightarrow \quad y = 3x + \frac{7}{2}$$

$$\Rightarrow \quad y = mx + c$$

$$\therefore \quad m = 3$$
 [1/2]

When lines are parallel,

$$m_1 = m_2 = 3$$

Now,

Equation of line

$$y - y_1 = m(x - x_1)$$

 $\Rightarrow y - 1 = 3 [x - (-1)]$
[1/2]

$$\Rightarrow y-1 = 3 (x + 1)$$

$$\Rightarrow y-1 = 3x + 3$$

$$\Rightarrow y = 3x + 4$$
[1/2]

 $\angle ABC = 90^{\circ}$, AB = 6 cm and BC = 8 cm is drawn.

- (a) Perpendicular bisector of *BC* is locus of points equidistant from *B* and *C* represented by *LP* in figure.
 [1]
- (b) Line SR represents locus of points equidistant from AB which is perpendicular bisector of AB. [1]
- (c) Point 'O' which is intersection of SR and LP satisfies both (a) and (b). Circle with radius OA represents locus of points with fixed distance OA.
- (d) *TM* as angle bisector of ∠ABC is drawn which is locus of points which are equidistant from BA and BC.
 [1]

Nedici