CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Select the correct option

$$
\begin{aligned}
& 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}=-\mathrm{x} \mathrm{~kJ} / \mathrm{mol} \\
& \mathrm{C}(\text { graphite })+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-\mathrm{y} \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Then $\Delta \mathrm{H}$ for
C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})$
(1) $x-\frac{y}{2}$
(2) $\frac{x-2 y}{2}$
(3) $\frac{x+2 y}{2}$
(4) $\frac{x-y}{2}$

Answer (2)

Sol. $\Delta \mathrm{H}$ for $\mathrm{C}($ graphite $)+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{g})$ will be $-y+\frac{1}{2} x$ or $\frac{x-2 y}{2} k J / m o l$
2. Stabiliser used for concentration of sulphide ore is
(1) Fatty acids
(2) Pine oil
(3) Cresol
(4) Xanthates

Answer (3)

Sol. - Cresol and aniline is used as stabiliser.

- Pine oils, fatty acids, xanthates are used as collectors.

3. That one which does not stabilise secondary and tertiary protein?
(1) $H-H$ linkage
(2) $S-S$ linkage
(3) Van Der Waal's Force
(4) Hydrogen bonding

Answer (1)

Sol. The secondary and tertiary protein are stabilised by hydrogen bonds, disulphide linkages, Van Der Waal's and electrostatic forces of attraction.
4. Which of the following is diamagnetic with low spin?
(1) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{CoF}_{6}\right]^{3-}$
(3) $[\mathrm{CoCl}]^{3-}$
(4) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$

Answer (1)
Sol. Co^{3+} with NH_{3} will form low spin complex

$$
\mathrm{n}=0 \text { for }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}
$$

5. The compound which does not exist
(1) BeH_{2}
(2) NaO_{2}
(3) PbEt_{4}
(4) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$

Answer (2)
Sol. Lithium forms oxide, sodium forms peroxide and the K, Rb, Cs forms superoxide.
6. Number of molecules \& moles in 2.8375 litre of O_{2} in STP
(1) $1.505 \times 10^{23} \& 0.250$
(2) 7.625×10^{23} and 0.250
(3) 7.625×10^{22} and 0.126
(4) 7.527×10^{22} and 0.125

Answer (3)
Sol. No. of moles $=\frac{2.8375}{22.4}$

$$
=0.1266 \text { moles }
$$

No. of molecules $=0.1266 \times 6.023 \times 10^{23}$

$$
=0.7625 \times 10^{23}
$$

7. Enthalpy of adsorption and enthalpy of micelle formation is respectively
(1) ++
(2) + -
(3) -+
(4) - -

Answer (3)

Sol. Enthalpy of adsorption is (-ve) and Enthalpy of micelle formation is (+ve)
8. Prolonged heating of Ferrous ammonium sulphate is avoided to prevent?
(1) Oxidation
(2) Reduction
(3) Hydrolysis
(4) Breaking

Answer (1)

Sol. Prolonged heating results in oxidation of Fe^{+2} to Fe^{+3} ions.
9. Read the following two statements

Statement I: Potassium dichromate is used in volumetric analysis.
Statement II: $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is more soluble in water than $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
(1) Both statements I and II are correct
(2) Both statements I and II are incorrect
(3) Statement I is correct and II is incorrect
(4) Statement I is incorrect and II is correct

Answer (3)
Sol. Sodium dichromate is more soluble than $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
10. Match the column

	Column-I		Column-II
(A)	Dacron	(P)	Thermosetting
(B)	Urea formaldehyde resin	(Q)	Biodegradable
(C)	Nylon-2, Nylon-6	(R)	Polyester
(D)	Nylon-6, 6	(S)	Used for making bristles of brushes

(1) $A \rightarrow R ; B \rightarrow P ; C \rightarrow S ; D \rightarrow Q$
(2) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{Q} ; \mathrm{D} \rightarrow \mathrm{S}$
(3) $A \rightarrow R ; B \rightarrow P ; C \rightarrow Q ; D \rightarrow S$
(4) $\mathrm{A} \rightarrow \mathrm{P} ; \mathrm{B} \rightarrow \mathrm{R} ; \mathrm{C} \rightarrow \mathrm{S} ; \mathrm{D} \rightarrow \mathrm{Q}$

Answer (3)
Sol. - Dacron is polyester.

- Urea formaldehyde resin is thermosetting.
- Nylon-2, Nylon-6 is biodegradable.
- Nylon-6, 6 is used in making bristles for brushes.

11. The pair of compounds from the following pairs having both the compounds with net zero dipole moment is
(1) $\mathrm{CH}_{2} \mathrm{Cl}_{2} ; \mathrm{CHCl}_{3}$
(2) 1,4-dichlorobenzene;1,3,5-trichlorobenzene
(3) Benzene; p-Anisidine
(4) Cis-dichloroethene; trans-dichloroethene

Answer (2)

Sol. (1)

(2)

$\mu=0$
(3)

(4)
 $\mu=+\mathrm{ve}$

$\mu \approx 0$
12. Consider the following reaction

The product P is
(1)

(2)

(3)

(4)

Answer (3)

Sol. Oxidation of benzene ring towards left takes place.
13. $\mathrm{FeO}_{4}^{2-} \xrightarrow{\mathrm{E}_{1}^{0}=+2.20 \mathrm{~V}} \mathrm{Fe}^{3+} \xrightarrow[\mathrm{E}_{2}^{0}=0.77 \mathrm{~V}]{ } \mathrm{Fe}^{2+} \xrightarrow{\left(\mathrm{E}_{3}^{0}=-0.44 \mathrm{~V}\right)} \mathrm{Fe}$

Value of E_{4}^{0} is close to
(1) 1.00 V
(2) 2.00 V
(3) 2.50 V
(4) 0.50 V

Answer (2)

Sol. $E_{4}^{\circ}=\frac{(2.20 \times 3)+(0.77 \times 1)}{4}$
$1.84 \approx 2.0 \mathrm{~V}$
14. Mixture of A, B and C is added to column containing adsorbent for separation. Using solvent, A is eluted first and B eluted last, then B has
(1) High R_{f}, less adsorption
(2) Low R_{f}, strongly adsorbed
(3) High R_{f}, strong adsorption
(4) Low R_{f}, weakly adsorbed

Answer (2)

Sol. Those substances which are strongly adsorbed more slowly will be eluted late.
15. Solution of 0.1 Molal Weak Acid HA is present.
T_{1} : Freezing point of solution assuming no dissociation of acid.
T_{2} : Freezing point of solution assuming degree of dissociation $(\alpha)=0.3$

Find out $\left|T_{1}-T_{2}\right|$ if K_{F} of water $=1.86 \mathrm{~K} \mathrm{~kg} /$ mole.
(1) 0.0324
(2) 0.0558
(3) 0.0257
(4) 0.8742

Answer (2)

Sol. $\Delta \mathrm{T}_{1}=(1)(1.86)(0.1)=0.186$
$\Delta T_{2}=(1.3)(1.86)(0.1)=0.2418$
$\left(T_{1}-T_{2}\right)=0.0558$
16. Statement-1: Reduction potential $\mathrm{M}^{3+} / \mathrm{M}^{2+}$ is more for Fe than Mn

Statement-2: V^{2+} has magnetic moment between 4.4-5.2 B.M.

Select the correct option
(1) Statement 1 and 2, both are correct
(2) Statement 1 and 2, both are incorrect
(3) Statement 1 is correct but statement 2 is incorrect
(4) Statement 1 is incorrect but statement 2 is correct

Answer (2)

Sol. $\mathrm{E}_{\mathrm{Mn}^{3+} / \mathrm{Mn}^{2+}}^{\circ}=1.57 \mathrm{~V}$

$$
\mathrm{E}_{\mathrm{Fe}^{3+} / \mathrm{Fe} \mathrm{e}^{2+}}^{\circ}=0.77 \mathrm{~V}
$$

Therefore statement 1 is incorrect

$$
\begin{aligned}
\mathrm{V}^{3+}=\mathrm{d}^{2} \Rightarrow \mu & =\sqrt{2(2+2)} \text { B.M. } \\
& =\sqrt{8} \\
& =2.83 \text { B.M. }
\end{aligned}
$$

Therefore statement 2 is incorrect Hence option (2) is the correct answer.
17. Match column-I with Column-II.

Industry
(i) Cotton mills
(ii) Paper mills
(iii) Fertilizer
(iv) Thermal power plant
(1) $\mathrm{i} \rightarrow \mathrm{c}$; ii $\rightarrow \mathrm{a}, \mathrm{b}$; iii $\rightarrow \mathrm{c}$, iv \rightarrow b
(2) $\mathrm{i} \rightarrow \mathrm{a}$; ii $\rightarrow \mathrm{a}$; $\mathrm{iii} \rightarrow \mathrm{b}$; iv $\rightarrow \mathrm{d}$
(3) $\mathrm{i} \rightarrow \mathrm{a}, \mathrm{c}$; ii $\rightarrow \mathrm{b}$; iii $\rightarrow \mathrm{b}$, iv \rightarrow a
(4) $\mathrm{i} \rightarrow \mathrm{c}$; ii $\rightarrow \mathrm{b}, \mathrm{c}$; iii $\rightarrow \mathrm{b}, \mathrm{c}$; iv $\rightarrow \mathrm{a}$

Answer (2)

Sol. Cotton mills \rightarrow Biodegradable waste
Paper mills \rightarrow Biodegradable waste
Fertilizer \rightarrow Gypsum
Thermal power plants \rightarrow Fly ash
18.
19.
20.
plant

Waste/pollution

(a) Biodegradable waste
(b) Gypsum
(c) Non biodegradable waste
(d) Fly ash

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Sum of number of lone pairs in central atom in IF_{5} and IF_{7} is

Answer (01.00)

Sol.

22. How many of the following are bent in shape

$$
\mathrm{SO}_{2}, \mathrm{O}_{3}, \mathrm{I}_{3}^{\Theta}, \mathrm{N}_{3}^{\Theta} ?
$$

Answer (02)

Sol.

$\overline{\mathrm{N}}=\stackrel{+}{\mathrm{N}}=\overline{\mathrm{N}}$
Linear

Linear
23. The pressure value of a gas is 930.2 mm Hg . The volume is then reduced to 40% of its initial value at constant temperature then what is the final pressure (in mm Hg)?
Answer (2325.5)
Sol. $\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2}$
$\frac{(930.2)}{760} \times \mathrm{V}_{1}=\mathrm{P}_{2} \times(0.4) \mathrm{V}_{1}$
$P_{2}=\frac{930.2}{0.4}=2325.5 \mathrm{~mm} \mathrm{Hg}$.
24. The degree of dissociation of a monobasic acid is 0.3. By what percent is the observed depression in freezing point greater than the calculated depression in freezing point?

Answer (30.00)
Sol. $\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}+\mathrm{A}^{-}$
1- $\alpha \quad \alpha \quad \alpha$
$i=1+\alpha$
$\alpha=0.3$
$\mathrm{i}=1.3$
$\left(\Delta T_{f}\right)_{\text {obs }}=1.3 \times k_{f} \times \mathrm{m}$
$\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {cal }}=1 \times k_{f} \times \mathrm{m}$
$\frac{\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\text {obs }}-\left(\Delta \mathrm{T}_{\mathrm{f}}\right)_{\mathrm{cal}}}{\left(\Delta T_{f}\right)_{\text {cal }}} \times 100=\frac{0.3}{1} \times 100=30 \%$
25. Consider a reaction

Overall half-life of C is (in minutes):

Answer (20)

Sol. $\frac{1}{\left(t_{1 / 2}\right)_{C}}=\frac{1}{\left(t_{1 / 2}\right)_{A}}+\frac{1}{\left(t_{1 / 2}\right)_{B}}=\frac{1}{30}+\frac{1}{60}=\frac{90}{1800}$
$\frac{1}{\left(t_{1 / 2}\right)_{C}}=\frac{1}{20} \Rightarrow\left(t_{1 / 2}\right)_{C}=20$ minutes
26. How many compounds can be easily prepared by Gabriel pthalamide synthesis, which on reaction with Hinsberg reagent produces a compound which is soluble in KOH

Answer (02)

Sol. 1° aliphatic amines can be easily prepared by Gabriel pthalamide synthesis and produce soluble adducts in KOH
27.
28.
29.
30.

