

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

Find equivalent capacitance across points A and B in the given electrical circuit

(1)

- (2) 2C

Answer (2)

Sol. Two capacitors will get short-circuited also,

$$C_{AB} = 2C$$

- A particle of mass *m* moving with velocity *v* collides with a particle of mass 2m at rest and sticks to it. Velocity of combined mass is equal to
 - (1) v

Answer (3)

Sol. mv = (m + 2m)v'

$$\Rightarrow v' = \frac{v}{3}$$

- An object weighs 200 N at the surface of earth. Find the weight at a depth of $\frac{R}{2}$, where R is radius of earth.
 - (1) 100 N
- (2) 300 N
- (3) 50 N
- (4) 150 N

Answer (1)

Sol.
$$g' = g \left[1 - \frac{d}{R} \right]$$

$$= g \left[1 - \frac{R/2}{R} \right]$$

$$= \frac{g}{2}$$

$$\Rightarrow W' = \frac{W}{2} = 100 \text{ N}.$$

Find the equivalent resistance across A and B for 4. given circuit.

- (1) 6.4Ω
- (2) 4Ω
- (3) 3.2Ω
- (4) 8Ω

Answer (3)

Sol.
$$R_{eq} = \frac{16 \times 4}{20} = \frac{64}{20} = \frac{32}{10} = 3.2 \ \Omega$$

- For an object radiating heat at 300 K, the wavelength corresponding to maximum intensity is λ . If the temperature of body is increased by 300 K, the new wavelength corresponding to maximum intensity will be
 - (1) $\frac{\lambda}{2}$

 $(3) \lambda$

Answer (1)

Sol. $\lambda T = \text{constant}$

$$\therefore \frac{\lambda_1}{\lambda_2} = \frac{T_2}{T_1}$$

$$\lambda_2 = \lambda \left(\frac{300}{600}\right) = \frac{\lambda}{2}$$

- A monoatomic gas initially at pressure P and volume V is compressed to $\frac{1}{8}$ th of its volume adiabatically. Final pressure of the gas is equal to
 - (1) 4P

- (2) 8P
- (3) 16P
- (4) 32P

Answer (4)

JEE (Main)-2023: Phase-2 (10-04-2023)-Morning

Sol. $PV^{\gamma} = \text{Constant}$

$$\Rightarrow PV^{\frac{5}{3}} = P_f \left(\frac{V}{8}\right)^{\frac{5}{3}}$$

$$\Rightarrow P_f = P(8)^{\frac{5}{3}}$$

$$= 32P$$

- 7. A projectile, when projected at 15° with horizontal, has a range of 50 m. Find the range when projected at 45° with horizontal.
 - (1) 50 m
- (2) 100 m
- (3) 80 m
- (4) 120 m

Answer (2)

Sol.
$$R = \frac{U^2 \sin 2\theta}{g}$$

$$\Rightarrow 50 = \frac{U^2 \sin 30^\circ}{g}$$
and $R' = \frac{U^2 \sin 90^\circ}{g}$

 \Rightarrow R' = 100 m

- Statement (1): An LCR circuit connected to an AC source has maximum average power at resonance.
 Statement (2): A resistor only circuit with zero phase difference has maximum average power.
 - (1) (1) and (2) both are correct
 - (2) (1) is correct but (2) is incorrect
 - (3) (1) is incorrect but (2) is correct
 - (4) Both (1) and (2) are incorrect

Answer (1)

Sol.
$$P_{\text{avg}} = \frac{I_{\text{rms}}V_{\text{rms}}}{2}\cos\phi$$

For maximum $P_{\text{avg}} \cos \phi = 1$

$$\Rightarrow \phi = 0$$

or circuit is a resistive circuit or an *LCR* is at resonance

9. A radioactive nuclei *X* decays simultaneously to two nuclei *Y* and *Z* as:

 $t_{\frac{1}{2}}$ is 12 minutes while $t'_{\frac{1}{2}}$ is 3 minutes. Find the time in which nuclei *X* decays 50%.

- (1) 4.8 minutes
- (2) 15 minutes
- (3) 2.4 minutes
- (4) 9 minutes

Answer (3)

Sol.
$$\left(t_{1/2}\right)_{\text{Eff}} = \frac{t_{1/2} \cdot t_{1/2}'}{t_{1/2} + t_{1/2}'}$$

= 2.4 minutes.

10. What is the maximum percentage error in the measurement of quantity *I*, if it is given by $I = \frac{a^2b^3}{c\sqrt{d}}$.

Given the percentage error in the calculation of *a*, *b*, *c* and *d* are 1%, 2%, 3% and 4% respectively.

- (1) 11%
- (2) 12%
- (3) 9%
- (4) 13%

Answer (4)

Sol.
$$\frac{\Delta I}{I} \times 100 = \pm \left(\frac{2\Delta a}{a} + \frac{3\Delta b}{b} + \frac{\Delta c}{c} + \frac{1}{2} \frac{\Delta d}{d} \right) \times 100$$

= $\left[2(1) + 3(2) + (3) + \frac{1}{2}(4) \right]$
= 13 %

- 11. For a particle performing linear SHM, its position (x) as a function of time (t) is given by $x = A\sin(\omega t + \delta)$.

 Given that, at t = 0, particle is at $+\frac{A}{2}$ and is moving towards x = +A. Find δ
 - (1) $\frac{\pi}{3}$ rad
- (2) $\frac{\pi}{6}$ rad
- (3) $\frac{\pi}{4}$ rad
- (4) $\frac{5\pi}{6}$ rad

Answer (2)

Sol.

In the phasor diagram

$$\sin \delta = \frac{\frac{A}{2}}{A} = \frac{1}{2}$$

$$\delta = \frac{\pi}{6} \text{ radian}$$

- 12. A solenoid having 60 turns and length 15 cm produces magnetic field of 2.4 × 10⁻³ T, Find the current in the solenoid.
 - (1) $\frac{90}{2\pi}$ A
- (2) $\frac{30}{2\pi}$ A
- (3) $\frac{10}{\pi}$ A
- (4) $\frac{20}{\pi}$ A

Answer (2)

Sol. $B = \mu_0 ni$

$$\Rightarrow$$
 2.4×10⁻³ = 4 π ×10⁻⁷ × $\frac{60}{0.15}$ × *i*

$$\Rightarrow$$
 2.4 × 10⁻³ = 16 π × 10⁻⁵ × *i*

$$i = \left(\frac{240}{16\pi}\right) = \frac{60}{4\pi} = \left(\frac{30}{2\pi}\right)A$$

13. The given graph shows the position (x)—time (t)relation for two students, A and B from school to their home. Consider the following statements

- a. A is faster than B
- B is faster than A
- B lives further away than A
- d. A live further away than B

Correct statements are

- (1) a, d
- (2) b, c
- (3) b, d
- (4) a, c

Answer (2)

Sol. (Slope of x-t) $_B$ – (Slope of x-t) $_A$

$$V_B > v_A$$

Also, $(x \text{ of home})_B > (x \text{ of home})_A$

- 14. Angular momentum of an e-in first Bohr's orbit is L. The change in angular momentum if this electron jumps to the second orbit will be
 - (1) L

(2) 2L

(3) 3L

(4) 1.5L

Answer (1)

Sol.
$$L_{i} = L = \frac{L}{2\pi}$$

$$L_f = \frac{2h}{2\pi} = 2L$$

$$\Delta L = L$$

- 15. The mass and radius of orbit for two satellites are (m, r) and (3m, 3r) respectively. Find the ratio of their orbital velocity about earth.
 - (1) $\sqrt{3}:1$
- (2) $1:\sqrt{3}$
- (3) $\sqrt{2}:1$
- (4) 1:2

Answer (1)

Sol. $v_1 = \sqrt{\frac{Gm}{r}}, \qquad v_2 = \sqrt{\frac{Gm}{3r}}$

$$v_2 = \sqrt{\frac{Gm}{3r}}$$

$$\therefore \frac{v_1}{v_2} = \frac{\sqrt{3}}{1}$$

- 16. Decay constant for a radioactive nuclide is given to be 2×10^3 . If molar mass of sample is 60 gm then activity of 0.3 µgm sample is equal to (in disintegration/seconds)
 - $(1) 6.023 \times 10^{15}$
- (2) 6.023×10^{18}
- (3) 6.023×10^{12}
- (4) 3.012×10^{12}

Answer (2)

Sol. λN

$$= 2 \times 10^{3} \times \frac{3 \times 10^{-7}}{60} \times 6.023 \times 10^{23}$$
$$= 6.023 \times 10^{18}$$

- 17. An point sized object is placed 4 cm from the double convex lens of focal length 8 cm. The change in the position of image, when the object is moved 2 cm towards the lens, is
 - (1) 8 cm
- (2) $\frac{8}{3}$ cm
- (3) $\frac{16}{3}$ cm
- (4) $\frac{32}{3}$ cm

Answer (3)

For
$$u = -4$$
 cm $\Rightarrow \frac{1}{v} - \frac{1}{u} = \frac{1}{f}$

$$\Rightarrow \frac{1}{v} + \frac{1}{4} = \frac{1}{8} \Rightarrow \frac{1}{v} = \frac{1}{8} - \frac{1}{4}$$

$$v = -8 \text{ cm}$$

For
$$u = -2$$
 cm

$$\frac{1}{V} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} + \frac{1}{2} = \frac{1}{8}$$

$$v = \frac{-8}{3} \Rightarrow \Delta v = \left| \frac{16}{3} \right| \text{ cm}$$

JEE (Main)-2023: Phase-2 (10-04-2023)-Morning

18. Two blocks of mass 2 kg and 1.14 kg are hanged by steel and brass wire respectively as shown in figure. The change in length for steel wire will be $(Y_{\text{steel}} = 2 \times 10^{11} \text{ N/m}^2, Y_{\text{brass}} = 1 \times 10^{10} \text{ N/m}^2)$

- (1) 3.2 μm
- (2) 1.6 μm
- (3) 0.8 μm
- (4) 4.8 μm

Answer (1)

Sol.
$$\Delta I = I \left(\frac{\text{Stress}}{Y_{\text{steel}}} \right)$$

= $1.6 \times \frac{3.14 \times 10}{3.14 \left(0.5 \times 10^{-2} \right)^2 \times 2 \times 10^{11}}$
= $3.2 \times 10^{-6} \text{ m}$

19. 20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. The equation of progressive wave is given as $y = 5 \sin (6t + 0.03x)$. Find the speed of wave. (Assume all units in SI unit)

Answer (200)

Sol.
$$\frac{dx}{dt} = v = \frac{6}{0.03} = \frac{600}{3} = 200 \text{ m/s}$$

22. Earth shrinks to $\frac{1}{64}$ times of its initial volume. Time period of earth rotation is found to be $\frac{24}{8}$ hrs.

Answer (16)

Sol.
$$V = \left(\frac{V_0}{64}\right)$$

$$\frac{4}{3}\pi R^3 = \frac{1}{64} \times \frac{4}{3}\pi R_0^3$$

$$R = \left(\frac{R_0}{4}\right)$$

M Remains same,

 $I\omega$ = constant

$$\Rightarrow \quad \frac{2}{5} M(R_0^2) \frac{2\pi}{(24 \text{ hr})} = \frac{2}{5} \times M \times \frac{R_0^2}{16} \times \frac{2\pi}{T}$$

$$T = \left(\frac{24}{16} \operatorname{hr}\right) \operatorname{so}, \boxed{x = 16}$$

23. 10 resistors each of 10 Ω resistance when connected together give minimum equivalent resistance R_1 and maximum equivalent resistance R_2 among various possible combinations.

So
$$\frac{R_2}{R_1}$$
 is equal to

Answer (100)

Sol. $R_{\text{min}} = \frac{R}{10} = 1 \Omega$ (when all resistors are placed in parallel)

 R_{max} = 10 R = 100 Ω (when all resistors are placed in series)

$$\Rightarrow \frac{R_{\text{max}}}{R_{\text{min}}} = 100$$

24. A conducting rod of length 1 m is moved across a magnetic field of 0.15 T, with constant speed of 4 m/s. Find force (in N) on rod.

Answer (0)

Sol. Since system is open

$$\Rightarrow$$
 Current $i = 0$

⇒ Force =
$$i\ell B$$

25. Equivalent resistance of the following circuit (in ohms) is equal to x/7. Value of x is equal to . .

Answer (16)

Sol. Equivalent circuit

26. An object is placed Infront of a plane mirror 12 cm away from it. The object is kept fixed while the plane mirror is shifted towards the object by a distance of 4 cm. The length of shift in the position of image is equal to _____ cm.

Answer (8)

Sol.

27. In an AM wave, amplitude of modulating wave = 3 units and amplitude of carrier wave = 15 units. Find the ratio of maximum to minimum intensity $\frac{I_{\text{max}}}{I_{\text{min}}}.$

Answer (02.25)

Sol.
$$A_{\text{max}} = 15 + 3 = 18$$

$$A_{\text{min}} = 15 - 3 = 12$$

$$\Rightarrow \frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{18}{12}\right)^2 = 2.25$$

28. Three concentric shells A, B and C having surface charge density σ , $-\sigma$ and σ respectively. The radii of A and B are 2 cm and 3 cm respectively. Electric potential at surface A is V_A and at C is V_C . If $V_A = V_C$ then find the radius of C in cm

Answer (5)

Sol.
$$V_A = \frac{K(\sigma \times 4\pi a^2)}{a} - \frac{K(4\pi b^2)\sigma}{b} + \frac{K}{c}(4\pi c^2)\sigma$$

$$V_{\rm C} = \frac{K}{c} (4\pi a^2 \sigma - 4\pi b^2 \sigma) + \frac{K}{c} (4\pi c^2) \sigma$$

$$V_A = V_C$$

$$\Rightarrow a-b=\left(\frac{a^2-b^2}{c}\right)$$

$$\Rightarrow a-b=\frac{(a-b)(a+b)}{c}$$

$$\Rightarrow$$
 $c = a + b$

$$\Rightarrow$$
 c = 5 cm

29.

30.