## PHYSICS

## SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

## Choose the correct answer:

1. If the height of the tower used for L.O.S is increased by $21 \%$ then percentage change in range is
(1) $10 \%$
(2) $21 \%$
(3) $19 \%$
(4) $42 \%$

Answer (1)
Sol. $I=\sqrt{2 R h}$
$I^{\prime}=\sqrt{2 R(1.21 h)}=1.1 \sqrt{2 R h}$
$\frac{l^{\prime}-l}{l}=(0.1)=10 \%$
2. Select the correct graph showing the difference (d) between total energy and potential energy of a particle in linear SHM with position $x$ of the particle ( $x=0$ is the mean position)
(1)

(2)

(3)

(4)


Answer (1)
Sol. $d=$ T.E - P.E
$=K \cdot E(\because$ Total energy is conserved $)$
$=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)$
3. A dipole of charge 0.01 C and separation 0.4 mm , is placed in an electric field of strength 10 dyne/C. Find the maximum torque exerted on the dipole in the field.
(1) $4 \times 10^{-9} \mathrm{Nm}$
(2) $2 \times 10^{-10} \mathrm{Nm}$
(3) $4 \times 10^{-10} \mathrm{Nm}$
(4) $2 \times 10^{-9} \mathrm{Nm}$

Answer (3)
Sol. $P=0.01 \times 0.4 \times 10^{-3}=4 \times 10^{-6} \mathrm{~cm}$
$E=10 \times 10^{-5} \mathrm{~N}$
$|\tau|=|\vec{P} \times \vec{E}|=4 \times 10^{-6} \times 10 \times 10^{-5}=4 \times 10^{-10} \mathrm{Nm}$
4. Two bodies having same linear momentum have ratio of kinetic energy as $16: 9$. Find the ratio of masses of these bodies.
(1) $\frac{9}{16}$
(2) $\frac{4}{3}$
(3) $\frac{3}{4}$
(4) $\frac{16}{9}$

Answer (1)
Sol. $\frac{P^{2}}{2 m}=K$
$\Rightarrow \frac{K_{1}}{K_{2}}=\left(\frac{m_{2}}{m_{1}}\right)=\frac{16}{9}=\left(\frac{m_{2}}{m_{1}}\right)$
$\left(\frac{m_{1}}{m_{2}}\right)=\frac{9}{16}$
5. What is the centre of gravity of semi-circular disc of radius $(R)$ ?
(1) $\frac{2 R}{\pi}$
(2) $\frac{4 R}{3 \pi}$
(3) $\frac{R}{2}$
(4) $\frac{3 R}{8}$

Answer (2)
Sol. $y_{\mathrm{cm}}=\int_{0}^{R} \frac{d m y}{M}=\int_{0}^{R} \frac{\frac{M(\pi r d r)}{\left(\frac{\pi R^{2}}{2}\right)} \frac{2 r}{\pi}}{M}=\frac{4}{\pi R^{2}} \int_{0}^{R} r^{2} d r=\frac{4 R}{3 \pi}$
6. The work function for two metals are 9 eV and 4.5 eV . Find the approx. difference between their threshold wavelengths. (Use hC=1240 eV-nm)
(1) 138 nm
(2) 130 nm
(3) 112 nm
(4) 145 nm

Answer (1)
Sol. $\Delta \lambda=\left[\frac{1240}{4.5}-\frac{1240}{9}\right] \mathrm{nm}$
7. In the given figure, find the speed of bird as seen by fish.

(1) $24 \mathrm{~m} / \mathrm{s}$
(2) $16 \mathrm{~m} / \mathrm{s}$
(3) $20 \mathrm{~m} / \mathrm{s}$
(4) $12 \mathrm{~m} / \mathrm{s}$

## Answer (1)

Sol. $\frac{v_{b / f}}{\frac{4}{3}}=\frac{-8}{\frac{4}{3}}+\frac{(-12)}{1}$
8. Select increasing order of power consumption.

(i)

(ii)

(iii)

(iv)
(1) $P_{1}<P_{2}<P_{4}<P_{3}$
(2) $P_{3}<P_{4}<P_{1}<P_{2}$
(3) $P_{4}<P_{3}<P_{1}<P_{2}$
(4) $P_{2}<P_{1}<P_{4}<P_{3}$

## Answer (4)

Sol. Suppose battery of emf $\varepsilon$ is applied across each circuit.

$$
\begin{aligned}
\therefore & P_{1}=\frac{\varepsilon^{2}}{R_{\mathrm{eq}}}=\frac{\varepsilon^{2}}{\left(\frac{3 R}{2}\right)}=0.67 \frac{\varepsilon^{2}}{R} \\
& P_{2}=\frac{\varepsilon^{2}}{R_{\mathrm{eq}}}=\frac{\varepsilon^{2}}{3 R}=0.33 \frac{\varepsilon^{2}}{R} \\
& P_{3}=\frac{\varepsilon^{2}}{R_{\mathrm{eq}}}=\frac{\varepsilon^{2}}{\left(\frac{R}{3}\right)}=3 \frac{\varepsilon^{2}}{R} \\
& P_{4}=\frac{\varepsilon^{2}}{R_{\mathrm{eq}}}=\frac{\varepsilon^{2}}{\left(\frac{2 R}{3}\right)}=1.5 \frac{\varepsilon^{2}}{R}
\end{aligned}
$$

Increasing order is $\rightarrow P_{2}<P_{1}<P_{4}<P_{3}$
9. Pressure for polytropic process $P$ varies with volume $V$ as $P=a V^{-3}$, find out the bulk modulus.
(1) $3 V$
(2) $3 P$
(3) $P$
(4) $V$

## Answer (2)

Sol. $P=a V^{-3}$

$$
\begin{aligned}
& \frac{d P}{d V}=-3 a V^{-4} \\
& \Rightarrow-V \frac{d P}{d V}=\left(3 a V^{-3}\right)=(3 P)
\end{aligned}
$$

10. For the given radioactive decay

$$
{ }_{94}^{298} X \longrightarrow{ }_{92}^{294} Y+{ }_{2}^{4} \alpha+Q \text {-value },
$$

binding energy per nucleon of $X, Y$ and $\alpha$ are $a, b$ and $c$. The $Q$-value is equal to
(1) $(294 b+4 c-298 a)$
(2) $(92 b+2 c-94 a)$
(3) $(294 b+4 c+298 a)$
(4) $(92 b+2 c+94 a)$

## Answer (1)

Sol. $Q$-value $=(\text { B.E. })_{\text {product }}-(\text { B.E. })_{\text {reaction }}$
11. Energy of $\mathrm{He}^{+}$in $2^{\text {nd }}$ orbit is -13.6 eV then energy of $\mathrm{Be}^{+++}$in $n=4$.
(1) -3.4 eV
(2) -27.2 eV
(3) -13.6 eV
(4) -54.4 eV

Answer (3)
Sol. $E=-13.6 \frac{Z^{2}}{n^{2}} \mathrm{eV}$
For $\mathrm{He}^{+}(\mathrm{Z}=2, n=2), E=-13.6\left(\frac{2^{2}}{2^{2}}\right) \mathrm{eV}$

$$
=-13.6 \mathrm{eV}
$$

For $\mathrm{Be}^{+++}(Z=4, n=4), E=-13.6\left(\frac{4^{2}}{4^{2}}\right) \mathrm{eV}$

$$
=-13.6 \mathrm{eV}
$$

12. A line charge of linear charge density $\lambda$ and a large non-conducting sheet of charge density $\sigma$ are placed parallel to each other as shown. Find ratio of electric field at $A$ to that at $B$.

(1) $\frac{3}{4}\left(\frac{\lambda-3 \sigma}{\lambda+4 \sigma}\right)$
(2) $\frac{4}{3}\left(\frac{\lambda-3 \sigma}{\lambda-4 \sigma}\right)$
(3) $\frac{2}{3}\left(\frac{\lambda-4 \sigma}{\lambda-3 \sigma}\right)$
(4) $\frac{3}{2}\left(\frac{\lambda-4 \sigma}{\lambda-3 \sigma}\right)$

## Answer (2)

Sol. $\frac{E_{A}}{E_{B}}=\frac{\frac{\lambda}{2 \pi \varepsilon_{0}\left(\frac{3}{\pi}\right)}-\frac{\sigma}{2 \varepsilon_{0}}}{\frac{\lambda}{2 \pi \varepsilon_{0}\left(\frac{4}{\pi}\right)}-\frac{\sigma}{2 \varepsilon_{0}}}$
13. Which of the following show time varying magnetic field?
(1) Linearly varying
(2) Permanent magnet
(3) Antenna signal
(4) Constant electric field

## Answer (3)

Sol. Antenna signal carries sinusoidal EM wave where $\vec{E}$ and $\vec{B}$ both varying with time.
14. Find the apparent depth of bottom of beaker shown in figure, filled with water and oil.

(1) $\frac{5 \mathrm{H}}{8}$
(2) $\frac{4 \mathrm{H}}{5}$
(3) $\frac{3 \mathrm{H}}{4}$
(4) $\frac{7 \mathrm{H}}{8}$

## Answer (1)

Sol. $d_{\text {app }}=\frac{H / 2}{4 / 3}+\frac{H / 2}{2}=\frac{5 \mathrm{H}}{8}$
15. If a particle is moving in a uniform circular motion of radius 1 m , is having velocity $3 \hat{j} \mathrm{~m} / \mathrm{s}$ at point $B$. What are the velocity ( $\vec{v}$ ) and acceleration ( $\vec{a}$ ) at diametrically opposite point $A$.
(1) $\vec{v}_{A}=3 \hat{j} \mathrm{~m} / \mathrm{s}$
$\vec{a}_{A}=-9 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$
(2) $\vec{v}_{A}=-3 \hat{j} \mathrm{~m} / \mathrm{s}$
$\vec{a}_{A}=9 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$
(3) $\vec{v}_{A}=-3 \hat{i} \mathrm{~m} / \mathrm{s}$
$\vec{a}_{A}=+9 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
(4) $\vec{v}_{A}=+3 \hat{i} \mathrm{~m} / \mathrm{s}$
$\vec{a}_{A}=+9 \hat{j} \mathrm{~m} / \mathrm{s}^{2}$
Answer (2)

Sol. $\vec{V}_{A}=-3 \hat{j} \mathrm{~m} / \mathrm{s}$
$\vec{a}_{A}=9 \hat{i} \mathrm{~m} / \mathrm{s}^{2}$

16. The input signal is given below for the circuit


Input graph of $A$ and $B$ is


Pick the correct output graph for the circuit.
(1) Output

(2) Output

(3) Output

(4) Output


Answer (1)
Sol. $\overline{(\bar{A} \cdot \bar{B})}=\overline{\overline{A+B}}=(A+B)=$ OR gate
17. Find the displacement of point $A$ on the top of the disc rolling without slipping on horizontal surface with angular speed $\omega$, in half rotation.

(1) $R \sqrt{\pi^{2}+2}$
(2) $R \sqrt{\pi^{2}+\frac{1}{4}}$
(3) $R \sqrt{\pi^{2}+4}$
(4) $R \sqrt{\frac{\pi^{2}}{2}+1}$

## Answer (3)

Sol.

$A A^{\prime}=\sqrt{(2 R)^{2}+(\pi R)^{2}}$
$=R \sqrt{\pi^{2}+4}$
18. A point $R$ is at $\left(\frac{5}{8}, \frac{3}{8}, \frac{1}{8}\right)$ and a plane mirror is placed on $x y$ plane such that normal to the plane mirror from $R$ intersect at point $P$ on mirror. Find distance of image formed by the mirror and object.
(1) $\frac{1}{2} m$
(2) $\frac{1}{4} \mathrm{~m}$
(3) $\frac{1}{8} \mathrm{~m}$
(4) 1 m

## Answer (2)

Sol. Distance between object and image is $=P R+R I=2\left(\frac{1}{8}\right)=\frac{1}{4} m$

19.
20.

## SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10 . The answer to each question is a
NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, $-00.33,-00.30,30.27,-27.30$ ) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. If a wire of resistance $R$ is connected across $V_{0}$, then power is $P_{0}$. The wire is cut into two equal parts and connected with $V_{0}$ individually, then sum of power dissipated is $P_{1}$ then $\frac{P_{0}}{P_{1}}$ is $\frac{1}{x}$ find the value of $x$.

## Answer (4)

Sol. $P_{0}=\left(\frac{V_{0}^{2}}{R}\right)$

$$
\begin{aligned}
& P_{1}=\frac{V_{0}^{2}}{\frac{R}{2}}+\frac{V_{0}^{2}}{\frac{R}{2}}=\frac{4 V_{0}^{2}}{R} \\
& \frac{P_{0}}{P_{1}}=\frac{1}{4}
\end{aligned}
$$

22. A particle is performing SHM having position $x=A$ $\cos \left(30^{\circ}\right)$, and $A=40 \mathrm{~cm}$. If its kinetic energy at this position is 200 J . The value of force constant in $\left(\frac{k N}{m}\right)$ is

## Answer (10)

Sol. $x=40 \times \frac{\sqrt{3}}{2}=20 \sqrt{3} \mathrm{~cm}$ as $\omega=\sqrt{\frac{K}{m}}$
$\frac{1}{2} m v^{2}=\frac{1}{2} m \omega^{2}\left(A^{2}-x^{2}\right)=200$
$\Rightarrow \frac{1}{2} \times m \times \frac{K}{m}(0.16-0.12)=200$
$K=\frac{400}{0.04}=10000 \mathrm{~N} / \mathrm{m}$
23. Solid sphere rolls on horizontal plane. Ratio of angular momentum about COM to total energy is
$\frac{\pi}{22}$. Find $\omega=$ ?

## Answer (4)



$L=I$ сом $\omega \quad$ and $\quad K=\frac{1}{2} I_{\text {Сом }} \omega^{2}+\frac{1}{2} M v_{0}^{2}$
$L=\frac{2}{5} M R^{2} \frac{v_{0}}{R} \quad K=\frac{1}{2}\left(\frac{2}{5} M R^{2}\right) \frac{v_{0}^{2}}{R^{2}}+\frac{1}{2} M v_{0}^{2}$
$L=\frac{2 M R v_{0}}{5} \quad K=\frac{7}{10} M v_{0}^{2}$
Ratio $\frac{L}{K}=\frac{4}{7} \frac{R}{v_{0}}=\frac{\pi}{22} \Rightarrow \omega=\frac{4}{7} \times \frac{22}{22} \times 7=4$
24. If $m=5 \pm 0.2$ and $v=20 \pm 0.4$, calculate error in measurement of K.E.

## Answer (8)

Sol. \% error in $m=\frac{0.2}{5} \times 100=4 \%$
$\%$ error in $v=\frac{0.4}{20} \times 100=2 \%$
$\%$ error in $\frac{1}{2} m v^{2}=(\%$ error in $m)+2(\%$ error in $v)$ $=4+2(2)=8 \%$
25. Water is flowing inside the conical type tube having ratio of area of cross-section $6: 1$. If the speed of water outlet through smaller area is $60 \mathrm{~m} / \mathrm{s}$, then the pressure difference across these two cross-section is $x \times 10^{4} \mathrm{~Pa}$, find the value of $x$. (Assume incompressible fluid, density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$ )


## Answer (175)

Sol. $\quad A_{1} v_{1}=A_{2} v_{2}$

$$
\Rightarrow 6 v_{1}=60
$$

$$
v_{1}=10 \mathrm{~m} / \mathrm{s}
$$

$$
\Delta P=\frac{1}{2} \rho\left(60^{2}-10^{2}\right)
$$

$$
=\frac{1}{2} \times 1000(3600-100)
$$

$$
=\frac{3500}{2} \times 1000
$$

$$
=175 \times 10^{4}
$$

26. Train $A$ of length / is moving with speed $108 \mathrm{~km} / \mathrm{hr}$. Another train $B$ of length $4 /$ is moving parallel to train $A$ with speed $72 \mathrm{~km} / \mathrm{hr}$. They both move through a tunnel of length $60 /$ and train $B$ takes 35 s more time than train $A$ to pass through the tunnel, if they enter the tunnel simultaneously. Find the length (in m ) of tunnel.

## Answer (1575)

Sol. $t_{A}=\frac{2 I+60 l}{30}, t_{B}=\frac{81+60 l}{20}$
Also, $t_{B}-t_{A}=35$
$\frac{681}{20}-\frac{621}{30}=35$
$I=\frac{105}{4} \mathrm{~m}$
$\therefore$ Length of tunnel $=60\left(\frac{105}{4}\right)=1575 \mathrm{~m}$
27.
28.
29.
30.

