

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- If the height of the tower used for L.O.S is increased by 21% then percentage change in range is
 - (1) 10%
- (2) 21%
- (3) 19%
- (4) 42%

Answer (1)

Sol. $I = \sqrt{2Rh}$

$$I' = \sqrt{2R(1.21h)} = 1.1\sqrt{2Rh}$$

$$\frac{l'-l}{l} = (0.1) = 10\%$$

Select the correct graph showing the difference (d) between total energy and potential energy of a particle in linear SHM with position x of the particle (x = 0 is the mean position)

Answer (1)

Sol. d = T.E - P.E

= K.E (∵ Total energy is conserved)

$$=\frac{1}{2}m\omega^{2}(A^{2}-x^{2})$$

- A dipole of charge 0.01 C and separation 0.4 mm, is placed in an electric field of strength 10 dyne/C. Find the maximum torque exerted on the dipole in the field.
 - (1) $4 \times 10^{-9} \text{ Nm}$
- (2) $2 \times 10^{-10} \text{ Nm}$
- (3) $4 \times 10^{-10} \text{ Nm}$
- (4) $2 \times 10^{-9} \text{ Nm}$

Answer (3)

Sol. $P = 0.01 \times 0.4 \times 10^{-3} = 4 \times 10^{-6}$ cm

 $E = 10 \times 10^{-5} \text{ N}$

 $|\tau| = |\vec{P} \times \vec{E}| = 4 \times 10^{-6} \times 10 \times 10^{-5} = 4 \times 10^{-10} \text{ Nm}$

- 4. Two bodies having same linear momentum have ratio of kinetic energy as 16 : 9. Find the ratio of masses of these bodies.
 - (1) $\frac{9}{16}$

(2) $\frac{4}{3}$

(3) $\frac{3}{4}$

(4) $\frac{16}{9}$

Answer (1)

Sol.
$$\frac{P^2}{2m} = K$$

$$\Rightarrow \frac{K_1}{K_2} = \left(\frac{m_2}{m_1}\right) = \frac{16}{9} = \left(\frac{m_2}{m_1}\right)$$

$$\left(\frac{m_1}{m_2}\right) = \frac{9}{16}$$

- 5. What is the centre of gravity of semi-circular disc of radius (*R*)?
 - $(1) \ \frac{2R}{\pi}$
- (2) $\frac{4R}{3\pi}$

 $(3) \ \frac{R}{2}$

(4) $\frac{3R}{8}$

Answer (2)

Sol.
$$y_{cm} = \int_{0}^{R} \frac{dmy}{M} = \int_{0}^{R} \frac{\left(\frac{\pi R^{2}}{2}\right)^{\frac{1}{\pi}}}{M} = \frac{4}{\pi R^{2}} \int_{0}^{R} r^{2} dr = \frac{4R}{3\pi}$$

- 6. The work function for two metals are 9 eV and 4.5 eV. Find the approx. difference between their threshold wavelengths. (Use *hC* = 1240 eV–nm)
 - (1) 138 nm
- (2) 130 nm
- (3) 112 nm
- (4) 145 nm

Answer (1)

Sol.
$$\Delta \lambda = \left[\frac{1240}{4.5} - \frac{1240}{9} \right] \text{ nm}$$

7. In the given figure, find the speed of bird as seen by fish.

JEE (Main)-2023: Phase-2 (13-04-2023)-Morning

- (1) 24 m/s
- (2) 16 m/s
- (3) 20 m/s
- (4) 12 m/s

Answer (1)

Sol.
$$\frac{V_{b/f}}{\frac{4}{3}} = \frac{-8}{\frac{4}{3}} + \frac{(-12)}{1}$$

Select increasing order of power consumption.

- (1) $P_1 < P_2 < P_4 < P_3$
- (2) $P_3 < P_4 < P_1 < P_2$
- (3) $P_4 < P_3 < P_1 < P_2$
- (4) $P_2 < P_1 < P_4 < P_3$

Answer (4)

Sol. Suppose battery of emf ε is applied across each

$$\therefore P_1 = \frac{\varepsilon^2}{R_{eq}} = \frac{\varepsilon^2}{\left(\frac{3R}{2}\right)} = 0.67 \frac{\varepsilon^2}{R}$$

$$P_2 = \frac{\varepsilon^2}{R_{co}} = \frac{\varepsilon^2}{3R} = 0.33 \frac{\varepsilon^2}{R}$$

$$P_3 = \frac{\varepsilon^2}{R_{\text{eq}}} = \frac{\varepsilon^2}{\left(\frac{R}{3}\right)} = 3\frac{\varepsilon^2}{R}$$

$$P_4 = \frac{\varepsilon^2}{R_{\text{eq}}} = \frac{\varepsilon^2}{\left(\frac{2R}{3}\right)} = 1.5 \frac{\varepsilon^2}{R}$$

Increasing order is $\rightarrow P_2 < P_1 < P_4 < P_3$

- Pressure for polytropic process P varies with volume V as $P = aV^{-3}$, find out the bulk modulus.
 - (1) 3V

(2) 3P

(3) P

(4) V

Answer (2)

Sol. $P = aV^{-3}$

$$\frac{dP}{dV} = -3aV^{-4}$$

$$\Rightarrow -V \frac{dP}{dV} = (3aV^{-3}) = (3P)$$

For the given radioactive decay

$$^{298}_{94}X \longrightarrow ^{294}_{92}Y + ^{4}_{2}\alpha + \text{ Q-value},$$

binding energy per nucleon of X, Y and α are a, b and c. The Q-value is equal to

- (1) (294b + 4c 298a) (2) (92b + 2c 94a)
- (3) (294b + 4c + 298a) (4) (92b + 2c + 94a)

Answer (1)

Sol. Q-value = $(B.E.)_{product} - (B.E.)_{reaction}$

- 11. Energy of He+ in 2nd orbit is -13.6 eV then energy of Be+++ in n = 4.
 - (1) 3.4 eV
- (2) 27.2 eV
- (3) 13.6 eV
- (4) 54.4 eV

Answer (3)

Sol.
$$E = -13.6 \frac{Z^2}{n^2}$$
 eV

For He⁺ (Z = 2,
$$n = 2$$
), $E = -13.6 \left(\frac{2^2}{2^2}\right)$ eV

$$= -13.6 \text{ eV}$$

For Be⁺⁺⁺ (Z = 4,
$$n$$
 = 4), E = -13.6 $\left(\frac{4^2}{4^2}\right)$ eV
= -13.6 eV

A line charge of linear charge density λ and a large 12. non-conducting sheet of charge density σ are placed parallel to each other as shown. Find ratio of electric field at A to that at B.

- $(1) \quad \frac{3}{4} \left(\frac{\lambda 3\sigma}{\lambda + 4\sigma} \right)$

- (3) $\frac{2}{3} \left(\frac{\lambda 4\sigma}{\lambda 3\sigma} \right)$ (4) $\frac{3}{2} \left(\frac{\lambda 4\sigma}{\lambda 3\sigma} \right)$

Answer (2)

Sol.
$$\frac{E_A}{E_B} = \frac{\frac{\lambda}{2\pi\epsilon_0 \left(\frac{3}{\pi}\right)} - \frac{\sigma}{2\epsilon_0}}{\frac{\lambda}{2\pi\epsilon_0 \left(\frac{4}{\pi}\right)} - \frac{\sigma}{2\epsilon_0}}$$

- 13. Which of the following show time varying magnetic field?
 - (1) Linearly varying
 - (2) Permanent magnet
 - (3) Antenna signal
 - (4) Constant electric field

Answer (3)

- **Sol.** Antenna signal carries sinusoidal EM wave where \vec{E} and \vec{B} both varying with time.
- 14. Find the apparent depth of bottom of beaker shown in figure, filled with water and oil.

- (1) $\frac{5H}{8}$
- (2) $\frac{4H}{5}$
- (3) $\frac{3H}{4}$
- (4) $\frac{71}{8}$

Answer (1)

Sol.
$$d_{app} = \frac{H/2}{4/3} + \frac{H/2}{2} = \frac{5H}{8}$$

- 15. If a particle is moving in a uniform circular motion of radius 1 m, is having velocity $3\hat{j}$ m/s at point B. What are the velocity (\vec{v}) and acceleration (\vec{a}) at diametrically opposite point A.
 - (1) $\vec{v}_A = 3\hat{j} \text{ m/s}$

$$\vec{a}_A = -9\hat{i} \text{ m/s}^2$$

- (2) $\vec{v}_A = -3\hat{j} \text{ m/s}$
 - $\vec{a}_A = 9\hat{i} \text{ m/s}^2$
- (3) $\vec{v}_A = -3\hat{i} \text{ m/s}$

$$\vec{a}_{\Delta} = +9\hat{j} \text{ m/s}^2$$

- (4) $\vec{v}_A = +3\hat{i} \text{ m/s}$
 - $\vec{a}_A = +9\hat{j} \text{ m/s}^2$

Answer (2)

Sol.
$$\vec{v}_A = -3\hat{j} \text{ m/s}$$

$$\vec{a}_A = 9\hat{i} \text{ m/s}^2$$

16. The input signal is given below for the circuit

Input graph of A and B is

Pick the correct output graph for the circuit.

(1) Output

(2) Output

(3) Output

(4) Output

Answer (1)

Sol.
$$\overline{(\overline{A} \cdot \overline{B})} = \overline{\overline{A + B}} = (A + B) = OR$$
 gate

JEE (Main)-2023: Phase-2 (13-04-2023)-Morning

17. Find the displacement of point A on the top of the disc rolling without slipping on horizontal surface with angular speed ω , in half rotation.

- (1) $R\sqrt{\pi^2+2}$
- (2) $R\sqrt{\pi^2 + \frac{1}{4}}$
- (3) $R\sqrt{\pi^2 + 4}$
- (4) $R\sqrt{\frac{\pi^2}{2}+1}$

Answer (3)

$$AA' = \sqrt{(2R)^2 + (\pi R)^2}$$

= $R\sqrt{\pi^2 + 4}$

18. A point R is at $\left(\frac{5}{8}, \frac{3}{8}, \frac{1}{8}\right)$ and a plane mirror is

placed on xy plane such that normal to the plane mirror from R intersect at point P on mirror. Find distance of image formed by the mirror and object.

- (1) $\frac{1}{2}$ m
- (2) $\frac{1}{4}$ m
- (3) $\frac{1}{8}$ m
- (4) 1 m

Answer (2)

Sol. Distance between object and image is $= PR + RI = 2\left(\frac{1}{8}\right) = \frac{1}{4} \text{ m}$

19.

20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a **NUMERICAL VALUE.** For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, 30.27, -27.30) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.

21. If a wire of resistance R is connected across V_0 , then power is P_0 . The wire is cut into two equal parts and connected with V_0 individually, then sum of power dissipated is P_1 then $\frac{P_0}{P_1}$ is $\frac{1}{x}$ find the value of x.

Answer (4)

$$Sol. P_0 = \left(\frac{V_0^2}{R}\right)$$

$$P_1 = \frac{V_0^2}{\frac{R}{2}} + \frac{V_0^2}{\frac{R}{2}} = \frac{4V_0^2}{R}$$

$$\frac{P_0}{P_1} = \frac{1}{4}$$

22. A particle is performing SHM having position x = A cos(30°), and A = 40 cm. If its kinetic energy at this position is 200 J. The value of force constant in $\left(\frac{kN}{m}\right)$ is

Answer (10)

Sol.
$$x = 40 \times \frac{\sqrt{3}}{2} = 20\sqrt{3} \text{ cm as } \omega = \sqrt{\frac{K}{m}}$$

$$\frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(A^2 - x^2) = 200$$

$$\Rightarrow \frac{1}{2} \times m \times \frac{K}{m} (0.16 - 0.12) = 200$$

$$K = \frac{400}{0.04} = 10000 \text{ N/m}$$

 Solid sphere rolls on horizontal plane. Ratio of angular momentum about COM to total energy is

$$\frac{\pi}{22}$$
. Find $\omega = ?$

Answer (4)

Sol. mmmmmm

$$L = I_{\text{COM}} \omega$$
 and $K = \frac{1}{2}I_{\text{COM}}\omega^2 + \frac{1}{2}Mv_0^2$

$$L = \frac{2}{5}MR^2 \frac{v_0}{R} \qquad K = \frac{1}{2} \left(\frac{2}{5}MR^2\right) \frac{v_0^2}{R^2} + \frac{1}{2}Mv_0^2$$

$$L = \frac{2MRv_0}{5} \qquad K = \frac{7}{10}Mv_0^2$$

Ratio
$$\frac{L}{K} = \frac{4}{7} \frac{R}{V_0} = \frac{\pi}{22} \Rightarrow \omega = \frac{4}{7} \times \frac{22}{22} \times 7 = 4$$

24. If $m = 5 \pm 0.2$ and $v = 20 \pm 0.4$, calculate error in measurement of K.E.

Answer (8)

Sol. % error in
$$m = \frac{0.2}{5} \times 100 = 4\%$$

% error in
$$V = \frac{0.4}{20} \times 100 = 2\%$$

% error in
$$\frac{1}{2}mv^2 = (\% \text{ error in } m) + 2 (\% \text{ error in } v)$$

$$= 4 + 2 (2) = 8\%$$

25. Water is flowing inside the conical type tube having ratio of area of cross-section 6 : 1. If the speed of water outlet through smaller area is 60 m/s, then the pressure difference across these two cross-section is $x \times 10^4$ Pa, find the value of $x \cdot (Assume incompressible fluid, density of water = 1000 kg/m³)$

Answer (175)

Sol.
$$A_1v_1 = A_2v_2$$

 $\Rightarrow 6v_1 = 60$
 $v_1 = 10 \text{ m/s}$
 $\Delta P = \frac{1}{2}\rho \left(60^2 - 10^2\right)$
 $= \frac{1}{2} \times 1000 \left(3600 - 100\right)$
 $= \frac{3500}{2} \times 1000$
 $= 175 \times 10^4$

26. Train *A* of length *I* is moving with speed 108 km/hr. Another train *B* of length 4*I* is moving parallel to train *A* with speed 72 km/hr. They both move through a tunnel of length 60*I* and train *B* takes 35 s more time than train *A* to pass through the tunnel, if they enter the tunnel simultaneously. Find the length (in m) of tunnel.

Answer (1575)

Sol.
$$t_A = \frac{2l + 60l}{30}$$
, $t_B = \frac{8l + 60l}{20}$

Also,
$$t_B - t_A = 35$$

$$\frac{68I}{20} - \frac{62I}{30} = 35$$

$$I = \frac{105}{4} \text{ m}$$

$$\therefore \text{ Length of tunnel} = 60 \left(\frac{105}{4} \right) = 1575 \text{ m}$$

27.

28.

29.

30.