CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Assertion: Acidic nature

Reason: F is better electron withdrawing group than Cl
(1) Assertion \& Reason, both are correct and Reason is correct explanation of Assertion
(2) Assertion and Reason, both are correct but Reason is not correct explanation of Assertion
(3) Assertion is correct, Reason is incorrect
(4) Assertion is incorrect, Reason is correct

Answer (2)

Sol.

2. Which of the following the best method for preparation of BeF_{2}
(1) $\mathrm{Be}+\mathrm{F}_{2} \rightarrow \mathrm{BeF}_{2}$
(2) $\mathrm{BeH}_{2}+\mathrm{F}_{2} \rightarrow \mathrm{BeF}_{2}$
(3) $\mathrm{BeH}_{2}+\mathrm{NaF} \rightarrow$
(4) $\mathrm{By}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$ (thermal decomposition)

Answer (4)

Sol. Best method for preparation of BeF2 is by thermal decomposition of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4}$
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{BeF}_{4} \xrightarrow{\Delta} \mathrm{NH}_{4} \mathrm{~F}+\mathrm{BeF}_{2}$
Ref. NCERT (s-block)
3. The correct increasing order of the magnitude of standard enthalpies of formation for group-1 halides is
(1) $\mathrm{NaI}<\mathrm{NaF}<\mathrm{NaBr}<\mathrm{NaCl}$
(2) $\mathrm{NaI}<\mathrm{NaBr}<\mathrm{NaCl}<\mathrm{NaF}$
(3) $\mathrm{NaF}<\mathrm{NaCl}<\mathrm{NaBr}<\mathrm{NaI}$
(4) $\mathrm{NaCl}<\mathrm{NaBr}<\mathrm{NaF}<\mathrm{NaI}$

Answer (2)
Sol. Halide $\quad \Delta \mathrm{H}_{\mathrm{f}}^{\circ}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$

NaF	-	569
NaCl	-	400
NaBr	-	360
NaI	-	288

4. Consider the following reaction and identify the reactant (A)

(1) Aniline
(2) Phenol
(3) Salicylic acid
(4) Acetanilide

Answer (1)

Sol. The reactant (A) is likely to be aniline because option will undergo monobromination on reaction with Br_{2} dissolved in CS_{2}.

5. Assertion A : Bond angle of SO_{2} is less than $\mathrm{H}_{2} \mathrm{O}$

Reason R : Both form V-shaped structure.
(1) Assertion \& Reason, both are correct and Reason is correct explanation of Assertion
(2) Assertion and Reason, both are correct but Reason is not correct explanation of Assertion
(3) Assertion is correct, Reason is incorrect
(4) Assertion is incorrect, Reason is correct

Answer (3)
Sol.

6. Ba^{+2} cannot be precipitated as
(1) BaCO_{3}
(2) $\mathrm{Ba}(\mathrm{OH})_{2}$
(3) BaCrO_{4}
(4) BaSO_{4}

Answer (2)

Sol. $\mathrm{Ba}(\mathrm{OH})_{2}$ is soluble in water
$\mathrm{BaCO}_{3} \& \mathrm{BaSO}_{4}$ are white ppt
BaCrO_{4} - Yellow ppt
7. Which of the following is oxidised by oxygen in acidic medium?
(1) $\mathrm{Cl}^{-}, \mathrm{Br}^{-}$
(2) $\mathrm{Br}^{-}, \mathrm{I}^{-}$
(3) Br^{-}
(4) \vdash^{-}

Answer (2)

Sol. Reduction potential
$\mathrm{E}_{\mathrm{L}_{2} / T}^{\circ}=0.54 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Br}_{2} / \mathrm{Br}^{-}}^{\circ}=1.09 \mathrm{~V}$
$\mathrm{E}_{\mathrm{O}_{2} / \mathrm{H}_{2} \mathrm{O}}^{0}=1.23 \mathrm{~V}$
$\mathrm{E}_{\mathrm{Cl}_{2} / \mathrm{Cl}}^{0}=1.36 \mathrm{~V}$
R. P . is in order $\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
O.P. is revers in order

So, I^{-}and Br^{-}ion will get oxidised
8. A naturally occurring amino acid that contains only one basic functional group.
(1) Arginine
(2) Lysine
(3) Histidine
(4) Isoleucine

Answer (4)

Sol. Isoleucine has single nitrogenous base group.
9. Match the polymers given in column-I with their characteristics given in column-II

	Column-I		Column-II
(A)	Nylon 66	(P)	Thermosetting
(B)	Nylon 6	(Q)	Polyester
(C)	Phenol formaldehyde resin	(R)	Homopolymer
(D)	Dacron	(S)	Polyamide

(1) (A)-(P); (B)-(Q); (C)-(S); (D)-(R)
(2) (A)-(Q); (B)-(P); (C)-(R); (D)-(S)
(3) (A)-(P,Q); (B)-(R, S); (C)-(Q); (D)-(P)
(4) (A)-(S); (B)-(R, S); (C)-(P); (D)-(Q)

Answer (4)

Sol. (A) Nylon 66 is a copolymer obtained by condensation polymerisation of hexamethylene diamine and adipic acid. It is a polyamide.
(B) Nylon 6 is a homopolymer of caprolactam. It is a polyamide.
(C) Phenol formaldehyde resin is obtained by condensation polymerisation of phenol and formaldehyde. It is a thermosetting polymer.
(D) Dacron is a copolymer obtained by condensation polymerisation of terephthalic acid and ethylene glycol. It is a polyester.
10. Identify the major product formed in the following reaction.

(1)

(2)

(3)

(4)

Answer (1)

Sol.

11. Match reagent in Column-I with product in Column-II.

	Column-I Reagent 2- Bromopropane		Column-II Product
A	Alc. KOH	1	Nitrile
B	alc. KCN	2	Alkene
C	AgNO_{2}	3	Ester
D	$\mathrm{CH}_{3} \mathrm{COOAg}$	4	Nitro

(1) $\mathrm{A}-2 ; \mathrm{B}-1 ; \mathrm{C}-3 ; \mathrm{D}-4$
(2) $\mathrm{A}-2 ; \mathrm{B}-1 ; \mathrm{C}-4 ; \mathrm{D}-3$
(3) A-2; B-3; C-1; D-4
(4) $\mathrm{A}-1 ; \mathrm{B}-2 ; \mathrm{C}-4 ; \mathrm{D}-3$

Answer (2)

12. S-I: Tropolone has 8π electron in total.

S-II: π-electrons of C are involved in aromaticity of tropolone.
(1) Both S-I and S-II are true
(2) S -I is true, S -II is false
(3) S -I is false, S -II is true
(4) Both S-I and S-II are false

Answer (2)

Sol. Tropolone

13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g., 06.25, 07.00, -00.33, -00.30, $30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. Consider the reaction

$$
\begin{aligned}
& \mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+\mathrm{xH}^{\oplus}+\mathrm{Fe}^{+2} \longrightarrow \mathrm{FFe}^{+3}+ \\
& 2 \mathrm{Cr}^{+3}+\mathrm{zH}_{2} \mathrm{O}
\end{aligned}
$$

Sum of $\mathrm{x}, \mathrm{y}, \mathrm{z}=$?

Answer (27)

Sol. $14 \mathrm{H}^{\oplus}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2}+6 \mathrm{Fe}^{+2} \longrightarrow 6 \mathrm{Fe}^{+3}+$

$$
2 \mathrm{Cr}^{+3}+7 \mathrm{H}_{2} \mathrm{O}
$$

$x=14, y=6, z=7$
$x+y+z=27$
22. If the formula of Borax is
$\mathrm{Na}_{2} \mathrm{~B}_{y} \mathrm{O}_{\mathrm{x}}(\mathrm{OH})_{y} \cdot \mathrm{zH}_{2} \mathrm{O}$, find the value of $x+y+z$?
Answer (17)

Sol. Formula is $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{5}(\mathrm{OH})_{4} .8 \mathrm{H}_{2} \mathrm{O}$
$\therefore \mathrm{x}=5$
$y=4$
$z=8$
$x+y+z=17$
23. Given length of body diagonal of unit cell is $4 \AA$. Find the radius of Na atom forming bcc lattice (in \AA).

Answer (1)

Sol. $\quad 4 r=\sqrt{3} a$

$$
\begin{aligned}
& r=\frac{\sqrt{3} a}{4} \\
& r=\frac{4}{4}=1 \AA
\end{aligned}
$$

24. Find the orbital angular momentum of $3 s$ orbital.

Answer (0)

Sol. Orbital angular momentum is given by $\sqrt{1(1+1)}$, 1 is the azimuthal quantum number.

For ' s ' orbital I = 0
\therefore Orbital angular momentum $=0$
25. Number of stereoisomers of $\left[\mathrm{Cr}(\mathrm{OX})_{2} \mathrm{ClBr}\right]^{-}$

Answer (03.00)

Sol. cis-2
Trans-1
26. Find out PH of resultant solution obtained when 20 mL of 0.1 M NaOH is mixed with 50 mL of 0.1 M $\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{pKa}_{\mathrm{a}}$ of $\mathrm{CH}_{3} \mathrm{COOH}=4.74$
$\log 2=0.30 ; \log 3=0.47$

Answer (04.57)

	$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{NaOH} \longrightarrow \mathrm{CH}_{3} \mathrm{COONa}+\mathrm{H}_{2} \mathrm{O}$		
Sol.	2	5	-
	\downarrow	\downarrow	\downarrow
	0	3	2

$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{2}{3}$

$$
\begin{aligned}
& =4.74+0.30-0.47 \\
& =4.57
\end{aligned}
$$

27. $23 \% \mathrm{NaCl}$ and $19.5 \% \mathrm{MgCl}_{2}$ is present in salt water by weight. The degree of dissociation of both the salts is 100%. Find the normal boiling point of salt water (in ${ }^{\circ} \mathrm{C}$). ($\mathrm{K}_{\mathrm{b}}=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$) (Nearest integer)

Answer (113)

Sol. $\Delta T_{b}=i K_{b m}$

$$
\begin{aligned}
& =\left(\frac{23 \times 2 \times 1000}{(58.5) \times 57.5}+\frac{3 \times 19.5 \times 1000}{95 \times 57.5}\right) \times 0.52 \\
& =\frac{(7.86+6.16) \times 0.52}{57.5} \times 100 \simeq 12.66
\end{aligned}
$$

\therefore Boiling point $\simeq 113^{\circ} \mathrm{C}$
28. Consider a reaction
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
Initial pressure $\left(\mathrm{P}_{\mathrm{i}}\right)=800 \mathrm{~mm} \mathrm{Hg}$.
At 10 minutes, total pressure is 1600 mm Hg , then find the total pressure at 30 minutes. (in mm Hg)

Answer (2200)

Sol.
$\mathrm{A}(\mathrm{g}) \rightarrow 2 \mathrm{~B}(\mathrm{~g})+\mathrm{C}(\mathrm{g})$
800
800-p 2p p
At 10 minutes, $P_{\text {total }}=800+2 p=1600$
$p=400 \mathrm{~mm} \mathrm{Hg}$.
$\therefore 10$ minutes means 1 half life
At $t=30$ minutes, $p=\frac{7 \times 800}{8}=700$ minutes
$\therefore \mathrm{P}_{\text {total }}=(800-700)+2 \times 700+700$
$=800+1400$
$=2200 \mathrm{~mm} \mathrm{Hg}$.
29.
30.

