Memory Based Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2024 (Online) Phase-1

(Physics, Chemistry and Mathematics)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) The Test Booklet consists of 90 questions. The maximum marks are 300 .
(3) There are three parts in the question paper consisting of Physics, Chemistry and Mathematics having 30 questions in each part of equal weightage. Each part (subject) has two sections.
(i) Section-A: This section contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(ii) Section-B: This section contains 10 questions. In Section-B, attempt any five questions out of 10. The answer to each of the questions is a numerical value. Each question carries 4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer. For Section-B, the answer should be rounded off to the nearest integer.

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If the work function of a metal is 6.63 eV , then find its threshold frequency for photoelectric effect.
(1) $1.9 \times 10^{15} \mathrm{~Hz}$
(2) $1.6 \times 10^{15} \mathrm{~Hz}$
(3) $2 \times 10^{16} \mathrm{~Hz}$
(4) $1.2 \times 10^{15} \mathrm{~Hz}$

Answer (2)

Sol. $f_{0}=\frac{\phi_{0}}{h}=\frac{6.63 \times 1.6 \times 10^{-19}}{6.63 \times 10^{-34}}$

$$
=1.6 \times 10^{15} \mathrm{~Hz}
$$

2. If $\left(P-\frac{a}{V^{2}}\right)(V-b)=n R T$, where P, V, R and T are pressure, volume, universal gas constant and temperature, then $\frac{a}{b^{2}}$ has same dimensional formula as that of
(1) R
(2) $P V$
(3) $R T$
(4) P

Answer (4)

Sol. $\frac{a}{V^{2}} \equiv P$
$a \equiv P V^{2}$
$b \equiv V$
$\left[\frac{a}{b^{2}}\right] \equiv[P]$
3. Statement-I : Positive zero error is added in measurement.

Statement-II : Defect may occurs during manufacturing of measuring instruments.
(1) Statement-I is correct while statement-II is wrong
(2) Statement-I is wrong while statement-II is correct
(3) Both statements are wrong
(4) Both statements are correct

Answer (2)

Sol. • Positive error always subtracted during measurement.

- Defect may occur during manufacturing of measuring device.

4. Find total kinetic energy of 1 mole of oxygen gas at $27^{\circ} \mathrm{C}$. $\left[\right.$ Take $\left.R=\frac{25}{3} \mathrm{~J} / \mathrm{mol}-\mathrm{K}\right]$
(1) 6250 J
(2) 3125 J
(3) 12500 J
(4) 625 J

Answer (1)

Sol. ($f=5$ for diatomic gas)

$$
\begin{aligned}
K & =\frac{5}{2} \mu R T=\frac{5}{2} \times 1 \times \frac{25}{3} \times 300 \\
& =250 \times 25 \\
& =6250 \mathrm{~J}
\end{aligned}
$$

5. If a current of $200 \mu \mathrm{~A}$ deflects the coil of moving coil galvanometer through 60°, then the current required to cause deflection through $\frac{\pi}{10}$ radians is
(1) $60 \mu \mathrm{~A}$
(2) $50 \mu \mathrm{~A}$
(3) $20 \mu \mathrm{~A}$
(4) $150 \mu \mathrm{~A}$

Answer (1)
Sol. $i \propto \theta$
$\frac{i_{i}}{i_{2}}=\frac{\theta_{1}}{\theta_{2}}$
$\frac{200 \mu \mathrm{~A}}{i}=\frac{\pi / 3}{\pi / 10}$
$i=\frac{200 \times 3}{10} \mu \mathrm{~A}$
$=60 \mu \mathrm{~A}$
6. Consider the following current carrying structure.

Find the magnetic field at the centre. Given that $r_{1}=2 \pi$ units and $r_{2}=4 \pi$ units.

Assume current divides equally.
(1) $10^{-8} \mathrm{~T}$
(2) $5 \times 10^{-8} \mathrm{~T}$
(3) $10^{-7} \mathrm{~T}$
(4) $4 \times 10^{-7} \mathrm{~T}$

Answer (2)

Sol. $B=\left|B_{1}-B_{2}\right|$

$$
\begin{aligned}
& =\left|\frac{\mu_{0}\left(\frac{l}{2}\right)}{4 r_{1}}-\frac{\mu_{0}\left(\frac{l}{2}\right)}{4 r_{2}}\right| \\
& =\frac{\mu_{0} I}{2 \times 4}\left[\frac{1}{4 \pi}\right] \\
& =\frac{4}{8} \times 10^{-7} \mathrm{~T}=5 \times 10^{-8} \mathrm{~T}
\end{aligned}
$$

7. There exists a uniform electric field of $20 \hat{i} \mathrm{~N} / \mathrm{C}$. A dipole of dipole moment $|\vec{p}|=15 \mathrm{C}-\mathrm{m}$ is placed at angle 30° with electric field. Torque on dipole is
(1) 250 Nm
(2) 150 Nm
(3) 200 Nm
(4) 100 Nm

Answer (2)

Sol. $|\tau|=$ P.E $\sin \theta$

$$
\begin{aligned}
& =15 \times 20 \times \sin 30^{\circ} \\
& =150 \mathrm{Nm}
\end{aligned}
$$

8. A man holding a rod of mass m as shown in figure. Find weight of rod experienced by him.

(1) $\frac{m g}{2}$
(2) $\frac{m g}{4}$
(3) $\frac{3 m g}{2}$
(4) $\frac{m g}{3}$

Answer (2)

Sol.

$m g\left(\frac{1}{2} \cos \theta\right)=N_{2} \times I$
$m g \times \frac{1}{4}=N_{2}$
$N_{2}=\frac{m g}{4}$
9. If the primary side of a transformer is connected with $230 \mathrm{~V}, 50 \mathrm{~Hz}$ A.C supply and the ratio of number of turns of primary to the secondary winding is $10: 1$, load resistance at secondary coil is 46Ω then power output of the secondary windings is
(1) 11.5 watt
(2) 13 watt
(3) 16 watt
(4) 15.6 watt

Answer (1)
Sol. $\frac{V_{i}}{V_{o}}=\frac{N_{i}}{N_{0}}=10$

$$
\begin{aligned}
& V_{0}=23 \mathrm{~V} \\
& P_{0}=\frac{V_{0}^{2}}{R}=\frac{23 \times 23}{46} \\
& P_{0}=11.5 \mathrm{~W}
\end{aligned}
$$

10. Find the power factor of the given A.C circuit

(1) 0.75
(2) 0.5
(3) 1
(4) None of the above

Answer (3)
Sol. $X_{L}=\underline{\omega} L=100 \pi \times \frac{1}{10 \pi}=10 \Omega$

$$
X_{C}=\frac{1}{\omega C}=\frac{1}{100 \pi \times \frac{1}{1000 \pi}}=10 \Omega
$$

$R=10 \Omega$

$$
\begin{aligned}
\cos \phi=\frac{R}{Z} & =\frac{10}{\sqrt{(10-10)^{2}+(10)^{2}}} \\
& =1
\end{aligned}
$$

11. Statement I : Limiting friction depends on surface area.

Statement II : Kinetic friction depends on surface area.
(1) Statement I is true and statement II is false
(2) Statement II is true and statement I is false
(3) Both statements are true
(4) Both statements are false

Answer (4)

Sol. The surface area does not affect frictional force.
12. Three voltmeters are connected in a circuit as shown in diagram. Find correct relation among their readings $\left(V_{1}, V_{2}\right.$ and $\left.V_{3}\right)$.

(1) $V_{1}>V_{2}=V_{3}$
(2) $V_{1}+V_{2}=V_{3}$
(3) $V_{1}=V_{2}=V_{3}$
(4) $V_{1}+V_{3}=V_{2}$

Answer (2)

Sol.

Across points $P \& Q\left(V_{1} \& V_{2}\right)$ combined is in parallel to $\left(V_{3}\right)$

Therefore $V_{12}=V_{3} \Rightarrow V_{1}+V_{2}=V_{3}$
13.

Which is correct truth table for given circuit?
(1)

A	B	Z
0	0	1
0	1	1
1	0	1
1	1	0

(2)

A	B	Z
0	0	0
0	1	1
1	0	1
1	1	0

(3)

A	B	Z
0	0	0
0	1	0
1	0	0
1	1	1

(4)

A	B	Z
0	0	0
0	1	1
1	0	0
1	1	1

Answer (2)

Sol. $Z=A B^{\prime} \oplus A^{\prime} B$
$\left(A B^{\prime}\left(A^{\prime} B\right)^{\prime}+\left(A B^{\prime}\right)^{\prime}\left(A^{\prime} B\right)\right.$
$=A B^{\prime}\left(A+B^{\prime}\right)+\left(A^{\prime}+B\right) A^{\prime} B$
$=A B^{\prime}+A B^{\prime}+A^{\prime} B+A^{\prime} B$
$=A B^{\prime}+A^{\prime} B$

$$
\Rightarrow \begin{array}{c|c|c}
A & B & Z \\
\hline 0 & 0 & 0 \\
\hline 0 & 1 & 1 \\
\hline 1 & 0 & 1 \\
\hline 1 & 1 & 0
\end{array}
$$

14. Statement-1: Work done by electrostatic force is zero if a charge is moving along an equipotential surface.

Statement-2: Equipotential surfaces are perpendicular to electric field.
(1) Statement-1 is true, statement-2 is false
(2) Statement-1 is false, statement-2 is true
(3) Both statements are false
(4) Both statements are true

Answer (4)

Sol. As electric field is perpendicular to the equipotential surface, there is no force along the equipotential surface.
15. In meter bridge, an unknown resistance X has specific resistance $S_{1}=\frac{X \pi R^{2}}{I}$, where R is radius and I is length. If length and radius both are doubled, new specific resistance is :
(1) S_{1}
(2) $2 S_{1}$
(3) $4 S_{1}$
(4) $\frac{S_{1}}{4}$

Answer (1)

Sol. Specific resistance is specific to material.
\Rightarrow Remains same.
16. In the given reaction, find value of Q value.

$$
{ }_{6} C^{13} \longrightarrow 6 C^{12}+{ }_{0} n^{1}+(Q-\text { value })
$$

Given : mass of ${ }_{6} C^{13} \Rightarrow x$
mass of ${ }_{6} \mathrm{C}^{12} \Rightarrow y$
mass of ${ }_{0} n^{1} \Rightarrow z$
(1) $(y+x-z) C^{2}$
(2) $(y+z-x) C^{2}$
(3) $(y+z+x) C^{2}$
(4) $(z+x-y) C^{2}$

Answer (2)

Sol. $\Rightarrow \Delta m=(y+z-x)$
$Q-$ value $=\Delta m C^{2}$
$=(y+z-x) C^{2}$
17. Assertion : Angular velocity of moon revolving about earth is more than angular velocity of earth revolving around sun.

Reason : Time taken by moon to revolve around earth is less than time taken by earth to revolve around sun.
(1) Both assertion (A) and reason (R) are true and reason (R) is the correct explanation of assertion (A)
(2) Both assertion (A) and reason (R) are true but reason (R) is not the correct explanation of assertion (A)
(3) Assertion (A) is true and reason (R) is false
(4) Assertion (A) is false and reason (R) is true

Answer (1)

Sol. Time period of earth around sun is 365 days
then $\omega_{1}=\frac{2 \pi}{365 \text { days }}$
Time period of moon around earth is 29 days
$\omega_{2}=\frac{2 \pi}{29 \text { days }}$, so $\omega_{2}>\omega_{1}$
18. A pendulum bob is released from angle θ with the vertical as shown in the figure. If it's acceleration at maximum amplitude is same as at mean position, find θ

(1) $\tan ^{-1}(\sqrt{2})$
(2) $2 \tan ^{-1}\left(\frac{1}{\sqrt{5}}\right)$
(3) $2 \tan ^{-1}\left(\frac{1}{2}\right)$
(4) $\tan ^{-1}(2)$

Answer (3)

Sol. At max amplitude
$a_{1}=g \sin \theta$
at mean position
$a_{2}=\frac{v^{2}}{l}$
$\because v^{2}=2 g l(1-\cos \theta)$
$\therefore \quad a_{2}=2 g(1-\cos \theta)$
$g \sin \theta=2 g(1-\cos \theta)$
$2 g \sin \frac{\theta}{2} \cos \frac{\theta}{2}=2 g \times 2 \sin ^{2} \frac{\theta}{2}$
$\cos \frac{\theta}{2}=2 \sin \frac{\theta}{2}$
$\tan \frac{\theta}{2}=\frac{1}{2}$
$\theta=2 \tan ^{-1}\left(\frac{1}{2}\right)$
19. In a single slit diffraction pattern with slit width a and wavelength of light λ, find the angular position of first minima if screen distance is $D(D \gg a)$
(1) $\frac{\lambda}{a}$
(2) $\frac{2 \lambda}{a}$
(3) $\frac{3 \lambda}{2 a}$
(4) $\frac{3 \lambda}{a}$

Answer (1)

Sol. For first minima

$$
\sin \theta=\frac{\lambda}{a}, \quad \therefore \theta \approx \frac{\lambda}{a}
$$

20. An atom of atomic number $Z=50$ is having nuclear radius $=9 \times 10^{-13} \mathrm{~cm}$. Potential at the surface of the nucleus is
(1) $4 \times 10^{6} \mathrm{~V}$
(2) $8 \times 10^{6} \mathrm{~V}$
(3) $10^{6} \mathrm{~V}$
(4) $10^{5} \mathrm{~V}$

Answer (2)
Sol. $V=\frac{k Q}{r}$

$$
\begin{aligned}
& =\frac{9 \times 10^{9} \times 50 \times 1.6 \times 10^{-19}}{9 \times 10^{-15}} \\
& =8 \times 10^{6} \mathrm{~V}
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. A uniform ring and uniform solid sphere rolls down same inclined plane by same distance. If ratio of their translational kinetic energies is $\frac{7}{x}$ then x is
(Given mass and radius of ring and sphere are equal)
Answer (10.00)
Sol. $K=\frac{1}{2} m v^{2}=\frac{1}{2} m(2 a s)$
$\Rightarrow a_{r}=\frac{g \sin \theta}{2}$
$\Rightarrow a_{s}=\frac{5}{7} g \sin \theta$
$\frac{K_{r}}{K_{s}}=\frac{\frac{1}{2}}{\frac{5}{7}}=\frac{7}{10}$
$\therefore \quad x=10$
22. A bullet is fired into a fixed target. It loses $\frac{1}{3}$ rd of its velocity after travelling 4 cm . It penetrates further $p \times 10^{-3} \mathrm{~m}$ before coming to rest. Find p.

Answer (32.00)

Sol. $v^{2}-u^{2}=2$ as
Let v_{0} : initial
$\Rightarrow\left(\frac{2 v_{0}}{3}\right)^{2}-v_{0}^{2}=2(-a)\left(\frac{4}{100}\right)$
$\Rightarrow \frac{5}{9} v_{0}^{2}=\frac{2 a}{25}$
Also, $\frac{4 v_{0}^{2}}{9}=2 \times a \times\left(p \times 10^{-3}\right)$
$\Rightarrow \frac{5}{4}=\frac{1000}{25 \times p}$
$\Rightarrow p=32$
23. The expression for longest wavelength in Paschen series (for H atom) is $\frac{144 R}{x}$. Find $x . R$ is Rydberg's constant.

Answer (07.00)

Sol. Longest wavelength \Rightarrow Minimum energy

$$
\begin{aligned}
\frac{1}{\lambda} & =R\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right] \\
& =\frac{7 R}{144} \Rightarrow \lambda=\frac{144 R}{7}
\end{aligned}
$$

24. An object is dropped from certain height (from point P). It crosses 2 points A and B in interval of 2 seconds such that $A B=80 \mathrm{~m}$. Find distance $A P$ in meters.
(Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Answer (45)

$A B=\frac{1}{2} \varepsilon(t+2)^{2}-\frac{1}{2} \varepsilon t^{2}$
$80=5(2 t+2)(2)$
$4=t+1$
$t=3$
$A P=\frac{1}{2} 8 t^{2}=5(3)^{2}=45 \mathrm{~m}$
25. Pressures at ends of a horizontal pipe are given for water. Find speed v at end 2 if speed at end 1 is $10 \mathrm{~m} / \mathrm{s}$. (density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$). Find v (in m / s)

Answer (11.00)
Sol. $p_{1}-p_{2}=\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right)$

$$
\begin{aligned}
& 10.5 \times 10^{3}=\frac{1}{2} \times 10^{3}\left(v^{2}-10^{2}\right) \\
& 21+100=v^{2} \Rightarrow v=11 \mathrm{~m} / \mathrm{s} \\
& p_{1}-p_{2}=10.5 \times 10^{3}=\frac{1}{2} \times 10^{3}\left\{v_{2}^{2}-v_{1}^{2}\right\}
\end{aligned}
$$

$$
1.21=v_{2}
$$

26. The diagram shows combination of polaroids.

Unpolarised light of intensity I_{0} incident perpendicular to the axis of polaroid P_{1}, then angle θ for which maximum intensity passes through polaroid P_{3}.

Answer (45.00)

Sol.

$$
I_{3}=\frac{I_{0}}{2} \times \frac{4 \sin ^{2} \theta \cos ^{2} \theta}{4}
$$

$$
=\frac{I_{0}}{8}(\sin 2 \theta)^{2}
$$

For $I_{3} \rightarrow \max$
$\sin 2 \theta=1$
$2 \theta=90^{\circ}$
$\theta=45^{\circ}$
27.
28.
29.
30.

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The quantity which changes with temperature
(1) Mole fraction
(2) Mass percentage
(3) Molarity
(4) Molality

Answer (3)

Sol. Molarity of a solution depends upon temperature because volume of a solution is temperature dependent.
2. Which of the following cannot as an oxidising agent?
(1) MnO_{4}^{-}
(2) SO_{4}^{2-}
(3) N^{3-}
(4) BrO_{3}^{-}

Answer (3)

Sol. $\mathrm{N}^{3-} \Rightarrow$ Because, it cannot further reduce itself to oxidise other.
$\mathrm{N}^{3-} \Rightarrow-3 \Rightarrow$ lowest oxidation state
Others $\Rightarrow \mathrm{Mn}^{+7}, \mathrm{~S}^{6+}, \mathrm{Br}^{+5} \Rightarrow$ can be self reduced and oxidise others.
3.

Products are
(1)
 $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$
(2)
 $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{I}$
(3)
 $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$
(4)
 $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}$

Answer (1)

Sol. During cleavage of ethers by cold HI , when one of the alkyl group is a tertiary group, the halide formed is a tertiary halide.
4. Identify the following species in which $d^{2} s p^{3}$ hybridisation is shown by central atom.
(1) BrF_{5}
(2) SF_{6}
(3) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(4) $\left[\mathrm{PtCl}_{4}\right]^{2-}$

Answer (3)

Sol. $\mathrm{Co}^{3+} \Rightarrow 3 d^{6} \Rightarrow$ in presence of strong ligand NH_{3}
$3 d^{6}=\mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{eg}^{\circ} \Rightarrow 2$ inner d-orbitals are vacant forming $d^{2} s p^{3}$ hybridisation.

5. Phenolic group can be identified by a positive
(1) Lucas test
(2) Carbylamine test
(3) Phthalein test
(4) Tollen's test

Answer (3)

Sol. Phenol on heating with phthalic anhydride in the presence of concentrated sulphuric acid forms a colourless condensation compound called phenolphthalein.

6. Which structure of protein intact after coagulation of egg white on boiling
(1) Primary
(2) Secondary
(3) Tertiary
(4) Quaternary

Answer (1)

Sol. Primary structure of protein remain intact because it does not involve hydrogen bonding.
7. The molecular formula of second homologue in the homologous series of monocarboxylic acid is
(1) $\mathrm{CH}_{3} \mathrm{COOH}$
(2) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}$
(3)

(4) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{COOH}$

Answer (1)

Sol. Homologous series of any functional groups differs in $1 \mathrm{CH}_{2}$ group, therefore;
$1^{\text {st }}$ Homologue $\Rightarrow \mathrm{HCOOH}$
$2^{\text {nd }}$ Homologue $\Rightarrow \mathrm{CH}_{3} \mathrm{COOH}$
8. Which of the following will not give $S_{N} 1$.
(1)

(2)

(3)

(4)

Answer (3)
Sol. For $S_{N} 1$ reaction to occur, stable carbocation must from as intermediate.
(1)

(2)

(3) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}^{\oplus} \Rightarrow$ Unstable \Rightarrow Vinylic C^{\oplus}
(4) $\xlongequal{\gamma} \mathrm{Cl} \Rightarrow 3^{\circ}$ Carbocation \Rightarrow Stable
9. In which all have d^{10} configuration in their ground state?
(1) $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Cd}, \mathrm{Ag}$
(2) $\mathrm{Cd}, \mathrm{Au}, \mathrm{Hg}, \mathrm{Ni}$
(3) $\mathrm{Sc}, \mathrm{Ti}, \mathrm{Fe}, \mathrm{Zn}$
(4) $\mathrm{Fe}, \mathrm{Cr}, \mathrm{Co}, \mathrm{Ni}$

Answer (1)

Sol. $\mathrm{Cu}: 3 d^{10} 4 s^{1}$
$\mathrm{Zn}: 3 d^{10} 4 s^{2}$
$C d: 4 d^{10} 5 s^{2}$
$\mathrm{Ag}: 4 d^{10} 5 s^{1}$
10. Compare the stability of resonating structures:

(1) I $>$ II $>$ III
(2) III $>$ II $>$ I
(3) I $>$ III $>$ II
(4) II $>$ I $>$ III

Answer (1)

Sol. Resonating structure which does not has any charge is most stable.

Now, if we compare II and III, in III octet of carbon is incomplete, therefore it is least stable.
11. Find out product (X)

(1)

(2)

(3)

(4) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$

Answer (4)

Sol.

12. The technique used for purification of steam volatile water immiscible substance is
(1) Fractional distillation
(2) Distillation under reduced pressure
(3) Steam distillation
(4) Simple distillation

Answer (3)
Sol. Substances which are steam volatile and are immiscible in water are separated by steam distillation.
13. If values of $\Delta \mathrm{H}^{\circ} \& \Delta \mathrm{~S}^{\circ}$ for a process/reaction are $77.2 \mathrm{~kJ} \& 48 \mathrm{~J} / \mathrm{k}$ respectively. Then find value of $\log \frac{1}{k}$. Given : Temp is 300 K
(1) 11
(2) 5
(3) 15
(4) 100

Answer (1)
Sol. $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$

$$
\begin{aligned}
& =77.2-300 \times 48 \times 10^{-3} \\
& =77.2-14.4 \\
& =62.8 \mathrm{~kJ} \\
\Delta \mathrm{G}^{\circ} & =-2.303 \mathrm{RT} \text { logk } \\
-\operatorname{logk} & =\frac{62.8}{2.303 \times 8.314 \times 300 \times 10^{-3}}=0.0109 \times 10^{3} \\
& =10.9 \simeq 11 \\
\log \frac{1}{\mathrm{k}} & =11 \text { or option }(1) \text { is correct }
\end{aligned}
$$

14. Which of the following statement is correct?
(1) Ce^{4+} is oxidising agent
(2) Ce^{4+} is reducing agent
(3) Ce^{3+} has noble gas configuration
(4) Ce has stable configuration

Answer (1)
Sol. The E° value for $\mathrm{Ce}^{4+} / \mathrm{Ce}^{3+}$ is +1.74 which explains that it is oxidising agent
15. Statement I : Oxygen is always present in -2 oxidation state.

Statement II : Stability of oxidation state of group16 for +4 and +6 decreases down the group.
(1) Both the statements are correct and Statement II is correct explanation of Statement I
(2) Both the statements are correct and Statement II does not support Statement I
(3) Statement I is correct and II is false
(4) Statement II is correct and Statement I is false

Answer (4)

Sol. Oxygen can show $-2,-1,-\frac{1}{2},+1,+2$ and 0 oxidation state also.

Stability of +6 oxidation state decreases down the group due to inert pair effect.
16. Consider the following sequence of reactions

$$
\mathrm{Cl}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{Cl} \xrightarrow{\text { Excess } \mathrm{NH}_{3}} \mathrm{~A} \xrightarrow{\mathrm{NaOH}} \mathrm{~B}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NaCl}
$$

Find B
(1) $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{OH}$
(2) $\mathrm{H}_{2} \mathrm{~N}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{NH}_{2}$
(3) $\mathrm{HO}-\left(\mathrm{CH}_{2}\right)_{4}-\mathrm{OH}$
(4) $\mathrm{H}_{3} \stackrel{+}{\mathrm{N}}-\left(\mathrm{CH}_{2}\right)_{4}-\stackrel{+}{\mathrm{N}} \mathrm{H}_{3}$

Answer (2)
Sol.

(A)

(B)
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. For a first order reaction;
$\mathrm{t}_{99.9}=\mathrm{x} \mathrm{t}_{50 \%}$
Find out value of x

Answer (10)

Sol. $\mathrm{t}_{99.9}=\frac{2.303}{\mathrm{k}} \log \frac{100}{100-99.9}$
$\mathrm{t}_{50}=\frac{2.303}{\mathrm{k}} \log \frac{100}{100-50}$
$\frac{t_{99.9}}{t_{50}}=\frac{\log (1000)}{\log (2)}=\frac{3}{0.3}=10$
22. If 84 g of $\mathrm{NaOH}(\mathrm{aq})$ is present in a 3 Molar Solution, find volume of solution (in mL)

Answer (700)

Sol. As we know
Molarity $=\frac{\text { Moles of } \mathrm{NaOH}}{\text { Volume of solution in } \mathrm{L}}$
$3 \mathrm{M}=\frac{84}{\text { M.W. of } \mathrm{NaOH} \times \text { Volume of Solution (L) }}$
Volume of Solution $=\frac{84}{40 \times 3} \mathrm{~L}=0.7 \mathrm{~L}$
Volume of Solution in $\mathrm{mL}=0.7 \times 1000=700 \mathrm{~mL}$
23. Number of non polar molecules given following.
$\mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}, \mathrm{BF}_{3}, \mathrm{H}_{2}, \mathrm{CHCl}_{3}$

Answer (2)

Sol. Molecules having zero dipole moment ($\mu=0$) are non polar

$\mathrm{H}-\mathrm{H}$

$$
\mu=0
$$

BF_{3} and H_{2} are non polar in nature
24. If longest wavelength for Paschen series in H -atom is $\frac{\alpha}{7 R}$. Find out α

Answer (144)

Sol. $\frac{1}{\lambda}=R(1)^{2}\left(\frac{1}{(3)^{2}}-\frac{1}{(4)^{2}}\right)$
$\frac{1}{\lambda}=R\left(\frac{1}{9}-\frac{1}{16}\right)$
$\frac{1}{\lambda}=R\left(\frac{7}{9 \times 16}\right)$
$\lambda=\frac{9 \times 16}{7 R}=\frac{144}{7 R}$
25. How many compound(s) given below have chiral carbon?
(i)

(ii)

(iii)

(iv)

Answer (2)
Sol. Compound (i) and (iv) have chiral carbon.
26. If work function is 6.6 eV . The threshold frequency is $x \times 10^{14} \mathrm{~Hz}$, Find $x .\left(h=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{S}\right)$

Answer (16)

Sol. $h v_{0}=\phi$ (work function)
where v_{0} is threshold frequency
$h v_{0}=6.6 \times 1.6 \times 10^{-19} \mathrm{~J}$
$v_{0}=\frac{6.6 \times 1.6 \times 10^{-19}}{6.6 \times 10^{-34}}$
$v_{0}=1.6 \times 10^{15} \mathrm{~Hz}$
$v_{0}=16 \times 10^{14}$
$v_{0}=x \times 10^{14}$
$x=16$
27. A hydrogen electrode is prepared by placing into a solution of $\mathrm{pH}=3$. The magnitude of electrode potential at $25^{\circ} \mathrm{C}$ is given by $\mathrm{t} \times 10^{-2} \mathrm{~V}$. Find out t (Nearest integer)

Answer (18)

Sol. $\mathrm{H}_{2} \rightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$

$$
\begin{aligned}
\mathrm{E}_{\text {cell }} & =0-\frac{0.0591}{2} \log \left(\mathrm{H}^{+}\right)^{2} \\
& =-\frac{0.0591}{2} \times 2 \times \log \mathrm{H}^{+} \\
& =0.0591 \times \mathrm{pH} \\
& =0.1773 \mathrm{~V} \\
& =17.73 \times 10^{-2} \mathrm{~V} \\
\mathrm{t} & =17.72 \\
& \approx 18
\end{aligned}
$$

28. Magnetic moment of complex $\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ will be

Answer (0)

Sol. In $\mathrm{Pd}^{2+}, \mathrm{NH}_{3}$ and Cl^{-}ligands behaves as SFL
$\mathrm{Pd}^{+2} \Rightarrow 4 d^{8}$
$\left[\mathrm{Pd}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ is $d s p^{2}$ hybridised
Number of unpaired electron $=0$
So Magnetic moment $=0$
29. How many of the following given atomic number have noble gas configuration?
$56,57,70,80,24$

Answer (0)

Sol. Atomic number of noble gases are
$2,10,18,36,54,86$ and 118
None of the given atomic number belongs to noble gas
30. When 9.3 gm of aniline is reacted with acetic anhydride, mass of acetanilide obtained is mgm , find out value of 2 m .

Answer (27)

Sol.

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

1. The integral $\int \frac{\left(x^{8}-x^{2}\right) d x}{\left(x^{12}+3 x^{6}+1\right) \tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)}$ is equal to
(1) $\frac{1}{3} \ln \left|\left(\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right)\right|+c$
(2) $\ln \left|\left(\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right)\right|+c$
(3) $\frac{1}{6} \ln \left|\left(\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right)\right|+c$
(4) $\frac{1}{9} \ln \left|\left(\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right)\right|+c$

Answer (1)

Sol.

$$
\int \frac{x^{2}-\frac{1}{x^{4}} d x}{\left(\left(x^{3}+\frac{1}{x^{3}}\right)^{2}+1\right) \tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)}
$$

Put $x^{3}+\frac{1}{x^{3}}=t$
$\left(3 x^{2}-\frac{3}{x^{4}}\right) d x=d t$
$=\frac{1}{3} \int \frac{d t}{\left(t^{2}+1\right) \tan ^{-1} t}$
Put $\tan ^{-1} t=z$
$\frac{1}{1+t^{2}} d t=d z$
$=\frac{1}{3} \int \frac{d z}{z}=\frac{1}{3} \ln \left|\left(\tan ^{-1}\left(x^{3}+\frac{1}{x^{3}}\right)\right)\right|+c$
2. If $2 \tan ^{2} \theta-5 \sec \theta=1$ has exactly 7 solutions in $\left[0, \frac{n \pi}{2}\right]$ for least value of $n \in N$, then $\sum_{K=1}^{n} \frac{K}{2^{n}}$ is equal to
(1) $\frac{9}{2^{9}}$
(2) $\frac{91}{2^{13}}$
(3) $\frac{7}{2^{7}}$
(4) $\frac{11}{2^{12}}$

Answer (2)

Sol. $2 \tan ^{2} \theta-5 \sec \theta-1=0$

$$
\begin{aligned}
\Rightarrow & 2\left(\sec ^{2} \theta-1\right)-5 \sec \theta-1=0 \\
\Rightarrow & 2 \sec ^{2} \theta-5 \sec \theta-3=0 \\
\Rightarrow & 2 \sec ^{2} \theta-6 \sec \theta+\sec \theta-3=0 \\
\Rightarrow & (2 \sec \theta+1)(\sec \theta-3)=0 \\
& \sec \theta=3 \\
\Rightarrow & \cos \theta=1 / 3
\end{aligned}
$$

2 solutions in $[0,2 \pi]$
2 solutions in $[2 \pi, 4 \pi]$
2 solutions in $[4 \pi, 6 \pi]$
1 solution in $\left[6 \pi, \frac{13 \pi}{2}\right]$
$\Rightarrow n=13$
$\sum_{K=1}^{13} \frac{K}{2^{13}}$
$\Rightarrow \frac{1}{2^{13}}(1+2 \ldots 13)$
$=\left(\frac{13 \cdot 14}{2}\right) \cdot \frac{1}{2^{13}}$
$=\frac{13 \cdot 7}{2^{13}}=\frac{91}{2^{13}}$
3. If $\frac{d y}{d x}=\frac{x+y-2}{x-y}$ and $y(0)=2$, find $y(2)$
(1) 0
(2) 2
(3) e
(4) e^{2}

Answer (1)
Sol. Let $X=x-1$ and $Y=y-1$

$$
\Rightarrow \frac{d Y}{d X}=\frac{X+Y}{X-Y}
$$

Now let $Y=v X$

$$
\begin{aligned}
& \Rightarrow \frac{d Y}{d X}=v+X \frac{d v}{d X} \\
& v+X \frac{d v}{d X}=\frac{1+v}{1-v} \\
& \Rightarrow \frac{(1-v) d v}{\left(1+v^{2}\right)}=\frac{d X}{X}
\end{aligned}
$$

Integration

$$
\tan ^{-1} v-\ln \left(\sqrt{1+v^{2}}\right)=\ln |X|+c
$$

Re-substituting

$$
\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\ln \sqrt{1+\left(\frac{y-1}{x-1}\right)^{2}}=\ln |(x-1)|+c
$$

At $x=0, y=2$
$\Rightarrow c=\frac{-\pi}{4}-\ln \sqrt{2}$
at $x=2$

$$
\tan ^{-1}(y-1)-\ln \sqrt{1+(y-1)^{2}}=\frac{-\pi}{4}-\ln \sqrt{2}
$$

$\Rightarrow y=0$, satisfy
$\Rightarrow y(2)=0$
4. $\int_{0}^{\pi} \frac{d x}{1-2 a \cos x+a^{2}}$ is equal to
(1) $\frac{\left(1+a^{2}\right) \pi}{\left(1-a^{2}\right)^{2}}$
(2) $\frac{\left(1+a^{2}\right) \pi}{\left(1-a^{2}\right)}$
(3) $\frac{\left(1-a^{2}\right) \pi}{\left(1+a^{2}\right)}$
(4) $\frac{\left(1-a^{2}\right) \pi}{\left(1+a^{2}\right)^{2}}$

Answer (1)
Sol. $I=\int_{0}^{\pi} \frac{1}{1-2(\cos x) a+a^{2}} d x$
$I=\int_{0}^{\pi} \frac{1}{1+2(\cos x) a+a^{2}} d x$
$2 I=\int_{0}^{\pi}\left(\frac{1}{1-2 a \cos x+a^{2}}+\frac{1}{1+2 a \cos x+a^{2}}\right) d x$
$2 l=\int_{0}^{\pi} \frac{2\left(1+a^{2}\right)}{\left(1+a^{2}\right)^{2}-4 a^{2} \cos ^{2} x} d x$
$2 I=2 \int_{0}^{\frac{\pi}{2}} \frac{2\left(1+a^{2}\right)}{\left(1+a^{2}\right)^{2}-4 a^{2} \cos ^{2} x} d x$
$I=\int_{0}^{\frac{\pi}{2}} \frac{2\left(1+a^{2}\right) \sec ^{2} x}{\left(1+a^{2}\right)^{2} \sec ^{2} x-4 a^{2}} d x$
$I=\int_{0}^{\frac{\pi}{2}} \frac{2\left(1+a^{2}\right) \sec ^{2} x}{\left(1+a^{2}\right)^{2}\left(1+\tan ^{2} x\right)-4 a^{2}} d x$
$I=\int_{0}^{\frac{\pi}{2}} \frac{2\left(1+a^{2}\right) \sec ^{2} x}{\left(\tan ^{2} x\right)\left(1+a^{2}\right)^{2}+\left(1-a^{2}\right)^{2}} d x$
$I=\int_{0}^{\frac{\pi}{2}} \frac{\left(\frac{2}{1+a^{2}}\right) \sec ^{2} x}{\tan ^{2} x+\left(\frac{1-a^{2}}{1+a^{2}}\right)^{2}} d x$
Now let $\tan x=t$
$\sec ^{2} x d x=d t$

$$
\begin{aligned}
I & =\frac{2}{1+a^{2}} \int_{0}^{\infty} \frac{d t}{t^{2}+\left(\frac{1-a^{2}}{1+a^{2}}\right)^{2}} \\
& \left.=\frac{2}{1+a^{2}} \times \frac{\left(1+a^{2}\right)^{2}}{\left(1-a^{2}\right)^{2}} \tan ^{-1}\left[\frac{t\left(1+a^{2}\right)}{\left(1-a^{2}\right)}\right]\right]_{0}^{\infty} \\
& =\frac{2\left(1+a^{2}\right)}{\left(1-a^{2}\right)^{2}} \times \frac{\pi}{2} \\
& =\frac{\left(1+a^{2}\right) \pi}{\left(1-a^{2}\right)^{2}}
\end{aligned}
$$

5. The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots,-129 \frac{1}{4}$ is
(1) -120
(2) -115
(3) -125
(4) -110

Answer (2)
Sol. $\frac{-517}{4}=20+(n-1)\left(-\frac{3}{4}\right)$
$\Rightarrow-517=80+(-3 n+3)$
$\Rightarrow-597=-3 n+3$
$\Rightarrow-600=-3 n$
$\Rightarrow n=200$
$n^{\text {th }}$ term from end is $(n-r+1)^{\text {th }}$
$200-20+1=181^{\text {th }}$ term
$a_{181}=20+(181-1)\left(-\frac{3}{4}\right)$
$a_{181}=20-135$
$a_{181}=-115$
6. An urn contains 6 white and 9 black balls. Two successive draws of 4 balls are made without replacement. The probability that the first draw gives all white balls and second draw gives all black balls is
(1) $\frac{2}{335}$
(2) $\frac{1}{495}$
(3) $\frac{5}{812}$
(4) $\frac{3}{715}$

Answer (4)

Sol. $\mathrm{P}=\frac{{ }^{6} \mathrm{C}_{4}}{{ }^{15} \mathrm{C}_{4}} \cdot \frac{{ }^{9} \mathrm{C}_{4}}{{ }^{11} \mathrm{C}_{4}}$

$$
\begin{aligned}
& =\frac{15 \times 24}{15 \cdot 14 \cdot 13 \cdot 12} \times \frac{9 \cdot 8 \cdot 7 \cdot 6 \times 24}{24 \cdot 11 \cdot 10 \cdot 9 \cdot 8} \\
& =\frac{1}{13 \cdot 7} \times \frac{7 \cdot 6}{10 \cdot 11} \\
& =\frac{6}{13 \cdot 10 \cdot 11} \\
& =\frac{3}{13 \cdot 5 \cdot 11} \\
& =\frac{3}{715}
\end{aligned}
$$

7. Let $f: R\left\{-\frac{1}{2}\right\} \rightarrow R$ and $g: R-\left\{-\frac{5}{2}\right\} \rightarrow R \quad$ be defined as $f(x)=\frac{2 x+3}{2 x+1}$ and $g(x)=\frac{|x|+1}{2 x+5}$ then the domain of the function $f(g(x))$ is
(1) R
(2) $R-\left\{-\frac{5}{2}\right\}$
(3) $R-\left\{-\frac{1}{2},-\frac{5}{2}\right\}$
(4) $R-\left\{-\frac{1}{2}\right\}$

Answer (2)
Sol. $f(g(x))$

$$
\begin{aligned}
& \Rightarrow \quad g(x) \neq-\frac{1}{2} \\
& \\
& \quad \begin{array}{l}
\frac{|x|+1}{2 x+5} \neq \frac{-1}{2} \\
\text { (I) } \quad x \geq 0 \\
\frac{x+1}{2 x+5}=\frac{-1}{2} \\
2 x+2=-2 x-5 \\
4 x=-7 \\
\\
\\
x=\frac{-7}{4}(\text { Rejected })
\end{array}
\end{aligned}
$$

(II) $x<0$

$$
\begin{aligned}
& \frac{-x+1}{2 x+5}=\frac{-1}{2} \\
& -2 x+2=-2 x-5 \\
& 2=-5(\text { not possible }) \\
\Rightarrow & \text { Domain of } f(g(x))=\text { domain of } g(x) \\
& D_{\mathrm{fog}}=R-\left\{\frac{-5}{2}\right\}
\end{aligned}
$$

8. Considering the principal values of inverse trigonometric functions, the positive real values of ' x ' satisfying $\tan ^{-1} x+\tan ^{-1}(2 x)=\frac{\pi}{4}$ is
(1) $\frac{\sqrt{5}-1}{2}$
(2) $\frac{\sqrt{17}+3}{4}$
(3) $\frac{\sqrt{17}-3}{4}$
(4) $\frac{\sqrt{5}+1}{2}$

Answer (3)
Sol. $\tan ^{-1} x+\tan ^{-1} 2 x=\frac{\pi}{4}$

$$
\begin{aligned}
& \Rightarrow \tan ^{-1}\left(\frac{3 x}{1-2 x^{2}}\right)=\frac{\pi}{4} \\
& \Rightarrow \frac{3 x}{1-2 x^{2}}=1 \\
& \Rightarrow 2 x^{2}+3 x-1=0 \\
& \Rightarrow \quad x_{1}, x_{2}=\frac{-3 \pm \sqrt{9+8}}{4} \\
& \Rightarrow \quad x_{1}, x_{2}=\frac{-3 \pm \sqrt{17}}{4} \\
& \therefore \quad x_{1}=\frac{\sqrt{17}-3}{4}>0
\end{aligned}
$$

9. Let R be the interior region between the lines $3 x-y+1=0$ and $x+2 y-5=0$ containing the origin. The set of all values of 'a' for which the points $\left(a^{2}, a+1\right)$ lies in R is
(1) $(-\infty,-1) \cup(3, \infty)$
(2) $(-3,0) \cup\left(\frac{1}{3}, 1\right)$
(3) $(-\infty,-1) \cup\left(0, \frac{1}{3}\right)$
(4) $(-\infty,-2) \cup\left(0, \frac{1}{3}\right)$

Answer (2)

Sol.

R is the shaded region where ($a^{2}, a+1$) should lie. For line L_{1},
$\therefore \quad a^{2}+2(a+1)-5<0$
$a^{2}+2 a-3<0$
$(a+3)(a-1)<0$
$\Rightarrow a \in(-3,1)$
Also, for line L_{2}
$3 a^{2}-a-1+1>0$
$3 a^{2}-a>0$
$a(3 a-1)>0$
$a \in(-\infty, 0) \cup\left(\frac{1}{3}, \infty\right)$
$\therefore(1) \cap(2)$
$a \in(-3,0) \cup\left(\frac{1}{3}, 1\right)$
10. If $f(x)=6 x-x^{2}, x \in[0,2]$ and
$g(x)=\left\{\begin{array}{c}\min f(t), 0 \leq t \leq x, x \in[0,1] \\ 3+x, x \in[1,2]\end{array}\right.$
Then number of points where $g(x)$ is not differentiable is
(1) 1
(2) 0
(3) 2
(4) 3

Answer (1)

Sol. $g(x)=\left\{\begin{array}{c}\min (f(t)), 0 \leq t \leq x, x \in[0,1] \\ 3+x, x \in[1,2]\end{array}\right.$

For $x \in[0,1], \min f(t)=0$
For $x \in[1,2], f(t)=3+x$

Number of points of non-differentiability is 1
11. If $H: \frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ and $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1(a>b)$.

Ellipse passes through the foci of the hyperbola and $e_{1} . e_{2}=1$ (where e_{1}, e_{2} are the eccentricities of hyperbola and ellipse, respectively). The length of the chord of ellipse passing through $(0,2)$ is equal to
(1) $\frac{5 \sqrt{10}}{3}$
(2) $\frac{10 \sqrt{5}}{3}$
(3) $2 \sqrt{5}$
(4) $2 \sqrt{10}$

Answer (2)

Sol. $e_{1}^{2}=1+\frac{9}{16} \Rightarrow e_{1}=\frac{5}{4}$
$\therefore \quad e_{2}=\frac{4}{5}$
Foci of hyperbola $\equiv(\pm 5,0)$
$2 a=10 \Rightarrow a=5$

$1-\frac{b^{2}}{a^{2}}=\frac{16}{25}$
$\Rightarrow b=3$
$E: \frac{x^{2}}{25}+\frac{y^{2}}{9}=1$
$\frac{x^{2}}{25}+\frac{4}{9}=1 \ldots(y=2)$
$\Rightarrow \frac{x^{2}}{25}=\frac{5}{9}$
$x= \pm \frac{5 \sqrt{5}}{3}$
$\therefore \quad x_{1}=-\frac{5 \sqrt{5}}{3}, \quad x_{2}=\frac{5 \sqrt{5}}{3}$
$\therefore \quad I=\frac{10 \sqrt{5}}{3}$
Option (2) is correct.
12. The position vector of vertices A, B, C of Δ are $\hat{i}+2 \hat{j}+3 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}, 2 \hat{i}+\hat{j}+3 \hat{k}$ respectively. Let l is the length of angle bisector of $\angle B A C$, then the value of R is
(1) $4+2 \sqrt{2}$
(2) $4-2 \sqrt{2}$
(3) $2+2 \sqrt{2}$
(4) $2-2 \sqrt{2}$

Answer (2)

Sol.

$\frac{B D}{D C}=\frac{1}{\sqrt{2}}$
$D\left(\frac{2+\sqrt{2}}{\sqrt{2}+1}, 1,3\right)$
Now $A D: I=\sqrt{\left(\frac{2+\sqrt{2}}{\sqrt{2}+1}\right)^{2}+1}$

$$
\begin{aligned}
& I^{2}=\left(\frac{1}{\sqrt{2}+1}\right)^{2}+1 \\
& =(\sqrt{2}-1)^{2}+1 \\
& =4-2 \sqrt{2}
\end{aligned}
$$

13.
14.
15.
16.
17.
18.
19.
20.

SECTION - B

Numerical Value Type Questions: This section contains 10 questions. In Section B, attempt any five questions out of 10. The answer to each question is a NUMERICAL VALUE. For each question, enter the correct numerical value (in decimal notation, truncated/rounded-off to the second decimal place; e.g. $06.25,07.00,-00.33,-00.30,30.27,-27.30$) using the mouse and the on-screen virtual numeric keypad in the place designated to enter the answer.
21. If for two sets A and $B, n(A)=m$ and $n(B)=n$ and (Number of subsets of A - Number of subsets of B) $=56$, then find value of $(2 m+n)$.

Answer (15)

Sol. $n(A)=m$, then number of subsets of $A=2^{m}$
$n(B)=n$, then number of subsets of $B=2^{n}$
given that
$2^{m}-2^{n}=56$
$2^{m}-2^{n}=2^{6}-2^{3}$
From here, $m=6$
$n=3$
$2 m+n=2 \times 6+3=15$
22. If A is a 2×2 matrix and l is an identity matrix of order $2 \&|A-\lambda I|=0$ gives value of λ as $-1 \& 3$ then trace of A^{2} is equal to \qquad

Answer (10)

Sol. Given $|A-\lambda I|=0$
Value of ' λ ' are -1 and 3
Now value of ' λ ' of A^{2} is equal to λ^{2}
$\therefore \quad$ Let $\lambda_{1}=(-1)^{2}=1$

$$
\lambda_{2}=(3)^{2}=9
$$

Trace of $A^{2}=1+9$

$$
=10
$$

Answer is 10
23. The area bounded by $0 \leq y \leq \min \left\{2 x, 6 x-x^{2}\right\}$ and x-axis is A. Then $12 A$ is

Answer (304)

Sol. $\min \left\{6 x-x^{2}, y=2 x\right\}$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times 4 \times 8+\int_{4}^{6}\left(6 x-x^{2}\right) d x \\
& =16+\left(3 x^{2}-\frac{x^{3}}{3}\right]_{4}^{6}
\end{aligned}
$$

$$
\begin{gathered}
A=16+\frac{28}{3} \\
12 A=(12 \times 16+28 \times 4) \\
=304 \text { square unit }
\end{gathered}
$$

24. If the line $x+y=0$ is tangent to the circle $(x-\lambda)^{2}+$ $(y-\beta)^{2}=50$, then $(\lambda+\beta)^{2}=$

Answer (100.00)

Sol. Perpendicular distance from centre = radius
$\Rightarrow\left|\frac{\lambda+\beta}{\sqrt{2}}\right|=\sqrt{50}$
$|\lambda+\beta|=\sqrt{100}$
$(\lambda+\beta)^{2}=100$
25. If $f(x)=\int_{0}^{x} g(t) \ln \left(\frac{1-t}{1+t}\right) d t$ and g is odd continuous function and $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(f(x)+\frac{x^{2} \cos x}{\left(1+e^{x}\right)}\right) d x=\frac{\pi^{2}}{\alpha^{2}}-\alpha$ then α is

Answer (2)

Sol. $\therefore \quad f(x)=\int_{0}^{x} g(t) \ln \left(\frac{1-t}{1+t}\right) d t$
$\therefore \quad f^{\prime}(x)=g(x) \cdot \ln \left(\frac{1-x}{1+x}\right)$
Here $f^{\prime}(x)$ is even since $g(x)$ and
$\ln \left(\frac{1-x}{1+x}\right)$ both are odd
Hence $f(x)$ is odd function $\Rightarrow f(x)+f(-x)=0$
Now $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(f(x)+\frac{x^{2} \cos x}{\left(1+e^{x}\right)}\right) d x$
$=\int_{0}^{\frac{\pi}{2}}\left\{f(x)+f(-x)+x^{2} \cos x\left(\frac{1}{1+e^{x}}+\frac{1}{1+e^{-x}}\right)\right\} d x$
$=\int_{0}^{\frac{\pi}{2}} x^{2} \cos x d x$
$=\left[x^{2} \sin x\right]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}} 2 x \sin x d x$
$=\frac{\pi}{4}-2\left\{[-x \cos x]_{0}^{\frac{\pi}{2}}-\int_{0}^{\frac{\pi}{2}}-\cos x d x\right\}$
$=\frac{\pi^{2}}{4}-2$
Given that $\frac{\pi^{2}}{\alpha^{2}}-\alpha=\frac{\pi^{2}}{4}-2$
$\therefore \quad \alpha=2$
26. If α and β are the roots of the equation $x^{2}-x-1=$ 0 and $S_{n}=2024 \alpha^{n}+2024 \beta^{n}$ then S_{3} is equal to

Answer (8096)

Sol. $x^{2}-x-1=0 \longrightarrow \alpha, \begin{aligned} & \alpha+\beta=1 \\ & \alpha \beta=-1\end{aligned}$

$$
\begin{aligned}
\Rightarrow \quad \alpha^{2} & =\alpha+1 \\
\beta^{2} & =\beta+1
\end{aligned}
$$

$S_{3}=2024 \alpha^{3}+2024 \beta^{3}$
$=2024 \alpha[\alpha+1]+2024 \beta[\beta+1]$
$=2024 \alpha+2024 \beta+2024 \alpha^{2}+2024 \beta^{2}$
$=2024 \alpha+2024 \beta+2024(\alpha+1)+2024(\beta+1)$
$=4048(a+b)+4048$
$=4048+4048=8096$
27. If the mean of 15 observations is 12 and standard deviation is 3 . If 12 is replaced by 10 (in data) then the new mean is μ and variance is σ^{2} then what is the value of $15\left(\mu+\mu^{2}+\sigma^{2}\right)$
Answer (2429)
Sol. Given mean is 12 and $n=15$
So take data as
$x_{1}, x_{2}, \ldots, x_{14}, 12$
so $\frac{x_{1}+x_{2}+\ldots+x_{14}+12}{15}=12$
$x_{1}+x_{2}+\ldots .+x_{14}=168$
Now in place of 12, we need to write 10,

$$
\frac{168+10}{15}=\frac{178}{15}=\bar{x}_{\text {new }}
$$

JEE (Main)-2024 : Phase-1 (27-01-2024)-Evening
And also,
$9=\frac{\sum x_{i}^{2}}{15}-(144)$
$\Rightarrow \quad \sum x_{i}^{2}=153 \times 15$
$\Rightarrow \quad \sum_{i=1}^{n} x_{i}^{2}-144+100=2251$
Variance $=\frac{2251}{15}-\left(\frac{178}{15}\right)^{2}=\sigma^{2}$
$15\left(\mu+\mu^{2}+\sigma^{2}\right)=15\left(\frac{2251}{15}+\frac{178}{15}\right)$

$$
=2429
$$

28. If $\lim _{x \rightarrow 0} \frac{3+\alpha \sin x+\beta \cos x+\ln (1-x)}{3 \tan ^{2} x}=\frac{1}{3}$.

Then $2 \alpha-\beta$ is equal to

Answer (5)

Sol. Using expansions,

$$
\begin{aligned}
& \lim _{x \rightarrow 0}\left(\frac{3+\alpha\left(x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots\right)+\beta\left(1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots\right)+\left(-x-\frac{x^{2}}{2}-\frac{x^{3}}{3}\right)}{3\left(x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\ldots\right)^{2}}\right) \\
& \lim _{x \rightarrow 0} \frac{(3+\beta) x^{0}+x^{1}(\alpha-1)+x^{2}\left[\frac{-\beta}{2}-\frac{1}{2}\right]}{3 x^{2}\left(1+\frac{x^{2}}{3}+\frac{2 x^{4}}{15}+\ldots\right)^{2}}=\frac{1}{3} \\
& \beta=-3 \\
& \alpha=1 \\
& \frac{-(\beta+1)}{2 \times 3}=\frac{1}{3} \Rightarrow(\beta+1)=-2 \\
& \Rightarrow \beta=-3 \\
& \Rightarrow 2 \alpha-\beta=2-(-3)=5
\end{aligned}
$$

29.
30.
