Medical IIT-JEE| Foundations
Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2024 (Online) Phase-2

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300 .
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is. Chemistry Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A : (01-20) / (31-50) / (61-80) contains 20 multiple choice questions (MCQs) which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section - B: (21-30) / (51-60) / (81-90) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 sEssion-1

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Given that the inverse trigonometric function assumes principal values only. Let x, y be any two real numbers in $[-1,1]$ such that $\cos ^{-1} x-\sin ^{-1}$ $y=\alpha, \frac{-\pi}{2} \leq \alpha \leq \pi$.
Then, the minimum value of $x^{2}+y^{2}+2 x y \sin \alpha$ is
(1) -1
(2) $\frac{1}{2}$
(3) $\frac{-1}{2}$
(4) 0

Answer (4)

Sol. $\cos ^{-1} x-\frac{\pi}{2}+\cos ^{-1} y=\alpha$
$\cos ^{-1} x+\cos ^{-1} y=\frac{\pi}{2}+\alpha$
$\because \quad \alpha \in\left[\frac{-\pi}{2}, \pi\right]$
then $\frac{\pi}{2}+\alpha \in\left(0, \frac{3 \pi}{2}\right)$
$\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)=\frac{\pi}{2}+\alpha$
$x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}=-\sin \alpha$
$x y+\sin \alpha=\sqrt{1-x^{2}} \sqrt{1-y^{2}}$
$x^{2} y^{2}+\sin ^{2} \alpha+2 x y \sin \alpha=1-x^{2}-y^{2}+x^{2} y^{2}$
$\underbrace{x^{2}+y^{2}+2 x y \sin \alpha}_{E}=\cos ^{2} \alpha$
Now, minimum value of E is 0 .
2. The area (in sq. units) of the region described by $\left\{(x, y): y^{2} \leq 2 x\right.$, and $\left.y \geq 4 x-1\right\}$ is
(1) $\frac{9}{32}$
(2) $\frac{11}{12}$
(3) $\frac{11}{32}$
(4) $\frac{8}{9}$

Answer (1)

Sol. Area $=\int_{-\frac{1}{2}}^{1}\left(\frac{y+1}{4}-\frac{y^{2}}{2}\right) d y$

$=\left[\frac{y^{2}}{8}+\frac{y}{4}-\frac{y^{3}}{6}\right]_{-\frac{1}{2}}^{1}$
$=\left(\frac{1}{8}+\frac{1}{4}-\frac{1}{6}\right)-\left(\frac{1}{32}-\frac{1}{8}+\frac{1}{48}\right)$
$=\frac{5}{24}+\frac{7}{96}$
$=\frac{27}{96}$
$=\frac{9}{32}$

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

3. Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=I+\operatorname{adj}(A)+(\operatorname{adj} A)^{2}+\ldots+$ $(\operatorname{adj} A)^{10}$.
Then, the sum of all the elements of the matrix B is:
(1) 22
(2) -88
(3) -124
(4) -110

Answer (2)
Sol. $\operatorname{adj}(A)=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$

$$
\begin{aligned}
& (\operatorname{adj} A)^{2}=\left[\begin{array}{cc}
1 & -4 \\
0 & 1
\end{array}\right] \\
& (\operatorname{adj} A)^{3}=\left[\begin{array}{cc}
1 & -6 \\
0 & 1
\end{array}\right] \\
& (\operatorname{adj} A)^{4}=\left[\begin{array}{cc}
1 & -8 \\
0 & 1
\end{array}\right] \\
& (\operatorname{adj} A)^{r}=\left[\begin{array}{cc}
1 & (-2 r) \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$B=\sum_{r=0}^{10}(\operatorname{adj} A)^{r}=\left[\begin{array}{ll}\sum_{r=0}^{10} 1 & \sum_{\substack{r=0 \\ 10}}^{10}(-2 r) \\ \sum_{r=0}^{10}(0) & \sum_{r=0}^{10}(1)\end{array}\right]$
$B=\left[\begin{array}{cc}11 & -110 \\ 0 & 11\end{array}\right]$
Sum of elements $=-110+11+11=-88$
4. For $\lambda>0$, let θ be the angle between the vectors $\vec{a}=\hat{i}+\lambda \hat{j}-3 \hat{k}$ and $\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$. If the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are mutually perpendicular, then the value of $(14 \cos \theta)^{2}$ is equal to
(1) 20
(2) 25
(3) 40
(4) 50

Answer (2)
Sol. Given $\vec{a}=\hat{i}+\lambda \hat{j}-3 \hat{k}$

$$
\begin{aligned}
& \vec{b}=3 \hat{i}-\hat{j}+2 \hat{k} \\
& \vec{a}+\vec{b}=4 \hat{i}+(\lambda-1) \hat{j}-\hat{k} \\
& \vec{a}-\vec{b}=-2 \hat{i}+(\lambda+1) \hat{j}-5 \hat{k} \\
& (\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0 \\
& -8+\lambda^{2}-1+5=0
\end{aligned}
$$

$\lambda^{2}=4$
$\lambda= \pm 2 \because \lambda>0$ (Given)
$\therefore \quad \lambda=2$
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$\cos \theta=\frac{3-2-6}{\sqrt{14} \times \sqrt{14}}=\frac{-5}{14}$
$(14 \cos \theta)^{2}=\left(14 \times \frac{-5}{14}\right)^{2}=25$
5. Let $f(x)=\int_{0}^{x}\left(t+\sin \left(1-e^{t}\right) d t, x \in \mathbb{R}\right.$. Then, $\lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}$ is equal to
(1) $-\frac{1}{6}$
(2) $\frac{2}{3}$
(3) $-\frac{2}{3}$
(4) $\frac{1}{6}$

Answer (1)

Sol. Given $f(x)=\int_{0}^{x}\left(t+\sin \left(1-e^{t}\right)\right) d t$

$$
\begin{aligned}
& \text { Now, } \lim _{x \rightarrow 0} \frac{f(x)}{x^{3}}\left(\frac{0}{0} \text { form }\right) \\
& =\lim _{x \rightarrow 0} \frac{\int_{0}^{x}\left(t+\sin \left(1-e^{t}\right)\right) d t}{x^{3}} \\
& =\lim _{x \rightarrow 0} \frac{x+\sin \left(1-e^{x}\right)}{3 x^{2}}\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 0} \frac{1+\cos \left(1-e^{x}\right)\left(-e^{x}\right)}{6 x}\left(\frac{0}{0}\right) \\
& =\lim _{x \rightarrow 0} \frac{-\sin \left(1-e^{x}\right)\left(e^{x}\right)^{2}+\cos \left(1-e^{x}\right)\left(-e^{x}\right)}{6} \\
& =-\frac{1}{6}
\end{aligned}
$$

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

RISHIS SHUKLA
100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

6. Let $P Q$ be a chord of the parabola $y^{2}=12 x$ and the midpoint of $P Q$ be at $(4,1)$. Then, which of the following point lies on the line passing through the points P and Q ?
$(1)(3,-3)$
(2) $\left(\frac{3}{2},-16\right)$
(3) $(2,-9)$
(4) $\left(\frac{1}{2},-20\right)$

Answer (4)

Sol. $y^{2}=12 x$
Chord $P Q$ having mid-point $\left(x_{1}, y_{1}\right)=(4,1)$ equation of chord PQ
$T=S_{1}$
$y y_{1}-12 \frac{\left(x+x_{1}\right)}{2}=y_{1}^{2}-12 x_{1}$
$y-6(x+4)=1-12 \times 4$
$y-6 x-24=-47$
$y-6 x+23=0$
From option (4) $x=\frac{1}{2} \& y=-20$
$-20-6 \times \frac{1}{2}+23=0$
7. Let $f(x)=3 \sqrt{x-2}+\sqrt{4-x}$ be a real valued function. If α and β are respectively the minimum and the maximum values of f, then $\alpha^{2}+2 \beta^{2}$ is equal to
(1) 42
(2) 38
(3) 44
(4) 24

Answer (1)
Sol. $f(x)=3 \sqrt{x-2}+\sqrt{4-x}$

$$
\begin{aligned}
& \text { Let } x=2 \sin ^{2} \theta+4 \cos ^{2} \theta \\
& =3 \sqrt{2 \sin ^{2} \theta+4 \cos ^{2} \theta-2}+\sqrt{4-2 \sin ^{2} \theta-4 \cos ^{2} \theta} \\
& =3 \sqrt{2 \cos ^{2} \theta}+\sqrt{2 \sin ^{2} \theta} \\
& =3 \sqrt{2}|\cos \theta|+\sqrt{2}|\sin \theta|
\end{aligned}
$$

$\Rightarrow 3 \sqrt{2} \cos \theta+\sqrt{2} \sin \theta \leq \sqrt{18+2}$
$\Rightarrow 3 \sqrt{2} \cos \theta+\sqrt{2} \sin \theta \leq \sqrt{20}$
Minimum value exists when $\theta=\frac{\pi}{2}$
So, minimum value $=\sqrt{2}$
$\Rightarrow \alpha=\sqrt{2}$ and $\beta=\sqrt{20}$
$\Rightarrow \alpha^{2}+2 \beta^{2}=2+40$
$=42$
8. Let $\vec{a}-\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and
$\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in \mathbb{R}$.
If \vec{d} is the unit vector in the direction of $\vec{b}+\vec{c}$ such that $\vec{a} \cdot \vec{d}=1$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to
(1) 6
(2) 9
(3) 3
(4) 11

Answer (4)
Sol. $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$,

$$
\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in R
$$

also, $\vec{b}+\vec{c}=(x+2) \hat{i}+6 \hat{j}-2 \hat{k}$
\vec{d} is the unit vector in the direction of $\vec{b}+\vec{c}$
$|\vec{b}+\vec{c}|=\sqrt{(x+2)^{2}+6^{2}+2^{2}}$
$=\sqrt{40+(x+2)^{2}}$
$\vec{d}=\frac{x+2}{\sqrt{40+(x+2)^{2}}} \hat{i}+\frac{6}{\sqrt{40+(x+2)^{2}}} \hat{j}$

$$
-\frac{2}{\sqrt{40+(x+2)^{2}}} \hat{k}
$$

$\vec{a} \cdot \vec{d}=1$
$\frac{x+2+6-2}{\sqrt{40+(x+2)^{2}}}=1$
$x+6=\sqrt{40+(x+2)^{2}}$

Aakashians Gonquer JEE (Main) 2024 sEssIoN-1

$$
\begin{aligned}
& (x+6)^{2}=40+(x+2)^{2} \\
& x^{2}+36+12 x=40+x^{2}+4+4 x \\
& 8 x=8 \\
& \Rightarrow x=1 \\
& (\vec{a} \times \vec{b}) \cdot \vec{c}=[\vec{a} \vec{b} \vec{c}]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 4 & -5 \\
1 & 2 & 3
\end{array}\right] \\
& =1(12+10)-1(6+5)+1(4-4) \\
& =22-11=11
\end{aligned}
$$

9. If the value of the integral $\int_{-1}^{1} \frac{\cos a x}{1+3^{x}} d x$ is $\frac{2}{\pi}$. Then, a value of α is
(1) $\frac{\pi}{4}$
(2) $\frac{\pi}{2}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{3}$

Answer (2)

Sol. Given, $\int_{-1}^{1} \frac{\cos \alpha x}{1+3^{x}} d x=\frac{2}{\pi}$

$$
\begin{aligned}
& I= \int_{-1}^{1} \frac{\cos \alpha x}{1+3^{x}} d x \\
& \Rightarrow I=\int_{0}^{1}\left(\frac{\cos \alpha x}{1+3^{x}}+\frac{\cos \alpha x}{1+3^{-x}}\right) d x \\
&=\int_{0}^{1} \cos \alpha x d x \\
&=\left(\frac{\sin \alpha x}{\alpha}\right)_{0}^{1} \\
&=\frac{\sin \alpha}{\alpha} \\
& \Rightarrow \frac{\sin \alpha}{\alpha}=\frac{2}{\pi} \\
& \Rightarrow \alpha=\frac{\pi}{2}
\end{aligned}
$$

10. If the coefficient of x^{4}, x^{5} and x^{6} in the expansion of $(1+x)^{n}$ are in the arithmetic progression, then the maximum value of n is:
(1) 28
(2) 7
(3) 21
(4) 14

Answer (4)

Sol. $(1+x)^{n}={ }^{n} C_{0}+{ }^{n} C_{1} x^{1}+{ }^{n} C_{2} x^{2}+\ldots{ }^{n} C_{n} x^{n}$
${ }^{n} C_{4},{ }^{n} C_{5} \&{ }^{n} C_{6}$ are in A.P.
${ }^{n} C_{5}-{ }^{n} C_{4}={ }^{n} C_{6}-{ }^{n} C_{5}$
$\Rightarrow \frac{n!}{5!(n-5)!}-\frac{n!}{4!(n-4)!}=\frac{n!}{6!(n-6)!}-\frac{n!}{5!(n-5)!}$
$\Rightarrow 30(n-9)(n-6)=5(n-4)(n-11)$
$\Rightarrow 30 n^{2}-450 n+1620=5 n^{2}$
$\Rightarrow \frac{1}{n-5}\left[\frac{n-4-5}{5(n-4)}\right]=\frac{1}{5}\left[\frac{n-5-6}{6(n-5)}\right]$
$\Rightarrow \frac{n-9}{5(n-4)}=\frac{1}{5}\left[\frac{n-11}{6}\right]$
$\Rightarrow n^{2}-21 n+98=0$
$n_{\max }=14$
11. Let a relation R on $\mathrm{N} \times \mathrm{N}$ be defined as:
$\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$ if and only if $x_{1} \leq x_{2}$ or $y_{1} \leq y_{2}$.
Consider the two statements:
(I) R is reflexive but not symmetric.
(II) R is transitive

Then which one of the following is true?
(1) Both (I) and (II) are correct.
(2) Neither (I) nor (II) is correct.
(3) Only (I) is correct.
(4) Only (II) is correct.

Answer (3)
$300 / 300$

RISHIS SHUKLA

TWO YEAR CLASSROOM PROGRAM

Sol. $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$
If $x_{1} \leq x_{2}$ or $y_{1} \leq y_{2}$
For reflexive;
$\left(x_{1}, y_{1}\right) R\left(x_{1}, y_{1}\right)$
$\Rightarrow x_{1} \leq x_{1}$ or $y_{1} \leq y_{1}$
So, R is reflexive
For symmetric
When $\left(x_{1}, y_{1}\right) R\left(x_{2}, y_{2}\right)$
$\Rightarrow x_{1} \leq x_{2}$ or $y_{1} \leq y_{2}$
For $\left(x_{2}, y_{2}\right) R\left(x_{1}, y_{1}\right)$
$\Rightarrow x_{2} \leq x_{1}$ or $y_{2} \leq y_{1}$
Not true for $(1,2)$ and $(3,4)$
For transitive
Take pairs as $(3,9),(4,6),(2,7)$
$(3,9) R(4,6)$
as $4 \geq 3$
$(4,6) R(2,7)$
As $7 \geq 6$
But $(3,9) R(2,7)$
As neither $2 \geq 3$ nor $7 \geq 9$
So not transitive
12. The value of $\frac{1 \times 2^{2}+2 \times 3^{2}+\ldots+100 \times(101)^{2}}{1^{2} \times 2+2^{2} \times 3+\ldots 100^{2} \times 101}$ is
(1) $\frac{32}{31}$
(2) $\frac{31}{30}$
(3) $\frac{306}{305}$
(4) $\frac{305}{301}$

Answer (4)

Sol. $\frac{1 \times 2^{2}+2 \times 3^{2}+\ldots+100 \times(101)^{2}}{1^{2} \times 2+2^{2} \times 3+\ldots+100^{2} \times 101}$

$$
\Rightarrow \frac{\sum_{n=1}^{100} n(n+1)^{2}}{\sum_{n=1}^{100} n^{2}(n+1)}
$$

$\Rightarrow \frac{\sum_{n=1}^{100} n^{3}+2 n^{2}+n}{\sum_{n=1}^{100} n^{3}+n^{2}}$
$=\frac{\left(\frac{100(101)}{2}\right)^{2}+\frac{2 \cdot 100(101)(201)}{6}+\frac{100(101)}{2}}{\left(\frac{100(101)}{2}\right)^{2}+\frac{100(101)(201)}{6}}$
$=\frac{300(101)+4(201)+6}{300(101)+2(201)}=\frac{5185}{5117}=\frac{305}{301}$
13. If the mean of the following probability distribution of a random variable X :

X	0	2	4	6	8
$P(X)$	a	$2 a$	$a+b$	$2 b$	$3 b$

is $\frac{46}{9}$, then the variance of the distribution is
(1) $\frac{173}{27}$
(2) $\frac{566}{81}$
(3) $\frac{581}{81}$
(4) $\frac{151}{27}$

Answer (2)
Sol.

X	0	2	4	6	8
$P(X)$	a	$2 a$	$a+b$	$2 b$	$3 b$

Mean $=\sum x_{i} P\left(x_{i}\right)$
$\frac{46}{9}=4 a+4 a+4 b+12 b+24 b$
$\frac{46}{9}=8 a+40 b$
$\frac{23}{9}=4 a+20 b$
$36 a+180 b=23$
Sum of probability is 1
$\Rightarrow 4 a+6 b=1$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

300/300
IUD

Solving (1) and (2)
$a=\frac{1}{12}, b=\frac{1}{9}$
$\sigma^{2}=\sum x_{i}^{2} P\left(x_{i}\right)-\left(\sum x_{i} P\left(x_{i}\right)\right)^{2}$
$=4 \times 2 a+16(a+b)+36(2 b)+64(3 b)-\left(\frac{46}{9}\right)^{2}$
$=8(a+2(a+b)+9 b+24 b)-\left(\frac{46}{9}\right)^{2}$
$=8(3 a+35 b)-\left(\frac{46}{9}\right)^{2}$
$=8\left(\frac{3}{12}+\frac{35}{9}\right)-\left(\frac{46}{9}\right)^{2}$
$=8\left(\frac{149}{36}\right)-\left(\frac{46}{9}\right)^{2}=\frac{566}{81}$
14. Let three real numbers a, b, c be in arithmetic progression and $a+1, b, c+3$ be in geometric progression. If $a>10$ and the arithmetic mean of a, b and c is 8 , then the cube of the geometric mean of a, b and c is
(1) 120
(2) 316
(3) 312
(4) 128

Answer (1)

Sol. $2 b=a+c$

$$
\begin{align*}
& b^{2}=(a+1)(c+3) \tag{2}\\
& \frac{a+b+c}{3}=8 \tag{3}\\
& \Rightarrow \frac{3 b}{3}=8 \\
& \quad b=8 \\
& \Rightarrow a c+3 a+c+3=64 \\
& 3 a+c+a c=61 \tag{4}\\
& \\
& a+c=16 \\
& \\
& c=16-a
\end{align*}
$$

from equation (4)

$$
\begin{aligned}
& 3 a+16-a+a(16-a)=61 \\
& \Rightarrow \quad(a-15)(a-3)=0 \\
& \quad a=15(a>10) \\
& \Rightarrow \quad a=15, b=8, c=1 \\
& \left((a \cdot b \cdot c)^{\frac{1}{3}}\right)^{3}=15 \times 8 \times 1=120
\end{aligned}
$$

15. The area (in sq. units) of the region

$$
S=\{z \in \mathbb{C}:|z-1| \leq 2 ;(z+\bar{z})+i(z-\bar{z}) \leq 2, \operatorname{lm}(z) \geq 0\}
$$

is
(1) $\frac{17 \pi}{8}$
(2) $\frac{3 \pi}{2}$
(3) $\frac{7 \pi}{3}$
(4) $\frac{7 \pi}{4}$

Answer (2)

Sol. $|z-1| \leq 2$

$$
\Rightarrow(x-1)^{2}+y^{2}=4
$$

$$
\begin{aligned}
& z+\bar{z}+i(z-\bar{z}) \leq 2 \\
& \Rightarrow \quad x-y \leq 1 \\
& \quad \operatorname{Im}(z) \geq 0 \\
& \Rightarrow \quad y \geq 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Required area }=\left(\frac{\frac{3 \pi}{4}}{2 \pi}\right)(\pi)(2)^{2} \\
& =\frac{3}{2} \pi
\end{aligned}
$$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

TWO YEAR CLASSROOM PROGRAM
100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

16. Consider a hyperbola H having centre at the origin and foci on the x-axis. Let C_{1} be the circle touching the hyperbola H and having the centre at the origin. Let C_{2} be the circle touching the hyperbola H at its vertex and having the centre at the one of its foci. If areas (in sq. units) of C_{1} and C_{2} are 36π and 4π, respectively, then the length (in units) of latus rectum of H is
(1) $\frac{11}{3}$
(2) $\frac{14}{3}$
(3) $\frac{10}{3}$
(4) $\frac{28}{3}$

Answer (4)

Sol.

$C_{1}: x^{2}+y^{2}=a^{2} \Rightarrow$ area $=\pi a^{2}=36 \pi \Rightarrow a=6$
$C_{2}: x^{2}+(y-a e)^{2}=(a e-a)^{2}$
$\therefore \quad \pi(a e-a)^{2}=4 \pi$
$\Rightarrow 36(e-1)^{2}=4$
$\Rightarrow e-1=\frac{1}{3} \Rightarrow e=\frac{4}{3}$
$\Rightarrow b^{2}=28$
$\therefore \quad L R=\frac{2 b^{2}}{a}=\frac{2 \times 28}{6}=\frac{28}{3}$ units
17. Let C be a circle with radius $\sqrt{10}$ units and centre at the origin. Let the line $x+y=2$ intersects the circle C at the points P and Q. Let $M N$ be a chord of C of length 2 unit and slope -1 . Then, a distance (in units) between the chord $P Q$ and the chord $M N$ is
(1) $\sqrt{2}-1$
(2) $2-\sqrt{3}$
(3) $3-\sqrt{2}$
(4) $\sqrt{2}+1$

Answer (3)

Sol. Let the line by $x+y=\lambda$

$\therefore\left|\frac{\lambda}{\sqrt{2}}\right|=3$
$\therefore \quad \lambda= \pm 3 \sqrt{2}$
\therefore distance between lines

$$
\begin{aligned}
& x+y=2 \text { and } x+y=3 \sqrt{2} \text { is } \\
& \frac{3 \sqrt{2}-2}{\sqrt{2}}=3-\sqrt{2}
\end{aligned}
$$

18. Let $y=y(x)$ be the solution of the differential equation
$\left(x^{2}+4\right)^{2} d y+\left(2 x^{3} y+8 x y-2\right) d x=0$. If $y(0)=0$, then $y(2)$ is equal to
(1) $\frac{\pi}{8}$
(2) 2π
(3) $\frac{\pi}{32}$
(4) $\frac{\pi}{16}$

Answer (3)

Sol. $\frac{d y}{d x}+\frac{y\left(2 x^{3}+8 x\right)}{\left(x^{2}+4\right)^{2}}=\frac{2}{\left(x^{2}+4\right)^{2}}$
$\mathrm{IF}=e^{\int \frac{2 x^{3}+8 x}{\left(x^{2}+4\right)^{2}} d x}$

$$
\begin{aligned}
& \text { Let }\left(x^{2}+4\right)^{2}=t \quad \Rightarrow 2\left(x^{2}+4\right)(2 x) d x=d t \\
& =e^{\int \frac{d t}{2 t}}=e^{\log \sqrt{t}}=\sqrt{t}=\left(x^{2}+4\right) \\
& \therefore \quad y\left(x^{2}+4\right)=\int \frac{2}{x^{2}+4}+c \\
& \Rightarrow y\left(x^{2}+4\right)=\tan ^{-1}\left(\frac{x}{2}\right)+c \\
& y(0)=0
\end{aligned}
$$

Aakashians Gonquer JEE (Main) 2024 sEssIoN-1

Our Stars

$\Rightarrow 0=0+c \quad \Rightarrow c=0$
put $x=2$

$$
y(8)=\frac{\pi}{4} \quad \Rightarrow \quad y=\frac{\pi}{32}
$$

19. Let P be the point of intersection of the lines $\frac{x-2}{1}=\frac{y-4}{5}=\frac{z-2}{1} \quad$ and $\quad \frac{x-3}{2}=\frac{y-2}{3}=\frac{z-3}{2}$.

Then, the shortest distance of P from the line $4 x=$ $2 y=z$ is
(1) $\frac{\sqrt{14}}{7}$
(2) $\frac{6 \sqrt{14}}{7}$
(3) $\frac{5 \sqrt{14}}{7}$
(4) $\frac{3 \sqrt{14}}{7}$

Answer (4)

Sol. $L_{1}: \frac{x-2}{1}=\frac{y-4}{5}=\frac{z-2}{1}$
$L_{2}: \frac{x-3}{2}=\frac{y-2}{3}=\frac{z-3}{2}$
Point of intersection of L_{1} and L_{2} is $(-1,1,-1)$
Distance of point P from $L_{3}: 4 x=2 y=z$
$L_{3}: \frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{2}}=\frac{z}{1}$

Any point on L_{3} be
$\left(\frac{\lambda}{4}, \frac{\lambda}{2}, \lambda\right)$
$P R:\left\langle\frac{\lambda}{4}+1, \frac{\lambda}{2}-1, \lambda+1\right\rangle$
$\because P R \perp\left\langle\frac{1}{4}, \frac{1}{2}, 1\right\rangle$

$$
\begin{aligned}
\Rightarrow & \left(\frac{\lambda}{4}+1\right) \frac{1}{4}+\frac{1}{2}\left(\frac{\lambda}{2}-1\right)+\lambda+1=0 \\
& \frac{\lambda}{16}+\frac{1}{4}+\frac{\lambda}{4}-\frac{1}{2}+\lambda+1=0 \\
\Rightarrow & \lambda=\frac{-4}{7} \\
\therefore & R\left(\frac{-1}{7}, \frac{-2}{7}, \frac{-4}{7}\right)
\end{aligned}
$$

Now $R P: \sqrt{\left(\frac{-1}{7}+1\right)^{2}+\left(\frac{-2}{7}-1\right)^{2}+\left(\frac{-4}{7}+1\right)^{2}}$

$$
=\sqrt{\frac{36}{49}+\frac{81}{49}+\frac{9}{49}}=\frac{\sqrt{126}}{7}=\frac{3 \sqrt{14}}{7}
$$

20. If the function $f(x)=\left\{\begin{array}{ll}\frac{72^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x \neq 0 \\ \log _{e} 2 \log _{e} 3 & , x=0\end{array}\right.$ is
continuous at $x=0$, then the value of a^{2} is equal to
(1) 746
(2) 1152
(3) 968
(4) 1250

Answer (2)
Sol. $f(x)= \begin{cases}\frac{72^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}}, & x \neq 0 \\ a \log _{e} 2 \log _{e} 3 & , x=0\end{cases}$
$\because f(x)$ is continuous at $x=0$

$$
\begin{aligned}
& \Rightarrow \lim _{x \rightarrow 0} \frac{72^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos x}} \\
& \lim _{x \rightarrow 0} \frac{\left(9^{x}-1\right)\left(8^{x}-1\right)(\sqrt{2}+\sqrt{1+\cos x})}{\frac{(1-\cos x)}{x^{2}} \times x^{2}} \\
& \quad=(\ln 9 \cdot \ln 8)(2 \sqrt{2}) \times 2 \\
& \quad=4 \sqrt{2} \times 2 \times 3 \ln 2 \cdot \ln 3
\end{aligned}
$$

$$
24 \sqrt{2} \cdot \ln 2 \cdot \ln 3
$$

$$
\Rightarrow \quad a=24 \sqrt{2}
$$

$$
a^{2}=1152
$$

Aakashians Conquer JEE (Main) 2024 sEssion-1

301300
101

100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Let $f: R \rightarrow R$ be a thrice differentiable function such that $f(0)=0, f(1)=1, f(2)=-1, f(3)=2$ and $f(4)=-2$. Then, the minimum number of zeroes of ($\left.3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime}\right)$ (x) is \qquad
Answer (5)
Sol. $\because f: R \rightarrow R$ and $f(0)=0, f(1)=1, f(2)=-1$, $f(3)=2$ and $f(4)=-2$ then
$f(x)$ has atleast 4 real roots.
Then $f(x)$ has atleast 3 real roots and $f^{\prime}(x)$ has atleast 2 real roots.
Now we know that

$$
\begin{aligned}
\frac{d}{d x}\left(f^{3} \cdot f^{\prime \prime}\right) & =3 f^{2} \cdot f^{\prime} \cdot f^{\prime \prime}+f^{3} \cdot f^{\prime \prime \prime} \\
& =f^{2}\left(3 f^{\prime} \cdot f^{\prime}+f \cdot f^{\prime \prime}\right)
\end{aligned}
$$

Here $f^{3} \cdot f^{\prime \prime}$ has atleast 6 roots.
Then its differentiation has atleast 5 distinct roots.
22. Consider the function $f: R \rightarrow R$ defined by $f(x)=\frac{2 x}{\sqrt{1-9 x^{2}}}$. If the composition of $f, \underbrace{(\text { fofofo } \cdots o f)(x)}_{10 \text { times }}=\frac{2^{10} x}{\sqrt{1+9 \alpha x^{2}}}$, then the value of $\sqrt{3 \alpha+1}$ is equal to \qquad .

Answer (1024)

Sol. $f(x)=\frac{2 x}{\sqrt{1+9 x^{2}}}$

$$
\begin{aligned}
& (f \circ f)(x)=\frac{2 f(x)}{\sqrt{1+9(f(x))^{2}}}=\frac{\frac{4 x}{\sqrt{1+9 x^{2}}}}{\sqrt{1+9 \times \frac{4 x^{2}}{1+9 x^{2}}}}=\frac{4 x}{\sqrt{1+45 x^{2}}} \\
& (f \circ f \circ f)(x)=\frac{4 \times \frac{2 x}{\sqrt{1+9 x^{2}}}}{\sqrt{1+45 \times \frac{4 x^{2}}{1+9 x^{2}}}}=\frac{8 x}{\sqrt{1+21 \times 9 x^{2}}}
\end{aligned}
$$

$($ fofofof $)(x)=\frac{16 x}{\sqrt{1+85 \times 9 x^{2}}}$
$\Rightarrow \alpha$ is $10^{\text {th }}$ term of $1,5,21,85, \ldots$
α is $10^{\text {th }}$ term of

$$
\frac{\left(2^{1}\right)^{2}-1}{3}, \frac{\left(2^{2}\right)^{2}-1}{3}, \frac{\left(2^{3}\right)^{2}-1}{3}, \frac{\left(2^{4}\right)^{2}-1}{3}, \ldots
$$

$\Rightarrow \alpha=\frac{\left(2^{10}\right)^{2}-1}{3}$
$\Rightarrow \sqrt{3 \alpha+1}=2^{10}=1024$
23. Let $S=\left\{\sin ^{2} 2 \theta:\left(\sin ^{4} \theta+\cos ^{4} \theta\right) x^{2}+(\sin 2 \theta) x+\left(\sin ^{6} \theta\right.\right.$ $\left.+\cos ^{6} \theta\right)=0$ has real roots\}. If α and β be the smallest and largest elements of the set S, respectively, then $3\left((\alpha-2)^{2}+(\beta-1)^{2}\right)$ equal \qquad .

Answer (4)
Sol. For real roots
$D \geq 0$
$\sin ^{2} 2 \theta \geq 4\left(\sin ^{4} \theta+\cos ^{4} \theta\right)\left(\sin ^{6} \theta+\cos ^{6} \theta\right)$
Put $\sin ^{2} 2 \theta=t$
$\Rightarrow t \geq 4\left(1-\frac{t}{2}\right)\left(1-\frac{3 t}{4}\right)$
$2 t \geq(2-t)(4-3 t)$
$3 t^{2}-12 t+8 \leq 0$
$t^{2}-4 t+\frac{8}{3} \leq 0$
$(t-2)^{2}+\frac{8}{3}-4 \leq 0$
$(t-2)^{2} \leq \frac{4}{3}$
$-\frac{2}{\sqrt{3}} \leq t-2 \leq \frac{2}{\sqrt{3}}$
$2-\frac{2}{\sqrt{3}} \leq t \leq 2+\frac{2}{\sqrt{3}}$
$\because t \in[0,1]$
$\Rightarrow 2-\frac{2}{\sqrt{3}} \leq t \leq 1$
$\alpha=2-\frac{2}{\sqrt{3}}, \beta=1$
$\Rightarrow 3\left[(\alpha-2)^{2}+(\beta-1)^{2}\right]=4$

Aakashians Gonquer JEE (Main) 2024 session-1

(PHY. OR CHEM. OR MATHS)
24. If $\int \operatorname{cosec}^{5} x d x=\alpha \cot x \operatorname{cosec} x\left(\operatorname{cosec}^{2} x+\frac{3}{2}\right)$ $+\beta \log _{e}\left|\tan \frac{x}{2}\right|+c$ where $\alpha, \beta \in R$ and C is the constant of integration, then the value of $8(\alpha+\beta)$ equals \qquad .

Answer (1)

Sol. $I=\int(\operatorname{cosec} x)^{5} d x=\int(\operatorname{cosec} x)^{3}(\operatorname{cosec} x)^{2} d x$
$=(\operatorname{cosec} x)^{3} \int \operatorname{cosec}^{2} x d x-$

$$
\int\left(\frac{d}{d x}(\operatorname{cosec} x)^{3} \int \operatorname{cosec}^{2} x d x\right) d x
$$

$=-\cot x(\operatorname{cosec} x)^{3}-\int 3 \operatorname{cosec}^{2} x \cdot(-\operatorname{cosec} x \cot x)(-\cot x) d x$
$=-\cot x(\operatorname{cosec} x)^{3}-\int 3 \operatorname{cosec}^{3} x \cot ^{2} x d x$
$=-\cot x(\operatorname{cosec} x)^{3}-3 \int(\operatorname{cosec} x)^{3}\left(\operatorname{cosec}^{2} x-1\right) d x$
$I=-\cot x(\operatorname{cosec} x)^{3}-3 I+3 \int(\operatorname{cosec} x)^{3} d x$
$4 I=-\cot x(\operatorname{cosec} x)^{3}+3 \int(\operatorname{cosec} x)^{3} d x$
$=-\cot x(\operatorname{cosec} x)^{3}+3 / 1$
$I_{1}=\int \operatorname{cosec} x \cdot \operatorname{cosec}^{2} x d x=\operatorname{cosec} x(-\cot x)-$

$$
\int(-\operatorname{cosec} x \cot x)(-\cot x) d x
$$

$I_{1}=-\operatorname{cosec} x \cot x-\int \operatorname{cosec} x\left(\operatorname{cosec}^{2} x-1\right) d x$
$I_{1}=-\operatorname{cosec} x \cot x-I+\int \operatorname{cosec} x d x$
$21_{1}=-\operatorname{cosec} x \cot x+\ln \left\lvert\, \tan \frac{x}{2}\right.$
$\Rightarrow \quad 4 I=-\cot x(\operatorname{cosec} x)^{3}-\frac{3}{2} \operatorname{cosec} x \cot x$

$$
+\frac{3}{2} \ln \left|\tan \frac{x}{2}\right|+C
$$

$I=-\frac{1}{4} \operatorname{cosec} x \cot x\left(\operatorname{cosec}^{2} x+\frac{3}{2}\right)+\frac{3}{8} \ln \left|\tan \frac{x}{2}\right|+C$
$\Rightarrow \alpha=-\frac{1}{4}, \beta=\frac{3}{8} \Rightarrow 8(\alpha+\beta)=1$
25. There are 4 men and 5 women in Group A, and 5 men and 4 women in Group B. If 4 persons are selected from each group, then the number of ways of selecting 4 men and 4 women is \qquad
Answer (5626)
Sol.

Group A	Group B	Ways	
$4 m$	$4 w$	${ }^{4} C_{4} \cdot{ }^{4} C_{4}$	$=1$
$3 m+1 w$	$1 m+3 w$	${ }^{4} C_{1} \cdot{ }^{5} C_{1} \cdot{ }^{5} C_{1}^{4} C_{3}=400$	
$2 m+2 w$	$2 m+2 w$	${ }^{4} C_{2} \cdot{ }^{5} C_{2}{ }^{5} C_{2}{ }^{4} C_{2}$	$=3600$
$1 m+3 w$	$3 m+w$	${ }^{4} C_{1}{ }^{5} C_{3}{ }^{5} C_{3}{ }^{4} C_{1}$	$=1600$
$4 w$	$4 m$	${ }^{5} C_{4}{ }^{5} C_{4}$	$=25$

Total ways $=1+400+3600+1600+25$

$$
=5626
$$

26. Consider a triangle $A B C$ having the vertices $A(1,2)$, $B(\alpha, \beta)$ and $C(\gamma, \delta)$ and angles $\angle A B C=\frac{\pi}{6}$ and $\angle B A C=\frac{2 \pi}{3}$. If the points B and C lie on the line $y=x+4$, then $\alpha^{2}+\gamma^{2}$ is equal to \qquad .
Answer (14)
Sol.

$P=\frac{|2-1-4|}{\sqrt{1^{2}+1^{2}}}=\frac{3}{\sqrt{2}}$
$\sin \left(\frac{\pi}{6}\right)=\frac{3 / \sqrt{2}}{A B}=\frac{1}{2} \Rightarrow A B=\frac{6}{\sqrt{2}}$
$\Rightarrow(\alpha-1)^{2}+(\alpha+4-2)^{2}=18$

$\Rightarrow 2 \alpha^{2}+2 \alpha-13=0 \rightarrow \alpha$ and γ satisfy same equation
$2 x^{2}+2 x-13=0 \searrow_{\gamma}^{\alpha}$
$\Rightarrow \alpha^{2}+\gamma^{2}=(\alpha+\gamma)^{2}-2 \alpha \gamma$
$=(-1)^{2}-2\left(\frac{-13}{2}\right)=1+13=14$
27. In a tournament, a team plays 10 matches with probabilities of winning and losing each match as $\frac{1}{3}$ and $\frac{2}{3}$ respectively. Let x be the number of matches that the team wins, and y be the number of matches that team loses. If the probability $P(|x-y| \leq 2)$ is p, then $3^{9} p$ equals \qquad .

Answer (8288)

Sol. $x+y=10$
$A=x-y$
$P(|A|<2)$ is P
$\Rightarrow|A|=2,1,0 \Rightarrow A=0,1,-1,2,-2$
$\Rightarrow x=\frac{10+A}{2} \Rightarrow A \in$ even as $x \in$ integer
$\Rightarrow A=0,-2,2$
$\Rightarrow P(|A| \leq 2)=P(A=0)+P(A=-2)+P(A=2)$
(1) $A=0 \Rightarrow x=5=y$
$P(A=0)={ }^{10} C_{5}\left(\frac{1}{3}\right)^{5}\left(\frac{2}{3}\right)^{5}$
(2) $A=-2$
$\Rightarrow x=4$ and $y=6$
$P(A=-2)={ }^{10} C_{4} \cdot\left(\frac{1}{3}\right)^{4}\left(\frac{2}{3}\right)^{6}$ and
Similarly, $P(A=2)={ }^{10} C_{6}\left(\frac{1}{3}\right)^{6}\left(\frac{2}{3}\right)^{4}$
$\Rightarrow P(|A| \leq 2) 3^{9}=3\left({ }^{10} C_{5} \cdot 2^{5}+{ }^{10} C_{4} \cdot 2^{6}+{ }^{10} C_{6} \cdot 2^{4}\right)$
= 8288
28. Let $y=y(x)$ be the solution of the differential equation $(x+y+2)^{2} d x=d y, y(0)=-2$. Let the maximum and minimum values of the function $y=y(x)$ in $\left[0, \frac{\pi}{3}\right]$ be α and β, respectively. If $(3 \alpha+\pi)^{2}+\beta^{2}=\gamma+\delta \sqrt{3}, \gamma, \delta \in \mathbb{Z}$, then $\gamma+\delta$ equals

Answer (31)

Sol. $\frac{d y}{d x}=(x+y+z)^{2}$
Put $x+y+z=t$
$\Rightarrow 1+\frac{d y}{d x}=\frac{d t}{d x}$
Given DE $\Rightarrow \frac{d t}{d x}-1=t^{2}$
$\Rightarrow \frac{d t}{1+t^{2}}=d x \Rightarrow \tan ^{-1} t=x+c$
$\Rightarrow x+y+z=\tan (x+c)$
$\Rightarrow y(x)=\tan (x+c)-x-2$
$\because y(0)=-2 \Rightarrow-2=\tan c-0-2$

$$
\Rightarrow c=0
$$

$\Rightarrow y(x)=\tan x-x-2$
$\frac{d y}{d x}=\sec ^{2} x-1 \geq 0$
$\Rightarrow y(x)$ is increasing if $x \in\left(0, \frac{\pi}{3}\right)$
$\Rightarrow \alpha=y\left(\frac{\pi}{3}\right), \beta=y(0)$
$\Rightarrow \alpha=-\frac{\pi}{3}-2+\sqrt{3}$ and $\beta=-2$
Now, $(3 \alpha+\pi)^{2}+\beta^{2}=(6+3 \sqrt{3})^{2}+(-2)^{2}$
$=67-36 \sqrt{3}=y+\delta \sqrt{3}$.
$\Rightarrow \gamma+\delta=31$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

301300

29. Let A be a 2×2 symmetric matrix such that $A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$ and the determinant of A be 1 . If $A^{-1}=\alpha A+\beta I$, where I is an identity matrix of order 2×2, then $\alpha+\beta$ equals \qquad

Answer (5)

Sol. Let $A=\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]$

$$
\begin{equation*}
|A|=1 \Rightarrow a c-b^{2}=0 \tag{i}
\end{equation*}
$$

Given $\left[\begin{array}{ll}a & b \\ b & c\end{array}\right]\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$
$\Rightarrow a+b=3$
and $b+c=7$
from (i), (ii) and (iii) $a=1, b=2, c=5$

$$
\Rightarrow A=\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right] \Rightarrow A^{-1}=\left[\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right]
$$

Given $A^{-1}=\alpha A+\beta I$

$$
\begin{aligned}
\Rightarrow & {\left[\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right]=\alpha\left[\begin{array}{ll}
1 & 2 \\
2 & 5
\end{array}\right]+\beta\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] } \\
\Rightarrow & \alpha=-1 \text { and } \beta=6 \\
& \alpha+\beta=5
\end{aligned}
$$

30. Consider a line L passing through the points $P(1,2,1)$ and $Q(2,1,-1)$. If the mirror image of the point $A(2,2,2)$ in the line L is (α, β, γ), then $\alpha+\beta+6 \gamma$ is equal to \qquad -.

Answer (6)

Sol.

$A(2,2,2)$
$P Q: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{-2}$
General point,
$(k+1,-k+2,-2 k+1)$
$\overrightarrow{O A}=(k+1-2) \hat{i}+(-k+2-2) \hat{j}+(-2 k+1-2) \hat{k}$
$\overrightarrow{O A}=(k-1) \hat{i}-k \hat{j}+(-2 k-1) \hat{k}$
$\overrightarrow{P Q}=1 \hat{i}-\hat{j}-2 \hat{k}$
$\overrightarrow{O A} \cdot \overrightarrow{P Q}=0$
$(k-1)+k+2(2 k+1)=0$
$k-1+k+4 k+2=0$
$6 k+1=0$
$k=\frac{-1}{6}$
$0\left(\frac{-1}{6}+1, \frac{+1}{6}+2,-2\left(\frac{-1}{6}\right)+1\right)$
$0\left(\frac{5}{6}, \frac{13}{6}, \frac{-8}{6}\right)$
$0\left(\frac{5}{6}, \frac{13}{6}, \frac{8}{6}\right)=\left(\frac{\alpha+2}{2}, \frac{\beta+2}{2}, \frac{\gamma+2}{2}\right)$

$$
\alpha+2=\frac{10}{6} \quad \beta+2=\frac{26}{6}
$$

$$
\alpha=\frac{10}{6}-2 \quad \beta=\frac{26-12}{6}
$$

$$
\alpha=\frac{-2}{6} \quad \beta=\frac{14}{6}
$$

$$
\alpha=-\frac{1}{3}
$$

$$
\beta=\frac{7}{3}
$$

$$
\gamma+2=\frac{16}{6}
$$

$$
\gamma=\frac{16-12}{6}
$$

$$
\gamma=\frac{4}{6}
$$

$\Rightarrow \alpha+\beta+6 \gamma$
$\Rightarrow \quad \frac{-1}{3}+\frac{7}{3}+6 \times \frac{4}{6}$
$\Rightarrow 2+4=6$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

Our Stars

101
RISHIS SHUKLA
two Year classroom program

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

31. In simple harmonic motion, the total mechanical energy of given system is E. If mass of oscillating particle P is doubled then the new energy of the system for same amplitude is

(1) $\frac{E}{\sqrt{2}}$
(2) $E \sqrt{2}$
(3) $2 E$
(4) E

Answer (4)
Sol. $\because \quad E=\frac{1}{2} k A^{2}$
Here energy depends on A and k and not on mass.
32. Match List I with List II.

LIST I		LIST II	
A.	Purely capacitive circuit	I.	
B.	Purely inductive circuit	II.	$\xrightarrow{\longrightarrow} V$

C.	LCR series at resonance	III.	
D.	LCR series circuit	IV.	

Choose the correct answer from the options given below:
(1) A-IV, B-I, C-II, D-III
(2) A-I, B-IV, C-III, D-II
(3) A-IV, B-I, C-III, D-II
(4) A-I, B-IV, C-II, D-III

Answer (4)

Sol. For pure capacitive circuit, / lead by 90° to V
For pure inductive circuit, V lead by 90° to I
At series LCR resonance, I and V are in same phase.
For LCR series circuit, V and I may suffer some phase difference.
33. Identify the logic gate given in the circuit

(1) NOR gate
(2) OR-gate
(3) AND gate
(4) NAND-gate

Answer (2)
Sol.

A	B	y
0	0	0
1	0	1
0	1	1
1	1	1

So, $Y=A+B$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

Perfect Scare!
300/300
101
two Year cLasskoom program

100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

34. Correct formula for height of a satellite from earths surface is
(1) $\left(\frac{T^{2} R^{2} g}{4 \pi}\right)^{1 / 2}-R$
(2) $\left(\frac{T^{2} R^{2} g}{4 \pi^{2}}\right)^{1 / 3}-R$
(3) $\left(\frac{T^{2} R^{2}}{4 \pi^{2} g}\right)^{1 / 3}-R$
(4) $\left(\frac{T^{2} R^{2} g}{4 \pi^{2}}\right)^{-1 / 3}+R$

Answer (2)

Sol. $T=2 \pi \sqrt{\frac{r^{3}}{G M}}$

$$
\begin{aligned}
& T^{2}=\frac{4 \pi^{2}}{G M}(R+h)^{3} \\
& h=\left(\frac{G M T^{2}}{4 \pi^{2}}\right)^{\frac{1}{3}}-R \\
& =\left(\frac{G M \cdot R^{2}}{R^{2}} \cdot \frac{T^{2}}{4 \pi^{2}}\right)^{\frac{1}{3}}-R \\
& =\left(\frac{T^{2} R^{2} g}{4 \pi^{2}}\right)^{\frac{1}{3}}-R
\end{aligned}
$$

35. A 2 kg brick begins to slide over a surface which is inclined at an angle of 45° with respect to horizontal axis. The co-efficient of static friction between their surfaces is
(1) 0.5
(2) $\frac{1}{\sqrt{3}}$
(3) 1.7
(4) 1

Answer (4)

Sol. $m g \sin \theta=\mu . m g \cos \theta$
$\Rightarrow \tan \theta=\mu=1$
36. Which of the diode circuit shows correct biasing used for the measurement of dynamic resistance of $p-n$ junction diode:
(1)

(2)

(3)

(4)

Answer (2)

Sol. In the given diagram, only the diode given in option (2) is forward biase, so this circuit can be used to measure dynamic resistance of p - n junction diode.
37. An electric bulb rated $50 \mathrm{~W}-200 \mathrm{~V}$ is connected across a 100 V supply. The power dissipation of the bulb is
(1) 12.5 W
(2) 100 W
(3) 50 W
(4) 25 W

Answer (1)

Sol. $R=\frac{V^{2}}{P}=\frac{200 \times 200}{50}=800 \Omega$
So power at given voltage,

$$
P=\frac{100 \times 100}{800}=12.5 \mathrm{~W}
$$

38. The translational degrees of freedom $\left(f_{t}\right)$ and rotational degrees of freedom (f_{r}) of CH_{4} molecule are
(1) $f_{t}=2$ and $f_{r}=3$
(2) $f_{t}=3$ and $f_{r}=2$
(3) $f_{t}=3$ and $f_{r}=3$
(4) $f_{t}=2$ and $f_{r}=2$

Answer (3)

Sol. For non-linear polyatomic molecules, both translational and rotational degree of freedom have same value and is equal to 3 .
39. The magnetic moment of a bar magnet is $0.5 \mathrm{Am}^{2}$. It is suspended in a uniform magnetic field of $8 \times 10^{-2} \mathrm{~T}$. The work done in rotating it from its most stable to most unstable position is
(1) $8 \times 10^{-2} \mathrm{~J}$
(2) $4 \times 10^{-2} \mathrm{~J}$
(3) Zero
(4) $16 \times 10^{-2} \mathrm{~J}$

Answer (1)

Sol. $W=\int_{0}^{180} d \tau \cdot d \theta$

$$
\begin{aligned}
& =m B(\cos 0-\cos 180) \\
& =0.5 \times 8 \times 10^{-2}(2) \\
& =8 \times 10^{-2} \mathrm{~J}
\end{aligned}
$$

40. Given below are two statements :

Statement I: The contact angle between a solid and a liquid is a property of the material of the solid and liquid as well.
Statement II : The rise of a liquid in a capillary tube does not depend on the inner radius of the tube.
In the light of the above statements, choose the correct answer from the options given below:
(1) Both Statement I and Statement II are true
(2) Both Statement I and Statement II are false
(3) Statement I is true but Statement II is false
(4) Statement I is false but Statement II is true

Answer (3)
Sol. The rise in capillary is given as $h=\frac{2 T \cos \theta}{2 \rho r}$
i.e., $h \propto \frac{1}{r}$

So, statement-II is incorrect.
41. Applying the principle of homogeneity of dimensions, determine which one is correct, where T is time period, G is gravitational constant, M is mass, r is radius of orbit.
(1) $T^{2}=\frac{4 \pi^{2} r}{G M^{2}}$
(2) $T^{2}=4 \pi^{2} r^{3}$
(3) $T^{2}=\frac{4 \pi^{2} r^{3}}{G M}$
(4) $T^{2}=\frac{4 \pi^{2} r^{2}}{G M}$

Answer (3)

Sol. $[G]=M^{-1} L^{3} T^{-2}$

$$
\begin{aligned}
& {[M]=M} \\
& {[r]=L} \\
& {\left[T^{2}\right]=T^{2}} \\
& \Rightarrow \frac{4 \pi^{2} r^{3}}{G m}=\frac{L^{3}}{M^{-1} L^{3} T^{-2} M}=T^{2}
\end{aligned}
$$

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

As per student response sheet and NTA answer key.

42. A charge q is placed at the centre of one of the surface of a cube. The flux linked with the cube is:
(1) $\frac{q}{8 \epsilon_{0}}$
(2) $\frac{q}{2 \epsilon_{0}}$
(3) Zero
(4) $\frac{q}{4 \epsilon_{0}}$

Answer (2)

Sol. Charge inside the cube, $q_{\text {in }}=\frac{q}{2}$

So flux through surface, $\phi=\frac{q}{2 \epsilon_{0}}$
43. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Number of photons increases with increase in frequency of light.

Reason R : Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation.

In the light of above statements, choose the most appropriate answer from the options given below.
(1) \mathbf{A} is not correct but \mathbf{R} is correct.
(2) \mathbf{A} is correct but \mathbf{R} is not correct.
(3) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is NOT the correct explanation of \mathbf{A}.
(4) Both \mathbf{A} and \mathbf{R} are correct and \mathbf{R} is the correct explanation of \mathbf{A}.

Answer (1)

Sol. Number of photons independent on frequency of light. But K.E. of emitted electrons increases on increasing frequency of incident light.
44. The width of one of the two slits in a Young's double slit experiment is 4 times that of the other slit. The ratio of the maximum of the minimum intensity in the interference pattern is:
(1) $4: 1$
(2) $1: 1$
(3) $9: 1$
(4) $16: 1$

Answer (3)

Sol. $I_{\max }=\left(\sqrt{4 I_{0}}+\sqrt{I_{0}}\right)^{2}=\left(3 \sqrt{I_{0}}\right)^{2}=9 I_{0}$
$I_{\text {min }}=\left(\sqrt{4 I_{0}}-\sqrt{I_{0}}\right)^{2}=I_{0}$
$\frac{I_{\text {max }}}{I_{\text {min }}}=9: 1$
45. A body of $m \mathrm{~kg}$ slides from rest along the curve of vertical circle from point A to B in friction less path. The velocity of the body at B is:

(given, $R=14 \mathrm{~m}, g=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\sqrt{2}=1.14$)
(1) $16.7 \mathrm{~m} / \mathrm{s}$
(2) $10.6 \mathrm{~m} / \mathrm{s}$
(3) $19.8 \mathrm{~m} / \mathrm{s}$
(4) $21.9 \mathrm{~m} / \mathrm{s}$

Answer (4)

Sol. From energy conservation \rightarrow

$$
\begin{aligned}
& m g(R+R \sin 45)=\frac{1}{2} m v^{2} \\
& \Rightarrow 10\left(1+\frac{1}{\sqrt{2}}\right) \times 14=\frac{1}{2} v^{2} \\
& \Rightarrow 10\left(1+\frac{\sqrt{2}}{2}\right) \times 28=v^{2} \\
& \Rightarrow 10(1+0.7) \times 28=v^{2} \\
& \Rightarrow \quad v=21.81
\end{aligned}
$$

TWO YEAR CLASSROOM PROGRAM
As per student response sheet and NTA answer key.

46. According to Bohr's theory, the moment of momentum of an electron revolving in $4^{\text {th }}$ orbit of hydrogen atom is
(1) $2 \frac{h}{\pi}$
(2) $8 \frac{h}{\pi}$
(3) $\frac{h}{2 \pi}$
(4) $\frac{h}{\pi}$

Answer (1)
Sol. From Bohr's quantization,

$$
\begin{aligned}
\vec{L} & =n \frac{h}{2 \pi} \\
& =4 \frac{h}{2 \pi} \\
& =2 \frac{h}{\pi}
\end{aligned}
$$

47. Arrange the following in the ascending order of wavelength
A. Gamma rays $\left(\lambda_{1}\right)$
B. x-rays $\left(\lambda_{2}\right)$
C. Infrared waves $\left(\lambda_{3}\right)$
D. Microwaves $\left(\lambda_{4}\right)$

Choose the most appropriate answer from the options given below
(1) $\lambda_{4}<\lambda_{3}<\lambda_{1}<\lambda_{2}$
(2) $\lambda_{2}<\lambda_{1}<\lambda_{4}<\lambda_{3}$
(3) $\lambda_{4}<\lambda_{3}<\lambda_{2}<\lambda_{1}$
(4) $\lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}$

Answer (4)

Sol. Wavelengths are as
Gamma rays < 1nm
x-ray < (1 - 10) nm
Infrared < (700-105)nm
Microwave < $\left(10^{5}-10^{8}\right)$ nm
48. A 90 kg body placed at $2 R$ distance from surface of earth experiences gravitational pull of
($R=$ Radius of earth, $g=10 \mathrm{~ms}^{-2}$)
(1) 100 N
(2) 300 N
(3) 120 N
(4) 225 N

Answer (1)

Sol. $F=90 \times \frac{G m}{9 R^{2}}$

$$
\begin{aligned}
& =\frac{900}{9} \\
& =100 \mathrm{~N}
\end{aligned}
$$

49. A sample of gas at temperature T is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma=3 / 2$. The work done by the gas in the process is
($\mu=1$ mole)
(1) $R T[1-2 \sqrt{2}]$
(2) $R T[2 \sqrt{2}-1]$
(3) $R T[\sqrt{2}-2]$
(4) $R T[2-\sqrt{2}]$

Answer (4)

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

Sol. $w=\frac{-n R}{\gamma-1}(\Delta T)$

$$
\begin{aligned}
& =\frac{-R}{1 / 2}\left(\frac{T}{\sqrt{2}}-T\right) \\
& =2 R\left(\frac{\sqrt{2} T-T}{\sqrt{2}}\right) \\
& =R T(2-\sqrt{2})
\end{aligned}
$$

$\therefore \quad T V \gamma^{-1}=$ cons.
$T V \gamma^{-1}=T_{f}(2 V)^{\gamma-1}$
$T_{f}=\frac{T}{\sqrt{2}}$
50. A cyclist starts from the point P of a circular ground of radius 2 km and travels along its circumference to the point S. The displacement of a cyclist is

(1) 4 km
(2) $\sqrt{8} \mathrm{~km}$
(3) 6 km
(4) 8 km

Answer (2)
Sol. Displacement $=\sqrt{2} R$

$$
=\sqrt{8} \mathrm{~km}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
51. The disintegration energy Q for the nuclear fission of ${ }^{235} U \rightarrow{ }^{140} \mathrm{Ce}+{ }^{94} \mathrm{Zr}+n$ is \qquad MeV .

Given atomic masses of
${ }^{235} U$: 235.0439u; ${ }^{140} \mathrm{Ce}: 139.9054 u$,
${ }^{94} Z r: 93.9063 u ; n: 1.0086 u$,
Value of $\mathrm{c}^{2}=931 \mathrm{MeV} / \mathrm{u}$.

Answer (208)

Sol. Q. value
$=\{(235.0439)-[39.9054+93.9063+1.0086]\} \times 931 \mathrm{MeV}$
$=208 \mathrm{MeV}$
52. A light ray is incident on a glass slab of thickness $4 \sqrt{3} \mathrm{~cm}$ and refractive index $\sqrt{2}$. The angle of incidence is equal to the critical angle for the glass slab with air. The lateral displacement of ray after passing through glass slab is \qquad cm .
(Given $\sin 15^{\circ}=0.25$)
Answer (2)
Sol. $\mu=\sqrt{2}$
$\sin \theta_{C}=\frac{1}{\sqrt{2}}$
$Q_{C}=45^{\circ}$
$i=Q_{C}=45^{\circ}$

(ϕ) lateral displacement $==\frac{t \sin (i-r)}{\cos r}$

$$
\begin{aligned}
& \sin 45^{\circ}=\sqrt{2} \sin r \\
& \Rightarrow \quad r=30^{\circ} \\
& \therefore \quad d=\frac{4 \sqrt{3} \sin \left(45^{\circ}-30^{\circ}\right)}{\cos 30^{\circ}} \\
& =\frac{4 \sqrt{3} \times \frac{1}{4}}{\frac{\sqrt{3}}{2}}=2
\end{aligned}
$$

53. Two wires A and B are made up of the same material and have the same mass. Wire A has radius of 2.0 mm and wire B has radius of 4.0 mm . The resistance of wire B is 2Ω. The resistance of wire A is \qquad Ω.

Answer (32)
Sol. $R=\rho \frac{I}{A}=\rho \frac{V}{A^{2}}$
and $\pi r_{1}^{2} l_{1}=\pi r_{2}^{2} l_{2}$
$A_{1} I_{1}=A_{2} I_{2}$
So $\frac{R_{1}}{R_{2}}=\left(\frac{A_{2}}{A_{1}}\right)^{2}$
$\Rightarrow \frac{R}{2}=\left(\frac{r_{2}}{r_{1}}\right)^{4}$
$\Rightarrow R=32$
54. In a system two particles of masses $m_{1}=3 \mathrm{~kg}$ and $m_{2}=2 \mathrm{~kg}$ are placed at certain distance from each other. The particle of mass m_{1} is moved towards the center of mass of the system through a distance 2 cm . In order to keep the center of mass of the system at the original position, the particle of mass m_{2} should move towards the center of mass by the distance \qquad cm.

Answer (3)

Sol. $m_{1} \Delta x_{1}=m_{2} \Delta x_{2}$

$$
\begin{aligned}
& \Rightarrow \quad 3 \times 2 \mathrm{~cm}=2 \Delta x_{2} \\
& \Rightarrow \quad \Delta x_{2}=3 \mathrm{~cm}
\end{aligned}
$$

55. A bus moving along a straight highway with speed of $72 \mathrm{~km} / \mathrm{h}$ is brought to halt within 4 s after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is
\qquad m.

Answer (40)

Sol. $u=72 \times \frac{5}{18}=20 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
& v=0 \\
& t=4 \\
& \Rightarrow \quad 0=20+4 a \\
& \Rightarrow \quad a=-5 \mathrm{~m} / \mathrm{s}^{2} \\
& \therefore \quad S=20 \times 4-\frac{1}{2} \times 5 \times 16 \\
& =40 \mathrm{~m}
\end{aligned}
$$

56. A rod of length 60 cm rotates with a uniform angular velocity 20 rad s $^{-1}$ about its perpendicular bisector, in a uniform magnetic filed 0.5 T . The direction of magnetic field is parallel to the axis of rotation. The potential difference between the two ends of the rod is \qquad V.

Answer (0)

Sol. Both end having same potential, so potential difference between end will be zero.

Aakashians Conquer JEE (Main) 2024 sEssion-1

RISHIS SHUKLA
two Year classroom program
As per student response sheet and NTA answer key.

Our Stars

57. Two parallel long current carrying wire separated by a distance $2 r$ are shown in the figure. The ratio of magnetic field at A to the magnetic field produced at C is $\frac{x}{7}$. The value of x is \qquad -.

Answer (5)
Sol. At point A

$$
B_{A}=\frac{\mu_{0} I}{2 \pi r}+\frac{\mu_{0}(2 l)}{2 \pi(3 r)}
$$

At point C

$$
\begin{aligned}
& B_{C}=\frac{\mu_{0} I}{2 \pi(3 r)}+\frac{\mu_{0}(2 I)}{r} \\
& \Rightarrow \frac{B_{A}}{B_{C}}=\frac{5}{7}
\end{aligned}
$$

58. Mercury is filled in a tube of radius 2 cm up to a height of 30 cm . The force exerted by mercury on the bottom of the tube is \qquad N .
(Given, atmospheric pressure $=10^{5} \mathrm{Nm}^{-2}$, density of mercury $=1.36 \times 10^{4} \mathrm{~kg} \mathrm{~m}^{-3}, g=10 \mathrm{~m} \mathrm{~s}^{-2}$, $\pi=\frac{22}{7}$)

Answer (177)

Sol. $F=\left(p_{0}+\rho g h\right) A$

$$
\begin{aligned}
& =\left(10^{5}+1.36 \times 10^{4} \times 10 \times \frac{3}{10}\right) \frac{22}{7}\left(\frac{2}{100}\right)^{2} \\
& =177 \mathrm{~N}
\end{aligned}
$$

59. The displacement of a particle executing SHM is given by $x=10 \sin \left(\omega t+\frac{\pi}{3}\right) \mathrm{m}$. The time period of motion is 3.14 s . The velocity of the particle at $t=0$ is \qquad m / s.

Answer (10)

Sol. At $t=0, x=10 \sin \frac{\pi}{3}$

$$
\begin{aligned}
& =10 \times \frac{\sqrt{3}}{2} \\
& =5 \sqrt{3}
\end{aligned}
$$

$$
\begin{aligned}
& \omega=\frac{2 \pi}{T} \\
& \\
& =2 \mathrm{rad} / \mathrm{s} \\
& \therefore \quad v=\omega \sqrt{A^{2}-x^{2}} \\
& \\
& =2 \sqrt{100-75} \\
& \\
& =10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

60. A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V . The battery is now disconnected and a dielectric slab $\left(\epsilon_{r}=6\right)$ is inserted between the plates. The change in its potential energy after inserting the dielectric slab is
\qquad $10^{-12} \mathrm{~J}$.

Answer (750)

Sol. $E_{1}=\frac{1}{2}\left(\frac{25}{2}\right) \times 10^{-12} \times 144$

$$
=900 \times 10^{-12} \mathrm{~J}
$$

$E_{2}=\frac{1}{2}\left(6 \times \frac{25}{2} \times 10^{-12}\right)\left(\frac{12}{6}\right)^{2}=150 \times 10^{-12} \mathrm{~J}$
$\Delta E=750 \times 10^{-12} \mathrm{~J}$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

As per student response sheet and NTA answer kev.

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Find out the major product formed from the following reaction. [Me : $-\mathrm{CH}_{3}$]

(1)

(2)

(3)

(4)

Answer (2)

Sol.

62. Given below are two statements :

Statement I : The correct order of first ionization enthalpy values of $\mathrm{Li}, \mathrm{Na}, \mathrm{F}$ and Cl is $\mathrm{Na}<\mathrm{Li}<$ $\mathrm{Cl}<\mathrm{F}$.
Statement II : The correct order of negative electron gain enthalpy values of $\mathrm{Li}, \mathrm{Na}, \mathrm{F}$ and Cl is $\mathrm{Na}<\mathrm{Li}<\mathrm{F}<\mathrm{Cl}$
In the light of the above statements, choose the correct answer from the options given below :
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are false
(3) Both Statement I and Statement II are true
(4) Statement I is false but Statement II is true

Answer (3)

Sol. First ionization enthalpy of $\mathrm{F}>\mathrm{Cl}$ as first IE decreases down the group.

Similarly, first IE of $\mathrm{Li}>\mathrm{Na}$.
So, statement-I is correct.
Electron gain enthalpy of given elements are negative. Considering the magnitude the given order is correct.

Thus, statement-II is correct
63. For a strong electrolyte, a plot of molar conductivity against (concentration) ${ }^{1 / 2}$ is a straight line, with a negative slope, the correct unit for the slope is
(1) $\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1} \mathrm{~L}^{1 / 2}$
(2) $\mathrm{Scm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{1 / 2}$
(3) $\mathrm{Scm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{-1 / 2}$
(4) $\mathrm{Scm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}$

Answer (2)
Sol. Units of molar conductivity $=\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-1}$
Units of $\sqrt{\text { concentration }}=\mathrm{mol}^{1 / 2} \mathrm{~L}^{-1 / 2}$
Units for slope $=\frac{\text { units of molar conductivity }}{\text { units of } \sqrt{\text { concentration }}}$
$=\mathrm{S} \mathrm{cm}^{2} \mathrm{~mol}^{-3 / 2} \mathrm{~L}^{1 / 2}$
64. When MnO_{2} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to a salt (A), the greenish yellow gas liberated as salt (A) is :
(1) Cal_{2}
(2) NaBr
(3) KNO_{3}
(4) $\mathrm{NH}_{4} \mathrm{Cl}$

Answer (4)
Sol. Cl^{-}in $\mathrm{NH}_{4} \mathrm{Cl}$ is oxidized to Cl_{2} gas which is greenish yellow.

Aakashians Fonquer JEE (Main) 2024 SEssion-1

RISHIS SHUKLA
two year classroom program
Two Yanclasshoom phogram
As per student response sheet and NTA answer key.
"936 999 pereemullers
*4145 95+ PERCENTILERS

Our Stars

65. Match List I with List II

	LIST I		LIST II
A.	α-Glucose and α-Galactose	I.	Functional isomers
B.	α-Glucose and β-Glucose	II.	Homologous
C.	α-Glucose and α-Fructose	III.	Anomers
D.	α-Glucose and α-Ribose	IV.	Epimers

Choose the correct answer from the options give below :
(1) A-III, B-IV, C-I, D-II
(2) A-IV, B-III, C-I, D-II
(3) A-IV, B-III, C-II, D-I
(4) A-III, B-IV, C-II, D-I

Answer (2)
Sol. α-Glucose and α-Galactose differ in configuration of one asymmetric carbon. Thus they are epimers. α and β-glucose differ at anomeric carbon. Thus they are anomers.
α-Glucose and α-Fructose have different functional groups. Thus they are functional isomers.
66. The adsorbent used in adsorption chromatography is/are-
A. Silica gel
B. Alumina
C. Quick lime
D. Magnesia

Choose the most appropriate answer from the options given below :
(1) A only
(2) B only
(3) A and B only
(4) C and D only

Answer (3)

Sol. Commonly used adsorbents in adsorption chromatography are silica gel and alumina.
67.

Consider the above reactions, identify product B and product C .
(1) $B=1$-Propanol $C=2$-Propanol
(2) $\mathrm{B}=2$-Propanol $\mathrm{C}=1$-Propanol
(3) $\mathrm{B}=\mathrm{C}=2$-Propanol
(4) $B=C=1$-Propanol

Answer (2)
Sol. Product ' A ' is $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$

68. A first row transition metal in its +2 oxidation state has a spin-only magnetic moment value of 3.86 BM . The atomic number of the metal is
(1) 23
(2) 26
(3) 22
(4) 25

Answer (1)
Sol. $\mu=3.86=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
$\Rightarrow \mathrm{n}=3$
Electronic configuration of ion could be $[\mathrm{Ar}] 3 d^{\beta}$.
So, E.C. of atom could be [Ar] $3 d^{\beta} 4 s^{2}$
\Rightarrow Atomic number $=23$

Aakashians Conquer JEE (Main) 2024 session-1

As per student response sheet and NTA answer key

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

69. Common name of Benzene-1, 2-diol is
(1) Resorcinol
(2) Catechol
(3) o-cresol
(4) Quinol

Answer (2)

Sol. Benzene-1, 2 -diol is also called catechol

70.

In the above chemical reaction sequence " A " and " B " respectively are
(1) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$and $\mathrm{NaOH}_{(\text {alc })} / \mathrm{I}_{2}$
(2) $\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NaOH}_{\text {(alc) } / / l_{2}}$
(3) $\mathrm{O}_{3}, \mathrm{Zn} / \mathrm{H}_{2} \mathrm{O}$ and KMnO_{4}
(4) $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}^{+}$and KMnO_{4}

Answer (2)
Sol.

71. The correct order of the first ionization enthalpy is
(1) $\mathrm{B}>\mathrm{Al}>\mathrm{Ga}$
(2) $\mathrm{Tl}>\mathrm{Ga}>\mathrm{Al}$
(3) $\mathrm{Ga}>\mathrm{Al}>\mathrm{B}$
(4) $\mathrm{Al}>\mathrm{Ga}>\mathrm{Tl}$

Answer (2)

Sol. I.E ${ }_{1}$ of $\mathrm{TI}=589 \mathrm{~kJ} / \mathrm{mol}$
I. E_{1} of $\mathrm{Ga}=579 \mathrm{~kJ} / \mathrm{mol}$
I.E E_{1} of $\mathrm{Al}=577 \mathrm{~kJ} / \mathrm{mol}$
72. Fuel cell, using hydrogen and oxygen as fuels,
A. has been used in spaceship
B. has as efficiency of 40% to produce electricity
C. uses aluminum as catalysts
D. is eco-friendly
E. is actually a type of Galvanic cell only

Choose the correct answer from the options given below:
(1) A, B, C only
(2) A, B, D, E only
(3) A, B, D only
(4) A, D, E only

Answer (4)

Sol. Fuel cells produce electricity with an efficiency of about 70\%.

Fuel cells are pollution free, thus, eco-friendly.
Fuel cells are type of Galvanic cells only.
73. The equilibrium constant for the reaction
$\mathrm{SO}_{3}(\mathrm{~g}) \rightleftharpoons \mathrm{SO}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
is $K_{c}=4.9 \times 10^{-2}$. The value of K_{c} for the reaction given below is

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \text { is }
$$

(1) 41.6
(2) 4.9
(3) 416
(4) 49

Answer (3)
Sol. The reaction

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{SO}_{3}
$$

can be formed from the given reaction by reverting it and multiplying coefficients by 2.
Thus, $\mathrm{K}_{\mathrm{c}}^{\prime}=\mathrm{K}_{\mathrm{c}}^{-2}=\frac{1}{\mathrm{~K}_{\mathrm{c}}^{2}}=\left(\frac{1}{4.9 \times 10^{-2}}\right)^{2}$

$$
=416
$$

Aakashians Conquer JEE (Main) 2024 sEssion-1

74. If an iron (III) complex with the formula $\left[\mathrm{Fe}\left(\mathrm{NH}_{3}\right)_{x}(\mathrm{CN})_{\mathrm{y}}\right]^{-}$has no electron in its e_{g} orbital, then the value of $x+y$ is
(1) 3
(2) 5
(3) 4
(4) 6

Answer (4)

Sol. Balancing charges,

$$
\Rightarrow \begin{aligned}
& 3-y=-1 \\
& y=4 \\
& x=2 \\
& x+y=6
\end{aligned}
$$

75. Choose the Incorrect Statement about Dalton's Atomic Theory
(1) All the atoms of a given element have identical properties including identical mass
(2) Matter consists of indivisible atoms
(3) Chemical reactions involve reorganization of atoms
(4) Compounds are formed when atoms of different elements combine in any ratio

Answer (4)

Sol. According to Dalton's theory, compounds are formed when atoms of different elements combine in fixed ratio.
76. The number of species from the following that have pyramidal geometry around the central atom is \qquad
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}, \mathrm{SO}_{4}^{2-}, \mathrm{SO}_{3}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
(1) 2
(2) 3
(3) 1
(4) 4

Answer (3)

Sol. SO_{3}^{2-} is the only species with pyramidal geometry.

77.

Product P is
(1)

(2)

(3)

(4)

Answer (1)

Sol. More stable double bond will be formed.

with the ring, thus, more stable.
78. Correct order of stability of carbanion is

(1) d $>$ a $>$ c $>$ b
(2) d $>$ c $>$ b $>$ a
(3) c $>$ b $>$ d $>$ a
(4) a $>$ b $>$ c $>d$

Answer (2)

Sol. (d) is aromatic. So it is most stable.
(a) is anti-aromatic. So it is least stable.
79. the number of unpaired d-electrons in $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is \qquad .
(1) 2
(2) 4
(3) 1
(4) 0

Answer (4)

Sol. $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is an inner orbital complex.
So, electronic configuration is $t_{2 g}^{6} e_{g}^{0}$.
All electrons are paired.

Aakashians Conquer JEE (Main) 2024
 Perfect Score!
 $300 / 300$
 101
 RISHIS SHUKLA
 100 PERCENTILERS [PHY. OR CHEM. OR MATHS]
 ** $14059{ }^{95+\text { PERCENTILERS }}$

80. The correct statement/s about Hydrogen bonding is/are
A. Hydrogen bonding exists when H is covalently bonded to the highly electro negative atom
B. Intermolecular H bonding is present in o-nitro phenol
C. Intramolecular H bonding is present in HF
D. The magnitude of H bonding depends on the physical state of the compound
E H-bonding has powerful effect on the structure and properties of compounds
Choose the correct answer from the options given below.
(1) A, D, E only
(2) A, B, D only
(3) A only
(4) A, B, C only

Answer (1)
Sol. In o-nitrophenol intra molecular hydrogen bonding is present.

In HF intermolecular hydrogen bonding is present.
Other statements are correct except B and C.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
81. The total number of 'sigma' and ' Pi ' bonds in 2-oxohex-4-ynoic acid is \qquad .

Answer (18)

Sol.

Total number of $\sigma \& \pi$ bonds $=18$
82. The maximum number of orbitals which can be identified with $\mathrm{n}=4$ and $m_{l}=0$ is \qquad -.
Answer (4)

Sol. Possible combination of first three quantum numbers are
$\mathrm{n}=4, \mathrm{I}=3, \mathrm{~m}=0$
$\mathrm{n}=4, \mathrm{I}=2, \mathrm{~m}=0$
$\mathrm{n}=4, \mathrm{I}=1, \mathrm{~m}=0$
$\mathrm{n}=4, \mathrm{I}=0, \mathrm{~m}=0$
83. Three moles of an ideal gas are compressed isothermally from 60 L to 20 L using constant pressure of 5 atm. Heat exchange Q for the compression is \qquad Lit/atm.

Answer (200)

Sol. For isothermal process

$$
\Rightarrow \begin{aligned}
& Q=-W \\
& Q=-5 \times 40 \\
& |Q|=+200 \text { Lit atm }
\end{aligned}
$$

84. A first row transition metal with highest enthalpy of atomisation, upon reaction with oxygen at high temperature forms oxides of formula $\mathrm{M}_{2} \mathrm{O}_{n}$ (where $n=3,4,5)$. The 'spin-only' magnetic moment value of the amphoteric oxide from the above oxides is_ BM (near integer)
(Given atomic number : Sc : 21, Ti : 22, V : 23, $\mathrm{Cr}: 24, \mathrm{Mn}: 25, \mathrm{Fe}: 26, \mathrm{Co}: 27, \mathrm{Ni}: 28, \mathrm{Cu}: 29$, Zn: 30)

Answer (0)

Sol. Vanadium has highest enthalpy of atomization among first row transition elements.
$\mathrm{V}_{2} \mathrm{O}_{5}$ is amphoteric
In V^{5+} there are no unpaired electrons.
Thus, $\mu=0$
85. 2.7 kg of each of water and acetic acid are mixed. The freezing point of the solution will be $-x^{\circ} \mathrm{C}$. Consider the acetic acid does not dimerise in water, nor dissociates in water. $\mathrm{x}=$ \qquad (nearest integer)

Aakashians Fonquer JEE (Main) 2024 SESSION-1

RISHIS SHUKLA
iwo Year classkoom program
As per student response sheet and NTA answer key.

Our Stars

[Given : Molar mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$, acetic acid $=60 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{K}_{\mathrm{fH}_{2} \mathrm{O}}: 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
$\mathrm{K}_{\mathrm{f} \text { aceicic acid }:} 3.90 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
freezing point : $\mathrm{H}_{2} \mathrm{O}=273 \mathrm{~K}$, acetic acid $\left.=290 \mathrm{~K}\right]$
Answer (31)
Sol. Molality of acetic acid $=\frac{2700}{60} \times \frac{1}{2.7} \mathrm{~mol} / \mathrm{kg}$

$$
\begin{aligned}
& =16.667 \\
\Delta T_{f} & =K_{f} \times 16.667 \\
& =1.86 \times 16.667 \\
& =31 \mathrm{~K}
\end{aligned}
$$

86. Number of compounds / species from the following with non-zero dipole moment is \qquad .
$\mathrm{BeCl}_{2}, \mathrm{BCl}_{3}, \mathrm{NF}_{3}, \mathrm{XeF}_{4}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HBr}, \mathrm{CO}_{2}$, $\mathrm{H}_{2}, \mathrm{HCl}$

Answer (5)

Sol. $\mathrm{NF}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HBr}, \mathrm{HCl}$ have non zero dipole moments.
87. From 6.55 g of aniline, the maximum amount of acetanilide that can be prepared will be \qquad $10^{-1} \mathrm{~g}$.

Answer (95)

Sol. Moles of aniline $=\frac{6.55}{93}$
$=0.0704$
= moles of acetanilide
mass of acetanilide $=0.0704 \times 135$
$=9.504 \mathrm{~g}$
$=95.04 \times 10^{-1} \mathrm{~g}$
88. Phthalimide is made to undergo following sequence of reactions.

Phthalimide $\xrightarrow{\substack{\text { (i) KOH } \\(1) \\ \text { Kenzylchloride }}}{ }^{2} \mathrm{P}^{\prime}$
Total number of π bonds present in product ' P ' is/are \qquad -

Answer (8)

Sol.

Total number of π bonds in $\mathrm{P}=8$
89. Consider the following reaction, the rate expression of which is given below
$A+B \rightarrow C$
rate $=k[A]^{1 / 2}[B]^{1 / 2}$
The reaction is initiated by taking 1 M concentration of A and B each. If the rate constant (k) is $4.6 \times 10^{-2} \mathrm{~s}^{-1}$, then the time taken for A to become 0.1 M is \qquad sec. (nearest integer)

Answer (50)

Sol. A + B \rightarrow C
$\frac{-\mathrm{d}[\mathrm{A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{A}]^{1 / 2}[B]^{1 / 2}$
Since, $[A]=[B]$
$\Rightarrow \frac{-d[A]}{d t}=k[A]$
$\Rightarrow k t=\ln \frac{[A]_{0}}{[A]}$
$\Rightarrow t=\frac{1}{4.6 \times 10^{-2}} \times \ln \left(\frac{1}{0.1}\right)$
$=\frac{2.303}{4.6} \times 100 \approx 50$
90. Vanillin compound obtained from vanilla beans, has total sum of oxygen atoms and π electrons is

Answer (11)

Sol.

Vanillin, shown above, has 8π electrons and 3 oxygen atoms.
Total $=8+3=11$

Our Stars

**145 ${ }^{95+\text { PERCENTILERS }}$

