Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2024 (Online) Phase-2

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is. Chemistry Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A : (01-20) / (31-50) / (61-80) contains 20 multiple choice questions (MCQs) which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section - B: (21-30) / (51-60) / (81-90) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 session-1

Our Stars

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Let $f(x)=x^{5}+2^{e^{x} / 4}$ for all $x \in \mathrm{R}$. Consider a function $g(x)$ such that $(g \circ f)(x)=x$ for all $x \in \mathrm{R}$. Then the value of $8 g^{\prime}(2)$ is:
(1) 16
(2) 8
(3) 4
(4) 2

Answer (1)
Sol. $g(f(n))=x$
Differentiate w.r.t x, we get
$g^{\prime}(f(x)) \cdot f^{\prime}(x)=1$
$g^{\prime}(f(x))=\frac{1}{f^{\prime}(x)}$
We need to find $g^{\prime}(2)$, so,
$f(0)=2 \Rightarrow f(x)=x^{5}+2 e^{x / 4}$
$f^{\prime}(x)=5 x^{4}+\frac{1}{2} e^{x / 4}$
$f^{\prime}(x)=\frac{1}{2}$
$\therefore \quad g^{\prime}(f(0))=\frac{1}{f^{\prime}(0)}$
$g^{\prime}(2)=2$
$\therefore \quad 8 g^{\prime}(2)=16$
2. One of the points of intersection of the curves $y=1+3 x-2 x^{2}$ and $y=\frac{1}{x}$ is $\left(\frac{1}{2}, 2\right)$. Let the area of the region enclosed by these curves be $\frac{1}{24}(I \sqrt{5}+m)-n \log _{e}(1+\sqrt{5})$, where $I, m, n \in N$. Then $I+m+n$ is equal to
(1) 30
(2) 31
(3) 32
(4) 29

Answer (1)

Sol. Solving curves $y=1+3 x-2 x^{2} \& y=\frac{1}{x}$

$$
\begin{aligned}
& 2 x^{3}-3 x^{2}-x+1=0 \\
& \Rightarrow \quad(2 x-1)\left(x^{2}-x-1\right)=0 \\
& \Rightarrow \quad x=\frac{1}{2}, x=\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Area $=\int_{\frac{1}{2}}^{\frac{1+\sqrt{5}}{2}}\left(1+3 x-2 x^{2}-\frac{1}{x}\right) d x$
$=\left[x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}-\ln x\right]$
$=\frac{\sqrt{5}+1}{2}+\frac{3}{8}(\sqrt{5}+1)^{2}-\frac{1}{12}(\sqrt{5}+1)^{3}-$
$\ln \left(\frac{\sqrt{5}+1}{2}\right)-\left(\frac{1}{2}+\frac{3}{8}-\frac{1}{12}-\ln \frac{1}{2}\right)$
$=\frac{1}{24}\left[12(\sqrt{5}+1)+9(\sqrt{5}+1)^{2}-2(\sqrt{5}+1)^{3}\right.$
$-12-9+2]-\ln \left(\frac{\sqrt{5}+1}{2} \times 2\right)$
$=\frac{1}{24}[12(\sqrt{5}+1)+9(6+2 \sqrt{5})-$ $2(5 \sqrt{5}+1+3 \sqrt{5}(\sqrt{5}+1)-19)]-\ln (\sqrt{5}+1)$
$=\frac{1}{24}[14 \sqrt{5}+15]-\ln (\sqrt{5}+1)$
$\therefore \quad I=14, m=15, n=1$
$l+m+n=30$

RISHIS SHUKLA

3. If the solution $y=y(x)$ of the differential equation $\left(x^{4}+2 x^{3}+3 x^{2}+2 x+2\right) d y-\left(2 x^{2}+2 x+3\right) d x=0$ satisfies $y(-1)=-\frac{\pi}{4}$, then $y(0)$ is equal to
(1) $-\frac{\pi}{12}$
(2) 0
(3) $\frac{\pi}{2}$
(4) $\frac{\pi}{4}$

Answer (4)

Sol. $\left(x^{4}+2 x^{3}+3 x^{2}+2 x+2\right) d y-\left(2 x^{2}+2 x+3\right) d x=0$

$$
\begin{aligned}
& \int d y=\int\left(\frac{2 x^{2}+2 x+3}{x^{4}+2 x^{3}+3 x^{2}+2 x+2}\right) d x \\
& \int d y=\int \frac{1}{x^{2}+1} d x+\int \frac{1}{x^{2}+2 x+2} d x \\
& y=\tan ^{-1}(x)+\tan ^{-1}(1+x)+C \\
& y(-1)=\tan ^{-1}(-1)+\tan ^{-1}(1-1)+C \\
& y(-1)=-\frac{\pi}{4}+C=\left(\frac{-\pi}{4}\right)-\{\text { given \}} \\
& \Rightarrow \quad C=0 \\
& \text { So, } y(x)=\tan ^{-1}(x)+\tan ^{-1}(1+x) \\
& y(0)=\tan ^{-1}(0)+\tan ^{-1}(1+0) \\
& y(0)=\frac{\pi}{4}
\end{aligned}
$$

4. The vertices of a triangle are $A(-1,3), B(-2,2)$ and $C(3,-1)$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is:
(1) $-x+y-(2-\sqrt{2})=0$
(2) $x+y-(2-\sqrt{2})=0$
(3) $x+y+(2-\sqrt{2})=0$
(4) $x-y-(2+\sqrt{2})=0$

Answer (2)

Sol.

Equation of $A C$: $x+y=2$
Equation of $A B: x-y+4=0$
Equation of $B C: 3 x+5 y=4$
The line nearest to origin is parallel to $A C$ and inward. Let its equation is $x+y=C$.
$\therefore\left|\frac{C-2}{\sqrt{2}}\right|=1$
$\therefore \quad C=2-\sqrt{2}$
\therefore required equation line is :

$$
x+y-(2-\sqrt{2})=0
$$

5. Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn A is:
(1) $\frac{5}{16}$
(2) $\frac{7}{18}$
(3) $\frac{4}{17}$
(4) $\frac{5}{18}$

Answer (4)

Sol. Urn A contains 7 red, 5 black Urn B contains 5 red, 7 black Urn C contains 6 red, 6 black By Baye's theorem,
$P\left(\frac{\text { Ball drawn from } A}{\text { Ball drawn black }}\right)$

$$
=\frac{\frac{1}{3} \cdot \frac{5}{12}}{\frac{1}{3} \cdot \frac{5}{12}+\frac{1}{3} \cdot \frac{7}{12}+\frac{6}{12} \cdot \frac{1}{3}}=\frac{5}{18}
$$

6. There are 5 points $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}$ on the side $A B$, excluding A and B of a triangle $A B C$. Similarly there are 6 points $P_{6}, P_{7}, \ldots, P_{11}$ on the side $B C$ and 7 points $P_{12}, P_{13}, \ldots, P_{18}$ on the side $C A$ of the triangle. The number of triangles, that can be formed using the points $P_{1}, P_{2}, \ldots, P_{18}$ as vertices, is:
(1) 776
(2) 771
(3) 751
(4) 796

Answer (3)
Sol. Number of points on side $A B=5$
Number of points on side $B C=6$
Number of points on side $A C=7$

Number of ways selecting three points from side

$$
A B={ }^{5} C_{3}
$$

Number of ways selecting three points from side

$$
B C={ }^{6} C_{3}
$$

Number of ways selecting three points from side

$$
A C={ }^{7} C_{3}
$$

Total number of triangle possible formed using the points $P_{1} P_{2} \ldots P_{18}$
$={ }^{18} C_{3}-{ }^{5} C_{3}-{ }^{6} C_{3}-{ }^{7} C_{3}$
$=816-10-20-35$
$=751$
7. If the domain of the function $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)$ $+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$ is $(\alpha, \beta]$, then $3 \alpha+10 \beta$ is equal to :
(1) 95
(2) 100
(3) 98
(4) 97

Answer (4)
Sol. $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$
$-1 \leq \frac{3 x-22}{2 x-19} \leq 1$
$\frac{3 x-22}{2 x-19}+1 \geq 0$ and $\frac{3 x-22}{2 x-19}-1 \leq 0$
$\frac{3 x-22+2 x-19}{2 x-19} \geq 0$ and $\frac{3 x-22-2 x+19}{2 x-19} \leq 0$
$\Rightarrow \frac{5 x-41}{2 x-19} \geq 0$ and $\frac{x-3}{2 x-19} \leq 0$
$x \in\left(-\infty, \frac{41}{5}\right] \cup\left(\frac{19}{2}, \infty\right)$ and $x \in\left[3, \frac{19}{2}\right)$
$\Rightarrow x \in\left[3, \frac{41}{5}\right]$
and, $\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}>0$
$\frac{(3 x-5)(x-1)}{(x-5)(x-2)}>0$
$\Rightarrow \quad x \in(-\infty,-2) \cup\left[1, \frac{5}{3}\right] \cup(5, \infty)$.
Taking intersection of individual domains
$x \in\left(5, \frac{41}{5}\right]$
$\Rightarrow \alpha=5$ and $\beta=\frac{41}{5}$
$\Rightarrow 3 \alpha+10 \beta=15+82$

$$
=97
$$

\therefore Option (4) is correct

Aakashians Conquer JEE (Main) 2024 sEssion-1

8. Let α and β be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^{2}+|z|=0$, $z \in C$. Then $4\left(\alpha^{2}+\beta^{2}\right)$ is equal to :
(1) 8
(2) 6
(3) 4
(4) 2

Answer (3)
Sol. $(\bar{z})^{2}+|z|=0$
$z^{2}+|\bar{z}|=0$
From equation (1) and (2)
as $|z|=|\bar{z}|$
$\Rightarrow(\bar{z})^{2}=z^{2}$
$\Rightarrow \quad z=\bar{z}$ or $z=-\bar{z}$
$\Rightarrow \operatorname{Im}(z)=0$ or $\operatorname{Re}(z)=0$
Case I: If $\operatorname{Im}(z)=0$
$\Rightarrow \quad z=x$
Putting value of z in equation (1)
$x^{2}+|x|=0$
$\Rightarrow x=0$
[Rejected]
Case II: If $\operatorname{Re}(z)=0$
$\Rightarrow \quad z=i y$
Putting value of z in equation (1)
$-y^{2}+|y|=0$
$y= \pm 1$ as $y \neq 0$
Hence, $z= \pm i$ are the solution of the given equation
$\Rightarrow \alpha=i-i=0$
and $\beta=i(-i)=1$
$\Rightarrow 4\left(\alpha^{2}+\beta^{2}\right)=4(0+1)$

$$
=4
$$

\therefore Option (3) is correct
9. Let $f: R \rightarrow R$ be a function given by
$f(x)=\left\{\begin{array}{cc}\frac{1-\cos 2 x}{x^{2}}, & x<0 \\ \alpha, & x=0 \\ \frac{\beta \sqrt{1-\cos x}}{x}, & x>0\end{array}\right.$
Where $\alpha, \beta \in R$. If f is continuous at $x=0$, then $\alpha^{2}+\beta^{2}$ is equal to :
(1) 12
(2) 6
(3) 48
(4) 3

Answer (1)
Sol. $f(x)=\left\{\begin{array}{cc}\frac{1-\cos 2 x}{x^{2}}, & x<0 \\ \alpha, & x=0 \\ \frac{\beta \sqrt{1-\cos x}}{x}, & x>0\end{array}\right.$
$f(x)$ is continuous at $x=0$
$\Rightarrow f(0)=\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{+}} f(x)$
$\lim _{x \rightarrow 0^{-}} f(x)=\alpha$
$\lim _{x \rightarrow 0^{-}}\left(\frac{1-\cos 2 x}{x^{2}}\right)=\alpha$
$\Rightarrow \lim _{x \rightarrow 0^{-}} \frac{2 \sin ^{2} h}{x^{2}}=\alpha$
$\Rightarrow \lim _{h \rightarrow 0} \frac{2 \sin ^{2}}{h^{2}} h=\alpha$
$\Rightarrow \quad \alpha=2$
Also, $\lim _{x \rightarrow 0^{+}} f(x)=f(0)$
$\Rightarrow \lim _{x \rightarrow 0^{+}} \frac{\beta \sqrt{1-\cos x}}{x}=2$
$\Rightarrow \lim _{h \rightarrow 0} \frac{\beta \sqrt{\frac{1-\cos h}{h^{2}} \times h^{2}}}{h}=2$

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

$$
\begin{aligned}
& \Rightarrow \frac{\beta}{\sqrt{2}}=2 \\
& \Rightarrow \quad \beta=2 \sqrt{2} \\
& \Rightarrow \alpha^{2}+\beta^{2}=4+8 \\
& =12
\end{aligned}
$$

\therefore Option (1) is correct
10. The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$ is equal to :
(1) 6131
(2) 3133
(3) 931
(4) 633

Answer (2)

Sol. $T_{r+1}={ }^{15} \mathrm{C}\left(2^{1 / 5}\right)^{15-r}\left(5^{1 / 3}\right)^{r}$
$={ }^{15} C_{r} 5^{r / 3} 2^{\left(3-\frac{r}{5}\right)}$
For rational terms,
$\frac{r}{3}$ and $\frac{r}{5}$ must be integer
3 and 5 divide $r \Rightarrow 15$ divides $r \Rightarrow r=0$ and $r=15$
${ }^{15} \mathrm{C}_{0} 5^{0} 2^{3}+{ }^{15} \mathrm{C}_{15} 5^{5} 2^{(0)}$
$=8+3125$
$=3133$
11. Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$. Then $m+n$ is equal to
(1) 201
(2) 217
(3) 182
(4) 195

Answer (1)

Sol. $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}=y, 2 x^{2}+3 x+8>0 \quad \forall x \in \mathbb{R}$ $\Rightarrow x^{2}(2 y-2)+x(3 y+3)+8 y-8=0$
Since $x \in \mathbb{R}$, the equation has real roots
$\Rightarrow D \geq 0$
$\Rightarrow(3 y+3)^{2}-4(2 y-2)(8 y-8) \geq 0$
$\Rightarrow 9(y+1)^{2}-64 y(y-1)^{2} \geq 0$
$\Rightarrow(3 y+3)^{2}-(8 y-8)^{2} \geq 0$
$\Rightarrow(11 y-5)(-5 y+11) \geq 0$
$\Rightarrow\left(y-\frac{5}{11}\right)\left(y-\frac{11}{5}\right) \leq 0$
$\Rightarrow y \in\left[\frac{5}{11}, \frac{11}{5}\right]$
Sum of maximum and minimum value
$y_{\text {max }}+y_{\text {min }}=\frac{5}{11}+\frac{11}{5}=\frac{25+121}{55}$
$=\frac{146}{55}=\frac{m}{n} \Rightarrow m+n=201$
12. A square is inscribed in the circle $x^{2}+y^{2}-10 x-6 y$ $+30=0$. One side of this square is parallel to $y=x$ +3 . If $\left(x_{i}, y_{i}\right)$ are the vertices of the square, then $\Sigma\left(x_{i}^{2}+y_{i}^{2}\right)$ is equal to :
(1) 160
(2) 148
(3) 152
(4) 156

Answer (3)

Sol.

One side of square is $y=x+k$
Distance of $(5,3)$ to the line $y=x+k$ is

$$
\begin{aligned}
& \frac{|3-5-k|}{\sqrt{2}}=\sqrt{2} \\
& =|-2-k|=2 \\
& \Rightarrow k=0 \text { or } k=-4
\end{aligned}
$$

So lines are $y=x$ and $y=x-4$

Aakashians Conquer JEE (Main) 2024 sEssion-1

$300 / 300$
101

Our Stars

Now, solving these lines with circle

$$
\begin{aligned}
y= & x \text { and } x^{2}+y^{2}-10 x-6 y+30=0 \\
\Rightarrow & 2 x^{2}-16 x+30=0 \\
\Rightarrow & x=3, y=3 \\
& x=5, y=5 \\
& y=x-4 \text { and } x^{2}+y^{2}-10 x-6 y+30=0 \\
\Rightarrow & x=5, y=1 \\
& x=7, y=3
\end{aligned}
$$

$$
\sum_{i=1}^{4} x_{i}^{2}+y_{i}^{2}=9+9+25+25+25+1+49+9
$$

$$
=152
$$

13. Let a unit vector which makes an angle of 60° with $2 \hat{i}+2 \hat{j}-\hat{k}$ and an angle of 45° with $\hat{i}-\hat{k}$ be \vec{C}. Then $\vec{C}+\left(-\frac{1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{\sqrt{2}}{3} \hat{k}\right)$ is:
(1) $\frac{\sqrt{2}}{3} \hat{i}-\frac{1}{2} \hat{k}$
(2) $-\frac{\sqrt{2}}{3} \hat{i}+\frac{\sqrt{2}}{3} \hat{j}+\left(\frac{1}{2}+\frac{2 \sqrt{2}}{3} \hat{k}\right)$
(3) $\left(\frac{1}{\sqrt{3}}+\frac{1}{2}\right) \hat{i}+\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{2}}\right) \hat{j}+\left(\frac{1}{\sqrt{3}}+\frac{\sqrt{2}}{3}\right) \hat{k}$
(4) $\frac{\sqrt{2}}{3} \hat{i}+\frac{3}{3 \sqrt{2}} \hat{j}-\frac{1}{2} \hat{k}$

Answer (1)

Sol. Let $\vec{C}=a \hat{i}+b \hat{j}+c \hat{k}$

$$
\begin{align*}
& (a \hat{i}+b \hat{j}+c \hat{k}) \cdot(2 \hat{i}+2 \hat{j}-\hat{k})=1 \times 3 \times \frac{1}{2} \\
& 2 a+2 b-c=\frac{3}{2} \tag{1}\\
& (a \hat{i}+b \hat{j}+c \hat{k}) \cdot(\hat{i}-\hat{k})=1 \times \sqrt{2} \times \frac{1}{\sqrt{2}} \\
& a-c=1 \tag{2}\\
& a^{2}+b^{2}+c^{2}=1 \tag{3}
\end{align*}
$$

Solving (1), (2) and (3)
$a+2 b=\frac{1}{2}$
$a^{2}+b^{2}+(a-1)^{2}=1$
$2 a^{2}-2 a+b^{2}=0$
$2 a^{2}-2 a+\left(\frac{2 a-1}{4}\right)^{2}=0$
$32 a^{2}-32 a+4 a^{2}-4 a+1=0$
$36 a^{2}-36 a+1=0$
$a=\frac{36 \pm \sqrt{(36)^{2}-4(36)}}{2 \times 36}$
$=\frac{1}{2} \pm \frac{\sqrt{2}}{3}$
$b=\frac{1-2 a}{4} \Rightarrow b=\frac{1 \pm \frac{2 \sqrt{2}}{3}-1}{4}$
$=\mp \frac{1}{3 \sqrt{2}}$
$C=-\frac{1}{2} \pm \frac{\sqrt{2}}{3}$
$C+\left(\frac{-1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{\sqrt{2}}{3} \hat{k}\right)$
$=\frac{\sqrt{2}}{3} \hat{i}-\frac{1}{2} \hat{k}$
14. Let $\alpha \in(0, \infty)$ and $A=\left[\begin{array}{ccc}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$. If $\operatorname{det}(a d j$ $\left.\left(2 A-A^{\top}\right)\right) \cdot \operatorname{adj}\left(A-2 A^{\top}\right)=2^{8}$, then $(\operatorname{det}(A))^{2}$ is equal to :
(1) 49
(2) 16
(3) 36
(4) 1

Answer (2)

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

Sol. $\left|\operatorname{adj}\left(A-2 A^{T}\right) \cdot \operatorname{adj}\left(2 A-A^{T}\right)\right|=2^{8}$
$P=A-2 A^{\top}$
$Q=2 A^{T}-A \Rightarrow Q^{T}=2 A^{T}-A=-P$
$|\operatorname{adj}(P) \operatorname{adj}(Q)| \Rightarrow|P Q|=-2^{4}$
$\Rightarrow|P|(-|P|)=-2^{4} \Rightarrow|P|=4$ and $|Q|=-4$
$\left|A-2 A^{\top}\right|=4$
$A-2 A^{T}=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]-2\left[\begin{array}{lll}1 & 1 & 0 \\ 2 & 0 & 1 \\ \alpha & 1 & 2\end{array}\right]=\left[\begin{array}{ccc}-1 & 0 & \alpha \\ -3 & 0 & -1 \\ -2 \alpha & -1 & -2\end{array}\right]$
$\Rightarrow\left|A-2 A^{T}\right|=1+3 \alpha=4 \Rightarrow \alpha=1 \Rightarrow|A|=-4$
$\Rightarrow|A|^{2}=16$
15. Let $\alpha, \beta \in R$. Let the mean and the variance of 6 observations $-3,4,7,-6, \alpha, \beta$ be 2 and 23 , respectively, The mean deviation about the mean of these 6 observations is:
(1) $\frac{14}{3}$
(2) $\frac{16}{3}$
(3) $\frac{11}{3}$
(4) $\frac{13}{3}$

Answer (4)

Sol. Mean $=\frac{-3+4+7+(-6)+\alpha+\beta}{6}=2$

$$
\Rightarrow \alpha+\beta=10
$$

Variance $=\frac{\sum x_{i}^{2}}{n}-\left(\frac{\bar{x}}{n}\right)^{2}=23$
$\Rightarrow \sum x_{i}^{2}=27 \times 6$
$\Rightarrow 9+16+49+36+\alpha^{2}+\beta^{2}=162$
$\Rightarrow \alpha^{2}+\beta^{2}=52$
We get α and β as 4 and 6
So, mean deviation about mean
$=\frac{|-3-2|+|4-2|+|7-2|+|-6-2|+|4-2|+|6-2|}{6}$
$=\frac{5+2+5+8+2+4}{6}$
$=\frac{13}{3}$
16. If 2 and 6 are the roots of the equation $a x^{2}+b x+1$ -0 , then the quadratic equation, whose roots are $\frac{1}{2 a+b}$ and $\frac{1}{6 a+b}$, is:
(1) $x^{2}+10 x+16=0$
(2) $2 x+11 x+12=0$
(3) $4 x^{2}+14 x+12=0$
(4) $x^{2}+8 x+12=0$

Answer (4)
Sol. $(x-2)(x-6)=0$
$\Rightarrow x^{2}-8 x+12=0$
$\Rightarrow \frac{x^{2}}{12}-\frac{8 x}{12}+1=0$
$\therefore a=\frac{1}{12}, b=\frac{-2}{3}$
$\frac{1}{2 a+b}=\frac{1}{\frac{1}{6}-\frac{2}{3}} \Rightarrow \frac{6}{-3}=-2$
$\frac{1}{6 a+b}=\frac{1}{\frac{1}{2}-\frac{2}{3}} \Rightarrow \frac{6}{-1}=-6$
$\therefore(x+2)(x+6)=0$
$\Rightarrow x^{2}+8 x+12=0$
17. Let the first three terms $2, p$ and q, which $q \neq 2$, of a G.P. be respectively the $7^{\text {th }}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of an A.P. If the $5^{\text {th }}$ term of the G.P. is the $n^{\text {th }}$ terms of the A.P. then n is equal to
(1) 163
(2) 177
(3) 151
(4) 169

Answer (1)
Sol. Let $p=2 r, q=2 r^{2}$
$T_{7}=2, T_{8}=2 r, T_{13}=2 r^{2}$
$d=2 r-2=2(r-1)$
$2 r^{2}=T_{7}+6 d=2+6(2)(r-1)=12 r-10$
$\Rightarrow r^{2}-6 r+5=0$
$\Rightarrow(r-1)(r-5)=0$
$\therefore r=1,5$
$r=1$ (rejected) as $q \neq 2$
$\therefore r=5$

Aakashians Conquer JEE (Main) 2024 SESSION-1

$5^{\text {th }}$ term of G.P $=2.1^{4}=2.5^{4}$
Let $1^{\text {st }}$ term of A.P $b a=a, d=8$
$2=a+(6)(8) \Rightarrow a=-46$
$\mathrm{n}^{\text {th }}$ term of A.P $=-46+(n-1) 8=8 n-54$
$2.5^{4}=8 n-54$
$\Rightarrow 1250+54=8 n$
$\Rightarrow n=\frac{1304}{8}=163$
18. Let $f(x)=\left\{\begin{array}{cc}-2, & -2 \leq x \leq 0 \\ x-2, & 0<x \leq 2\end{array}\right.$ and $h(x)=f(|x|)+$ $|f(x)|$. Then $\int_{-2}^{2} h(x) d x$ is equal to:
(1) 4
(2) 1
(3) 2
(4) 6

Answer (3)
Sol. $f(x)=\left\{\begin{array}{cc}-2 & -2 \leq x \leq 0 \\ x-2 & 0<x \leq 2\end{array} h(x)=f|x|+|f(x)|\right.$

$|f(x)|$

$h(x)=\left\{\begin{array}{cc}-x-2+2=-x & -2 \leq x \leq 0 \\ 0 & 0<x \leq 2\end{array}\right.$
$\therefore \int_{-2}^{2} h(x) d x=\int_{-2}^{0}-x d x+\int_{0}^{2} 0 d x$
$\left.\frac{x^{2}}{2}\right|_{-2} ^{0}=\frac{4}{2}=2$
19. If the system of equations

$$
\begin{aligned}
& x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 \\
& x+(\cos \alpha) y+(\sin \alpha) z=0 \\
& x+(\sin \alpha) y-(\cos \alpha) z=0
\end{aligned}
$$

has a non-trivial solution, then $\alpha \in\left(0, \frac{\pi}{2}\right)$ is equal to:
(1) $\frac{7 \pi}{24}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{5 \pi}{24}$
(4) $\frac{11 \pi}{24}$

Answer (3)

Sol. $x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0$
$x+(\cos \alpha) y+(\sin \alpha) z=0$
$x+(\sin \alpha) y-(\cos \alpha) z=0$
\because Non-trivial solution
$\Rightarrow D=0$
$\left|\begin{array}{ccc}1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \cos \alpha & \sin \alpha \\ 1 & \sin \alpha & -\cos \alpha\end{array}\right|=0$
$1\left[-\cos ^{2} \alpha-\sin ^{2} \alpha\right]-1[-\sqrt{2} \sin \alpha \cos \alpha-\sqrt{2} \sin \alpha \cos \alpha]$
$+1\left[\sqrt{2} \sin ^{2} \alpha-\sqrt{2} \cos ^{2} \alpha\right]=0$

$-1+2 \sqrt{2} \sin \alpha \cos \alpha+\sqrt{2}\left(\sin ^{2} \alpha-\cos ^{2} \alpha\right)=0$
$\sqrt{2} \sin 2 \alpha-\sqrt{2} \cos 2 \alpha=1$
$\frac{\sin 2 \alpha}{\sqrt{2}}-\frac{\cos 2 \alpha}{\sqrt{2}}=\frac{1}{2}$
$\sin \left(2 \alpha-\frac{\pi}{4}\right)=\sin \frac{\pi}{6}$
$\Rightarrow 2 \alpha-\frac{\pi}{4}=n \pi+(-1)^{n} \frac{\pi}{6}$ for $n=0$
$\Rightarrow \alpha=\frac{5 \pi}{24}$
20. Let the point, on the line passing through the points $P(1,-2,3)$ and $Q(5,-4,7)$, farther from the origin and at a distance of 9 units from the point P, be (α, β, γ). Then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is equal to
(1) 160
(2) 155
(3) 150
(4) 165

Answer (2)

Sol. Line through $P Q$
$\frac{x-1}{4}=\frac{y+2}{-2}=\frac{z-3}{4}$
Any point on $P Q$. be $R(4 \lambda+1,-2 \lambda-2,4 \lambda+3)$
$P R=9$ unit
$(P R)^{2}=81$
$(4 \lambda+1-1)^{2}+(-2 \lambda-2+2)^{2}+(4 \lambda+3-3)^{2}=81$
$16 \lambda^{2}+4 \lambda^{2}+16 \lambda^{2}=81$
$36 \lambda^{2}=81$
$\lambda= \pm \frac{9}{6}= \pm \frac{3}{2}$
$\therefore R$ can be $(7,-5,9)$ or $(-5,1,-3)$
Distance from origin for both points be $\sqrt{49+25+81}$ and $\sqrt{25+1+9}=\sqrt{35}$
\therefore Distance of $(7,-5,9)$ is farthest from origin
$\therefore(\alpha, \beta, \gamma)=(7,-5,9)$
Now $7^{2}+(-5)^{2}+9^{2}=155$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let m and n respectively be the least and the most number of students who studied all the three subjects. Then $m+n$ is equal to \qquad .

Answer (45)

Sol. $n(S)=220$

$$
\begin{aligned}
& n(M) \in[125,130], n(P) \in[85,95], n(C) \in[75,90] \\
& n(M \cup P \cup C)=220-10=210 \\
& n(M \cap P)=40, n(P \cap C)=30, n(M \cap C)=50 \\
& n(M \cup P \cup C)=\sum n(M)-\sum n(M \cap P)+n(M \cap P \cap C) \\
& \Rightarrow n(M \cap P \cap C)=210+(40+30+50)-\sum n(M) \\
& \because\left(n(M \cap P \cap C)_{\max }=n=\min (n(M \cap P), n(P \cap C),\right. \\
& n(M \cap C))=30 \\
& \because\left(\sum n(M)\right)_{\max }=130+95+90=315 \\
& \Rightarrow(n(M \cap P \cap C))_{\min }=m=330-315=15 \\
& \Rightarrow n+m=45
\end{aligned}
$$

22. Let A be a square matrix of order 2 such that $|A|=2$ and the sum of its diagonal elements is -3 . If the points (x, y) satisfying $A^{2}+x A+y I=O$ lie on a hyperbola, whose transverse axis is parallel to the x-axis, eccentricity is e and the length of the latus rectum is l, then $e^{4}+{ }^{4}$ is equal to \qquad _.

Answer (Bonus)

Aakashians Gonquer JEE (Main) 2024 session-1

two Year classioom program

Our Stars

Sol. $|A|=2 \quad \sum$ dia $=-3$
\therefore character equation: $A^{2}+3 A+2 I=0$
$\Rightarrow x=3 \quad y=2$
\because We are getting only one point $(3,2)$ but its given many points satisfy this equation.
Moreover hyperbola whose transverse axis is x axis and passing through $(3,2)$ is not unique.
$\therefore \quad$ multiple value of ' e ' and $L(L R)$ is possible.
We'll not get a unique result.
23. Let A be a 3×3 matrix of non-negative real elements such that $A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.

Then the maximum value of $\operatorname{det}(A)$ is \qquad .

Answer (27)

Sol. Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Now

$$
\begin{aligned}
& A\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=3\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]}
\end{aligned}
$$

$a_{11}+a_{12}+a_{13}=3$
$a_{21}+a_{22}+a_{23}=3$
$a_{31}+a_{32}+a_{33}=3$
Now for maximum value of $\operatorname{det}(A)=a_{i j}\left\{\begin{array}{ll}0 & i \neq j \\ 3 & i=j\end{array}\right\}$
$\therefore|A|=27$
24. If $\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{m \sqrt{5}}{n(2 n)^{2 / 3}}$, where $\operatorname{gcd}(m, n)=1$, then $8 m+12 n$ is equal to \qquad .

Answer (100)

Sol. $I=\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}$
From: $\frac{0}{0}$, using L-H rule

$$
\begin{aligned}
& I=\lim _{x \rightarrow 1} \frac{\frac{1}{3} \times 5(5 x+1)^{-2 / 3}-\frac{1}{3}(x+5)^{-2 / 3}}{\frac{1}{2} \times 2(2 x+3)^{-1 / 2}-\frac{1}{2}(x+4)^{-1 / 2}} \\
& =\frac{\left(\frac{5}{3}-\frac{1}{3}\right) 6^{-2 / 3}}{\frac{1}{2} 5^{-1 / 2}}=\frac{8}{3} \times \frac{5^{1 / 2}}{6^{2 / 3}}=\frac{m \sqrt{5}}{n(2 n)^{2 / 3}} \\
& \Rightarrow m=8, n=3 \\
& \Rightarrow 8 m+12 n=100
\end{aligned}
$$

25. Let the length of the focal chord $P Q$ of the parabola $y^{2}=12 x$ be 15 units. If the distance of $P Q$ from the origin is p, then $10 p^{2}$ is equal to \qquad -.

Answer (72)

Sol.

$$
\begin{aligned}
& A B=15 \Rightarrow\left(3\left(t^{2}-\frac{1}{t^{2}}\right)\right)^{2}+\left(6\left(t+\frac{1}{t}\right)\right)^{2}=225 \\
& \Rightarrow 9\left(t^{2}-\frac{1}{t^{2}}\right)+36\left(t+\frac{1}{t}\right)^{2}=225
\end{aligned}
$$

Aakashians Conquer JEE (Main) 2024 session-1

$300 / 300$
101

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

$$
\begin{aligned}
\Rightarrow & \left(t+\frac{1}{t}\right)^{2}\left[\left(t-\frac{1}{t}\right)^{2}+4\right]=25 \\
& \left(t+\frac{1}{t}\right)^{2}\left(t+\frac{1}{t}\right)^{2}=25 \Rightarrow\left(t+\frac{1}{t}\right)^{4}=25 \\
\Rightarrow & t+\frac{1}{t}= \pm \sqrt{5} \Rightarrow\left(t-\frac{1}{t}\right)= \pm 1
\end{aligned}
$$

Equation of $A B:(y-6 t)=\left(\frac{2 t}{t^{2}-1}\right)\left(x-3 t^{2}\right)$
\Rightarrow Distance from $y-6 t=m x-3 m t^{2}$

$$
\begin{gathered}
\Rightarrow p=\frac{\left|3 m t^{2}-6 t\right|}{\sqrt{1+m^{2}}}=\frac{\left|\left(\frac{6 t}{t^{2}-1}\right)\right|}{\sqrt{5}}=\frac{6}{\sqrt{5}} \\
{\left[m=\frac{2 t}{t^{2}-1}=\frac{2}{t-\frac{1}{t}}= \pm 2 \Rightarrow m^{2}=4\right]}
\end{gathered}
$$

$$
\Rightarrow \quad 10 p^{2}=\frac{10 \times 36}{5} \Rightarrow 72
$$

26. If $\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} x}{1+\sin x \cos x} d x=\frac{1}{a} \log _{e}\left(\frac{a}{3}\right)+\frac{\pi}{b \sqrt{3}}$, where a, $b \in N$, then $a+b$ is equal to \qquad .

Answer (8)

Sol. $I=\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} x}{1+\sin x \cos x} d x=$

$$
\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} x}{\sin ^{2} x+\cos ^{2} x+\sin x \cos x} d x
$$

$$
I=\int_{0}^{\frac{\pi}{4}} \frac{\tan ^{2} x}{1+\tan x+\tan ^{2} x} d x
$$

$=\int_{0}^{\frac{\pi}{4}} \frac{\tan ^{2} x \cdot \sec ^{2} x d x}{\left(1+\tan ^{2} x\right)\left(1+\tan x+\tan ^{2} x\right)}$
Let $\tan x=t$

$$
\begin{aligned}
I & =\int_{0}^{1} \frac{t^{2}}{\left(1+t^{2}\right)\left(1+t+t^{2}\right)} d t \\
& =\int_{0}^{1}\left(\frac{x}{1+x^{2}}-\frac{x}{1+x+x^{2}}\right) d x
\end{aligned}
$$

$$
=\frac{1}{2} \int_{0}^{1} \frac{2 x}{1+x^{2}} d x-\int_{0}^{1} \frac{\frac{1}{2}(2 x+1)-\frac{1}{2}}{1+x+x^{2}} d x
$$

$$
=\frac{1}{2} \ln 2-\frac{1}{2} \ln 3+\frac{1}{2} \int_{0}^{1} \frac{d x}{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}
$$

$$
=\frac{1}{2} \ln \frac{2}{3}+\frac{1}{2} \cdot \frac{2}{\sqrt{3}}\left[\tan ^{-1} \frac{2 x+1}{\sqrt{3}}\right]_{0}^{1}
$$

$$
=\frac{1}{2} \ln \frac{2}{3}+\frac{1}{\sqrt{3}}\left(\frac{\pi}{3}-\frac{\pi}{6}\right)
$$

$$
=\frac{1}{2} \ln \frac{2}{3}+\frac{1}{\sqrt{3}} \cdot \frac{\pi}{6}
$$

$$
\therefore \quad a=2, b=6
$$

$$
a+b=8
$$

27. Let $a=1+\frac{{ }^{2} C_{2}}{3!}+\frac{{ }^{3} C_{2}}{4!}+\frac{{ }^{4} C_{2}}{5!}+\ldots$,

$$
\begin{aligned}
& b=1+\frac{{ }^{1} C_{0}+{ }^{1} C_{1}}{1!}+\frac{{ }^{2} C_{0}+{ }^{2} C_{1}+{ }^{2} C_{2}}{2!} \\
&+\frac{{ }^{3} C_{0}+{ }^{3} C_{1}+{ }^{3} C_{2}+{ }^{3} C_{3}}{3!}+\ldots
\end{aligned}
$$

Then $\frac{2 b}{a^{2}}$ is equal to \qquad .

Answer (8)

Sol. $a=1+\frac{{ }^{2} C_{2}}{3!}+\frac{{ }^{3} C_{2}}{4!}+\frac{{ }^{4} C_{2}}{5!}+\ldots$,

$$
\begin{aligned}
& b=1+\frac{{ }^{1} C_{0}+{ }^{1} C_{1}}{1!}+\frac{{ }^{2} C_{0}+{ }^{2} C_{1}+{ }^{2} C_{2}}{2!}+\ldots \\
& b=1+\frac{2}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\ldots=e^{2}
\end{aligned}
$$

$$
\text { Using } e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots
$$

$$
a=1+\sum_{r=2}^{\infty} \frac{{ }^{r} C_{2}}{(r+1)!}=1+\sum_{r=2}^{\infty} \frac{r(r-1)}{2(r+1)!}
$$

$$
=1+\frac{1}{2} \sum_{r=2}^{\infty} \frac{(r+1) r-2 r}{(r+1)!}
$$

$$
=1+\frac{1}{2} \sum_{r=2}^{\infty} \frac{1}{(r-1)!}-\frac{1}{2} \sum_{r=2}^{\infty} \frac{2 r}{(r+1)!}
$$

$$
=1+\frac{1}{2}\left(\frac{1}{1!}+\frac{1}{2!}+\ldots\right)-\sum_{r=2}^{\infty} \frac{(r+1)-1}{(r+1)!}
$$

$$
=1+\frac{1}{2}(e-1)-\sum_{r=2}^{\infty} \frac{1}{r!}+\sum_{r=2}^{\infty} \frac{1}{(r+1)!}
$$

$$
=1+\frac{1}{2}(e-1)-\left(e-\frac{1}{1!}-\frac{1}{0!}\right)+\left(e-\frac{1}{1!}-\frac{1}{0!}-\frac{1}{2!}\right)
$$

$$
=1+\frac{e}{2}-\frac{1}{2}-e+2+e-2-\frac{1}{2}=\frac{e}{2}
$$

$$
\Rightarrow \frac{2 b}{a^{2}}=\frac{2 e^{2}}{\frac{e^{2}}{4}}=8
$$

28. Let the solution $y=y(x)$ of the differential equation $\frac{d y}{d x}-y=1+4 \sin x$ satisfy $y(\pi)=1$. Then $y\left(\frac{\pi}{2}\right)+10$ is equal to \qquad .

Answer (7)

Sol. $\frac{d y}{d x}-y=1+4 \sin x$
Integrating factor $=e^{-\int d x}=e^{-x}$
Solution is $y e^{-x}=\int(1+4 \sin x) e^{-x} d x$

$$
=-e^{-x}+2 \cdot e^{-x}(-\sin x-\cos x)+C
$$

$y(\pi)=1 \Rightarrow C=0$
Hence $y(x)=-1-2(\sin x+\cos x)$
$y\left(\frac{\pi}{2}\right)+10=7$
29. If the shortest distance between the lines
$\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$ and $\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$
is $\frac{38}{3 \sqrt{5}} k$, and $\int_{0}^{k}\left[x^{2}\right] d x=\alpha-\sqrt{\alpha}$, where $[x]$ denotes the greatest integer function, then $6 \alpha^{3}$ is equal to

Answer (48)

Sol. $L_{1}: \frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4} \quad \vec{b}_{1}=2 \hat{i}+3 \hat{j}+4 \hat{k}$

$$
\vec{a}_{1}=-2 \hat{i}-3 \hat{j}+5 \hat{k}
$$

$$
\begin{aligned}
L_{2}=\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2} & \vec{a}_{2}=3 \hat{i}+2 \hat{j}-4 \hat{k} \\
\vec{b}_{2} & =1 \hat{i}-3 \hat{j}+2 \hat{k}
\end{aligned}
$$

$$
d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|
$$

Aakashians Fonquer JEE (Main) 2024 SESSION-1

$$
\begin{aligned}
& d=\left|\frac{(5 \hat{i}+5 \hat{j}-9 \hat{k}) \cdot(18 \hat{i}-9 \hat{k})}{\sqrt{324+81}}\right| \\
& \left\lvert\, \begin{array}{lll}
\left|\vec{b}_{1} \times \vec{b}_{2}\right| & \Rightarrow\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 4 \\
1 & -3 & 2
\end{array}\right| \\
\Rightarrow \hat{i}(6+12)-\hat{j}(4-4)+\hat{k}(-6-3) \\
\Rightarrow(18 \hat{i}-9 \hat{k})
\end{array}\right.
\end{aligned}
$$

$$
d=\left|\frac{90+81}{9 \sqrt{5}}\right|
$$

$$
d=\frac{171}{9 \sqrt{5}}
$$

$$
\frac{38}{3 \sqrt{5}} k=\frac{171}{9 \sqrt{5}}
$$

$$
\frac{38}{3 \sqrt{5}} k=\frac{57}{3 \sqrt{5}}
$$

$$
k=\frac{57}{38}=\frac{3}{2}
$$

$$
\int_{0}^{\frac{3}{2}}\left[x^{2}\right] d x
$$

$$
\int_{0}^{1} 0 d x+\int_{0}^{\sqrt{2}} 1 d x+\int_{\sqrt{2}}^{\frac{3}{2}} 2 d x
$$

$$
0+(\sqrt{2}-1)+2\left(\frac{3}{2}-\sqrt{2}\right)
$$

$$
\sqrt{2}-1+3-2 \sqrt{2}
$$

$$
2-\sqrt{2}
$$

$\alpha=2$
$6 \alpha^{3}=6(2)^{3}=48$
30. Let $A B C$ be a triangle of area $15 \sqrt{2}$ and the vectors $\overrightarrow{A B}=\hat{i}+2 \hat{j}-7 \hat{k}, \overrightarrow{B C}=a \hat{i}+b \hat{j}+c \hat{k}$ and $\overrightarrow{A C}=6 \hat{i}+d \hat{j}-2 \hat{k}, d>0$. Then the square of the length of the largest side of the triangle $A B C$ is
\qquad .

Answer (54)

Sol. Area of triangle $A B C=15 \sqrt{2}$

$$
\begin{align*}
& \Rightarrow \frac{1}{2}|\overline{A B} \times \overline{A C}|=15 \sqrt{2} \tag{i}\\
& \overline{A B} \times \overline{A C}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & -7 \\
6 & d & -2
\end{array}\right| \\
& =(7 d-4) \hat{i}-40 \hat{j}+(d-12) \hat{k} \tag{ii}
\end{align*}
$$

From (i) and (ii) $5 d^{2}-8 d-4=0$
$\Rightarrow \quad d=\frac{-2}{5}$ (Rejected) or $d=2$

Also, $\overline{A B}+\overline{B C}=\overline{A C}$
$\Rightarrow a+1=6 \Rightarrow a=5$
$b+2=d \Rightarrow b=0$
and $c-7=-2 \Rightarrow c=5$
$|\overline{A B}|=\sqrt{54},|\overline{A C}|=\sqrt{44},|\overline{B C}|=\sqrt{50}$
Largest side has length of $\sqrt{54}$ units

Aakashians Conquer JEE (Main) 2024 sEssion-1

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

31. An electron is projected with uniform velocity along the axis inside a current carrying long solenoid. Then
(1) the electron will continue to move with uniform velocity along the axis of the solenoid.
(2) the electron will experience a force at 45° to the axis and execute a helical path.
(3) the electron will be accelerated along the axis.
(4) the electron path will be circular about the axis.

Answer (1)
Sol. \because Electron is moving along the direction of magnetic field
So, $F_{\text {net }}=q V \beta \sin 0^{\circ}=0$
i.e. electron will move direction of its initial velocity without changing its motion and speed.
32. The co-ordinates of a particle moving in $x-y$ plane are given by :
$x=2+4 t, y=3 t+8 t^{2}$.
The motion of the particle is :
(1) non-uniformly accelerated.
(2) uniformly accelerated having motion along a straight line.
(3) uniform motion along a straight line.
(4) uniformly accelerated having motion along a parabolic path.
Answer (4)

Sol. $\quad x=2+4 t, \quad y=3 t+8 t^{2}$

$$
\begin{array}{lll}
\Rightarrow & v_{x}=4 & , v_{y}=3+16 t \\
\Rightarrow & a_{x}=0 & , a_{y}=16
\end{array}
$$

So, its motion should be uniformly accelerated and parabolic path.

33. If a rubber ball falls from a height h and rebounds upto the height of $h / 2$. The percentage loss of total energy of the initial system as well as velocity ball before it strikes the ground, respectively, are
(1) $50 \%, \sqrt{g h}$
(2) $50 \%, \sqrt{\frac{g h}{2}}$
(3) $50 \%, \sqrt{2 g h}$
(4) $40 \%, \sqrt{2 g h}$

Answer (3)
Sol. Velocity of ball just before strike $=\sqrt{2 g h}$

$$
\begin{aligned}
\% \text { loss in energy } & =\frac{m g h-\frac{m g h}{2}}{m g h} \times 100 \\
& =50 \%
\end{aligned}
$$

34. The resistances of the platinum wire of a platinum resistance thermometer at the ice point and steam point are 8Ω and 10Ω respectively. After inserting in a hot bath of temperature $400^{\circ} \mathrm{C}$, the resistance of platinum wire is
(1) 10Ω
(2) 16Ω
(3) 8Ω
(4) 2Ω

Answer (2)

Sol. At $t=0^{\circ} \mathrm{C} \rightarrow R_{0}=8 \Omega$
At $t=100^{\circ} \mathrm{C} \rightarrow R=10 \Omega$
$10=8(1+\alpha \times 100)$
$\Rightarrow \quad \alpha=\frac{2}{800}$
Again at $t=400$

$$
\begin{aligned}
R & =8\left(1+\frac{2}{800} \times 400\right) \\
& =16 \Omega
\end{aligned}
$$

35. On celcius scale the temperature of body increases by $40^{\circ} \mathrm{C}$. The increase in temperature on Fahrenheit scale is
(1) $70^{\circ} \mathrm{F}$
(2) $75^{\circ} \mathrm{F}$
(3) $68^{\circ} \mathrm{F}$
(4) $72^{\circ} \mathrm{F}$

Answer (4)
Sol. Here $\frac{F-32}{9}=\frac{C}{5}$
$\Rightarrow \quad \Delta C=\frac{5}{9} \Delta F$
$\Rightarrow 40=\frac{5}{9} \Delta F$
$\Rightarrow \Delta F=72^{\circ} F$
36. The electric field in an electromagnetic wave is given by $\vec{E}=\hat{i} 40 \cos \omega\left(t-\frac{z}{c}\right) N C^{-1}$. The magnetic field induction of this wave is (in SI unit) :
(1) $\vec{B}=\hat{k} \frac{40}{c} \cos \omega\left(t-\frac{z}{c}\right)$
(2) $\vec{B}=\hat{i} \frac{40}{c} \cos \omega\left(t-\frac{z}{c}\right)$
(3) $\vec{B}=\hat{j} \frac{40}{c} \cos \omega\left(t-\frac{z}{c}\right)$
(4) $\vec{B}=\hat{j} 40 \cos \omega\left(t-\frac{z}{c}\right)$

Answer (3)

Sol. $\vec{E}=\hat{i} 40 \cos \omega\left(t-\frac{z}{c}\right) \frac{\mathrm{N}}{\mathrm{C}}$
$B_{0}=\frac{40}{c}$
and as $\vec{C}=\vec{E} \times \vec{B}$, B should be along y-axis.
$\therefore \quad \vec{B}=\hat{j} \frac{40}{c} \cos \omega\left(t-\frac{z}{c}\right)$
37. Which of the following nuclear fragments corresponding to nuclear fission between neutron $\binom{1}{0}$ and uranium isotope $\left({ }_{92}^{235} \mathrm{U}\right)$ is correct?
(1) ${ }_{51}^{153} \mathrm{Sb}+{ }_{41}^{99} \mathrm{Nb}+3{ }_{0}^{1} n$
(2) ${ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{89} \mathrm{Kr}+4{ }_{0}^{1} n$
(3) ${ }_{56}^{44} \mathrm{Ba}+{ }_{36}^{89} \mathrm{Kr}+3{ }_{0}^{1} n$
(4) ${ }_{56}^{140} \mathrm{Xe}+{ }_{38}^{94} \mathrm{Sr}+3{ }_{0}^{1} n$

Answer (3)
Sol. Nuclear fission of U^{235} takes place as ${ }_{0}^{1} n+{ }_{92}^{235} \mathrm{U} \longrightarrow{ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{89} \mathrm{Kr}+3{ }_{0}^{1} n$
38. A body travels 102.5 m in $n^{\text {th }}$ second and 115.0 m in $(n+2)^{\text {th }}$ second. The acceleration is
(1) $6.25 \mathrm{~m} / \mathrm{s}^{2}$
(2) $12.5 \mathrm{~m} / \mathrm{s}^{2}$
(3) $5 \mathrm{~m} / \mathrm{s}^{2}$
(4) $9 \mathrm{~m} / \mathrm{s}^{2}$

Answer (1)

Sol. $S_{n}=u+\frac{a}{2}(2 n-1)$
$102.5=u+\frac{a}{2}(2 n-1)$
$115=u+\frac{a}{2}[2(n+2)-1]$
$115=u+\frac{a}{2}[2 n+3]$
On solving $\rightarrow a=6.25 \mathrm{~m} / \mathrm{s}^{2}$

39. A metal wire uniform mass density having length L and mass M is bent to form a semicircular arc and a particle of mass m is placed at the centre of the arc. The gravitational force on the particle by the wire is
(1) $\frac{G M m \pi}{2 L^{2}}$
(2) $\frac{G m M \pi^{2}}{L^{2}}$
(3) 0
(4) $\frac{2 G m M \pi}{L^{2}}$

Answer (4)

Sol.

Field at centre due to arc, $I=\frac{2 G M \pi}{L^{2}}$
$\therefore \quad$ Net force on mass, $F=\frac{2 G M m \pi}{L^{2}}$
40. To measure the internal resistance of a battery, potentiometer is used. For $R=10 \Omega$, the balance point is observed at $\ell=500 \mathrm{~cm}$ and for $R=1 \Omega$ the balance point is observed at $\ell=400 \mathrm{~cm}$. The internal resistance of the battery is approximately:
(1) 0.1Ω
(2) 0.2Ω
(3) 0.4Ω
(4) 0.3Ω

Answer (4)

Sol. $\frac{\ell_{1}}{\ell_{2}}=\left(\frac{E R_{1}}{R_{1}+r}\right) \times \frac{R_{2}+r}{E R_{2}}$
$\Rightarrow \frac{\ell_{1}}{\ell_{2}}=\frac{R_{1}\left(R_{2}+r\right)}{R_{2}\left(R_{1}+r\right)}$
$\Rightarrow \frac{500}{400}=\frac{10(1+r)}{1(10+r)}$
$\Rightarrow 10+r=8+8 r$
$\Rightarrow 2=7 r$
$\Rightarrow r \approx 0.3 \Omega$
41. A wooden block, initially at rest on the ground, is pushed by a force which increases linearly with time t. Which of the following curve best describes acceleration of the block with time
(1)

(2)

(3)

(4)

Answer (3)
Sol. Acceleration (a) $=\frac{f-F}{m}$
When applied force became equal to $f_{\text {max }}$, block will start moving.

As F increases linearly, so acceleration of also moving block will increase linearly.

Aakashians Conquer JEE (Main) 2024 sEssIon-1

"936 99+ perceanlers
*4145 ${ }^{95+\text { PERCENTILERS }}$

*(Includes Students from Classroom, Distance $\&$ Digital Courses) is

Our Stars

42. $P-T$ diagram of an ideal gas having three different densities p_{1}, p_{2}, p_{3} (in three different cases) is shown in the figure. Which of the following is correct:

(1) $p_{1}<p_{2}$
(2) $p_{1}=p_{2}=p_{3}$
(3) $p_{2}<p_{3}$
(4) $p_{1}>p_{2}$

Answer (4)
Sol. $P M=\rho R T$
$\Rightarrow \frac{P}{T}=\left(\frac{R}{m}\right) \rho=$ slope
So from given curve, $\rho_{1}>\rho_{2}>\rho_{3}$
43. An infinitely long positively charged straight thread has a linear charge density $\lambda \mathrm{Cm}^{-1}$. An electron revolves along a circular path having axis along the length of the wire. The graph that correctly represents the variation of the kinetic energy of electron as a function of radius of circular path from the wire is
(1)

(2)

Answer (2)

Sol. The electron revolves in a circle, so its kinetic energy remains same.
So option (2) best represent the given situation.
44. Given below are two statements

Statement I: When speed of liquid is zero everywhere, pressure difference at any two points depends on equation $P_{1}-P_{2}=\rho g\left(h_{2}-h_{1}\right)$.
Statement-II: In ventury tube shown $2 g h=v_{1}^{2}-v_{2}^{2}$

In the light of the above statements, choose the most appropriate answer from the options given below.
(1) Both Statement I and Statement II are correct.
(2) Statement I is correct but Statement II is incorrect.
(3) Both Statement I and Statement II are incorrect.
(4) Statement I is incorrect but Statement II is correct.
Answer (2)
Sol. If speed $=0$
Then $P_{1}+\rho g h_{1}=P_{2}+\rho g h_{2}$
In given ventury tube,

$$
\begin{aligned}
& \quad P_{1}+\rho g h+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2} \\
& \Rightarrow \\
& \frac{1}{2} \rho\left(v_{1}^{2}-v_{2}^{2}\right)=\left(P_{2}-P_{1}\right)-\rho g h \\
& \Rightarrow \\
& v_{1}^{2}-v_{2}^{2}=\frac{2\left(P_{2}-P_{1}\right)}{\rho}-2 g h
\end{aligned}
$$

RISHIS SHUKLA
two year classioom program
-936 ${ }^{\text {99+ }}$ +ecearilless
45. Which figure shows the correct variation of applied potential difference (V) with photoelectric current (Λ at two different intensities of light $\left(I_{1}<I_{2}\right)$ of same wavelengths:
(1)

(2)

(3)

(4)

Answer (1)

Sol. Stopping potential is independent on intensity but photocurrent increases non-linearly on increasing intensity.
46. In an experiment to measure focal length (f) of convex lens, the least counts of the measuring scales for the position of object (u) and for the position of image (v) are Δu and Δv, respectively. The error in the measurement of the focal length of the convex lens will be:
(1) $f^{2}\left[\frac{\Delta u}{u^{2}}+\frac{\Delta v}{v^{2}}\right]$
(2) $2 f\left[\frac{\Delta u}{u}+\frac{\Delta v}{v}\right]$
(3) $\frac{\Delta u}{u}+\frac{\Delta v}{v}$
(4) $f\left[\frac{\Delta u}{u}+\frac{\Delta v}{v}\right]$

Answer (1)

Sol. $\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$\Rightarrow \frac{d f}{f^{2}}=\frac{d v}{v^{2}}-\frac{d u}{u^{2}}$
For small change and maximum \% error
$d f \rightarrow \Delta \cdot f$
$\Delta f=f^{2}\left(\frac{\Delta u}{u^{2}}+\frac{\Delta v}{v^{2}}\right)$
47. The equation of stationary wave is:
$y=2 a \sin \left(\frac{2 \pi n t}{\lambda}\right) \cos \left(\frac{2 \pi x}{\lambda}\right)$.
Which of the following is NOT correct:
(1) The dimensions of x is [L]
(2) The dimensions of n / λ is $[T]$
(3) The dimensions of n is $\left[L T^{-1}\right]$
(4) The dimensions of $n t$ is [L]

Answer (2)
Sol. $[x]=L$
$[n t]=L$
$[n]=L T^{-1}$
$\left[\frac{n}{-1}\right]=T^{-1}$
48. An effective power of a combination of 5 identical convex lenses which are kept in contact along the principal axis is 25 D . Focal length of each of the convex lens is
(1) 20 cm
(2) 25 cm
(3) 50 cm
(4) 500 cm

Answer (1)
Sol. $\frac{1}{F}=\frac{1}{f}+\frac{1}{f} \ldots \ldots . .=\frac{5}{f}$
$\Rightarrow 25=\frac{5}{f}$
$\Rightarrow \quad f=\frac{1}{5} m=20 \mathrm{~cm}$

49. The value of net resistance of the network as shown in the given figure is:

(1) 6Ω
(2) $(15 / 4) \Omega$
(3) $(30 / 11) \Omega$
(4) $(5 / 2) \Omega$

Answer (1)
Sol.

Here D_{1} is forward wise while D_{2} is reversed wise
So net resistance between end, $R=\frac{15 \times 10}{25}=6 \Omega$
50. In an ac circuit, the instantaneous current is zero, when the instantaneous voltage is maximum. In this case the source may be connected to :
A. pure inductor.
B. pure capacitor.
C. pure resistor.
D. combination of an inductor and capacitor.

Choose the correct answer from the options given below:
(1) A and B only
(2) A, B and D only
(3) B, C and D only
(4) A, B and C only

Answer (2)
Sol. In this situation, phase difference between the current and the voltage is $\frac{\pi}{2}$.
This can be achieved by connecting L, C or combination of LC.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
51. Twelve wires each having resistance 2Ω are joined to form a cube. A battery of 6 V emf is joined across point a and c. The voltage difference e and f is
\qquad V.

Answer (1)
Sol. The circuit can be simplified as

$$
R_{\mathrm{ac}}=\frac{6 \times 2}{8}=\frac{3}{2} \Omega
$$

$$
i=1 \mathrm{Amp} .
$$

$$
V_{e f}=\left(\frac{i}{2}\right) 2
$$

$$
=1 \mathrm{~V}
$$

Aakashians Conquer JEE (Main) 2024

Our Stars

As per student response sheet and NTA answer key.
100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

52. An infinite plane sheet of charge having uniform surface charge density $+\sigma_{s} \mathrm{C} / \mathrm{m}^{2}$ is placed on $x-y$ plane. Another infinitely long line charge having uniform linear charge density $+\lambda_{e} \mathrm{C} / \mathrm{m}$ is placed at $z=4 \mathrm{~m}$ plane and parallel to y-axis. If the magnitude values $\left|\sigma_{s}\right|=2|\lambda|$ then at point $(0,0,2)$, the ratio of magnitudes of electric field values due to sheet charge to that of line charge is $\pi \sqrt{n}: 1$. The value of n is \qquad -

Answer (16)

Sol.

Given $\sigma_{s}=2 \lambda_{e}$
At point $P, E_{S}=\frac{\sigma_{s}}{2 \varepsilon_{0}}$

$$
\begin{aligned}
& E_{l}=\frac{\lambda_{e}}{2 \pi r \varepsilon_{0}} \\
& \frac{E_{S}}{E_{l}}=4 \pi: 1=\pi \sqrt{n}: 1
\end{aligned}
$$

For value of $n=16$
53. A soap bubble is blown to a diameter of 7 cm . 36960 erg of work is done in blowing it further. If surface tension of soap solution is 40 dyne/cm then the new radius is \qquad cm Take $\left(\pi=\frac{22}{7}\right)$.
Answer (7)

Sol. $\Delta W=8 \pi\left(R_{2}^{2}-R_{1}^{2}\right) T$
$36960=8 \times \frac{22}{7} \times 40\left(R_{2}^{2}-\frac{49}{4}\right)$
$R_{2}=7 \mathrm{~cm}$
54. An elastic spring under tension of 3 N has a length a. Its length is b under tension 2 N . For its length $(3 a-2 b)$, the value of tension will be \qquad N .

Answer (5)

Sol. Let natural length of spring $=I_{0}$

$$
\begin{align*}
& \text { as give } \rightarrow \quad k\left(a-I_{0}\right)=3 \tag{i}\\
& \rightarrow \quad k\left(b-I_{0}\right)=2 \tag{ii}\\
& \Rightarrow \frac{a-I_{0}}{b-I_{0}}= \frac{3}{2} \\
& \Rightarrow 2 a-2 I_{0}=3 b-3 I_{0} \\
& \Rightarrow I_{0}=3 b-2 a \text { and } k(a-b)=1
\end{align*}
$$

Again

$$
\begin{aligned}
& k\left(3 a-2 b-I_{0}\right)=T \\
\Rightarrow & k(3 a-2 b-3 b+2 a)=T \\
\Rightarrow & k(5 a-5 b)=T \\
\Rightarrow & 5 k(a-b)=T \\
\Rightarrow & T=5
\end{aligned}
$$

55. A hydrogen atom changes its state from $n=3$ to $n=2$. Due to recoil, the percentage change in the wave length of emitted light is approximately 1×10^{-n}. The value of n is \qquad .
[Given $R h c=13.6 \mathrm{eV}, h c=1242 \mathrm{eV} \mathrm{nm}, h=6.6 \times 10^{-34} \mathrm{~J} \mathrm{~s}$ mass of the hydrogenatom $=1.6 \times 10^{-27} \mathrm{~kg}$]

Answer (7)

Sol. $\Delta E=13.6 \mathrm{eV}\left(\frac{1}{4}-\frac{1}{9}\right)$

$$
=\frac{68}{36} \mathrm{eV}=1.89 \mathrm{eV}
$$

Due to recoil of hydrogen atom, the energy of emitted photon will decrease by very small amount. So for approximate calculations,

$$
\% \text { charge }=\frac{\Delta E_{\text {atom }}}{\Delta E} \times 100
$$

$$
=\frac{\frac{\left(\frac{\Delta E}{C}\right)^{2}}{2 m}}{\Delta E} \times 100
$$

$$
=\frac{\Delta E}{C^{2} \times 2 m} \times 100
$$

$$
=\frac{1.89 \times 1.6 \times 10^{-19} \times 100}{\left(3 \times 10^{8}\right)^{2} \times 2 \times 1.6 \times 10^{-27}}
$$

$$
=1.05 \times 10^{-7} \%
$$

$\therefore n=7$
56. A alternating current at any instant is given by $i=\left[6+\sqrt{56} \sin \left(100 \pi t+\frac{\pi}{3}\right)\right]$ A. The rms value of the current is \qquad A.

Answer (8)

Sol. $i=\left[6+\sqrt{56} \sin \left(100 \pi t+\frac{\pi}{3}\right)\right] \mathrm{A}$.

$$
\begin{aligned}
i_{\mathrm{rms}} & =\sqrt{l_{1}^{2}+\frac{l_{2}^{2}}{2}} \\
& =\sqrt{36+\frac{56}{2}} \\
& =8 \mathrm{~A}
\end{aligned}
$$

57. Two wavelengths λ_{1} and λ_{2} are used in Young's double slit experiment. $\lambda_{1}=450 \mathrm{~nm}$ and $\lambda_{2}=650 \mathrm{~nm}$. The minimum order of fringe produced by λ_{2}, which overlaps with the fringe produced by λ_{1} is n. The value of n is \qquad .

Answer (9)

Sol. For overlap
$n_{1} \lambda_{1}=n_{2} \lambda_{2}$
$\Rightarrow \frac{\lambda_{2}}{\lambda_{1}}=\frac{n_{1}}{n_{2}}$
$\frac{n_{1}}{n_{2}}=\frac{13}{9}$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS] \qquad
58. The magnetic field existing in a region is given by $\vec{B}=0.2(1+2 x) \hat{k} T$. A square loop of edge 50 cm carrying 0.5 A current is placed in $x-y$ plane with its edges parallel to the $x-y$ axes, as shown in figure. The magnitude of the net magnetic force experienced by the loop is \qquad mN .

Answer (50)
Sol.

$$
\vec{F}_{B C}+\vec{F}_{D A}=0
$$

$$
\vec{F}_{A B}=i l B=0.5 \times 0.5(5)=1.25 \mathrm{~N} \times 0.2=0.25 \mathrm{~N}
$$

$$
\vec{F}_{C D}=0.5 \times 0.5(6)=1.5 \times 0.2=0.3 \mathrm{~N}
$$

$$
F_{\text {net }}=0.05 \mathrm{~N}
$$

$$
=50 \mathrm{mN}
$$

59. Two forces $\overline{F_{1}}$ and $\overline{F_{2}}$ are acting on a body. One force has magnitude thrice that of the other force and the resultant of the two forces is equal to the force of larger magnitude. The angle between \vec{F}_{1} and \vec{F}_{2} is $\cos ^{-1}\left(\frac{1}{n}\right)$. The value of $|n|$ is \qquad .

Answer (6)

Sol. $F_{1}=F$
$F_{2}=3 F$
$F_{\text {net }}=3 F=F \sqrt{9+1+6 \cos \theta}$
$\Rightarrow 9=10+6 \cos \theta$
$\Rightarrow \cos \theta=-\frac{1}{6}$
$\therefore|n|=6$
60. A solid sphere and a hollow cylinder roll up without slipping on same inclined plane with same initial speed v. The sphere and the cylinder reaches upto maximum heights h_{1} and h_{2} respectively, above the initial level. The ratio $h_{1}: h_{2}$ is $\frac{n}{10}$. The value of n is

Answer (7)

Sol. If both having same mass and radius,
then for solid sphere, K.E. $=\frac{1}{2}\left(m v^{2}\right)\left(\frac{7}{5}\right)=m g h_{1}$
for hollow cylinder, $\mathrm{K} . \mathrm{E}=m v^{2}=m g h_{2}$

$$
\frac{h_{1}}{h_{2}}=\frac{7}{10}
$$

"936 99+ рegeentlers
**145 ${ }^{95+\text { PERCENTLLERS }}$

\qquad

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Number of molecules/ions from the following in which the central atom is involved in sp^{3} hybridization is \qquad .
$\mathrm{NO}_{3}^{-}, \mathrm{BCl}_{3}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}_{3}$
(1) 3
(2) 4
(3) 2
(4) 1

Answer (3)
Sol. ClO_{2}^{-}and ClO_{3} are involved in sp^{3} hybridisation.
62. The element which shows only one oxidation state other than its elemental form is
(1) Nickel
(2) Titanium
(3) Cobalt
(4) Scandium

Answer (4)
Sol. Scandium shows only one oxidation state other than its elemental form which is +3 .
63. Given below are two statements :

Statement I: Acidity of α-hydrogens of aldehydes and ketones is responsible for Aldol reaction.
Statement II : Reaction between benzaldehyde and ethanal will NOT give Cross - Aldol product.

In the light of the above statements, choose the
most appropriate answer from the options given below.
(1) Both Statement I and Statement II are correct
(2) Both Statement I and Statement II are incorrect
(3) Statement I is correct but Statement II is incorrect
(4) Statement I is incorrect but Statement II is correct

Answer (3)

Sol. Statement I is correct as acidity of α-hydrogens is responsible for Aldol reaction.
Statement II : Benzaldehyde and ethanal can give Cross-Aldol condensation reaction.

Hence, Statement II is incorrect.
64.

Identify (B) and (C) and how are (A) and (C) related?
(B)
(C)
(1)

group isomers
(2)

isomers
(3)

isomers
(4)

Derivative

Answer (3)

Aakashians Conquer JEE (Main) 2024 sEssion-1

RISHIS SHUKLA
TWO YEAR CLASSROOM PROGRAM

**4 $44^{95+\text { PERCENTILERS }}$

Sol.

(A) and (C) are position isomers.
\therefore Option (3) is correct.
65. Which among the following is incorrect statement?
(1) Hydrogen ion $\left(\mathrm{H}^{+}\right)$shows negative electromeric effect
(2) The electromeric effect is, temporary effect
(3) Electromeric effect dominates over inductive effect
(4) The organic compound shows electromeric effect in the presence of the reagent only

Answer (1)

Sol. Hydrogen ion does not show negative electromeric effect.
66. The correct order of first ionization enthalpy values of the following elements is
(A) O
(B) N
(C) Be
(D) F
(E) B

Choose the correct answer from the options given below.
(1) C $<$ E $<$ A $<$ B $<$ D
(2) A $<$ B $<$ D $<$ C $<$ E
(3) E $<$ C $<$ A $<$ B $<$ D
(4) B $<$ D $<$ C $<$ E $<$ A

Answer (3)
Sol. Correct ionization enthalpy order :

$$
\begin{aligned}
& \mathrm{B}<\mathrm{Be}<\mathrm{O}<\mathrm{N}<\mathrm{F} \\
\text { or } & \mathrm{E}<\mathrm{C}<\mathrm{A}<\mathrm{B}<\mathrm{D}
\end{aligned}
$$

67. One of the commonly used electrode is calomel electrode. Under which of the following categories, calomel electrode comes?
(1) Metal - Insoluble Salt- Anion electrodes
(2) Oxidation - Reduction electrodes
(3) Gas - Ion electrodes
(4) Metal ion - Metal electrodes

Answer (1)

Sol. Calomel electrode is metal-insoluble salt - Anion electrode.
68. Which of the following nitrogen containing compound does not give Lassaigne's test?
(1) Hydrazine
(2) Glycene
(3) Urea
(4) Phenyl hydrazine

Answer (1)

Sol. Hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ doesn't contain any carbon atom and hence doesn't give Lassaigne test.
69. Number of elements from the following that CANNOT form compounds with valencies which match with their respective group valencies is \qquad _.

B, C, N, S, O, F, P, Al, Si
(1) 6
(2) 5
(3) 7
(4) 3

Answer (4)

Sol. N, F and O will not satisfy the given condition.
70. What will be the decreasing order of basic strength of the following conjugate bases?
${ }^{-} \mathrm{OH}, \mathrm{R} \overline{\mathrm{O}}, \mathrm{CH}_{3} \mathrm{CO} \overline{\mathrm{O}}, \mathrm{C} \overline{\mathrm{I}}$
(1) $\mathrm{CI}>-\mathrm{OH}>\mathrm{R} \overline{\mathrm{O}}>\mathrm{CH}_{3} \mathrm{CO} \overline{\mathrm{O}}$
(2) ${ }^{-} \mathrm{OH}>\mathrm{R} \overline{\mathrm{O}}>\mathrm{CH}_{3} \mathrm{CO} \overline{\mathrm{O}}>\mathrm{CT}$
(3) $\mathrm{R} \overline{\mathrm{O}}>-\mathrm{OH}>\mathrm{CH}_{3} \mathrm{CO} \overline{\mathrm{O}}>\mathrm{C} \overline{\mathrm{I}}$
(4) $\mathrm{CI}>\mathrm{R} \overline{\mathrm{O}}>{ }^{-} \mathrm{OH}>\mathrm{CH}_{3} \mathrm{CO} \overline{\mathrm{O}}$

Answer (3)

Sol. Acidic strength order
$\mathrm{HCl}>\mathrm{CH}_{3} \mathrm{COOH}>\mathrm{H}_{2} \mathrm{O}>\mathrm{ROH}$
Basic strength order
$\mathrm{C} \overline{\mathrm{T}}<\mathrm{CH}_{3} \mathrm{CO} \overline{0}<{ }^{-} \mathrm{OH}<\mathrm{R} \overline{\mathrm{O}}$
71. The Molarity (M) of an aqueous solution containing 5.85 g of NaCl in 500 mL water is :
(Given: Molar Mass $\mathrm{Na}: 23$ and $\mathrm{Cl}: 35.5 \mathrm{gmol}^{-1}$)
(1) 0.2
(2) 20
(3) 4
(4) 2

Answer (1)
Sol. Moles $=0.1$
Volume $=0.5 \mathrm{~L}$
Molarity $=\frac{0.1}{0.5}=0.2 \mathrm{M}$
72. Match List I with List II :

	List-I Mechanism steps		List-II Effect
(A)		(I)	-E effect
(B)		(II)	-R effect
(C)		(III)	$+E$ effect
(D)		(IV)	$+\mathrm{R}$ effect

Choose the correct answer from the options given below.
(1) (A) - (IV), (B) - (III), (C) - (I), (D) - (II)
(2) (A) - (I), (B) - (II), (C) - (IV), (D) - (III)
(3) (A) - (II), (B) - (IV), (C) - (III), (D) - (I)
(4) (A) - (III), (B) - (I), (C) - (II), (D) - (IV)

Answer (1)

Sol. A - +R(effect) (IV)
B - +E(effect) (III)
C - -E(effect) (I)
D - (-R effect) (II)
73. Identify the correct set of reagents or reaction conditions ' X ' and ' Y ' in the following set of transformation.

(1) $\mathrm{X}=$ conc.alc. $\mathrm{NaOH}, 80^{\circ} \mathrm{C}, \mathrm{Y}=\mathrm{Br}_{2} / \mathrm{CHCl}_{3}$
(2) $\mathrm{X}=$ conc.alc. $\mathrm{NaOH}, 80^{\circ} \mathrm{C}, \mathrm{Y}=\mathrm{HBr} /$ acetic acid
(3) $\mathrm{X}=$ dil.aq. $\mathrm{NaOH}, 20^{\circ} \mathrm{C}, \quad \mathrm{Y}=\mathrm{Br}_{2} / \mathrm{CHCl}_{3}$
(4) $\mathrm{X}=$ dil.aq. $\mathrm{NaOH}, 20^{\circ} \mathrm{C}, \quad \mathrm{Y}=\mathrm{HBr} /$ acetic acid

Answer (2)

Sol. X : Alc. KOH
$\mathrm{Y}: \mathrm{HBr} \mid$ Acetic acid
Product is $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}$
Final product is $\mathrm{CH}_{3}-\underset{\mid}{\mathrm{Cr}} \mathrm{CH}-\mathrm{CH}_{3}$

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

74. What pressure (bar) of H_{2} would be required to make emf of hydrogen electrode zero in pure water at $25^{\circ} \mathrm{C}$?
(1) 10^{-14}
(2) 0.5
(3) 10^{-7}
(4) 1

Answer (1)

Sol. $\left[\mathrm{H}^{+}\right]=10^{-7} \mathrm{M}$
$\mathrm{H}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}$
$P_{\mathrm{H}_{2}}=\left[\mathrm{H}^{+}\right]^{2}=10^{-14}$
Option (1) is correct
75. Identify the product in the following reaction :

(1)

(2)

(3)

(4)

Answer (4)

Sol. Clemmensen reduction will convert

76. Which of the following is the correct structure of L-Glucose?
(1)

(2)

(3)

(4)

Answer (1)

Aakashians Conquer JEE (Main) 2024 sEssion-1

Perfect Scare!

100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

Our Stars

77. Number of complexes from the following with even number of unpaired " d " electrons is \qquad .
$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$, $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
[Given atomic numbers : $\mathrm{V}=23, \mathrm{Cr}=24, \mathrm{Fe}=26$,
$\mathrm{Ni}=28, \mathrm{Cu}=29]$
(1) 1
(2) 5
(3) 2
(4) 4

Answer (3)

Sol. $\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightarrow 2$ unpaired electrons
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \rightarrow 4$ unpaired electrons
Above 2 complex have even number of unpaired electrons.
78. The correct sequence of ligands in the order of decreasing field strength is
(1) $\mathrm{NCS}^{-}>$EDTA $^{4-}>\mathrm{CN}^{-}>\mathrm{CO}$
(2) $\mathrm{S}^{2-}>-\mathrm{OH}>\mathrm{EDTA}^{4-}>\mathrm{CO}$
(3) $\mathrm{CO}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}^{-}>\mathrm{S}^{2-}$
(4) ${ }^{-} \mathrm{OH}>\mathrm{F}^{-}>\mathrm{NH}_{3}>\mathrm{CN}^{-}$

Answer (3)

Sol. Field strength order : $\mathrm{CO}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}^{-}>\mathrm{S}^{2-}$
79. In the precipitation of the iron group (III) in qualitative analysis, ammonium chloride is added before adding ammonium hydroxide to
(1) Prevent interference by phosphate ions
(2) Decrease concentration of -OH ions
(3) Increase concentration of Cl^{-}ions
(4) Increase concentration of NH_{4}^{+}ions

Answer (2)

Sol. Ammonium chloride is added to increase NH_{4}^{+}ions and hence decrease concentration of OH^{-}ions.
80. Which one of the following molecules has maximum dipole moment?
(1) NF_{3}
(2) NH_{3}
(3) PF_{5}
(4) CH_{4}

Answer (2)

Sol. NH_{3} have more dipole moment than NF_{3}.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
81. Number of molecules/species from the following having one unpaired electron is \qquad .
$\mathrm{O}_{2}, \mathrm{O}_{2}^{-1}, \mathrm{NO}, \mathrm{CN}^{-1}, \mathrm{O}_{2}^{2-}$

Answer (2)

Sol. O_{2}^{-}and NO have 1 unpaired electron.
82. The number of the correct reaction(s) among the following is \qquad .
(A)
 Anhyd. AlCl_{3}

(B)

(C)

(D)

Answer (1)

Sol. Only reaction in option (C) is correct.
83. Only 2 mL of KMnO_{4} solution of unknown molarity is required to reach the end point of a titration of 20 mL of oxalic acid (2 M) in acidic medium. The molarity of KMnO_{4} solution should be \qquad M.

Answer (8)

Sol. $(M) \times(2) \times(5)=2 \times 20 \times 2$
M = 8
84. 2.5 g of a non-volatile, non-electrolyte is dissolved in 100 g of water at $25^{\circ} \mathrm{C}$. The solution showed a boiling point elevation by $2^{\circ} \mathrm{C}$. Assuming the solute concentration is negligible with respect to the solvent concentration, the vapour pressure of the resulting aqueous solution is \qquad mm of Hg (nearest integer)
[Given: Molal boiling point elevation constant of water $\left.\left(\mathrm{K}_{\mathrm{b}}\right)\right]=0.52 \mathrm{~K} . \mathrm{kg} \mathrm{mol}^{-1}$,

1 atm pressure $=760 \mathrm{~mm}$ of Hg , molar mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$]

Answer (707)

Sol. $\Delta T_{b}=K_{b}(m)$

$$
\begin{aligned}
& \mathrm{m}=\frac{200}{52} \\
& \frac{200}{52}=\frac{\mathrm{n}_{\text {solute }}}{0.1} \\
& \mathrm{n}_{\text {solute }}=\frac{20}{52} \\
& \frac{\mathrm{x}}{760}=\frac{(20)(18)}{(52)(100)} \\
& \begin{aligned}
\mathrm{x}=52.61
\end{aligned} \\
& \begin{aligned}
\mathrm{P}_{\text {solution }} & =707.38 \\
& \approx 707 \text { (Nearest integer) }
\end{aligned}
\end{aligned}
$$

85. Consider the following reaction
$\mathrm{MnO}_{2}+\mathrm{KOH}+\mathrm{O}_{2} \rightarrow \mathrm{~A}+\mathrm{H}_{2} \mathrm{O}$
Product ' A ' in neutral or acidic medium disproportionate to give products ' B ' and ' C ' along with water. The sum of spin-only magnetic moment values of B and C is \qquad BM. (nearest integer) (Given atomic number of Mn is 25)

Answer (4)

Sol. A is $\mathrm{K}_{2} \mathrm{MnO}_{4}$
B and C are KMnO_{4} and MnO_{2}
$\mathrm{KMnO}_{4}(\mu=0)$
$\mathrm{MnO}_{2}\left(\mathrm{Mn}^{4+}\right)(\mu=3.87)$
Sum $=3.87=4$ (Nearest integer)
86. The enthalpy of formation of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ from ethylene by addition of hydrogen where the bondenergies of $\mathrm{C}-\mathrm{H}, \mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}, \mathrm{H}-\mathrm{H}$ are $414 \mathrm{~kJ}, 347 \mathrm{~kJ}, 615 \mathrm{~kJ}$ and 435 kJ respectively is - \qquad kJ
Answer (125)
Sol. $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}$

$$
\begin{aligned}
\Delta H & =(615)+(435)-(347)-2(414) \\
& =615+435-347-828 \\
& =-125 \mathrm{~kJ}
\end{aligned}
$$

87. The number of different chain isomers for $\mathrm{C}_{7} \mathrm{H}_{16}$ is \qquad .

Answer (9)

Sol. (1) heptane
(2) 2-methylhexane
(3) 3-methylhexane
(4) 2,2-dimethylpentane
(5) 2,3-dimethylpentane
(6) 2,4-dimethylpentane
(7) 3,3-dimethylpentane
(8) 3-ethylpentane
(9) 2,2,3-trimethylbutane

88. Consider the following transformation involving first order elementary reaction in each step at constant temperature as shown below.

Some details of the above reactions are listed below:

Step	Rate constant $\left(\mathrm{sec}^{-1}\right)$	Activation energy $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
1	k_{1}	300
2	k_{2}	200
3	k_{3}	$\mathrm{E}_{\mathrm{a}_{3}}$

If the overall rate constant of the above transformation (k) is given as $k=\frac{k_{1} k_{2}}{k_{3}}$ and the overall activation energy $\left(E_{a}\right)$ is $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$, then the value of $E_{a_{3}}$ is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$ (nearest integer).

Answer (100)

Sol. $k=\frac{k_{1} k_{2}}{k_{3}}$

$$
E_{a_{\text {eff }}}=E_{a_{1}}+E_{a_{2}}-E_{a_{3}}
$$

JEE (Main)-2024 : Phase-2 (04-04-2024)-Morning
$400=300+200-E_{a_{3}}$
$400=500-E_{a_{3}}$
$\mathrm{E}_{\mathrm{a}_{3}}=100 \mathrm{~kJ} \mathrm{~mole}^{-1}$
89. X g of ethylamine is subjected to reaction with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ followed by water; evolved dinitrogen gas which occupied 2.24 L volume at STP. X is
\qquad $\times 10^{-1} \mathrm{~g}$.

Answer (45)
Sol. Moles of $\mathrm{N}_{2}=0.1$

$$
\begin{aligned}
\text { Mass of } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2} & =(0.1) \times 45 \\
& =4.5 \mathrm{gm} \\
& =45 \times 10^{-1} \\
& =45
\end{aligned}
$$

90. The de-Broglie's wavelength of an electron in the $4^{\text {th }}$ orbit is \qquad $\left(\pi \mathrm{a}_{0}\right) .\left(\mathrm{a}_{0}=\right.$ Bohr's radius $)$

Answer (8)
Sol. $2 \pi r=n \lambda$

$$
\begin{aligned}
& 2 \pi\left(16 \mathrm{a}_{0}\right)=4 \lambda \\
& \lambda=8 \pi \mathrm{a}_{0}
\end{aligned}
$$

