Medical|IIT-JEE|Foundations
Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2024 (Online) Phase-2

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is. Chemistry Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A : (01-20) / (31-50) / (61-80) contains 20 multiple choice questions (MCQs) which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section - B: (21-30) / (51-60) / (81-90) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $+\mathbf{4}$ marks for correct answer and -1 mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 SEssion-1

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. A company has two plants A and B to manufacture motorcycles. 60\% motorcycles are manufactured at plant A and the remaining are manufactured at plant B. 80% of the motorcycles manufactured at plant A are rated of the standard quality, while 90% of the motorcycles manufactured at plant B are rated of the standard quality. A motorcycle picked up randomly from the total production is found to be of the standard quality. If p is the probability that it was manufactured at plant B, then $126 p$ is
(1) 64
(2) 56
(3) 54
(4) 66

Answer (3)
Sol. $P($ standard automobile from $A)=\frac{6}{10} \times \frac{8}{10}=\frac{12}{25}$
$P($ standard automobile from $B)=\frac{4}{10} \times \frac{9}{10}=\frac{9}{25}$
Required Probability $\frac{\frac{9}{25}}{\frac{12}{25}+\frac{9}{25}}$
$P=\frac{9}{21}=\frac{3}{7}$
So, $126 P=126 \times \frac{3}{7}=54$
2. Let $y=y(x)$ be the solution of the differential equation $\left(2 x \log _{e} x\right) \frac{d y}{d x}+2 y=\frac{3}{x} \log _{e} x, x>0$ and $y\left(e^{-1}\right)=0$. Then, $y(e)$ is equal to
(1) $-\frac{3}{e}$
(2) $-\frac{2}{3 e}$
(3) $-\frac{3}{2 e}$
(4) $-\frac{2}{e}$

Sol. $(2 x \log x) \frac{d y}{d x}+2 y=\frac{3}{x} \log x$
$\frac{d y}{d x}+\frac{y}{x \log x}=\frac{3}{2 x^{2}}$
IF $=e^{\int \frac{1}{x \log x}}=e^{\log (\log x)}=\log x$
$y \times \log x=\int \log x \times \frac{3}{2 x^{2}} d x+C$
$y \log x=\frac{3}{2}\left[\frac{-\log x}{x}-\frac{1}{x}\right]+C$
$y\left(e^{-1}\right)=0$
$\Rightarrow 0=\frac{3}{2}[e-e]+C$
$C=0$
$y \log x=\frac{-3}{2}\left[\frac{\log x+1}{x}\right]$
$y(e) \rightarrow y(e) \times 1=\frac{-3}{2}\left[\frac{1+1}{e}\right]=-\frac{3}{e}$
3. Let the area of the region enclosed by the curves $y=3 x, 2 y=27-3 x$ and $y=3 x-x \sqrt{x}$ be A. Then $10 A$ is equal to
(1) 162
(2) 184
(3) 172
(4) 154

Answer (1)
Sol.

$y=3 x-x^{3 / 2}$

Answer (1)
Aakashians Conquer JEE (Main) 2024 SESSION-1

RISHIS SHUKLA
TWO YEAR CLASSROOM PROGRAM
arclasshoom program
As per student response sheet and NTA answer key
"936 ${ }^{\text {99 }}$ рересенाLers
** 4 4-4 95+ PERCENTILERS

Our Stars

$y^{\prime}=3-\frac{3}{2} \sqrt{x}$
$y^{\prime}=3\left(1-\frac{\sqrt{x}}{2}\right)$

Area $=\int_{0}^{3}\left(3 x-\left(3 x-x^{3 / 2}\right)\right) d x+\int_{3}^{9} \frac{27-3 x}{2}-\left(3 x-x^{3 / 2}\right) d x$
$=\int_{0}^{3} x^{3 / 2} d x+\frac{1}{2} \int_{3}^{9}\left(27-9 x+2 x^{3 / 2}\right) d x$
$=\left[\frac{2}{5} x^{5 / 2}\right]_{0}^{3}+\frac{1}{2}\left[27 x-\frac{9 x^{2}}{2}+2 \times \frac{2}{5} x^{5 / 2}\right]_{3}^{9}$
$=\frac{2}{5} \times 9 \sqrt{3}+\frac{1}{2}\left[243-\frac{729}{2}+\frac{4}{5} \times 81 \times 3-81+\frac{81}{2}-\frac{4}{5} \times 9 \sqrt{3}\right]$
$=\frac{1}{2}\left[\frac{486-729-81}{2}+\frac{972}{5}\right]=\frac{81}{5}$
$A=\frac{81}{5}$
$\therefore 10 A=10 \times \frac{81}{5}=162$
4. Let $f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(1)=\lim _{a \rightarrow \infty} a^{2} f\left(\frac{1}{a}\right)$. Then $\lim _{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^{2}-2 \log _{e} a$ is equal to
(1) $\frac{3}{8}+\frac{\pi}{4}$
(2) $\frac{5}{2}+\frac{\pi}{8}$
(3) $\frac{3}{2}+\frac{\pi}{4}$
(4) $\frac{3}{4}+\frac{\pi}{8}$

Answer (Bonus)

Sol. Let $f^{\prime}(1)=k$

$$
\Rightarrow \quad \lim _{x \rightarrow 0} \frac{f(x)}{x^{2}}=k \quad\left(\frac{0}{0}\right)
$$

$$
\lim _{x \rightarrow 0} \frac{f^{\prime}(x)}{2 x}=\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)}{2}=k
$$

$\Rightarrow f^{\prime \prime}(0)=2 k$
Given information is not complete.
5. Let the relations R_{1} and R_{2} on the set $X=\{1,2,3$, ..., 20$\}$ be given by $R_{1}=\{(x, y): 2 x-3 y=2\}$ and $R_{2}=\{(x, y):-5 x+4 y=0\}$. If M and N be the minimum number of elements required to be added in R_{1} and R_{2}, respectively, in order to make the relations symmetric, then $M+N$ equals
(1) 12
(2) 8
(3) 10
(4) 16

Answer (3)

Sol. $R_{1}=\{(x, y): 2 x-3 y=2\}$
$R_{2}=\{(x, y):-5 x+4 y=0\}$
$2 x-3 y=2$
So $2 x$ and $3 y$ both has to be even or odd simultaneously and $2 x$ can't be odd so $2 x$ and $3 y$ both will be even
$R_{1}=\{(4,2),(7,4),(10,6),(13,8),(16,10),(19,12)\}$
For symmetric we need to add 6 elements as
$(2,4),(4,7),(6,10),(8,13),(10,16),(12,19)$
$M=6$
For $R_{2}-5 x+4 y=0$
$5 x$ and $4 y$ has to be equal $4 y$ is always even so $5 x$ will also be even
$R_{2}=\{(4,5),(8,10),(12,15),(16,20)\}$
For symmetric we need to add 4 element as
$(5,4)(10,8)(15,12)(20,16)$
$N=4$
$M+N=6+4=10$
6. The shortest distance between the lines $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$ and $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$ is
(1) $4 \sqrt{3}$
(2) $8 \sqrt{3}$
(3) $5 \sqrt{3}$
(4) $6 \sqrt{3}$

Answer (1)

Aakashians Conquer JEE (Main) 2024 sEssion-1

$300 / 300$
101

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

Our Stars

Sol. Given two lines are

$$
\begin{aligned}
& \frac{x-3}{2}=\frac{y-(-15)}{-7}=\frac{z-9}{5} \text { and } \\
& \frac{x-(-1)}{2}=\frac{y-1}{1}=\frac{z-9}{-3}
\end{aligned}
$$

Shortest distance between two lines are

$$
\begin{aligned}
& d=\frac{\left|\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)\right|}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|} \\
& \therefore \quad \vec{a}_{2}-\vec{a}_{1}=-4 \hat{i}+16 \hat{j}+0 \hat{k} \\
& \vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{|cc}
\hat{i} & \hat{j} \\
2 & -7 \\
2 & 5 \\
2 & -3
\end{array}\right|=16 \hat{i}+16 \hat{j}+16 \hat{k} \\
& \therefore \quad d=\frac{|-64+16 \times 16|}{16 \sqrt{3}}=4 \sqrt{3}
\end{aligned}
$$

7. A circle is inscribed in an equilateral triangle of side of length 12 . If the area and perimeter of any square inscribed in this circle are m and n, respectively, then $m+n^{2}$ is equal to
(1) 408
(2) 396
(3) 312
(4) 414

Answer (1)

Sol.

Inradius of $\triangle A B C=r=\frac{\Delta}{s}=\frac{\frac{\sqrt{3}}{4} \times(12)^{2}}{18}$
$r=2 \sqrt{3}$
Side length of square is a, then

$$
a^{2}=2 r^{2}
$$

$\Rightarrow a^{2}=24$
Area of square, $m=24$
Perimeter of square, $n=4 \sqrt{24}$
$\Rightarrow m+n^{2}=24+384$
$=408$
8. For $\alpha, \beta \in \mathbb{R}$ and a natural number n, let $A_{r}=\left|\begin{array}{ccc}r & 1 & \frac{n^{2}}{2}+\alpha \\ 2 r & 2 & n^{2}-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_{8}$ is
(1) 0
(2) $4 \alpha+2 \beta$
(3) $2 n$
(4) $2 \alpha+4 \beta$

Answer (2)
Sol. $A_{r}=\left|\begin{array}{ccc}r & 1 & \frac{n^{2}}{2}+\alpha \\ 2 r & 2 & n^{2}-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$

$$
A_{r}=2\left|\begin{array}{ccc}
r & 1 & \frac{n^{2}}{2}+\alpha \\
r & 1 & \frac{n^{2}}{2}-\frac{\beta}{2} \\
3 r-2 & 3 & \frac{n(3 n-1)}{2}
\end{array}\right|
$$

$R_{1} \rightarrow R_{1}-R_{2}$

$$
\begin{aligned}
& =2\left|\begin{array}{ccc}
0 & 0 & \alpha+\frac{\beta}{2} \\
r & 1 & \frac{n^{2}}{2}-\frac{\beta}{2} \\
3 r-2 & 3 & \frac{n(3 n-1)}{2}
\end{array}\right| \\
& =2\left(\alpha+\frac{\beta}{2}\right)(3 r-3 r+2)
\end{aligned}
$$

$A_{r}=4 \alpha+2 \beta$
$2 A_{10}-A_{8}=4 \alpha+2 \beta$

Aakashians Gonquer JEE (Main) 2024 sEssion-1

9. If $A(3,1,-1), B\left(\frac{5}{3}, \frac{7}{3}, \frac{1}{3}\right), C(2,2,1)$ and $D\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right)$ are the vertices of a quadrilateral $A B C D$, then its area is
(1) $\frac{2 \sqrt{2}}{3}$
(2) $2 \sqrt{2}$
(3) $\frac{5 \sqrt{2}}{3}$
(4) $\frac{4 \sqrt{2}}{3}$

Answer (4)

Sol. $A(3,1,-1), B\left(\frac{5}{3}, \frac{7}{3}, \frac{1}{3}\right), C(2,2,1), D\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right)$
are vertices of a quadrilateral

$$
\begin{aligned}
& \overrightarrow{A C}=(2 \hat{i}+2 \hat{j}+\hat{k})-(3 \hat{i}+\hat{j}-\hat{k}) \\
& =-\hat{i}+\hat{j}+2 \hat{k} \\
& \overrightarrow{B D}=\left(\frac{10}{3} \hat{i}+\frac{2}{3} \hat{j}-\frac{1}{3} \hat{k}\right)-\left(\frac{5}{3} \hat{i}+\frac{7}{3} \hat{j}+\frac{1}{3} \hat{k}\right) \\
& \overrightarrow{B D}=\frac{5}{3} \hat{i}-\frac{5}{3} \hat{j}-\frac{2}{3} \hat{k} \\
& \text { Area }=\frac{1}{2}|\overrightarrow{A C} \times \overrightarrow{B D}| \\
& =\frac{1}{2}\left|\begin{array}{cr}
\hat{i} & \hat{j} \\
-1 & \hat{k} \\
\frac{5}{3} & \frac{-5}{3} \\
\frac{-2}{3}
\end{array}\right| \\
& =\frac{1}{2} \sqrt{\left(\frac{8}{3}\right)^{2}+\left(\frac{8}{3}\right)^{2}}\left[\because \overrightarrow{A C} \times \overrightarrow{B D}=\frac{8}{3} \hat{i}+\frac{8}{3} \hat{j}\right] \\
& =\frac{1}{2} \times \frac{8}{3} \times \sqrt{2}=\frac{4 \sqrt{2}}{3}
\end{aligned}
$$

10. The function $f(x)=\frac{x^{2}+2 x-15}{x^{2}-4 x+9}, x \in \mathbb{R}$ is
(1) Neither one-one nor onto.
(2) Both one-one and onto.
(3) Onto but not one-one.
(4) One-one but not onto.

Answer (1)

Sol. $f(x)=\frac{x^{2}+2 x-15}{x^{2}-4 x+9}=\frac{(x-3)(x+5)}{x^{2}-4 x+9}$
For $x=3$ and $x=-5, f(x)=0$
So $f(x)$ is not one-one
Range of $f(x)$ is $[-2,1.6]$
So $f(x)$ is not onto function
11. Let C be the circle of minimum area touching the parabola $y=6-x^{2}$ and the lines $y=\sqrt{3}|x|$. Then, which one of the following points lies on the circle C?
(1) $(1,2)$
(2) $(2,4)$
(3) $(1,1)$
(4) $(2,2)$

Answer (2)

Sol. Let centre be $(0, k)$

Now radius is $r=6-k$
Also, $6-k=\left|\frac{k}{2}\right|$
$\Rightarrow 6-k=\frac{k}{2}$
$\Rightarrow 12-2 k=k$
$\Rightarrow k=4$
Radius, $r=6-4=2$
So circle will be
$(x)^{2}+(y-k)^{2}=4$
$x^{2}+(y-4)^{2}=4$
$(2,4)$ satisfies this equation.

12. Let $y=y(x)$ be the solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}, y(1)=0$. Then $y(0)$ is
(1) $\frac{1}{4}\left(e^{\pi / 2}-1\right)$
(2) $\frac{1}{4}\left(1-e^{\pi / 2}\right)$
(3) $\frac{1}{2}\left(1-e^{\pi / 2}\right)$
(4) $\frac{1}{2}\left(e^{\pi / 2}-1\right)$

Answer (3)

Sol. $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$
$\frac{d y}{d x}+\frac{y}{1+x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}}$
I.F. $=e^{\int \frac{1}{1+x^{2}} \cdot d x}=e^{\tan ^{-1} x}$

So, $y \cdot e^{\tan ^{-1} x}=\int e^{\tan ^{-1} x} \cdot \frac{e^{\tan ^{-1} x}}{1+x^{2}} d x$
$y \cdot e^{\tan ^{-1} x}=\int \frac{e^{2 \tan ^{-1} x}}{1+x^{2}} d x$
Put $\tan ^{-1} x=t$
$\frac{1}{1+x^{2}} d x=d t$
So $I=\int e^{2 t} d t=\frac{e^{2 t}}{2}+\frac{c}{2}$
$y \cdot e^{\tan ^{-1}} x=\frac{e^{2 \tan ^{-1} x}}{2}+\frac{c}{2}$
$y(1)=0$
So, $0=e^{2 \tan ^{-1} 1}+c$
$0=e^{2 \pi / 4}+c$
$\Rightarrow c=-e^{\pi / 2}$
$y \cdot e^{\tan ^{-1} x}=\frac{e^{2 \tan ^{-1} x}-e^{\pi / 2}}{2}$
$y(0)=y \cdot 1=\frac{1-e^{\pi / 2}}{2}$
$\Rightarrow \quad y=\frac{1}{2}\left(1-e^{\pi / 2}\right)$
13. The number of triangles whose vertices are at the vertices of a regular octagon but none of whose sides is a side of the octagon is
(1) 24
(2) 16
(3) 48
(4) 56

Answer (3)
Sol.

Total ways to select one point out of 8 points
$={ }^{8} C_{1}$ ways
Now total ways of selecting 2 non-consecutive points out of remaining 5 points $=4 C_{2}$ ways
Total required triangles $={ }^{8} C_{1} \times{ }^{4} C_{2}$

$$
=48
$$

14. If $f(x)=\left\{x^{3} \sin \left(\frac{1}{x}\right), x \neq 0\right.$, then
(1) $f^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{12-\pi^{2}}{2 \pi}$
(2) $f^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{24-\pi^{2}}{2 \pi}$
(3) $f^{\prime \prime}(0)=0$
(4) $f^{\prime \prime}(0)=1$

Answer (2)
Sol. $f(x)=\left\{\begin{array}{cc}x^{3} \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x=0\end{array}\right.$
$f^{\prime}(x)=3 x^{2} \sin \frac{1}{x}-x \cos \frac{1}{x}$
$f^{\prime \prime}(x)=6 x \sin \left(\frac{1}{x}\right)-3 x \cos \left(\frac{1}{x}\right)-\cos \frac{1}{x}-\frac{1}{x} \sin \frac{1}{x}$
$\Rightarrow f^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{12}{\pi}-\frac{\pi}{2}=\frac{24-\pi^{2}}{2 \pi}$ and $f^{\prime}(0)$ is not defined

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

15. Let α, β be the distinct roots of the equation $x^{2}-\left(t^{2}-5 t+6\right) x+1=0, t \in \mathbb{R}$ and $a_{n}=\alpha^{n}+\beta^{n}$. Then the minimum value of $\frac{a_{2023}+a_{2025}}{a_{2024}}$ is
(1) $1 / 4$
(2) $-1 / 4$
(3) $-1 / 2$
(4) $1 / 2$

Answer (2)

Sol. $x^{2}-\left(t^{2}-5 t+6\right) x+1=0$
$\therefore a_{2025}-\left(t^{2}-5 t+6\right) a_{2024}+a_{2023}=0$
$\Rightarrow \frac{a_{2025}+a_{2023}}{a_{2024}}=t^{2}-5 t+6$
$=\left(t+\frac{5}{2}\right)^{2}+\left(\frac{-1}{4}\right)$
Minimum value $=\frac{-1}{4}$
16. The interval in which the function $f(x)=x^{x}, x>0$, is strictly increasing is
(1) $\left[\frac{1}{e^{2}}, 1\right)$
(2) $\left[\frac{1}{e}, \infty\right)$
(3) $(0, \infty)$
(4) $\left(0, \frac{1}{e}\right]$

Answer (2)

Sol. $f(x)=x^{x}$
$f(x)=x^{x}(\log x+1)$
$f^{\prime}(x) \geq 0$
$\Rightarrow 1+\log x \geq 0$
$\Rightarrow \log x \geq-1$
$\Rightarrow x \geq e^{-1}$
$\therefore x \in\left[\frac{1}{e}, \infty\right)$
17. $\int_{0}^{\pi / 4} \frac{\cos ^{2} x \sin ^{2} x}{\left(\cos ^{3} x+\sin ^{3} x\right)} d x$ is equal to
(1) $1 / 9$
(2) $1 / 3$
(3) $1 / 6$
(4) $1 / 12$

Answer (3)
Sol. $\int_{0}^{\pi / 4} \frac{\cos ^{2} x \cdot \sin ^{2} x}{\left(\cos ^{3} x+\sin ^{3} x\right)^{2}} d x$
$=\int_{0}^{\pi / 4} \frac{\tan ^{2} x \cdot \sec ^{2} x}{\left(1+\tan ^{3} x\right)^{2}} d x$
Let $\tan x=t$
$\int_{0}^{1} \frac{t^{2} d t}{\left(1+t^{3}\right)^{2}}$
Let $1+t^{3}=z$

$$
3 t^{2} d t=d z
$$

$\frac{1}{3} \int_{1}^{2} \frac{d z}{z^{2}}=\left.\frac{1}{3}\left(-\frac{1}{z}\right)\right|_{1} ^{2}$
$=-\frac{1}{3}\left(\frac{1}{2}-1\right)=\frac{1}{6}$
18. The mean and standard deviation of 20 observations are found to be 10 and 2 , respectively. On rechecking, it was found that an observation by mistake was taken 8 instead of 12 . The correct standard deviation is
(1) $\sqrt{3.86}$
(2) 1.94
(3) $\sqrt{3.96}$
(4) 1.8

Answer (3)
Sol. mean $=10, \sigma=2, n=20$
$x_{1}+x_{2}+x_{3}+\ldots \ldots+x_{20}=200$
correct mean $=\frac{200-8+12}{20}=\frac{204}{20}=10.2$

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

$x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+\ldots x_{20}^{2}=\left(\sigma^{2}+\bar{x}^{2}\right) \times n$
$=(4+100) 20=104 \times 20=2080$
Corrected $x_{1}^{2}+x_{2}^{2} \ldots \ldots+x_{20}^{2}=2080-64+144=2160$
\therefore corrected $\sigma^{2}=\frac{2160}{20}-(10.2)^{2}$
$=108-104.04$
$=3.96$
$\therefore \sigma=\sqrt{3.96}$
19. Let a variable line of slope $m>0$ passing through the point $(4,-9)$ intersect the coordinate axes at the points
(1) 15
(2) 30
(3) 25
(4) 10

Answer (3)
Sol.

$L:(y+9)=m(x-4)$
$A:\left(4+\frac{9}{m}, 0\right)$
$B:(0,-9-4 m)$
$O A+O B]_{\text {min }}$
$\Rightarrow E_{\text {min }}=4+\frac{9}{m}+9+4 m$
$E=13+\frac{9}{m}+4 m$
$\frac{d E}{d M}=0 \Rightarrow-\frac{9}{m^{2}}+4=0 \Rightarrow m= \pm \frac{3}{2}$
$\frac{d^{2} E}{d M^{2}}=\frac{18}{m^{3}}>0$ for $\quad m=\frac{3}{2}$
$\therefore \mathrm{E}_{\text {min }}=4+6+9+6=25$
20. Let $A=\{n \in[100,700] \cap \mathbb{N}: n$ is neither a multiple of 3 nor a multiple of 4$\}$. Then the number of elements in A is
(1) 290
(2) 300
(3) 280
(4) 310

Answer (2)

Sol. $n \in[100,700]$
$n(A)=$ Total $-($ multiple of $3+$ multiple of 4$)+$ (multiple of 12)

Total $=601$
Multiple of $3=102,105, \ldots ., 699$
$n=699=102+(n-1) 3$
$\Rightarrow n=200$
Multiple of $4=100,104 \ldots ., 700$
$n=700=100+(n-1) 4$
$\frac{600}{4}+1=n$
$\Rightarrow n=151$
Multiple of $12=108,120 \ldots . \ldots 66$
$n=696=108+(n-1) 12$
$n=50$
$\therefore n(A)=601-(200+151)+50$
$=300$

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Let $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$. If $x(\alpha, 1,2)+y(1, \beta, 2)+$ $z(2,3, \gamma)=(0,0,0)$ for some $x, y, z \in \mathrm{R}, x y z \neq 0$, then $6 \alpha+4 \beta+\gamma$ is equal to \qquad
Answer (55)
Sol. $\alpha x+y+2 z=0$
$x+\beta y+3 z=0$
$2 x+2 y+\gamma z=0$
$\alpha \beta \gamma=45$
$\because x y z \neq 0$
$\Rightarrow\left|\begin{array}{lll}\alpha & 1 & 2 \\ 1 & \beta & 3 \\ 2 & 2 & \gamma\end{array}\right|=0$
$\Rightarrow \alpha \beta \gamma-6 \alpha-4 \beta-\gamma+10=0$
$45+10=6 \alpha+4 \beta+\gamma$
$\Rightarrow 6 \alpha+4 \beta+\gamma=55$
22. Let the first term of a series be $T_{1}=6$ and its $r^{\text {th }}$ term $T_{r}=3 T_{r-1}+6^{r}, r=2,3, \ldots, n$. If the sum of the first n terms of this series is $\frac{1}{5}\left(n^{2}-12 n+39\right)\left(4 \cdot 6^{n}-5 \cdot 3^{n}+1\right)$, then n is equal to \qquad

Answer (06)

Sol. $T_{r}=3 T_{r-1}+6^{r}$
\Rightarrow solving homogenous part
$T_{r}=3 T_{r-1}$
$\Rightarrow x=3$ is the root
$\therefore T_{r}=a .3^{r}$
Solving for particular part
$T_{r}=b .6^{r}$
b. $6^{r}=3 b 6^{r-1}+6^{r}$
$\Rightarrow 6 b=3 b+6$
$\Rightarrow 3 b=6$
$\Rightarrow b=2$
$T_{r}=a^{n}+a^{p}$
$T_{r}=a 3^{b r}+2.6^{r} \ldots$ (i)
$T_{r}=3 T_{r-1}+6^{r}$
Putting $r=2$
$T_{2}=18+36=54$
Using equation (i) and (ii)
$54=9 a+72 \Rightarrow-18=9 a \Rightarrow a=-2$
$\therefore T_{r}=2 \cdot 6^{r}-2 \cdot 3^{r}=2\left(6^{r}-3 r\right)$
$\sum_{r=1}^{n} T_{r}=2 \sum 6^{r}-2 \sum 3^{r}$
$=2 \cdot 6 \frac{\left(6^{n}-1\right)}{5}-2 \cdot 3 \frac{\left(3^{n}-1\right)}{2}$
$=\frac{3}{5}\left(4 \cdot 6^{n}-5 \cdot 3^{n}+1\right)$
$\therefore n^{2}-12 n+39=3$
$n^{2}-12 n+36=0$
$(n-6)^{2}=0$
$\therefore n=6$
23. Let L_{1}, L_{2} be the lines passing through the point $P(0,1)$ and touching the parabola $9 x^{2}+12 x+18 y$ $-14=0$. Let Q and R be the points on the lines L_{1} and L_{2} such that the $\triangle P Q R$ is an isosceles triangle with base $Q R$. If the slopes of the liens $Q R$ are m_{1} and m_{2}, then $16\left(m_{1}^{2}+m_{2}^{2}\right)$ is equal to \qquad .

Answer (68)

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

Our Stars

TWO YEAR CLASSROOM PROGRAM

As per student resion and NTA answer key.

Sol. $9 x^{2}+12 x+18 y-14=0$
$\left(x+\frac{2}{3}\right)^{2}=-2(y-1)$.
Equation of tangent to (1)
$t\left(x+\frac{2}{3}\right)=-(y-1)+\frac{1}{2} t^{2}$ passes through $(0,1)$
$\Rightarrow \frac{2}{3} t=\frac{1}{2} t^{2} \Rightarrow t=0, \frac{4}{3} \Rightarrow m=0, m=-\frac{4}{3}$

$\Rightarrow\left|\frac{m+\frac{4}{3}}{1-\frac{4}{3} m}\right|=|m| \Rightarrow\left|\frac{3 m+4}{3-4 m}\right|=|m|$
$\Rightarrow 3 m+4=m(3-4 m)$ or $3 m+4=-m(3-4 m)$
$3 m+4=3 m-4 m^{2}$ or $3 m+4=-3 m+4 m^{2}$
$4 m^{2}+4=0($ not possible $)$ or $4 m^{2}-6 m-4=0$
$m_{1}+m_{2}=\frac{3}{2}, m_{1} m_{2}=-1$
$\Rightarrow m_{1}^{2}+m_{2}^{2}=\frac{17}{4}$
$16\left(m_{1}^{2}+m_{2}^{2}\right)=68$
24. Let $r_{k}=\frac{\int_{0}^{1}\left(1-x^{7}\right)^{k} d x}{\int_{0}^{1}\left(1-x^{7}\right)^{k+1} d x}, k \in \mathbb{N}$. Then the value of $\sum_{k=1}^{10} \frac{1}{7\left(r_{k}-1\right)}$ is equal to \qquad

Answer (65)

Sol. $r_{k}=\frac{l_{a}}{I_{b}}$, where $I_{a}=\int_{0}^{1}\left(1-x^{7}\right)^{k} d x$ and $I_{b}=\int_{0}^{1}\left(1-x^{7}\right)^{k+1} \cdot \downarrow d x$ (I)
$\left.=\left(1-x^{7}\right)^{k+1} \cdot x\right]_{0}^{1}-\int_{0}^{1}(k+1)\left(1-x^{7}\right)^{k}\left(-7 x^{6}\right) \cdot x d x$
$=-7(k+1) \int_{0}^{1}\left(1-x^{7}\right)^{k}\left(-1+1-x^{7}\right)$
$I_{b}=-7(k+1)\left[-I_{a}+I_{b}\right]$
$\Rightarrow r_{k}=\frac{l_{a}}{I_{b}}=\frac{7 k+8}{7 k+7}=1+\frac{1}{7(k+1)}$
$\frac{1}{7\left(r_{k}-1\right)}=(k+1)$
$\Rightarrow \sum_{r=-1}^{10} \frac{1}{7\left(r_{K}-1\right)}=\sum_{r=1}^{10}(K+1)=\frac{11.12}{2}-1=65$
25. If the second, third and fourth terms in the expansion of $(x+y)^{n}$ are 135,30 and $\frac{10}{3}$, respectively, then $6\left(n^{3}+x^{2}+y\right)$ is equal to \qquad

Answer (806)

Sol. $T_{2}={ }^{n} C_{1} y{ }^{1} \cdot x^{n-1}=135$
$T_{3}={ }^{n} C_{2} y^{2} \cdot x^{n-2}=30$
$T_{4}={ }^{n} C_{3} y^{3} x^{n-3}=\frac{10}{3}$
$\Rightarrow \frac{135}{30}=\left(\frac{x}{y}\right) \frac{n .2}{n(n-1)}=\left(\frac{2}{n-1}\right)\left(\frac{x}{y}\right)$
$\frac{30}{\frac{10}{3}}=\frac{n(n-1)}{2} \frac{3!}{n(n-1)(n-2)}\left(\frac{x}{y}\right)$
$9=\left(\frac{3}{n-2}\right)\left(\frac{x}{y}\right)$

Aakashians Fonquer JEE (Main) 2024 SEssion-1

100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

$$
\begin{align*}
& \Rightarrow \quad 3(n-2)=\frac{135}{60}(n-1) \Rightarrow n=5 \\
& \Rightarrow \quad x=9 y \tag{i}
\end{align*}
$$

$y \cdot x^{4}=27 \Rightarrow \frac{x}{9} \cdot x^{4}=3^{3}$
$\Rightarrow x^{5}=3^{5} \Rightarrow x=3 \quad y=\frac{1}{3}$
$\Rightarrow 6\left(5^{3}+3^{2}+\frac{1}{3}\right)=6\left(125+9+\frac{1}{3}\right)$

$$
=6(134)+2=806
$$

26. For $n \in \mathrm{~N}$, if $\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-15}+\cot ^{-1} n=\frac{\pi}{4}$, then n is equal to \qquad .

Answer (47)

Sol. $\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-15}+\cot ^{-1}(n)=\frac{\pi}{4}$

$$
\begin{aligned}
& \Rightarrow \cot ^{-1}\left(\frac{3 \times 4-1}{3+4}\right)+\cot ^{-1}\left(\frac{5 \times n-1}{5+n}\right)=\frac{\pi}{4} \\
& \cot ^{-1}\left(\frac{11}{7}\right)+\cot ^{-1}\left(\frac{5 n-1}{5+n}\right)=\frac{\pi}{4} \\
& \cot ^{-1} \frac{\left(\frac{11}{7} \times\left(\frac{5 n-1}{5+n}\right)-1\right)}{\frac{11}{7}+\frac{5 n-1}{5+n}}=\frac{\pi}{4} \\
& \Rightarrow \frac{11}{7}\left(\frac{5 n-1}{5+n}\right)-1=\frac{11}{7}+\frac{5 n-1}{5+n} \\
& \Rightarrow 55 n-11-35-7 n=55+11 n+35 n-7 \\
& \Rightarrow 2 n=94 \\
& \Rightarrow n=47
\end{aligned}
$$

27. Let $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}-5 \hat{k}$ and a vector \vec{c} be such that $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times \vec{c}=\hat{i}+8 \hat{j}+13 \hat{k}$. If $\vec{a} \cdot \vec{c}=13$, then $(24-\vec{b} \cdot \vec{c})$ is equal to \qquad .

Answer (46)

Sol. Let $\hat{i}+8 \hat{j}+13 \hat{k}=\vec{u}$
Given $\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times \vec{c}=\vec{u}$
$\Rightarrow \vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}=\vec{u}$

$$
(\vec{a}+\vec{b}) \times c=\vec{u}-\vec{a} \times \vec{b}
$$

Taking cross product with \vec{a} on both sides
$\vec{a} \times((\vec{a}+\vec{b}) \times \vec{c})=\vec{a} \times(\vec{u}-\vec{a} \times \vec{b})$
$\Rightarrow \quad \vec{c} .\left(\vec{a}^{2}+\vec{a} \cdot \vec{b}\right)=13(\vec{a}+\vec{b})-\vec{a} \times \vec{u}$
$+(\vec{a} \cdot \vec{b}) \cdot \vec{a}-\vec{a}^{2} \vec{b}$

$$
\{\because \vec{a} \cdot \vec{c}=13\}
$$

Putting the values, $\vec{c}=(-1,-1,3)$
$\vec{b} . \vec{c}=-22$
$\Rightarrow \quad 24-\vec{b} \cdot \vec{c}=46$
28. Let $x_{1}, x_{2}, x_{3}, x_{4}$ be the solution of the equation $4 x^{4}+8 x^{3}-17 x^{2}-12 x+9=0$ and $\left(4+x_{1}^{2}\right)\left(4+x_{2}^{2}\right)\left(4+x_{3}^{2}\right)\left(4+x_{4}^{2}\right)=\frac{125}{16} m$. Then the value of m is \qquad .

Answer (221)

Sol. $4 x^{4}+8 x^{3}-17 x^{2}-12 x+9=0$

$$
\begin{aligned}
& (x+1)\left(4 x^{3}+4 x^{2}-21 x+9\right)=0 \\
& (x+1)(x+3)\left(4 x^{2}-8 x+3\right)=0 \\
& (x+1)(x+3)\left(4 x^{2}-6 x-2 x+3\right)=0 \\
& (x+1)(x+3)(2 x(2 x-3)-1(2 x-3))=0 \\
& \left(\begin{array}{cc}
(x+1) & (\underbrace{(x+3)}_{\substack{x+3}}(\underbrace{x=-3}_{x=\frac{1}{2}}) \\
\underbrace{x-1}_{x=\frac{3}{2}}
\end{array}\right)
\end{aligned}
$$

$(4+1)(4+9)\left(4+\frac{1}{4}\right)\left(4+\frac{9}{4}\right)=\frac{125}{16} m$
$5 \times 13 \times\left(\frac{17}{4}\right) \times\left(\frac{25}{4}\right)=\frac{125}{16} \mathrm{~m}$
$\frac{125}{16} \times[13 \times 17]=\frac{125}{16} \mathrm{~m}$
$m=13 \times 17$
$m=221$
29. Let P be the point $(10,-2,-1)$ and Q be the foot of the perpendicular drawn from the point $R(1,7,6)$ on the line passing through the points $(2,-5,11)$ and $(-6,7,-5)$. Then the length of the line segment $P Q$ is equal to \qquad .

Answer (13)

Sol.

$P(10,-2,-1)$
$M N: \frac{x-2}{8}=\frac{y+5}{-12}=\frac{z-11}{16}$
General point
$(8 k+2,-12 k-5,16 k+11)$
$R Q=(8 k+2-1) \hat{i}+(-12 k-5-7) \hat{j}+(16 k+11-6) \hat{k}$
$R Q=(8 k+1) \hat{i}-(12 k+12) \hat{j}+(16 k+5) \hat{k}$
RQ. $M N=0$ (as both are perpendicular)
$8(8 k+1)+12(12 k+12)+16(16 k+5)=0$
$64 k+8+144 k+144+256 k+80=0$
$464 k=-232$
$k=\frac{-232}{464}=\frac{-1}{2}$
$Q(-4+2,6-5,-8+11)$
$Q(-2,1,3)$
$P Q=\sqrt{(10+2)^{2}+(-3)^{2}+(4)^{2}}$
$P Q=\sqrt{12^{2}+3^{2}+4^{2}}$
$P Q=\sqrt{169}=13$
30. Let a conic C pass through the point $(4,-2)$ and $P(x, y), x \geq 3$, be any point on C. Let the slope of the line touching the conic C only at the single point P be half the slope of the line joining the points P and $(3,-5)$. If the focal distance of the point $(7,1)$ on C is d, then $12 d$ equals \qquad .

Answer (75)

Sol. As per given condition

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{y+5}{2(x-3)} \\
\Rightarrow & \ln (y+5)=\frac{1}{2} \ln (x-3)+c
\end{aligned}
$$

Passes through $(4,-2) \Rightarrow \ln 3=\frac{1}{2} \ln 1+c$

$$
\Rightarrow c=\ln 3
$$

\Rightarrow Curve is $(y+5)^{2}=9(x-3)$
Focal distance of $(7,1)=\frac{9}{4}+4=\frac{25}{4}=d$
$12 d=75$

Aakashians Conquer JEE (Main) 2024
 SESSION-1

Our Stars

two Year classroom program
As per student res and NTA answer kev.

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

31. While measuring diameter of wire using screw gauge the following readings were noted. Main scale reading is 1 mm and circular scale reading is equal to 42 divisions. Pitch of screw gauge is 1 mm and it has 100 divisions on circular scale. The diameter of the wire is $\frac{x}{50} \mathrm{~mm}$. The value of x is
(1) 142
(2) 71
(3) 42
(4) 21

Answer (2)
Sol. LC $=\frac{1}{100} \mathrm{~mm}$

$$
\begin{aligned}
\text { Reading } & =\mathrm{MSR}+\mathrm{CSR} \times \mathrm{LC} \\
& =1 \mathrm{~mm}+42 \times 0.01 \mathrm{~mm} \\
& =1.42 \mathrm{~mm}=\frac{x}{50} \mathrm{~mm} \Rightarrow x=71
\end{aligned}
$$

32. A train starting from rest first accelerates uniformly up to a speed of $80 \mathrm{~km} / \mathrm{h}$ for time t, then it moves with a constant speed for time 3 t. The average speed of the train for this duration of journey will be (in km / h)
(1) 30
(2) 70
(3) 40
(4) 80

Answer (2)

Sol. $V_{\text {avg }}=\frac{\text { Total distance }}{\text { Total time }}=\frac{\frac{1}{2} \times 80 \times t+80 \times 3 t}{4 t}$

$$
\Rightarrow \quad V_{\mathrm{avg}}=70 \mathrm{~km} / \mathrm{h}
$$

33. A small ball of mass m and density ρ is dopped in a viscous liquid of density ρ. After sometime, the ball falls with constant velocity. The viscous force on the ball is
(1) $m g\left(1+\frac{\rho}{\rho_{0}}\right)$
(2) $m g\left(1-\frac{\rho_{0}}{\rho}\right)$
(3) $m g\left(\frac{\rho_{0}}{\rho}-1\right)$
(4) $m g\left(1-\rho \rho_{0}\right)$

Answer (2)
Sol. $F_{V}=\left(m g-F_{B}\right) \frac{m g}{m g}=\left(\frac{\rho V_{g}-\rho_{0} V_{g}}{\rho V_{g}}\right) m g$
$F_{V}=m g\left(1-\frac{\rho_{0}}{\rho}\right)$
34. The specific heat at constant pressure of a real gas obeying $P V^{2}-R T$ equation is
(1) R
(2) $\frac{R}{3}+C_{V}$
(3) $C_{V}+R$
(4) $C_{v}+\frac{R}{2 V}$

Answer (4)

Sol. $\because P V^{2}=R T$
$P(2 v d v)+V^{2}(d P)=R d T$
at $P=$ const.
$P d v=\frac{R d T}{2 V}$
Now, for $n=1$
$d \theta=d v+d w$
$C_{P} d T=C_{V} d T+P d V$
from (i) and (ii)
$C_{P}=C_{V}+\frac{R}{2 V}$

Aakashians Conquer JEE (Main) 2024 session-1

RISHIS SHUKLA
TWO YEAR CLASSROOM PROGRAM
As per student response sheet and NTA answerker.
\qquad
\qquad
35. Match List I with List II

List I		List II	
A.	Torque	I.	$\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{-2}\right]$
B.	Magnetic field	II.	$\left[\mathrm{L}^{2} \mathrm{~A}^{1}\right]$
C.	Magnetic moment	III.	$\left[\mathrm{M}^{1} \mathrm{~T}^{-2} \mathrm{~A}^{-1}\right]$
D.	Permeability of free space	IV.	$\left[\mathrm{M}^{1} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$

Choose the correct answer from the options given below:
(1) A-I, B-III, C-II, D-IV
(2) A-III, B-I, C-II, D-IV
(3) A-IV, B-II, C-III, D-I
(4) A-IV, B-III, C-II, D-I

Answer (4)
Sol. $\tau=$ F.d, $\quad[\tau]=\left[M^{1} L^{2} T^{-2}\right]$
$F=q V B, \quad[B]=\left[M^{1} T^{2} A^{-1}\right]$
$M_{1}=i A, \quad\left[M_{1}\right]=\left[L^{2} A^{1}\right]$
36. Given below are two statements :

Statement I: In an LCR series circuit, current is maximum at resonance.
Statement II : Current in a purely resistive circuit can never be less than that in a series LCR circuit when connected to same voltage source.

In the light of the above statements, choose the correct from the options given below :
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are false
(3) Statement I is false but Statement II is true
(4) Both Statement I and Statement II are true

Answer (4)

Sol. Statement I : True
Statement II: True
Current in purely resistive circuit is equal to current in LCR circuit with same resistance at resonance, otherwise more.
37. An element $\Delta I=\Delta x \hat{i}$ is placed at the origin and carries a large current $l=10 \mathrm{~A}$. The magnetic field on the y-axis at a distance of 0.5 m from the elements Δx of 1 cm length is:

(1) $4 \times 10^{-8} \mathrm{~T}$
(2) $10 \times 10^{-8} \mathrm{~T}$
(3) $12 \times 10^{-8} \mathrm{~T}$
(4) $8 \times 10^{-8} \mathrm{~T}$

Answer (1)
Sol. $B=\frac{u_{0}}{4 \pi} \frac{i d l \sin \theta}{r^{2}}$

$$
\Rightarrow \quad B=\frac{10^{-7} \times 10 \times 10^{-2} \times 1}{\frac{1}{4}}=4 \times 10^{-8} \mathrm{~T}
$$

38. Which of the following phenomena does not explain by wave nature of light?
A. reflection
B. diffraction
C. photoelectric effect
D. interference
E. polarization

Choose the most appropriate answer from the options given below:
(1) C only
(2) E only
(3) A, C only
(4) B, D only

Answer (1)
Sol. Photoelectric effect explains the particle nature of light.

Aakashians Conquer JEE (Main) 2024
 SESSION-1

As per student response sheet and NTA answer ker
39. Electromagnetic waves travel in a medium with speed of $1.5 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$. The relative permeability of the medium is 2.0 . The relative permittivity will be:
(1) 5
(2) 1
(3) 2
(4) 4

Answer (3)

Sol. $v=\frac{1}{\sqrt{\mu_{0} \mu_{r} \varepsilon_{0} \cdot \varepsilon_{r}}}$
$\Rightarrow \quad 1.5 \times 10^{8}=\frac{3 \times 10^{8}}{\sqrt{2 \cdot \varepsilon_{r}}} \Rightarrow \varepsilon_{r}=2$
40. A sample contains mixture of helium and oxygen gas. The ratio of root mean square speed of helium and oxygen in the sample, is:
(1) $\frac{2 \sqrt{2}}{1}$
(2) $\frac{1}{32}$
(3) $\frac{1}{2 \sqrt{2}}$
(4) $\frac{1}{4}$

Answer (1)

Sol. $v=\sqrt{\frac{3 R T}{M}}$

$$
\Rightarrow \frac{v_{\mathrm{H}_{\mathrm{e}}}}{v_{\mathrm{o}_{2}}}=\sqrt{\frac{M_{\mathrm{o}_{2}}}{M_{H_{e}}}}=\frac{2 \sqrt{2}}{1}
$$

41. A bullet of mass 50 g is fired with a speed $100 \mathrm{~m} / \mathrm{s}$ on a plywood and emerges with $40 \mathrm{~m} / \mathrm{s}$. The percentage loss of kinetic energy is :
(1) 16%
(2) 44%
(3) 32%
(4) 84%

Answer (4)

Sol. \% loss in $K E=\frac{\mathrm{KE}_{\mathrm{i}}-\mathrm{KE}_{f}}{K E_{\mathrm{i}}} \times 100$
= 84\%
42. To project a body of mass m from earth's surface to infinity, the required kinetic energy is (assume, the radius of earth is $R_{E}, g=$ acceleration due to gravity on the surface of earth):
(1) $m g R_{E}$
(2) $2 m g R_{E}$
(3) $1 / 2 m g R_{E}$
(4) $4 m g R_{E}$

Answer (1)
Sol. $\mathrm{KE}=\frac{1}{2} \times m\left(\frac{2 G M}{\mathrm{R}_{E}}\right)=\left(\frac{G M}{R_{E}^{2}}\right) m \cdot \mathrm{R}_{E}=m g \mathrm{R}_{E}$
43. Four particles A, B, C, D of mass $\frac{m}{2}, m, 2 m, 4 m$, have same momentum respectively. The particle with maximum kinetic energy is
(1) C
(2) D
(3) B
(4) A

Answer (4)
Sol. $\mathrm{KE}=\frac{P^{2}}{2 m} \Rightarrow \mathrm{KE} \propto \frac{1}{m}$
44. The value of unknown resistance (x) for which the potential difference between B and D will be zero in the arrangement shown, is

(1) 6Ω
(2) 9Ω
(3) 9Ω
(4) 42Ω

Answer (1)

Sol. Balanced wheatstone bridge.
$\Rightarrow 12 \times 0.5=(x+6) \times \frac{1}{2} \Rightarrow x=6 \Omega$

Aakashians Conquer JEE (Main) 2024 session-1

45. The correct truth table for the following logic circuit is

(1)

A	B	Y
0	0	0
0	1	1
1	0	0
1	1	1

(2)

A	B	Y
0	0	1
0	1	1
1	0	0
1	1	0

(3)

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

(4)

A	B	Y
0	0	1
0	1	1
1	0	0
1	1	1

Answer (4)

Sol. NOT, OR and AND gate.

A	B	Y
0	0	1
0	1	1
1	0	0
1	1	1

46. A light string passing over a smooth light pulley connects two blocks of masses m_{1} and m_{2} (where $m_{2}>m_{1}$). If the acceleration of the system is $\frac{g}{\sqrt{2}}$, then the ratio of the masses $\frac{m_{1}}{m_{2}}$ is
(1) $\frac{\sqrt{3}+1}{\sqrt{2}-1}$
(2) $\frac{1+\sqrt{5}}{\sqrt{5}-1}$
(3) $\frac{1+\sqrt{5}}{\sqrt{2}-1}$
(4) $\frac{\sqrt{2}-1}{\sqrt{2}+1}$

Answer (4)

Sol. $a=\frac{\left(m_{2}-m_{1}\right) g}{m_{1}+m_{2}}=\frac{g}{\sqrt{2}}$
$\Rightarrow \quad \sqrt{2}\left(m_{2}-m_{1}\right)=m_{1}+m_{2}$
$\Rightarrow \quad \frac{m_{1}}{m_{2}}=\frac{\sqrt{2}-1}{\sqrt{2}+1}$
47. In photoelectric experiment energy of 2.48 eV irradiates a photo sensitive material. The stopping potential was measured to be 0.5 V . Work function of the photo sensitive material is
(1) 2.48 eV
(2) 0.5 eV
(3) 1.68 eV
(4) 1.98 eV

Answer (4)
Sol. $E=\phi+e V_{0}$
$2.48=\phi+0.5$
$\Rightarrow \phi=1.98 \mathrm{eV}$
48. σ is the uniform surface charge density of a thin spherical shell of radius R. The electric field at any point on the surface of the spherical shell is
(1) $\sigma / 4 \epsilon_{0}$
(2) σ / ϵ_{0}
(3) $\sigma / \epsilon_{0} R$
(4) $\sigma / 2 \epsilon_{0}$

Answer (2)

Sol. $E=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{\sigma \cdot 4 \pi R^{2}}{R^{2}}=\frac{\sigma}{\epsilon_{0}}$
49. To find the spring constant (k) of a spring experimentally, a student commits 2% positive error in the measurement of time and 1% negative error in measurement of mass. The percentage error ion determining value of k is:
(1) 5%
(2) 4%
(3) 3%
(4) 1%

Answer (1)

Sol. $k=\frac{4 \pi^{2} m}{T^{2}}$
$\Rightarrow \frac{d k}{k} \times 100=\frac{d m}{m} \times 100+\frac{2 d T}{T} \times 100$
$=1+2 \times 2=5 \%$
50. The ratio of the shortest wavelength of Balmer series to the shortest wavelength of Lyman series for hydrogen atom is
(1) $2: 1$
(2) $1: 4$
(3) $1: 2$
(4) $4: 1$

Answer (4)
Sol. $\frac{1}{\lambda_{B}}=R z^{2}\left(\frac{1}{2^{2}}-\frac{1}{\infty^{2}}\right)$
$\frac{1}{\lambda_{L}}=R z^{2}\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)$
$\frac{\lambda_{B}}{\lambda_{L}}=\frac{4}{1}$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
51. A big drop is formed by coalescing 1000 small droplets of water. The ratio of surface energy of 1000 droplets to that of energy of big drop is $\frac{10}{x}$. The value of x is \qquad .

Answer (1)

Sol. $R_{\text {big }}=10 R_{\text {small }}$

$$
\Rightarrow \quad \frac{E_{1000}}{E_{\mathrm{big}}}=\frac{1000 \times T \times 4 \pi\left[\frac{R_{\mathrm{big}}}{10}\right]^{2}}{T \times 4 \pi R_{\mathrm{big}}^{2}}=\frac{10}{1}
$$

52. For three vectors

$$
\vec{A}=(-x \hat{i}-6 \hat{j}-2 \hat{k}), \vec{B}=(-\hat{i}+4 \hat{j}+3 \hat{k})
$$

and $\vec{C}=(-8 \hat{i}-\hat{j}+3 \hat{k})$, if $\vec{A} \cdot(\vec{B} \times \vec{C})=0$, then value of x is \qquad .

Answer (4)

Sol. $(\vec{B} \times \vec{C})=15 \hat{i}-21 \hat{j}+33 \hat{k}$
$\vec{A} \cdot(\vec{B} \times \vec{C})=0 \Rightarrow-15 x+126-66=0$
$\Rightarrow \quad x=4$
53. The refractive index if prism is $\mu=\sqrt{3}$ and the ratio of the angle of minimum deviation to the angle of prism is one. The value of angle of prism is
\qquad $\stackrel{\circ}{\circ}$.

Answer (60)

Sol. $\sqrt{3}=\frac{\sin \left(\frac{A+A}{2}\right)}{\sin \left(\frac{A}{2}\right)} \Rightarrow \cos \left(\frac{A}{2}\right)=\frac{\sqrt{3}}{2} \Rightarrow A=60^{\circ}$
54. Radius of a certain orbit of hydrogen atom is 8.48 A. If energy of electron in this orbit is E / x, then $x=$ (Given $a_{0}=0.529 \AA, E=$ energy of electron in ground state).

Answer (16)

Sol. $8.48=0.53 \frac{n^{2}}{1} \Rightarrow n=4$

$$
E=-13.6 \times \frac{1^{2}}{4^{2}} \Rightarrow x=16
$$

55. When a dc voltage of 100 V is applied to an inductor, a dc current of 5 A flows through it. When an ac voltage of 200 V peak value is connected to inductor, its inductive reactance is found to be $20 \sqrt{3} \Omega$. The power dissipated in the circuit is
\qquad W.

Answer (250)

"936 ${ }^{\text {99+ perceantiers }}$

Sol. $R=\frac{100}{5}=20 \Omega$
$Z=\sqrt{R^{2}+X_{L}^{2}}=40 \Omega, I_{0}=\frac{V_{0}}{Z}=\frac{200}{40}=5 \mathrm{~A}$
$P=V_{\text {rms }} I_{\mathrm{rms}} \cos \phi=\frac{V_{0} I_{0}}{2} \times \frac{R}{Z}=250 \mathrm{~W}$
56. A circular coil having 200 turns, $2.5 \times 10^{-4} \mathrm{~m}^{2}$ area and carrying $100 \mu \mathrm{~A}$ current is placed in a uniform magnetic field of 1 T . Initially the magnetic dipole moment (\vec{M}) was directed along \vec{B}. Amount of work, required to rotate the coil through 90° from its initial orientation such that \vec{M} becomes perpendicular to \vec{B}, is \qquad $\mu \mathrm{J}$.

Answer (5)

Sol. $W=U_{f}-U_{i}=(-M B \cos 90)-(-M B \cos 0)$
$\Rightarrow W=M B=N i A B=5 \mu \mathrm{~J}$
57. A wire of resistance R and radius r is stretched till its radius became r/2. If new resistance of the stretched wire is $x R$, then value of x is \qquad -

Answer (16)

Sol. $R_{1}=\frac{\rho . l}{\pi r^{2}}, R_{2}=\frac{\rho .4 l}{\pi\left(\frac{r}{2}\right)^{2}}=16 R_{1}$
58. If the radius of earth is reduced to three-fourth of its present value without change in its mass then value of duration of the day of earth will be \qquad hours 30 minutes.

Answer (13)

Sol. $\tau_{\text {ext }}=0 \Rightarrow$ Angular momentum is conserved.
$\Rightarrow \frac{2}{5} M R^{2} \cdot \omega_{i}=\frac{2}{5} M\left(\frac{3 R}{4}\right)^{2} \cdot \omega_{f} \Rightarrow \omega_{f}=\frac{16}{9} \omega$
$\because \quad T=\frac{2 \pi}{\omega} \Rightarrow T_{1}=\frac{9}{16} \times 24$ hours
$=13$ hours 30 min .
59. A particle is doing simple harmonic motion of amplitude 0.06 m and time period 3.14 s . The maximum velocity of the particle is \qquad cm / s.

Answer (12)

Sol. $v_{\text {max }}=A \omega=\frac{A \cdot 2 \pi}{T}=0.06 \times \frac{2 \pi}{3.14}=0.12 \mathrm{~m} / \mathrm{s}$
$\Rightarrow \quad v_{\text {max }}=12 \mathrm{~cm} / \mathrm{s}$
60. Three infinitely long charged thin sheets are placed as shown in figure. The magnitude of electric field at the point P is $\frac{x \sigma}{\epsilon_{0}}$. The value of x is \qquad (all quantities are measured in SI units).

Answer (2)
Sol. $E_{P}=\frac{\sigma}{2 \epsilon_{0}}+\frac{2 \sigma}{2 \epsilon_{0}}+\frac{\sigma}{2 \epsilon_{0}}=\frac{2 \sigma}{\epsilon_{0}}$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. The electron affinity value are negative for
A. $\mathrm{Be} \rightarrow \mathrm{Be}^{-}$
B. $\mathrm{N} \rightarrow \mathrm{N}^{-}$
C. $\mathrm{O} \rightarrow \mathrm{O}^{2-}$
D. $\mathrm{Na} \rightarrow \mathrm{Na}^{-}$
E. $\mathrm{Al} \rightarrow \mathrm{Al}^{-}$

Choose the most appropriate answer from the options given below :
(1) A and D only
(2) D and E only
(3) A, B and C only
(4) A, B, D and E only

Answer (2)

Sol. In process D and E, energy is released.
62. Match List I with List II.

	List I (Molecule/species)		List II (Property/Shape)
A.	$\mathrm{SO}_{2} \mathrm{Cl}_{2}$	I.	Paramagnetic
B.	NO	II.	Diamagnetic
C.	NO_{2}^{-}	III.	Tetrahedral
D.	I $_{3}^{-}$	IV.	Linear

Choose the correct answer from the options given below :
(1) A-III, B-IV, C-II, D-I
(2) A-III, B-I, C-II, D-IV
(3) A-II, B-III, C-I, D-IV
(4) A-IV, B-I, C-III, D-II

Answer (2)

Sol. A \rightarrow Tetrahedral (III)
B \rightarrow Paramagnetic (I)
C \rightarrow Diamagnetic (II)
D \rightarrow Linear (IV)
63. Which of the following statements are correct?
A. Glycerol is purified by vacuum distillation because it decomposes at its normal boiling point.
B. Aniline can be purified by steam distillation as aniline is miscible in water.
C. Ethanol can be separated from ethanol water mixture by azeotropic distillation because it forms azeotrope.
D. An organic compound is pure, if mixed M.P. is remained same.

Choose the most appropriate answer from the options given below :
(1) A, C, D only
(2) A, B, C only
(3) A, B, D only
(4) B, C, D only

Answer (1)
Sol. Statements A, C and D are correct.
64. Which of the following material is not a semiconductor?
(1) Germanium
(2) Graphite
(3) Copper oxide
(4) Silicon

Answer (2)

Sol. Graphite is not a semiconductor.
65. The number of element from the following that do not belong to lanthanoids is
$\mathrm{Eu}, \mathrm{Cm}, \mathrm{Er}, \mathrm{Tb}, \mathrm{Yb}$ and Lu
(1) 3
(2) 1
(3) 4
(4) 5

Answer (2)
Sol. Cm belongs to actinoid series.

Aakashians Conquer JEE (Main) 2024 SEssIon-1

RISHI S SHUKLA
TWO YEAR CLASSROOM PROGRAM
As per student response sheet and NTA

66. Match List I with List II.

	$\|c\|$ List I (Compound/species)		List II (Shape/Geometry)
A.	SF_{4}	I.	Tetrahedral
B.	BrF_{3}	II.	Pyramidal
C.	BrO_{3}^{-}	III.	See saw
D.	NH_{4}^{+}	IV.	Bent T-shape

Choose the correct answer from the options given below :
(1) A-II, B-III, C-I, D-IV
(2) A-II, B-IV, C-III, D-I
(3) A-III, B-II, C-IV, D-I
(4) A-III, B-IV, C-II, D-I

Answer (4)

Sol. A \rightarrow Sea-saw (III)
B \rightarrow Bent T-shape (IV)
C \rightarrow Pyramidal (II)
D \rightarrow Tetrahedral (I)
67. Consider the following complexes

$$
\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{5}\right]^{2+} \quad\left[\mathrm{Co}(\mathrm{CN})_{6}\right]^{3-}
$$

(A)
(B)
$\left.\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{3+} \quad \mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2+}$
(C)
(D)

The correct order of A, B, C and D in terms of wavenumber of light absorbed is
(1) B $<$ C $<$ A $<$ D
(2) D $<$ A $<$ C $<$ B
(3) A $<$ C $<$ B $<$ D
(4) C $<$ D $<$ A $<$ B

Answer (2)
Sol. Wavenumber $=\frac{1}{\lambda} \propto$ Frequency $\propto \Delta_{0}$
Wavenumber order: $\mathrm{D}<\mathrm{A}<\mathrm{C}<\mathrm{B}$
68. At $-20^{\circ} \mathrm{C}$ and 1 atm pressure, a cylinder is filled with equal number of $\mathrm{H}_{2}, \mathrm{I}_{2}$ and HI molecules for the reaction
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$, the K_{p} for the process is $\mathrm{x} \times 10^{-1}$.
$\mathrm{x}=$ \qquad .
[Given : $\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
(1) 0.01
(2) 2
(3) 1
(4) 10

Answer (4)
Sol. $K_{P}=K_{C}=\frac{[H I]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=1=10 \times 10^{-1}$
69. Match List I with List II.

	List I (Precipitating reagent and conditions)		List II (Cation)
A.	$\mathrm{NH}_{4} \mathrm{Cl}+\mathrm{NH}_{4} \mathrm{OH}$	I.	Mn^{2+}
B.	$\mathrm{NH}_{4} \mathrm{OH}+$ $\mathrm{Na}_{2} \mathrm{CO}_{3}$	II.	Pb^{2+}
C.	$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl}$ $+\mathrm{H}_{2} \mathrm{~S}$ gas	III.	Al^{3+}
D.	dilute HCl	IV.	Sr^{2+}

Choose the correct answer from the options given below :
(1) A-IV, B-III, C-II, D-I
(2) A-IV, B-III, C-I, D-II
(3) A-III, B-IV, C-I, D-II
(4) A-III, B-IV, C-II, D-I

Answer (3)
Sol. A $\rightarrow \mathrm{Al}^{1{ }^{++}}$(III)
$\mathrm{B} \rightarrow \mathrm{Sr}^{2+}$ (IV)
C $\rightarrow \mathrm{Mn}^{2+}(\mathrm{I})$
D $\rightarrow \mathrm{Pb}^{2+}(\mathrm{II})$

70. Match List I with List II.

	List I (Hybridization)	List II (Orientation in Space)	
A.	$s p^{3}$	I.	Trigonal bipyramidal
B.	$d s p^{2}$	II.	Octahedral
C.	$s p^{3} d$	III.	Tetrahedral
D.	$s p^{3} d^{2}$	IV.	Square planar

Choose the correct answer from the options given below :
(1) A-II, B-I, C-IV, D-III
(2) A-III, B-IV, C-I, D-II
(3) A-IV, B-III, C-I, D-II
(4) A-III, B-I, C-IV, D-II

Answer (2)
Sol. A \rightarrow Tetrahedral (III)
$\mathrm{B} \rightarrow$ Square planar (IV)
C \rightarrow Trigonal bipyramidal (I)
D \rightarrow Octahedral (II)
71. A conductivity cell with two electrodes (dark side) are half filled with infinitely dilute aqueous solution of a weak electrolyte. If volume is doubled by adding more water at constant temperature, the molar conductivity of the cell will

(1) remain same or cannot be measured accurately
(2) decrease sharply
(3) depend upon type of electrolyte
(4) increase sharply

Answer (1)
Sol. $\wedge_{m}=\frac{K \times 1000}{M}$
K will become half and M will also become half.
λ_{m} will remain same or can not be measure sharply.
For infinitely dilute solute $\wedge_{\mathrm{m}} \approx \wedge_{\mathrm{m}}^{0}=$ constant.
72. The density of ' x ' M solution (' x ' molar) of NaOH is $1.12 \mathrm{~g} \mathrm{~mL}^{-1}$, while in molality, the concentration of the solution is 3 m (3 molal). Then x is
(Given : Molar mass of NaOH is $40 \mathrm{~g} / \mathrm{mol}$)
(1) 3.0
(2) 3.8
(3) 2.8
(4) 3.5

Answer (1)
Sol. $3=\frac{1000 \mathrm{x}}{1120-40 \mathrm{x}}$

$$
\begin{aligned}
& 3360-120 x=1000 x \\
& 3360=1120 x \\
& x=3
\end{aligned}
$$

73. Which of the following is metamer of the given compound (X)?

(x)
(1)

(2)

(3)

(4)

Answer (2)

Sol. Compound given is option (2) is metamer of compound "X".
74. Given below are two statements :

Statement I : Picric acid is 2, 4, 6-trinitrotoluene
Statement II : Phenol-2,4-disulphonic acid is treated with Conc. HNO_{3} to get picric acid.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both Statement I and Statement II are correct
(2) Both Statement I and Statement II are incorrect
(3) Statement I is correct but Statement II is incorrect
(4) Statement I is incorrect but Statement II is correct

Answer (4)

Sol. S-I is incorrect as picric acid is 2,4,6-trinitrophenol S-II is correct
75. DNA molecule contains 4 bases whose structure are shown below. One of the structures is not correct, identify the incorrect base structure.
(1)

(2)

(3)

(4)

Answer (1)
Sol. Compound given in option (1) is not present in DNA.
76. Given below are two statements :

Statement I: Gallium is used in the manufacturing of thermometers.

Statement II : A thermometer containing gallium is useful for measuring the freezing point (256 K) of brine solution

In the light of the above statements, choose the correct answer from the options given below :
(1) Both Statement I and Statement II are true
(2) Statement I is true but Statement II is false
(3) Both Statement I and Statement II are false
(4) Statement I is false but Statement II is true

Answer (2)

Sol. S-1 is correct as gallium is used in manufacturing of thermometers.

S-2 is incorrect

Our Stars

77. In Reimer-Tiemann reaction, phenol is converted into salicylaldehyde through an intermediate. The structure of intermediate is \qquad _.
(1)

(2)

(3)

(4)

Answer (1)

Sol. Carbene is intermediate.
Intermediate given in option (1) is produced.
78. Which among the following aldehydes is most reactive towards nucleophilic addition reactions?
(1)

(2)

(3)

(4)

Answer (2)

Sol. Formaldehyde is more reactive due to least hindrance.
79. Functional group present in sulphonic acids is
(1) $-\mathrm{SO}_{3} \mathrm{H}$
(2) $-\mathrm{SO}_{2}$
(3) $-\mathrm{SO}_{4} \mathrm{H}$

Answer (1)

Sol. $-\mathrm{SO}_{3} \mathrm{H}$ is functional group in sulphonic acids.
80. Match List I with List II.

	List I (Compound)		List II (Uses)
A.	Iodoform	I.	Fire extinguisher
B.	Carbon tetrachloride	II.	Insecticide
C.	CFC	III.	Antiseptic
D.	DDT	IV.	Refrigerants

Choose the correct answer from the options given below :
(1) A-II, B-IV, C-I, D-III
(2) A-III, B-I, C-IV, D-II
(3) A-I, B-II, C-III, D-IV
(4) A-III, B-II, C-IV, D-I

Answer (2)
Sol. A \rightarrow Antiseptic (III)
$\mathrm{B} \rightarrow$ Fire extinguisher (I)
$\mathrm{C} \rightarrow$ Refrigerants (IV)
D \rightarrow Insecticide (II)

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
81. The difference in the 'spin-only' magnetic moment values of KMnO_{4} and the manganese product formed during titration of KMnO_{4} against oxalic acid in acidic medium is \qquad BM. (nearest integer)

Answer (6)
(PHY. OR CHEM. OR MATHS)

Sol. $\mathrm{Mn}^{7+}(\mu=0)$
$\mathrm{Mn}^{2+}(\mu=5.91)$
Difference $=5.91$

$$
\approx 6 \text { (Nearest integer) }
$$

82. Frequency of the de-Broglie wave of electron in Bohr's first orbit of hydrogen atom is \qquad \times $10^{13} \mathrm{~Hz}$ (nearest integer).
[Given : R_{H} (Rydberg constant) $=2.18 \times 10^{-18} \mathrm{~J}, h$ (Plank's constant) $=6.6 \times 10^{-34} \mathrm{~J} . \mathrm{s}$.]

Answer (661)
Sol. $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
$\lambda \cdot v=\frac{h}{m}$
$\frac{\lambda \cdot v^{2}}{v}=\frac{h}{m}$
$\frac{\mathrm{v}^{2}}{\text { Frequency }}=\frac{\mathrm{h}}{\mathrm{m}}$
Frequency $=\frac{\mathrm{mv}^{2}}{\mathrm{~h}}=\frac{2 R_{H}}{\mathrm{~h}}$
$=\frac{2 \times 2.18 \times 10^{-18}}{6.6 \times 10^{-34}}$
$=660.6 \times 10^{13} \mathrm{~Hz}$
Nearest integer $=661$
If we take $\mathrm{h}=6.626 \times 10^{-34}$
Then
Frequency $=\frac{2 R_{H}}{h}$

$$
=658.01 \times 10^{13} \mathrm{~Hz}
$$

But if value of h is given as 6.6×10^{-34} correct answer will be 661 .
83. Time required for 99.9% completion of a first order reaction is \qquad times the time required for completion of 90% reaction. (nearest integer)

Given 3

Answer (3)

Sol. $\frac{\mathrm{t}_{99.9}}{\mathrm{t}_{90}}=3$
For first order reaction
$\mathrm{t}_{99.9}=\frac{2.303}{\mathrm{k}} \log 1000$
$\mathrm{t}_{90}=\frac{2.303}{\mathrm{k}} \log 10$
84. Number of molecules from the following which can exhibit hydrogen bonding is \qquad (nearest integer)

Answer (5)
Sol. compounds
$\mathrm{CH}_{3} \mathrm{OH}$
$\mathrm{H}_{2} \mathrm{O}$

HF
NH_{3}
Can show H-Bonding.
85. Consider the dissociation of the weak acid HX as given below
$\mathrm{HX}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{X}^{-}(\mathrm{aq}), \mathrm{Ka}=1.2 \times 10^{-5}$
[K_{a} : dissociation constant]
The osmotic pressure of 0.03 M aqueous solution of HX at 300 K is \qquad $\times 10^{-2}$ bar (nearest integer).
[Given : $\mathrm{R}=0.083 \mathrm{~L}^{\text {bar mol }}{ }^{-1} \mathrm{~K}^{-1}$]

Aakashians Conquer JEE (Main) 2024 sEssion-1

$300 / 300$
100
and NTA answer key.
100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

Answer (76)

Sol. $\mathrm{Ka}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$

$$
\begin{aligned}
& 1.2 \times 10^{-5}=(0.03)\left(\alpha^{2}\right) \\
& \alpha=0.02 \\
& \pi=\text { iCRT } \\
&=(1.02)(0.03)(0.083)(300) \\
&=0.76194 \\
&=76.194 \times 10^{-2} \mathrm{bar}
\end{aligned}
$$

Nearest integer $=76$
86. The major products from the following reaction sequence are product A and product B.

The total sum of π electrons in product A and product B are \qquad (nearest integer)

Answer (8)

Sol.

Number of π electron in $\mathrm{A}=2$
Number of π electron in $B=6$
Total Number of π electron in (A) and $(B)=8$
87. 9.3 g of pure aniline upon diazotisation followed by coupling with phenol gives an orange dye. The mass of orange dye produced (assume 100\% yield/conversion) is \qquad g. (nearest integer)

Answer (20)

Sol. Moles of aniline $=0.1$
Moles of dye $=0.1$
Mass of dye $=0.1 \times 198=19.8 \mathrm{gm}$

$$
\approx 20
$$

88. Among $\mathrm{CrO}, \mathrm{Cr}_{2} \mathrm{O}_{3}$ and CrO_{3}, the sum of spin-only magnetic moment values of basic and amphoteric oxides is \qquad $10^{-2} \mathrm{BM}$ (nearest integer).
(Given atomic number of Cr is 24)

Answer (877)

Sol. CrO is Basic
$\mathrm{Cr}^{2+}: \mu=4.89 \mathrm{BM}$
$\mathrm{Cr}_{2} \mathrm{O}_{3}$ is amphoteric
$\mathrm{Cr}^{3+} \mu=3.87 \mathrm{BM}$
Sum $=8.771$
$=877.1 \times 10^{-2} \mathrm{BM}$
Nearest integer $=877$
89. The major product of the following reaction is P .

Number of oxygen atoms present in product ' P ' is
\qquad . (nearest integer)

Answer (2)
Sol. Product is

Number of oxygen atoms = 2

Our Stars

90. An ideal gas, $\overline{\mathrm{C}}_{\mathrm{v}}=\frac{5}{2} R$, is expanded adiabatically against a constant pressure of 1 atm until it doubles in volume. If the initial temperature and pressure is 298 K and 5 atm , respectively then the final temperature is \qquad K (nearest integer).
[$\overline{\mathrm{C}}_{\mathrm{v}}$ is the molar heat capacity at constant volume]

Answer (274)

Sol. $-1\left(2 V_{1}-V_{1}\right)=n \times \frac{5 R}{2}\left(T_{2}-T_{1}\right)$
$-\mathrm{V}_{1}=\frac{5}{2}\left(\mathrm{nRT}_{2}-5 \mathrm{~V}_{1}\right)$
$-\mathrm{V}_{1}=2.5\left(\mathrm{nRT}_{2}\right)-12.5 \mathrm{~V}_{1}$
$11.5 \mathrm{~V}_{1}=2.5\left(\mathrm{nRT}_{2}\right)$
$11.5 \times \frac{n R T_{1}}{P_{1}}=2.5 \times\left(\mathrm{nRT}_{2}\right)$
$\mathrm{T}_{2}=274.16 \mathrm{k}$
≈ 274 (Nearest integer)

