Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2024 (Online) Phase-2

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300 .
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is. Chemistry Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A : (01-20) / (31-50) / (61-80) contains 20 multiple choice questions (MCQs) which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section - B: (21-30) / (51-60) / (81-90) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries +4 marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 SEssion-1

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Let $y=y(x)$ be the solution of the differential equation $\left(1+y^{2}\right) e^{\tan x} d x+\cos ^{2} x\left(1+e^{2 \tan x}\right) d y=0$, $y(0)=1$. Then $y\left(\frac{\pi}{4}\right)$ is equal to
(1) $\frac{2}{e^{2}}$
(2) $\frac{1}{e^{2}}$
(3) $\frac{1}{e}$
(4) $\frac{2}{e}$

Answer (3)

Sol. $\left(1+y^{2}\right) e^{\tan x} d x+\cos ^{2} x\left(1+e^{2 \tan x}\right) d y=0$
$\frac{d y}{1+y^{2}}=-\frac{e^{\tan x} \cdot \sec ^{2} x d x}{1+e^{2 \tan x}}$
$\int \frac{d y}{1+y^{2}}=-\int \frac{e^{\tan x} \cdot \sec ^{2} x d x}{1+e^{2 \tan x}}$
Let $e^{\tan x}=t$
$e^{\tan x} \cdot \sec ^{2} x d x=d t$
$\int \frac{d y}{1+y^{2}}=-\int \frac{d t}{1+t^{2}}$
$\tan ^{-1} y=-\tan ^{-1} t+c$
$\tan ^{-1} y=-\tan ^{-1}\left(e^{\tan x}\right)+c$
at $x=0, y=1$
$\tan ^{-1}(1)=-\tan ^{-1}(1)+c$
$\frac{\pi}{4}=-\frac{\pi}{4}+c$
$c=\frac{\pi}{2}$
$\tan ^{-1} y=-\tan ^{-1}\left(e^{\tan x}\right)+\frac{\pi}{2}$
Now, at $x=\frac{\pi}{4}$
$\tan ^{-1} y=-\tan ^{-1}(e)+\frac{\pi}{2}$
$\tan ^{-1} y=\cot ^{-1} e=\tan ^{-1} \frac{1}{e}$
$\Rightarrow y=\frac{1}{e}$
2. The number of critical points of the function $f(x)=(x-2)^{2 / 3}(2 x+1)$ is
(1) 0
(2) 1
(3) 3
(4) 2

Answer (4)

Sol. $f(x)=(x-2)^{2 / 3}(2 x+1)$
$f^{\prime}(x)=2(x-2)^{2 / 3}+(2 x+1) \times \frac{2}{3}(x-2)^{-1 / 3}$
$f^{\prime}(x)=2(x-2)^{2 / 3}+\frac{2(2 x+1)}{3(x-2)^{1 / 3}}$
$f^{\prime}(x)=\frac{6(x-2)+2(2 x+1)}{3(x-2)^{1 / 3}}$
$f^{\prime}(x)=\frac{10 x-10}{3(x-2)^{1 / 3}}=\frac{10(x-1)}{3(x-2)^{1 / 3}}$
Critical points 1,2
$\Rightarrow 2$ critical points
3. Let $f(x)$ be a positive function such that the area bounded by $y=f(x), y=0$ from $x=0$ to $x=a>0$ is $e^{-a}+4 a^{2}+a-1$. Then the differential equation, whose general solution is $y=c_{1} f(x)+c_{2}$, where c_{1} and c_{2} are arbitrary constants, is
(1) $8 e^{x}+1 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$
(2) $8 e^{x}+1 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0$
(3) $8 e^{x}-1 \frac{d^{2} y}{d x^{2}}-\frac{d y}{d x}=0$
(4) $8 e^{x}-1 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=0$

Answer (1)

Sol. $\int_{0}^{a} f(x) d x=e^{-a}+4 a^{2}+a-1$
Differentiate equation w.r.t. 'a'
$f(a)=-e^{-a}+8 a+1$
$\Rightarrow f(x)=-e^{-x}+8 x+1$
And $y=c_{1} f(x)+c_{2}$
$y=c_{1}\left(-e^{-x}+8 x+1\right)+c_{2}$
$y^{\prime}=c_{1}\left(e^{-x}+8\right) \Rightarrow c_{1}=\frac{y^{\prime}}{e^{-x}+8}$
$y^{\prime \prime}=-c_{1} e^{-x} \quad$ put value of c_{1}
$\frac{d^{2} y}{d x^{2}}=\frac{-\frac{d y}{d x} \cdot e^{-x}}{\left(e^{-x}+8\right)}=\frac{\frac{d y}{d x}}{\left(1+8 e^{x}\right)}$
$\Rightarrow\left(1+8 e^{x}\right) \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}=1$
4. Let the circles $C_{1}:(x-\alpha)^{2}+(y-\beta)^{2}=r_{1}^{2}$ and $C_{2}:(x-8)^{2}+\left(y-\frac{15}{2}\right)^{2}=r_{2}^{2}$ touch each other externally at the point $(6,6)$. If the point $(6,6)$ divides the line segment joining the centres of the circles C_{1} and C_{2} internally in the ratio $2: 1$, then $\alpha+\beta+4 r_{1}^{2}+r_{2}^{2}$ equals
(1) 145
(2) 125
(3) 110
(4) 130

Answer (4)

Sol. $C_{1} \rightarrow(x-\alpha)^{2}+(y-\beta)^{2}=r_{1}^{2}$

$$
C_{2} \rightarrow(x-8)^{2}+\left(y-\frac{15}{2}\right)^{2}=r_{2}^{2}
$$

Point P divide the line segment internally $C_{1} C_{2}$ in the ratio 2:1

$$
\begin{aligned}
& \frac{\alpha \times 1+8 \times 2}{1+2}=6, \alpha=2 \\
& \frac{\beta \times 1+\frac{15}{\alpha} \times 2}{1+2}=6, \beta=3 \\
& r_{1}=\sqrt{(6-2)^{2}+(6-3)^{2}}=\sqrt{25}=5 \\
& r_{2}=\sqrt{(8-6)^{2}+\left(\frac{15}{\alpha}-6\right)^{2}}=\frac{5}{2} \\
& \alpha+\beta+4\left(r_{1}^{2}+r_{2}^{2}\right)=2+3+4\left(5^{2}+\left(\frac{5}{2}\right)^{2}\right) \\
& =5+4\left(\frac{125}{4}\right) \\
& \text { = } 130
\end{aligned}
$$

5. The sum of all the solutions of the equation (8$)^{2 x}-$ $16 \cdot(8)^{x}+48=0$ is :
(1) $\log _{8}(6)$
(2) $1+\log _{8}(6)$
(3) $1+\log _{6}(8)$
(4) $\log _{8}(4)$

Answer (2)
Sol. Given equation, $8^{2 x}-16.8^{x}+48=0$
Let $8^{x}=t$
$\therefore t^{2}-16 t+48=0$
$\Rightarrow t=4,12$
$\Rightarrow 8^{x}=4,12$
$\Rightarrow x=\log _{8} 4, \log _{8} 12$

> Sum of solution
$=\log _{8} 4+\log _{8} 12$
$=\log _{8}(48)$
$=1+\log _{8}(6)$
6. The set of all α, for which the vectors $\vec{a}=\alpha t \hat{i}+6 \hat{j}-3 \hat{k} \quad$ and $\vec{b}=t \hat{i}-2 \hat{j}-2 \alpha t \hat{k} \quad$ are inclined at an obtuse angle for all $t \in \mathbb{R}$, is
(1) $[0,1)$
(2) $(-2,0]$
(3) $\left(-\frac{4}{3}, 1\right)$
(4) $\left(-\frac{4}{3}, 0\right]$

Answer (4)

Sol. Given $\vec{a}=\alpha t \hat{i}+6 \hat{j}-3 \hat{k}$
and $\vec{b}=t \hat{i}-2 \hat{j}-2 \alpha t \hat{k}$
angle between \vec{a} and \vec{b} is given by
$\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
We have, $\cos \theta<0(\because$ angle between \vec{a} and \vec{b} is obtuse)
$\Rightarrow \vec{a} \cdot \vec{b}<0$
$\Rightarrow \alpha t^{2}-12+6 \alpha t<0 \forall t \in \mathbb{R}$
If $\alpha=0$, then $-12<0$ (condition holds)
If $\alpha \neq 0 \Rightarrow \alpha<0$
And maximum value of $\alpha t^{2}+6 \alpha t-12<0$
$\Rightarrow \frac{-D}{4 a}<0$ (where D is discriminant and $a=\alpha$)
$\Rightarrow \frac{36 \alpha^{2}+48 \alpha}{4 \alpha}>0$
$\Rightarrow \alpha>\frac{-4}{3}$
$\therefore \alpha \in\left(\frac{-4}{3}, 0\right]$
7. Let $[f]$ be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and $f: A \rightarrow \mathbb{Z}$ be the function $f(x)=\left[\log _{2}\left(x^{2}+\left[\frac{x^{3}}{5}\right]\right)\right]$.
The number of one-to-one function from A to the range of f is
(1) 120
(2) 24
(3) 25
(4) 20

Answer (1)

Sol. $A=\{2,3,5,7,11\}$
$f(x)=\left[\log _{2}\left(x^{2}+\left[\frac{x^{3}}{5}\right]\right)\right]$
Ranges $f(x)=\{2,3,5,6,8\}$

Number of one-one $A \rightarrow R_{f}$

$5 \times 4 \times 3 \times 2 \times 1=120$
8. If $\sin x=-\frac{3}{5}$, where $\pi<x<\frac{3 \pi}{2}$, then $80\left(\tan ^{2} x-\right.$ $\cos x)$ is equal to
(1) 18
(2) 19
(3) 108
(4) 109

Answer (4)
Sol. $\sin x=-\frac{3}{5}$ where $\pi<x<\frac{3 \pi}{2}$

$$
\tan x=\frac{3}{4}, \cos x=\frac{-4}{5}
$$

$\therefore 80\left(\tan ^{2} x-\cos x\right)$
$=80\left(\frac{9}{16}+\frac{4}{5}\right)$
$=80\left(\frac{45+64}{80}\right)$
$=109$
9. Let $I(x)=\int \frac{6}{\sin ^{2} x(1-\cot x)^{2}} d x$. If $l(0)=3$, then $I\left(\frac{\pi}{12}\right)$ is equal to
(1) $6 \sqrt{3}$
(2) $\sqrt{3}$
(3) $3 \sqrt{3}$
(4) $2 \sqrt{3}$

Answer (3)
Sol. $I(x)=\int \frac{6}{\sin ^{2} x(1-\cot x)^{2}} d x$
$I(x)=\int \frac{6}{(\sin x-\cos x)^{2}} d x$
$=\int \frac{6 \sec ^{2} x}{(\tan x-1)^{2}} d x$

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Let $\tan x=t \Rightarrow \sec ^{2} x d x=d t$
$=\int \frac{6 d t}{(t-1)^{2}}$
$=-\frac{6}{(t-1)}+c$
$=\frac{-6}{(\tan x-1)}+c$
$I(x)=\frac{6}{1-\tan x}+c$
$I(0)=3$
$\frac{6}{1-\tan 0}+c=3$
$c=-3$
$I(x)=\frac{6}{1-\tan x}-3$
$I\left(\frac{\pi}{12}\right)=\frac{6}{1-\tan \left(\frac{\pi}{12}\right)}-3$
$=\frac{6}{1-(2-\sqrt{3})}-3$
$=\frac{6}{\sqrt{3}-1}-3$
$=\frac{6-3 \sqrt{3}+3}{\sqrt{3}-1}$
$=\frac{9-3 \sqrt{3}}{\sqrt{3}-1}$
$=\frac{3 \sqrt{3}(\sqrt{3}-1)}{\sqrt{3}-1}$
$=3 \sqrt{3}$
10. Let the sum of two positive integers be 24 . If the probability, that their product is not less than $\frac{3}{4}$ times their greatest possible product, is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $n-m$ equals
(1) 9
(2) 10
(3) 11
(4) 8

Answer (2)

Sol. Take two numbers as a and b
$a+b=24$

For product to be maximum
$\frac{a+b}{2} \geq \sqrt{a b}$
$144>a b$
Maximum product is 144
Now, $a b \geq \frac{3}{4} \cdot 144=108$
Sample space $=\{(23,1),(22,2), \ldots\}$
Integer points on line in shaded region
$\{(6,18),(7,17),(8,16), \ldots(18,6)\}$
$P(E)=\frac{n(E)}{n(S)}=\frac{13}{23}=\frac{m}{n} \Rightarrow n-m=10$
11. The equations of two sides $A B$ and $A C$ of a triangle $A B C$ are $4 x+y=14$ and $3 x-2 y=5$, respectively. The point $\left(2,-\frac{4}{3}\right)$ divides the third side $B C$ internally in the ratio $2: 1$, the equation of the side $B C$ is
(1) $x+6 y+6=0$
(2) $x-6 y-10=0$
(3) $x-3 y-6=0$
(4) $x+3 y+2=0$

Answer (4)
Sol.

2:1

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

$2=\frac{2 x_{2}+x_{1}}{3}, \frac{-4}{3}=\frac{2 y_{2}+y_{1}}{3}$
$2 x_{2}+x_{1}=6,2 y_{2}+y_{1}=-4$
$x_{1}=6-2 x_{2}$
$y_{1}=-4-2 y_{2}$
$4 x_{1}+y_{1}=14$
$3 x_{2}-2 y_{2}=5$
From here, $x_{2}=1, y_{2}=-1, x_{1}=4, y_{1}=-2$
$B(4,-2) C(1,-1)$
$y+2=\frac{-1+2}{1-4}(x-4)$
$-3 y-6=x-4$
$x+3 y+2=0$
12. If the shortest distance between the lines
$L_{1}: \vec{r}=(2+\lambda) \hat{i}+(1-3 \lambda) \hat{j}+(3+4 \lambda) \hat{k}, \lambda \in \mathbb{R}$
$L_{2}: \vec{r}=2(1+\mu) \hat{i}+3(1+\mu) \hat{j}+(5+\mu) \hat{k}, \mu \in \mathbb{R}$
is $\frac{m}{\sqrt{n}}$, where $\operatorname{gcd}(m, n)=1$, then the value of $m+$ n equals
(1) 377
(2) 384
(3) 390
(4) 387

Answer (4)

Sol. $L_{1}: \vec{r}=(2+\lambda) \hat{i}+(1-3 \lambda) \hat{j}+(3+4 \lambda) \hat{k}$
$L_{1}=2 \hat{i}+\hat{j}+3 \hat{k}+\lambda(\hat{i}-3 \hat{j}+4 \hat{k})$
$L_{2}: \vec{r}=2 \hat{i}+3 \hat{j}+5 \hat{k}+\mu(2 \hat{i}+3 \hat{j}+\hat{k})$
$\vec{a}_{1}=2 \hat{i}+\hat{j}+3 \hat{k}$
$\vec{a}_{2}=2 \hat{i}+3 \hat{j}+5 \hat{k}$
$\vec{a}_{2}-\vec{a}_{1}=2 \hat{j}+2 \hat{k}$
$\vec{b}_{1}=\hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}_{2}=2 \hat{i}+3 \hat{j}+\hat{k}$
$\vec{b}_{1} \times \vec{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 4 \\ 2 & 3 & 1\end{array}\right|$
$\hat{i}(-3-12)-\hat{j}(1-8)+\hat{k}(3+6)$
$=-15 \hat{i}+7 \hat{j}+9 \hat{k}$
$\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{225+49+81}$
$\left|\frac{\left(\dot{a}_{2}-\dot{a}_{1}\right) \cdot\left(\dot{b}_{1} \times \dot{b}_{2}\right)}{\left|\dot{b}_{1} \times \dot{b}_{2}\right|}\right|=\frac{14+18}{\sqrt{355}}=\frac{32}{\sqrt{355}}$
$m+n=387$
13. If the set $R=\{(a, b): a+5 b=42, a, b \in \mathbb{N}\}$ has m elements and $\sum_{n=1}^{m}\left(1-i^{n!}\right)=x+i y$, where $i=\sqrt{-1}$, then the value of $m+x+y$ is
(1) 5
(2) 12
(3) 4
(4) 8

Answer (2)

Sol. $R=\{(a, b): a+5 b=42\}$
Then $R=\{(2,8),(7,7),(12,6),(17,5),(22,4),(27$, $3),(32,2),(37,1)\}$
and $\sum_{n=1}^{m=8}\left(1-i^{n!}\right)=x+i y$
$\therefore \sum_{n=1}^{8}\left(1-i^{n!}\right)=8-\left(i+i^{2}+i^{6}+1+1+1+1+1\right)$
$=5-i$
$\therefore x=5, y=-1$
$x+y+m=5-1+8=12$
14. Let $H: \frac{-x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4 \sqrt{3}$. Suppose the point $(\alpha, 6), \alpha>0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^{2}+\beta$ is equal to
(1) 171
(2) 172
(3) 169
(4) 170

Answer (1)

Sol. $H: \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$
$e=\sqrt{1+\frac{a^{2}}{b^{2}}}=\sqrt{3}$
$\Rightarrow 1+\frac{a^{2}}{b^{2}}=3$
$\Rightarrow \frac{a^{2}}{b^{2}}=2$
$\frac{2 a^{2}}{b}=4 \sqrt{3}$
Using equation (1)
$\frac{4 b^{2}}{b}=4 \sqrt{3}$
$\Rightarrow b=\sqrt{3}$

$$
a=\sqrt{6}
$$

$H: \frac{x^{2}}{6}-\frac{y^{2}}{3}=-1$
$\frac{\alpha^{2}}{6}-12=-1$
$\frac{\alpha^{2}}{6}=11$
$\alpha^{2}=66$
Focus : $(0, b c)(0,-b c)$

$$
\begin{aligned}
& \quad(0,3),(0,-3) \\
& \beta=\sqrt{\alpha^{2}+9} \times \sqrt{\alpha^{2}+81} \\
& \beta=105 \\
& \alpha^{2}+\beta=66+105 \\
& \quad=171
\end{aligned}
$$

15. Let $P(x, y, z)$ be a point in the first octant, whose projection in the $x y$-plane is the point Q. Let $O P=\gamma$; the angle between $O Q$ and the positive x-axis be θ; and the angle between $O P$ and the positive z-axis be ϕ, where O is the origin. Then the distance of P from the x-axis is
(1) $\gamma \sqrt{1+\cos ^{2} \theta \sin ^{2} \phi}$
(2) $\gamma \sqrt{1+\cos ^{2} \phi \sin ^{2} \theta}$
(3) $\gamma \sqrt{1-\sin ^{2} \theta \cos ^{2} \phi}$
(4) $\gamma \sqrt{1-\sin ^{2} \phi \cos ^{2} \theta}$

Answer (4)
Sol. $\overrightarrow{O P}=x \hat{i}+y \hat{j}+z \hat{k}$
$\overrightarrow{O Q}=x \hat{i}+y \hat{j}$
$|O P|=\gamma=\sqrt{x^{2}+y^{2}+z^{2}}$
$\cos \theta=\frac{x}{\sqrt{x^{2}+y^{2}}} \Rightarrow \cos ^{2} \theta=\frac{x^{2}}{\gamma^{2}-z^{2}}=\frac{x^{2}}{\gamma^{2}-\gamma^{2} \cos ^{2} \phi}$
$\cos \phi=\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}=\frac{z}{\gamma}$
Distance of P from x-axis $=\sqrt{y^{2}+z^{2}}$
$d=\sqrt{\gamma^{2}-x^{2}}$
$\Rightarrow x^{2}=\gamma^{2} \sin ^{2} \phi \cos ^{2} \theta$
$\Rightarrow \quad d=\sqrt{\gamma^{2}-\gamma^{2} \sin ^{2} \phi \cos ^{2} \theta}$
$=\gamma \sqrt{1-\sin ^{2} \phi \cos ^{2} \theta}$
16. Let $f(x)=4 \cos ^{3} x+3 \sqrt{3} \cos ^{2} x-10$. The number of points of local maxima of f in interval $(0,2 \pi)$ is
(1) 2
(2) 3
(3) 1
(4) 4

Answer (1)

Sol. $f(x)=4 \cos ^{3} x+3 \sqrt{3} \cos ^{2} x-10$

$$
\begin{aligned}
& f^{\prime}(x)=12 \cos ^{2} x \cdot(-\sin x)+6 \sqrt{3} \cos x \cdot(-\sin x)=0 \\
& =-6 \sqrt{3} \cos x \cdot \sin x\left(1+\frac{2}{\sqrt{3}} \cos x\right)=0 \\
& \cos x=0, \sin x=0, \cos x=\frac{-\sqrt{3}}{2}
\end{aligned}
$$

Sign of $f(x)$

\therefore Maxima at $\frac{5 \pi}{6}, \frac{7 \pi}{6}$

17. Let $A=\left[\begin{array}{lll}2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b\end{array}\right]$. If $A^{3}=4 A^{2}-A-21 I$, where l is the identity matrix of order 3×3, then $2 a+3 b$ is equal to
(1) -9
(2) -13
(3) -12
(4) -10

Answer (2)

Sol. $|A-\lambda| \mid=0$
$\left|\begin{array}{ccc}2-\lambda & a & 0 \\ 1 & 3-\lambda & 1 \\ 0 & 5 & b-\lambda\end{array}\right|=0$
$(2-\lambda)[(3-\lambda)(b-\lambda)-5]-a[b-\lambda-0]+0=0$
$(2-\lambda)\left[3 b-3 \lambda-b \lambda+\lambda^{2}-5\right]-a b+a \lambda=0$
$\lambda^{3}-(b+5) \lambda^{2}+(1-a+5 b) \lambda+(10-6 b+a b)=0$
$A^{3}-(b+5) A^{2}+(1-a+5 b) A+(10-6 b+a b) I=0$
$\Rightarrow \mathrm{b}+5=4,1-\mathrm{a}+5 b=1,10-6 b+a b=21$
$\Rightarrow a=-5, b=-1$
$\Rightarrow 2 a+3 b=-13$
18. For the function $f(x)=(\cos x)-x+1, x \in \mathbb{R}$, between the following two statements
(S1) $f(x)=0$ for only one value of x in $[0, \pi]$.
(S2) $f(x)$ is decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in $\left[\frac{\pi}{2}, \pi\right]$.
(1) Only (S1) is correct.
(2) Both (S1) and (S2) are incorrect.
(3) Only (S2) is correct.
(4) Both (S1) and (S2) are correct.

Answer (1)

Sol. $f(x)=\cos x-x+1$
$f(x)=-\sin x-1 \leq 0$
$\therefore f(x)$ is decreasing function
$f(0)=2$
$f(\pi)=-\pi$
\therefore Only one root in $[0, \pi]$
S_{1} is correct
S_{2} is incorrect
19. The value of $k \in \mathbb{N}$ for which the integral $I_{n}=\int_{0}^{1}\left(1-x^{k}\right)^{n} d x, n \in \mathbb{N}$, satisfies $147 / 20=148 / 21$ is
(1) 10
(2) 7
(3) 14
(4) 8

Answer (2)
Sol. $I(21)=\int_{0}^{1}\left(1-x^{k}\right)^{21} d x$
$=\int_{0}^{1}\left(1-x^{k}\right)\left(1-x^{k}\right)^{20} d x$
$=\int_{0}^{1}\left(1-x^{k}\right)^{20} d x-\int_{0}^{1} x^{k}\left(1-x^{k}\right)^{20} d x$
$I(21)=I(20)-\int_{0}^{1} x^{k}\left(1-x^{k}\right)^{20} d x$
$=I(20)-\int_{0}^{1} x \cdot x^{K-1}\left(1-x^{k}\right)^{20} d x$
$I(21)=I(20)-\left[\frac{\left(1-x^{k}\right)^{21}}{-21 k} x-\int_{0}^{1} \frac{\left(1-x^{k}\right)^{21}}{-21 k} d x\right]$
$I(21)=I(20)-\frac{1}{21 k} I(20)$
$\Rightarrow[I(21)](21 k+1)=21 K I(20)$
$\Rightarrow 21 K=147 \Rightarrow K=7$
20. Let z be a complex number such that $|z+2|=1$ and $\operatorname{Im}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$. Then the value $|\operatorname{Re}(\overline{z+2})|$ is
(1) $\frac{2 \sqrt{6}}{5}$
(2) $\frac{1+\sqrt{6}}{5}$
(3) $\frac{24}{5}$
(4) $\frac{\sqrt{6}}{5}$

Answer (1)

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

Sol. $|z+2|=1$
$I_{m}\left(\frac{z+1}{z+2}\right)=\frac{1}{5}$
$|\operatorname{Re}(\overline{z+2})|=$?
Let $z=x+i y$
$\because|z+2|=1 \Rightarrow(x+2)^{2}+y^{2}=1$
$I_{\mathrm{m}}\left(\frac{z+1}{z+2}\right)=\frac{1}{5} \Rightarrow I_{\mathrm{m}}\left(\frac{x+i y+1}{x+i y+2}\right)=\frac{1}{5}$
$\Rightarrow I_{\mathrm{m}}\left[\frac{[(x+1)+i y][(x+2)-i y]}{(x+2)^{2}+y^{2}}\right]=\frac{1}{5}$
$\frac{y(x+2)-y(x+1)}{(x+2)^{2}+y^{2}}=\frac{1}{5}$
$\Rightarrow y=\frac{1}{5}$
Substituting in equation (1)
$(x+2)^{2}+\frac{1}{25}=1$
$(x+2)^{2}=\frac{24}{25}$
$\Rightarrow x=-2 \pm \frac{\sqrt{24}}{5}$
$|\operatorname{Re}(\overline{x+i y+2})|$
$=x+2= \pm \frac{\sqrt{24}}{5}=\frac{2 \sqrt{6}}{5}$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Let $\vec{a}=9 \hat{i}-13 \hat{j}+25 \hat{k}, \vec{b}=3 i+7 \hat{j}-13 \hat{k}$ and $\vec{c}=17 \hat{i}-2 \hat{j}+\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a}=(\vec{b}+\vec{c}) \times \vec{a}$ and $\vec{r} \cdot(\vec{b}-\vec{c})=0$, then $\frac{|593 \vec{r}+67 \vec{a}|^{2}}{(593)^{2}}$ is equal to \qquad

Answer (569)

Sol. $\vec{a}=9 \hat{i}-13 \hat{j}+25 \hat{k}$
$\vec{b}=3 \hat{i}+7 \hat{j}-13 \hat{k}$
$\vec{c}=17 \hat{i}-2 \hat{j}+\hat{k}$
$\vec{r} \times \vec{a}=(\vec{b}+\vec{c}) \times \vec{a}$
$(\vec{r}-(\vec{b}+\vec{c})) \times \vec{a}=0$
$\Rightarrow \vec{r}=(\vec{b}+\vec{c})+\lambda \vec{a}$
$\vec{r}=(20 \hat{i}+5 \hat{j}-12 \hat{k})+\lambda(9 \hat{i}-13 \hat{j}+25 \hat{k})$
$=(20+9 \lambda) \hat{i}+(5-13 \lambda) \hat{j}+(25 \lambda-12) \hat{k}$
Now $\vec{r} \cdot(\vec{b}-\vec{c})=0$
$\vec{r} \cdot(-14 \hat{i}+9 \hat{j}-14 \hat{k})=0$
Now
$-14(20+9 \lambda)+9(5-13 \lambda)-14(25 \lambda-12)=0$
$-593 \lambda-67=0$
$\lambda=-\frac{67}{593}$
$\therefore \dot{r}=(\vec{b}+\dot{c})-\frac{67}{593} \dot{a}$
$\frac{|593 \vec{r}+67 \vec{a}|^{2}}{|593|^{2}}=|\vec{b}+\vec{c}|^{2}=|20 \hat{i}+5 \hat{j}-12 \hat{k}|^{2}$
$=569$
22. Let the area of the region enclosed by the curve $y=\min \{\sin x, \cos x\}$ and the x-axis between $x=-\pi$ to $x=\pi$ be A. Then A^{2} is equal to \qquad -
Answer (16)

Aakashians Conquer JEE (Main) 2024
 SESSION-1

Our Stars

100 PERCENTILERS

Sol. $y=f(x)=\min \{\sin x, \cos x\}$

$A=-\int_{-\pi}^{\frac{-3 \pi}{4}} \cos x d x-\int_{\frac{-3 \pi}{4}}^{0} \sin x d x+\int_{0}^{\frac{\pi}{4}} \sin x d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x d x$
$-\int_{\frac{\pi}{2}}^{\pi} \cos x d x$
$A=4$
$A^{2}=16$
23. Let the positive integers be written in the form

1

$$
\begin{array}{lll}
2 & & 3 \\
& & \\
& 5 & 6
\end{array}
$$

4
\bullet^{7}

8

If the $k^{\text {th }}$ row contains exactly k, numbers for every natural number k, then the row in which the number 5310 will be, is \qquad .

Answer (103)

Sol. Let 5310 lies in $k^{\text {th }}$ row
\Rightarrow First element of $k^{\text {th }}$ row is $\frac{(k-1) k}{2}+1$
Last element of $k^{\text {th }}$ row is $\frac{k(k+1)}{2}$
$\Rightarrow \frac{(k-1) k}{2}+1 \leq 5310 \leq \frac{k(k+1)}{2}$
$\Rightarrow k=103$
24. If the orthocentre of the triangle formed by the lines $2 x+3 y-1, x+2 y-1=0$ and $a x+b y-1=0$, is the centroid of another triangle, whose circumcentre and orthocentre respectively are $(3,4)$ and $(-6,-8)$, then the value of $|a-b|$ is \qquad .

Answer (16)

Sol. Let circumcentre, orthocentre and centroid of a triangle $P Q R$ are C_{1}, H_{1} and G_{1} respectively

$(3,4)$
$(-6,-8)$
$\Rightarrow G_{1} \equiv(0,0)$ orthocentre of $\triangle A B C$ is $(0,0)$

$m_{A H_{2}}=+\frac{b}{a} \Rightarrow a+b=0$
eqn of lines $H_{2} C$ is $y=\frac{3}{2} x$
\Rightarrow point $C \equiv\left(\frac{1}{4}, \frac{3}{8}\right)$ lies on $a x+b y-1=0$
$\Rightarrow \frac{a}{4}+\frac{3}{8} b-1=0 \Rightarrow \frac{a}{4}-\frac{3}{8} a-1=0$
$\Rightarrow a=-8, b=8$
$|a-b|=16$
25. Let $\alpha=\sum_{r=0}^{n}\left(4 r^{2}+2 r+1\right)^{n} C_{r}$ and
$\beta=\left(\sum_{r=0}^{n} \frac{{ }^{n} C_{r}}{r+1}\right)+\frac{1}{n+1}$. If $140<\frac{2 \alpha}{\beta}<281$, then the value of n is \qquad .
Answer (5)

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

Sol. $\alpha=\sum_{r=0}^{n}\left(4 r^{2}+2 r+1\right){ }^{n} C_{r}$

$$
\begin{aligned}
& =4 \sum_{r=0}^{n} r^{2}{ }^{n} C_{r}+2 \sum_{r=0}^{n} r \cdot{ }^{n} C_{r}+\sum_{r=0}^{n}{ }^{n} C_{r} \\
& =4 n(n+1) 2^{n-2}+2 \cdot n \cdot 2^{n-1}+2^{n} \\
& =2^{n}(n(n+1)+n+1)=2^{n}(n+1)^{2}
\end{aligned}
$$

$$
\beta=\sum_{r=0}^{n}\left(\frac{{ }^{n} C_{r}}{r+1}\right)+\left(\frac{1}{n+1}\right)
$$

$$
(1+x)^{n}=\sum_{r=0}^{n}{ }^{n} C_{r} x^{r}
$$

$$
\int_{0}^{1}(1+x)^{n} d x=\left.\sum_{r=0}^{n} \frac{{ }^{n} C_{r} x^{r+1}}{r+1}\right|_{0} ^{1}=\sum_{r=0}^{n} \frac{{ }^{n} C_{r}}{r+1}
$$

$$
\left.\frac{(1+x)^{n+1}}{n+1}\right|_{0} ^{1}=\frac{2^{n+1}-1}{n+1}
$$

$$
\Rightarrow \quad \beta=\frac{2^{n+1}-1+1}{(n+1)}=\frac{2^{n+1}}{n+1}
$$

$$
\Rightarrow \frac{2 \alpha}{\beta}=\frac{2^{n+1}(n+1)^{2}}{\left(\frac{2^{n+1}}{n+1}\right)}=(n+1)^{3} \in(140,281)
$$

$\Rightarrow(n+1)^{3}=216$
$\Rightarrow \quad n+1=6 \Rightarrow n=5$
26. The value of
$\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x \sqrt{\cos 2 x} \sqrt[3]{\cos 3 x} \ldots \sqrt[10]{\cos 10 x}}{x^{2}}\right)$ is
\qquad .

Answer (55)

Sol. $\lim _{x \rightarrow 0} 2\left(\frac{1-\cos x(\cos 2 x)^{\frac{1}{2}}(\cos 3 x)^{\frac{1}{3}} \ldots(\cos 10 x)^{\frac{1}{10}}}{x^{2}}\right)$

$$
\left(\frac{0}{0} \text { form }\right)
$$

Using L' hospital

$$
\begin{aligned}
& 2 \lim _{x \rightarrow 0} \frac{\sin x(\cos 2 x)^{\frac{1}{2}} \ldots(\cos 10 x)^{\frac{1}{10}}+\ldots(\sin 2 x)(\cos x)(\cos 3 x)^{\frac{1}{3}}+\ldots}{2 x} \\
& \Rightarrow \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}+\frac{\sin 2 x}{x}+\ldots+\frac{\sin 10 x}{x}\right) \\
& \quad=1+2+\ldots+10=55
\end{aligned}
$$

27. If the range of $f(\theta)=\frac{\sin ^{4} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta+\cos ^{2} \theta}, \theta \in \mathbb{R}$ is $[\alpha$, $\beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to \qquad .

Answer (96)

Sol. $f(\theta)=\frac{\sin ^{4} \theta+3 \cos ^{2} \theta}{\sin ^{4} \theta+\cos ^{2} \theta}, \theta \in R$

$$
=1+\frac{2 \cos ^{2} \theta}{\sin ^{4} \theta+\cos ^{2} \theta}=1+\frac{2 \cos ^{2} \theta}{\cos ^{4} \theta-\cos ^{2} \theta+1}
$$

$$
f(\theta)=1+\frac{2}{\left(\cos ^{2} \theta+\frac{1}{\cos ^{2} \theta}-1\right)}, \cos \theta \neq 0
$$

$$
\cos ^{2} \theta+\frac{1}{\cos ^{2} \theta} \geq 2 \Rightarrow \cos ^{2} \theta+\frac{1}{\cos ^{2} \theta}-1 \in[1, \infty)
$$

$$
\frac{1}{\cos ^{2} \theta+\frac{1}{\cos ^{2} \theta}-1} \in(0,1]
$$

$f(\theta) \in(1,3]$
When $\cos \theta=0 ; f(\theta)=1$
$\Rightarrow f(\theta) \in[1,3] \Rightarrow \beta=3, \alpha=1 \Rightarrow \frac{\alpha}{\beta}=\frac{1}{3}$
Sum of infinite G.P. $=\left(\frac{64}{1-\frac{1}{3}}\right)=64 \times \frac{3}{2}=96$

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

28. Let $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$. If the sum of the diagonal elements of A^{13} is 3^{n}, then n is equal to \qquad .

Answer (7)

Sol. $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$

$$
\begin{aligned}
& A^{2}=\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right] \\
& A^{2}=\left[\begin{array}{cc}
3 & -3 \\
3 & 0
\end{array}\right]=3\left[\begin{array}{cc}
1 & -1 \\
1 & 0
\end{array}\right] \\
& A^{4}=9\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] \\
& A^{8}=81\left[\begin{array}{ll}
-1 & 1 \\
-1 & 0
\end{array}\right] \\
& A^{12}=729\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& A^{13}=729\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
1 & 1
\end{array}\right] \\
& A^{13}=\left[\begin{array}{ll}
1458 & -729 \\
729 & 729
\end{array}\right]
\end{aligned}
$$

Sum $=2187=3^{n}$
$3^{7}=3^{n}$
$n=7$
29. Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and yellow balls. If \bar{X} and \bar{Y} are the means of X and Y respectively, then $7 \bar{X}+4 \bar{Y}$ is equal to
\qquad -

Answer (17)

Sol.

X	3	2	1	0
Y	0	1	2	3

$\bar{X}=\sum X p(X)$
$\bar{Y}=\sum Y p(Y)$
$P(X=3)=P(Y=0)=\frac{{ }^{5} C_{3} \cdot{ }^{4} C_{0}}{{ }^{9} C_{3}}=\frac{{ }^{5} C_{2}}{{ }^{9} C_{3}}=\frac{5}{42}$
$P(X=2)=P(Y=1)=\frac{{ }^{5} C_{2} \cdot{ }^{4} C_{1}}{{ }^{9} C_{3}}=\frac{10}{21}$
$P(X=1)=P(Y=2)=\frac{{ }^{5} C_{1} \cdot{ }^{4} C_{2}}{{ }^{9} C_{3}}=\frac{5}{14}$
$P(X=0)=P(Y=3)=\frac{{ }^{5} C_{0} \cdot{ }^{4} C_{3}}{{ }^{9} C_{3}}=\frac{4}{84}=\frac{1}{21}$
$\bar{X}=3 \times \frac{5}{42}+2 \times \frac{10}{21}+\frac{5}{14}+0 \times \frac{1}{21}=\frac{15+40+15}{42}=\frac{70}{42}$
$\bar{Y}=0 \times \frac{5}{42}+1 \times \frac{10}{21}+2 \times \frac{5}{14}+3 \times \frac{1}{21}=\frac{20+30+6}{42}=\frac{56}{42}$
$\Rightarrow 7 \bar{X}+4 \bar{Y}=17$
30. The number of 3 -digit numbers, formed using the digits $2,3,4,5$ and 7 , when the repetition of digits is not allowed, and which are not divisible by 3 , is equal to \qquad .

Answer (36.00)

Sol. Possible triplets for which number is divisible by 3 $(2,3,7),(2,3,4),(3,5,7),(3,5,4)$
\therefore Number of required numbers $={ }^{5} C_{3} \cdot 3!-4 \times 3$!
$=3!\times(6)$
$=6 \times 6=36$

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

31. Young's modulus is determined by the equation given by $Y=49000 \frac{\mathrm{~m}}{\mathrm{l}} \frac{\mathrm{dyne}}{\mathrm{cm}^{2}}$ where M is the mass and I is the extension of wire used in the experiment. Now error in Young modules (Y) is estimated by taking data from $M-I$ plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and I are 500 g and 2 cm respectively then percentage error of Y is
(1) 0.2%
(2) 0.02%
(3) 0.5%
(4) 2%

Answer (4)

Sol. $\frac{\Delta Y}{Y}=\frac{\Delta m}{m}+\frac{\Delta l}{l}$
$\frac{\Delta Y}{Y}=\frac{5}{500}+\frac{.02}{2}$
$\%$ age $=1+1=2 \%$
32. A $L C R$ circuit is at resonance for a capacitor C, inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now
(1) Halved
(2) Same
(3) Double
(4) Zero

Answer (3)

Sol. At resonance $i=\frac{v}{R}$
If $R \rightarrow \frac{R}{2}$
$\Rightarrow \quad i \rightarrow 2 i$
33. Two planets A and B having masses m_{1} and m_{2} move around the sun in circular orbits of r_{1} and r_{2} radii respectively. If angular momentum of A is L and that of B is $3 L$, the ratio of time period $\left(\frac{T_{A}}{T_{B}}\right)$ is
(1) $\frac{1}{27}\left(\frac{m_{2}}{m_{1}}\right)^{3}$
(2) $27\left(\frac{m_{1}}{m_{2}}\right)^{3}$
(3) $\left(\frac{r_{1}}{r_{2}}\right)^{3}$
(4) $\left(\frac{r_{2}}{r_{1}}\right)^{\frac{3}{2}}$

Answer (1)
Sol. $\frac{v_{1}}{v_{2}}=\sqrt{\frac{r_{2}}{r_{1}}}$
$m_{1} v_{1} r_{1}=h$
$m_{2} v_{2} r_{2}=32$
$\Rightarrow \frac{v_{1}}{v_{2}}=\frac{1}{3} m_{2} m_{1} r_{1}$
From (i) \& (ii)
$\sqrt{\frac{r_{2}}{r_{1}}}=\frac{1}{3} \frac{m_{2}}{m_{1}} \frac{r_{2}}{r_{1}}$
$\frac{3 m_{1}}{m_{2}}=\sqrt{\frac{r_{2}}{r_{1}}}$
$\frac{T_{1}}{T_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{3 / 2}=\left(\frac{m_{2}}{3 m_{1}}\right)^{3}=\frac{1}{27}\left(\frac{m_{2}}{m_{1}}\right)^{3}$

Aakashians Fonquer JEE (Main) 2024 SEssion-1

RISHIS SHUKLA
two year classroom program
IWO Yean CLasshoom Program
As per student response sheet and NTA answerkey.

[PHY. OR CHEM. OR MATHS]

34. Correct Bernoulli's equation is (symbols have their usual meaning)
(1) $P+\rho g h+\rho v^{2}=$ constant
(2) $P+\frac{1}{2} \rho g h+\frac{1}{2} \rho v^{2}=$ constant
(3) $P+m g h+\frac{1}{2} m v^{2}=$ constant
(4) $P+\rho g h+\frac{1}{2} \rho v^{2}=$ constant

Answer (4)

Sol. $P+\rho g h+\frac{1}{2} \rho v^{2}=$ constant
35. Binding energy of a certain nucleus is $18 \times 10^{8} \mathrm{~J}$. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:
(1) $2 \mu \mathrm{~g}$
(2) $0.2 \mu \mathrm{~g}$
(3) $10 \mu \mathrm{~g}$
(4) $20 \mu \mathrm{~g}$

Answer (4)
Sol. $\Delta m=\frac{B E}{C^{2}}=\frac{18 \times 10^{8}}{9 \times 10^{16}}=2 \times 10^{-8} \mathrm{~kg}$

$$
\begin{aligned}
& =2 \times 10^{-5} \mathrm{~g} \\
& =20 \mu \mathrm{~g}
\end{aligned}
$$

36. In an expression $a \times 10^{b}$:
(1) b is order of magnitude of $a \leq 5$
(2) a is order of magnitude for $b \leq 5$
(3) b is order of magnitude for $a \geq 5$
(4) b is order of magnitude for $5<a \leq 10$

Answer (1)

Sol. In expression $a \times 10^{b}$, If $a \leq 5 ; a \approx 1$ by round off \Rightarrow Order B
37. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in $P-V$ diagram. The relation between the ratio $\frac{V_{a}}{V_{d}}$ and the ratio $\frac{V_{b}}{V_{c}}$ is

(1) $\frac{V_{a}}{V_{d}} \neq \frac{V_{b}}{V_{c}}$
(2) $\frac{V_{a}}{V_{d}}=\left(\frac{V_{b}}{V_{c}}\right)^{2}$
(3) $\frac{V_{a}}{V_{d}}=\left(\frac{V_{b}}{V_{c}}\right)^{-1}$
(4) $\frac{V_{a}}{V_{d}}=\frac{V_{b}}{V_{c}}$

Answer (4)
Sol.

$$
\begin{align*}
& \text { (1) } P_{a} V_{a}=P_{b} V_{b} \tag{i}\\
& P_{c} V_{c}=P_{d} V_{d} \tag{ii}\\
& \text { (2) } P_{a} V_{a}^{\gamma-1}=P_{d} V_{d}^{\gamma-1} \quad \ldots \text { (ii) } \tag{iii}\\
& P_{b} V_{b}^{\gamma-1}=P_{c} V_{c}^{\gamma-1} \quad \ldots \text { (iii) } \tag{iv}\\
& \text { (i) } \div \text { (iii) } \Rightarrow \frac{V_{a}}{V_{a}^{\gamma-1}}=\frac{P_{b} V_{b}}{P_{d} V_{d}^{\gamma-1}} \quad \text { (v) } \tag{v}\\
& \text { (ii) } \div \text { (iv) } \Rightarrow \frac{V_{c}}{V_{c}^{\gamma-1}}=\frac{P_{d} V_{d}}{P_{b} V_{b}{ }^{\gamma-1}} \quad \text { (vi) } \tag{vi}\\
& \text { (v) } \times\left(\text { vi) } \Rightarrow \frac{V_{a}}{V_{a}^{\gamma-1}} \frac{V_{c}}{V_{c}^{\gamma-1}}=\frac{P_{b} V_{b}}{P_{d} V_{d}^{\gamma-1}} \times \frac{P_{d} V_{d}}{P_{b} V_{b}^{\gamma-1}}\right. \\
& \Rightarrow V_{a}^{\gamma-2} V_{c}{ }^{\gamma-2}=V_{d}^{\gamma-1} V_{b}^{\gamma-2} \\
& \Rightarrow \frac{V_{a}}{V_{d}}=\frac{V_{b}}{V_{c}}
\end{align*}
$$

Aakashians Conquer JEE (Main) 2024 session-1

38. Paramagnetic substances:
A. Align themselves along the directions of external magnetic field.
B. Attract strongly towards external magnetic field.
C. Has susceptibility little more than zero.
D. Move from a region of strong magnetic field to weak magnetic field.
Choose the most appropriate answer from the options given below:
(1) B, D only
(2) A, B, C, D
(3) A, B, C only
(4) A, C only

Answer (4)

Sol. (1) B_{0} \qquad

Magnetic Dipole align
$B_{\text {ind }} \ll B_{0}$
(2) Paramagnetic substance are attracted weakly.
(3) $0<\chi \ll 1$
(4)

39. The diameter of a sphere is measured using a vernier calliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm . The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g , the density of the sphere is
(1) $2.0 \mathrm{~g} / \mathrm{cm}^{3}$
(2) $1.7 \mathrm{~g} / \mathrm{cm}^{3}$
(3) $2.5 \mathrm{~g} / \mathrm{cm}^{3}$
(4) $2.2 \mathrm{~g} / \mathrm{cm}^{3}$

Answer (1)

Sol. $L C=\frac{1}{10} \mathrm{~mm}$
Reading $=2 \mathrm{~cm}+2 \times \frac{1}{10} \mathrm{~mm}=2.02 \mathrm{~cm}$
$r=1.01 \mathrm{~cm}$
$r=\frac{8.635}{\frac{4}{3} \pi(1.01)^{3}}=2.0018$
$r \approx 2.0$
40. In the given circuit, the terminal potential difference of the cell is:

(1) $3 V$
(2) 4 V
(3) 2 V
(4) 1.5 V

Answer (3)

$V_{T}=\left(\frac{3}{1+2}\right) \times 2=2 \mathrm{~V}$
41. Average force exerted on a non-reflecting surface at normal incidence is $2.4 \times 10^{-4} \mathrm{~N}$. If $360 \mathrm{~W} / \mathrm{cm}^{2}$ is the light energy flux during span of 1 hour 30 minutes, then the area of the surface is:
(1) $0.1 \mathrm{~m}^{2}$
(2) $0.2 \mathrm{~m}^{2}$
(3) $0.02 \mathrm{~m}^{2}$
(4) $20 \mathrm{~m}^{2}$

Answer (3)

RISHIS SHUKLA
two Year classroom program
As per student response sheet and NTA answer ker.

PHY. OR CHEM. OR MATHSJ
 -
\qquad

Our Stars

Sol. $P=\frac{I}{C}$

$$
\begin{aligned}
& F=P A=\frac{l}{C} \times A \\
& A=\frac{F C}{l}=\frac{2.4 \times 10^{-4} \times 3 \times 10^{8}}{360} \times 10^{-4} \\
& =\frac{72}{3600}=0.02 \mathrm{~m}^{2}
\end{aligned}
$$

42. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature $\left(27^{\circ} \mathrm{C}\right)$. the ratio of specific heat of gases at constant volume respectively is:
(1) $\frac{5}{3}$
(2) $\frac{3}{5}$
(3) $\frac{3}{2}$
(4) $\frac{7}{5}$

Answer (2)

Sol. $C_{V}=\frac{3}{2} R$ for monoatomic
$C_{V}=\frac{5}{2} R$ for diatomic
Ratio $=\frac{3}{5}$
43. Three bodies A, B and C have equal kinetic energies and their masses are $400 \mathrm{~g}, 1.2 \mathrm{~kg}$ and 1.6 kg respectively. The ratio of their linear momenta is:
(1) $\sqrt{2}: \sqrt{3}: 1$
(2) $1: \sqrt{3}: 2$
(3) $\sqrt{3}: \sqrt{2}: 1$
(4) $1: \sqrt{3}: \sqrt{2}$

Answer (2)

Sol. $P=\sqrt{2 m k}$

$$
\begin{aligned}
P_{1}: P_{2}: P_{3} & =\sqrt{0.4}: \sqrt{1.2}: \sqrt{1.6} \\
& \quad \text { for same kinetic energy } \\
& =2: 2 \sqrt{3}: 4 \\
& 1: \sqrt{3}: 2
\end{aligned}
$$

44. A stationary particle breaks into two parts of masses m_{A} and m_{B} which move with velocities v_{A} and v_{B} respectively. The ratio of their kinetic energies $\left(K_{B}: K_{A}\right)$ is
(1) $1: 1$
(2) $m_{B} v_{B}: m_{A} v_{A}$
(3) $m_{B}: m_{A}$
(4) $v_{B}: v_{A}$

Answer (4)

Sol. $K=\frac{1}{2} m v^{2}=\frac{1}{2} P V$
$\Rightarrow \frac{K_{1}}{K_{2}}=\frac{v_{1}}{v_{2}}$ for same momentum
45. A clock has $75 \mathrm{~cm}, 60 \mathrm{~cm}$ long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi=3.14$):
(1) 220.0
(2) 118.9
(3) 140.5
(4) 139.4

Answer (4)

Sol. 30 minutes $\equiv 30$ round of second hand

$$
\begin{aligned}
& \equiv \frac{1}{2} \text { round of minute hand } \\
d_{s}-d_{m} & =30\left\{2 \pi r_{s}\right\}-\frac{1}{2}\left\{2 \pi r_{m}\right\} \\
& \pi\{60 \times 75-60\} \\
& =\pi \times 60 \times 74=13941.6 \mathrm{~cm} \\
& \approx 139.4 \mathrm{~m}
\end{aligned}
$$

46. The output Y of following circuit for given inputs is:

(1) $A \cdot B$
(2) $\Lambda \cdot B(\Lambda+B)$
(3) 0
(4) $\bar{A} \cdot B$

Answer (3)
Sol. $Y=(A+\bar{B}) \cdot(\bar{A} \cdot B)$

$$
\begin{aligned}
& =A \cdot \bar{A} \cdot B+\bar{B} \cdot \bar{A} \cdot B \\
& =0+0=0
\end{aligned}
$$

47. A player caught a cricket ball of mass 150 g moving at a speed of $20 \mathrm{~m} / \mathrm{s}$. If the catching process is completed in 0.1 s , the magnitude of force exerted by the ball on the hand of the player is:
(1) 150 N
(2) 300 N
(3) 30 N
(4) 3 N

Answer (3)
Sol. $F=\frac{\Delta P}{\Delta t}=\frac{150}{1000} \times \frac{20}{0.1}=30 \mathrm{~N}$
48. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:
(1) $\sqrt{a b}$
(2) $a b$
(3) $\frac{a}{b}$
(4) $\frac{b}{a}$

Answer (3)

Sol. $V_{A}=V_{B}=\frac{Q_{A}}{4 \pi \epsilon_{0} a}=\frac{Q_{B}}{4 \pi \epsilon_{0} b}$

$$
\Rightarrow \frac{Q_{A}}{Q_{B}}=\frac{a}{b}
$$

49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio
(1) $1: \sqrt{2}$
(2) $2: 1$
(3) $\sqrt{2}: 1$
(4) $1: 2$

Answer (3)
Sol.

$\sin \theta_{c}=\frac{1}{\sqrt{2}}=\frac{\mu_{d}}{\mu_{r}}$
$\frac{\mu_{d}}{\mu_{r}}=\sqrt{2}$
50. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:
(Assume $h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, m_{e}=9.0 \times 10^{-31} \mathrm{~kg}$ and $m_{p}=1836$ times m_{e})
(1) $1: \frac{1}{1836}$
(2) $1: \frac{1}{\sqrt{1836}}$
(3) $1: 1836$
(4) $1: \sqrt{1836}$

Answer (3)
Sol. $\lambda=\frac{h}{p}=\frac{h}{\sqrt{2} m k}$

$$
\Rightarrow m_{e} k_{e}=m_{p} k_{p}
$$

$$
\frac{m_{e}}{m_{p}}=\frac{k_{p}}{k_{e}}
$$

$$
\Rightarrow \frac{k_{p}}{k_{e}}=\frac{1}{1836}
$$

Aakashians Fonquer JEE (Main) 2024 SESSION-1

$4155^{\text {sf. } \text { reacemimas }}$?

Our Stars

two year classroom program
100 PERCENTILERS
e sheet and NTA answer key.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
51. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m . If target nucleus has atomic number 80 , then maximum velocity of α-particle is \qquad $\times 10^{5}$ ms approximately.
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{SI}\right.$ unit, mass of α particle $=6.75$ $\times 10^{-27} \mathrm{~kg}$)

Answer (156)

Sol. $\frac{1}{2} m v_{0}^{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{z(e)}{r}$
$\frac{1}{2} \times 6.72 \times 10^{-27} v_{0}^{2}=9 \times 10^{9} \times \frac{80 \times 2 \times 1.6 \times 1.6 \times 10^{-19} \times 10^{-19}}{4.5 \times 10^{-14}}$
$v_{0}^{2}=\frac{2 \times 9 \times 80 \times 1.6 \times 1.6 \times 2}{6.72 \times 4.5} \times 10^{-38+14+27+9}$
$v_{0}^{2}=243.8 \times 10^{12}$
$v_{0}=15.6 \times 10^{6}$
$v_{0}=156 \times 10^{5}$
52. A closed and open organ pipe have same lengths. If the ratio of frequencies of their seventh orvertones is $\left(\frac{a-1}{a}\right)$, then the value of a is

Answer (16)

Sol. $f_{0}=\frac{v}{2 l} \quad \Rightarrow \quad f_{07}=8 \frac{v}{2 l}$
$f_{C}=\frac{v}{4 l} \quad \Rightarrow \quad f_{C_{7}}=15 \frac{v}{4 l}$
$\frac{f_{c_{7}}}{f_{o_{7}}}=15 \frac{v}{4 l} \frac{2 l}{8 v}=\frac{30}{32}=\frac{15}{16}$
53. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of $3 \mu \mathrm{~T}$ perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is \qquad NC^{-1}.
(Given, mass of electron $=9 \times 10^{-31} \mathrm{~kg}$, electric charge $=1.6 \times 10^{-19} \mathrm{C}$)

Answer (4)

Sol. $E=V B$

$$
\begin{aligned}
E & =\sqrt{\frac{2 k}{m}} \times B \\
& =\sqrt{\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \times 3 \times 10^{-6} \\
& =\sqrt{\frac{16}{9} \times 10^{12}} \times 3 \times 10^{-6} \\
& =\frac{4}{3} \times 10^{6} \times 3 \times 10^{-6} \\
& =4 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

54. Resistance of a wire at $0^{\circ} \mathrm{C}, 100^{\circ} \mathrm{C}$ and $\mathrm{t}^{\circ} \mathrm{C}$ is found to be $10 \Omega, 10.2 \Omega$ and 10.95Ω respectively. The temperature t in Kelvin scale is \qquad -

Answer (748)

Sol. From thermometry

$$
\begin{aligned}
& \frac{t^{\circ}-0}{100-0}=\frac{10.95-10.00}{10.2-10.00} \\
& \frac{t^{\circ}}{100}=\frac{0.95}{0.20}=\frac{19}{4} \\
& t^{\circ}=\frac{19}{4} \times 100=19 \times 25=475 \\
& k=748
\end{aligned}
$$

Aakashians Fonquer JEE (Main) 2024 SEssion-1

99+ PERCENTLLERS
**145 ${ }^{95+\text { PERCENTILERS }}$

Our Stars

55. A liquid column of height 0.04 cm balances excess pressure of a soap bubble of certain radius. If density of liquid is $8 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and surface tension of soap solution is $0.28 \mathrm{Nm}^{-1}$, then diameter of the soap bubble is \qquad cm .
(if $g=10 \mathrm{~m} \mathrm{~s}^{-2}$)

Answer (7)

Sol. $\frac{4 S}{\pi}=h \rho g$

$$
\begin{aligned}
& \frac{4 \times 0.28}{\left(\frac{d}{2}\right)}=4 \times 10^{-4} \times 8 \times 10^{3} \times 10 \\
& \frac{8 \times 0.28}{32}=d=\frac{8 \times 28}{32} \mathrm{~cm}=7 \mathrm{~cm}
\end{aligned}
$$

56. A square loop $P Q R S$ having 10 turns, area $3.6 \times 10^{-3} \mathrm{~m}^{2}$ and resistance 100Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude $B=0.5 \mathrm{~T}$ as shown. Work done in pulling the loop out of the field in 1.0 s is
\qquad $\times 10^{-6} \mathrm{~J}$.

Answer (3)

Sol. $A=36 \times 10^{-4} \mathrm{~m}^{2}$

$$
\begin{aligned}
I= & 6 \times 10^{-2} \mathrm{~m} \\
& =6 \mathrm{~cm} \\
v & =\frac{6 \mathrm{~cm}}{1 \mathrm{sec}}=6 \mathrm{~cm} / \mathrm{s} \\
\varepsilon & =B / v n^{2}=0.5 \times \frac{6}{100} \times \frac{6}{100} \\
& =18 \times 10^{-4} \mathrm{~V} . \\
E & =\frac{n^{2} \varepsilon^{2}}{R} t=100 \times \frac{18 \times 18 \times 10^{-4} \times 10^{-4}}{10^{2}} \times 1 \\
& =324 \times 10^{-10} \times 10^{2} \\
& =3.24 \times 10^{-6}
\end{aligned}
$$

57. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be \qquad $\times 10^{-3}$ rad.

Answer (6)

Sol.

$$
\begin{aligned}
\theta & =(2)\left(\frac{2 \lambda}{a}\right) \\
& =\frac{4 \lambda}{a}=\frac{4 \times 600 \times 10^{-9}}{0.4 \times 10^{-3}} \\
& =6 \times 10^{-3}
\end{aligned}
$$

Aakashians Fonquer JEE (Main) 2024 SESsION-1

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Our Stars

58. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is \qquad .

Answer (15)

Sol. $x_{c m}=1.5$

$$
\begin{array}{ll}
M_{+}=6 \sigma & y_{+}=1 \\
M_{-}=-\sigma & y_{-}=1.5
\end{array}
$$

$$
y_{\mathrm{cm}}=\frac{6 \sigma \times 1+(-\sigma) \times 1.5}{6 \sigma-\sigma}
$$

$$
=\frac{6-1.5}{5}=\frac{4.5}{5}=0.9
$$

$$
\frac{x}{y}=\frac{1.5}{0.9}=\frac{15}{9}
$$

59. Three vectors $\overrightarrow{O P}, \overrightarrow{O Q}$ and $\overrightarrow{O R}$ each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A \sqrt{x}$. The value of x is \qquad .

Answer (3)

Sol. $(\vec{P}+\vec{Q})=\sqrt{2} A$
$R=A$
$\theta=90^{\circ}$

Resultant $=\sqrt{3} A$
60. An electric field, $\vec{E}=\frac{2 \hat{i}+6 \hat{j}+8 \hat{k}}{\sqrt{6}}$ passes through the surface of $4 \mathrm{~m}^{2}$ area having unit vector $\hat{n}=\left(\frac{2 \hat{i}+\hat{j}+\hat{k}}{\sqrt{6}}\right)$. The electric flux for that surface is
\qquad V m.

Answer (12)

Sol. $Q=\vec{E} \cdot \vec{A}$

$$
=4\left(\frac{4+6+8}{6}\right)=\frac{18 \times 4}{6}=12
$$

Aakashians Gonquer JEE (Main) 2024 session-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Match List I with List II

	LIST I me of the test)	List II (Reaction sequence involved) [M is metal]	
A.	Borax bead test	I.	$\mathrm{MCO}_{3} \rightarrow \mathrm{MO} \xrightarrow[+\Delta]{\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}} \mathrm{CoO} \cdot \mathrm{MO}$
B.	Charcoal cavity test	II.	$\mathrm{MCO}_{3} \rightarrow \mathrm{MCl}_{2} \rightarrow \mathrm{M}^{2+}$
C.	Cobalt nitrate test	III.	$\mathrm{MSO}_{4} \xrightarrow[\Delta]{\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}} \mathrm{M}\left(\mathrm{BO}_{2}\right)_{2} \rightarrow \mathrm{MBO}_{2} \rightarrow \mathrm{M}$
D.	Flame test	IV.	$\mathrm{MSO}_{4} \xrightarrow[\Delta]{\mathrm{Na}_{2} \mathrm{CO}_{3}} \mathrm{MCO}_{3} \rightarrow \mathrm{MO} \rightarrow \mathrm{M}$

Choose the correct answer from the options given below:
(1) A-III, B-IV, C-I, D-II
(2) A-III, B-I, C-II, D-IV
(3) A-III, B-I, C-IV, D-II
(4) A-III, B-II, C-IV, D-I

Answer (1)

Sol. (A) Borax bead test

$$
\mathrm{MSO}_{4} \xrightarrow[\Delta]{\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}} \mathrm{M}\left(\mathrm{BO}_{2}\right)_{2} \rightarrow \mathrm{MBO}_{2} \rightarrow \mathrm{M}
$$

(B) Charcoal cavity test
$\mathrm{MSO}_{4} \xrightarrow[\Delta]{\mathrm{Na}_{2} \mathrm{CO}_{3}} \mathrm{MCO}_{3} \rightarrow \mathrm{MO} \rightarrow \mathrm{M}$
(C) Cobalt nitrate test
$\mathrm{MCO}_{3} \rightarrow \mathrm{MO} \xrightarrow[+\Delta]{\mathrm{CO}\left(\mathrm{NO}_{3}\right)_{2}} \mathrm{CoO} \cdot \mathrm{MO}$
(D) Flame test
$\mathrm{MCO}_{3} \rightarrow \mathrm{MCl}_{2} \rightarrow \mathrm{M}^{2+}$
So, $\mathrm{A} \rightarrow$ (III), B \rightarrow (IV), C \rightarrow (I), D \rightarrow (II).
62. Which among the following compounds will undergo fastest $\mathrm{S}_{\mathrm{N}} 2$ reaction.
(1)

(2)

(3)

(4)

Answer (4)

Sol. Rate of $\mathrm{S}_{\mathrm{N}} 2$ reaction depends on steric hindrance, less the steric hindrance more will be rate of reaction \square, it will undergo S_{N} reaction fastest.
63. Number of Complexes with even number of electrons in $\mathrm{t}_{2} \mathrm{~g}$ orbitals is
$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$,
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(1) 2
(2) 3
(3) 5
(4) 1

Answer (2)
Sol. $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Fe}^{2+} \Rightarrow 3 \mathrm{~d}^{6} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Co}^{2+} \Rightarrow 3 \mathrm{~d}^{7} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{5} \mathrm{e}_{\mathrm{g}}^{2}$
$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \Rightarrow \mathrm{Co}^{3+} \Rightarrow 3 \mathrm{~d}^{6} \Rightarrow \mathrm{~d}^{2} \mathrm{sp}^{3} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{0}$
$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Cu}^{2+} \Rightarrow 3 \mathrm{~d}^{9} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{6} \mathrm{e}_{\mathrm{g}}^{3}$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \Rightarrow \mathrm{Cr}^{2+} \Rightarrow 3 \mathrm{~d}^{4} \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2} \Rightarrow \mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{1}$
Three complexes having even number of electrons in $\mathrm{t}_{2 \mathrm{~g}}$.

Aakashians Conquer JEE (Main) 2024 sEssIon-1

two Year classkoom program

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

64. Match List I with List II

LIST I (Compound)		LIST II (Colour)	
A.	$\mathrm{Fe}\left[\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right.$	I.	Violet
B.	$\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}^{4-}\right.$	II.	Blood Red
C.	$[\mathrm{Fe}(\mathrm{SCN})]^{2+}$	III.	Prussian Blue
D.	$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3}$	IV.	Yellow

Choose the correct answer from the options given below.
(1) A-III, B-I, C-II, D-IV
(2) A-I, B-II, C-III, D-IV
(3) A-II, B-III, C-IV, D-I
(4) A-IV, B-I, C-II, D-III

Answer (1)

Sol. $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3} \cdot \mathrm{XH}_{2} \mathrm{O} \Rightarrow$ Prussian blue
$\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}\right]^{4-} \Rightarrow$ Violet
$[\mathrm{Fe}(\mathrm{SCN})]^{2+} \Rightarrow$ Blood red
$\left[\mathrm{NH}_{4}\right]_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3} \Rightarrow$ Yellow
So, $\mathrm{A} \rightarrow$ (III), B \rightarrow (I), C \rightarrow (II), D \rightarrow (IV).
65. Given below are two statements:

Statement I: Compound A IUPAC name of Compound A is 4 -chloro-1,3-dinitrobenzene.

Statement II: Compound B IUPAC name of Compound B is 4 -ethyl-2-methylaniline.
In the light of the above statements, choose the most appropriate answer from the options given below.
(1) Statement I is correct but Statement II is incorrect.
(2) Both Statement I and Statement II are incorrect.
(3) Statement I is incorrect but Statement II is correct.
(4) Both Statement I and Statement II are correct.

Answer (3)

Sol.

Correct name is 1 -chloro-2,4-dinitro benzene
Statement-I is incorrect.

Statement-II is correct.
66. For the given hypothetical reactions, the equilibrium constants are as follows:
$X \rightleftharpoons Y ; K_{1}=1.0$
$Y \rightleftharpoons Z ; K_{2}=2.0$
$\mathrm{Z} \rightleftharpoons \mathrm{W} ; \mathrm{K}_{3}=4.0$
The equilibrium constant for the reaction $\mathrm{X} \rightleftharpoons \mathrm{W}$ is
(1) 8.0
(2) 7.0
(3) 12.0
(4) 6.0

Answer (2)
Sol. $X \rightleftharpoons Y ; K_{1}=1.0$
$\mathrm{Y} \rightleftharpoons \mathrm{Z} ; \mathrm{K}_{2}=2.0$
$\mathrm{Z} \rightleftharpoons \mathrm{W} ; \mathrm{K}_{3}=4.0$
For the equilibrium constant value of

$$
\mathrm{X} \rightleftharpoons \mathrm{~W} ; \mathrm{K}=\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \mathrm{~K}_{3}
$$

$K=1 \times 2 \times 4=8$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

two Year classroom program

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]
"936 99+ pececariless
**14.4 95+ PERCENTLLERS
5+ PERCENTILERS

Our Stars

67. In the given compound, the number of 2° carbon atom/s is \qquad -

(1) One
(2) Three
(3) Four
(4) Two

Answer (1)

Sol.

Number of 2° carbon atom $=1$
68. An octahedral complex with the formula $\mathrm{CoCl}_{3} \cdot \mathrm{nNH}_{3}$ upon reaction with excess of AgNO_{3} solution gives 2 moles of AgCl . Consider the oxidation state of Co in the complex is ' x '. The value of " $x+n$ " is
(1) 5
(2) 6
(3) 8
(4) 3

Answer (3)
Sol. $\mathrm{CoCl}_{3} \cdot \mathrm{nNH}_{3} \xrightarrow[\text { excess }]{\mathrm{AgNO}_{3}} 2 \mathrm{~mol}$ of AgCl
it means 2 Cl ions will present in ionisation sphere.
So coordination compound should be
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
Oxidation state of Cobalt is +3
$\mathrm{x}=3$
$\mathrm{n}=5$
$(x+n)=8$
69. Among the following halogens
$\mathrm{F}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2}
Which can undergo disproportionation reactions?
(1) F_{2} and Cl_{2}
(2) Only I_{2}
(3) $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2}
(4) $\mathrm{F}_{2}, \mathrm{Cl}_{2}$ and Br_{2}

Answer (3)

Sol. As fluorine shows an oxidation of only -1 and has tendency to reduce itself only, it cannot undergo disproportionation reaction, other $\mathrm{Cl}_{2}, \mathrm{Br}_{2}$ and I_{2} can undergo disproportionation reaction.
70.

The incorrect statement regarding the given structure is
(1) has 4 asymmetric carbon atom
(2) despite the presence of -CHO does not give Schiff's test
(3) will coexist in equilibrium with 2 other cyclic structure
(4) can be oxidized to a dicarboxylic acid with Br_{2} water

Answer (4)

Sol. The given structure is of glucose.
Glucose does not give Schiff test due to absence of aldehyde group in ring structure, glucose on reaction with $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$ give gluconic acid which is mono carboxylic acid.
71. Which of the following are aromatic?
A.

B.

C.

D.

(1) A and C only
(2) C and D only
(3) B and D only
(4) A and B only

Aakashians Conquer JEE (Main) 2024 sEssion-1

RISHIS SHUKLA
two year classkoom program
As per student response sheet and NTA answer ker

Answer (3)

Sol. Compound (C) is non planer due to trans annular hydrogen interaction and hence non aromatic.
Compound (B) and (D) are only aromatic compounds.
72. Combustion of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ produces CO_{2} and water. The amount of oxygen (ing) required for the complete combustion of 900 g of glucose is:
[Molar mass of glucose in $\mathrm{g} \mathrm{mol}^{-1}=180$]
(1) 480
(2) 32
(3) 800
(4) 960

Answer (4)

Sol. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$
Mole of glucose $=\frac{900 \mathrm{~g}}{18 \mathrm{~g} / \mathrm{mol}}=5 \mathrm{~mol}$
1 mol glucose reacts with 6 mol of O_{2}, so 5 mol glucose will react with $30 \mathrm{~mol}_{2}$.
Mole of O_{2} required $=30 \mathrm{~mol}$
Mass of O_{2} required $=32 \times 30 \mathrm{~g}$

$$
=960 \mathrm{~g}
$$

73. Given below are two statements:

Statement I: $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ can act as ligands to form transition metal complexes.
Statement II: As N and P are from same group, the nature of bonding of $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ is always same with transition metals.

In the light of the above statements, choose the
most appropriate answer from the options given below:
(1) Statement I is correct but Statement II is incorrect.
(2) Both Statement I and Statement II are correct.
(3) Both Statement I and Statement II are incorrect.
(4) Statement I is incorrect but Statement II is correct.

Answer (1)

Sol. $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ and $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ both can acts as ligand as both have lone pair of electron.

But bonding of both are different as $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$ has vacant d-orbital hence acts as sigma donor as well as π-acceptor but $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ can acts only as σ-donor.
Statement - I is correct
Statement - II is incorrect
74. Identify the major products A and B respectively in the following set of reactions.

(1)
 and $B=$

(2) $A=$
 and $B=$

(3)
 and $B=$

(4)
 and $\mathrm{B}=$

Answer (2)

Sol.

(A)

(B)

Aakashians Conquer JEE (Main) 2024 sEssIon-1

Our Stars

two Year classioom program
Two Yean classhoom program

se sheet and NTA answer key.

75. Identify the product (P) in the following reaction:

(1)

(2)

(3)

(4)

Answer (4)

Sol.

Given reaction is HVZ reaction.
76. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R:
Assertion A: The stability order of +1 oxidation state of Ga , In and TI is $\mathrm{Ga}<\mathrm{In}<\mathrm{TI}$.
Reason R: The inert pair effect stabilizes the lower oxidation state down the group.
In the light of the above statements, choose the correct answer from the options given below:
(1) \mathbf{A} is false but \mathbf{R} is true.
(2) Both \mathbf{A} and \mathbf{R} are true but \mathbf{R} is NOT the correct explanation of \mathbf{A}.
(3) Both \mathbf{A} and \mathbf{R} are true and \mathbf{R} is the correct explanation of \mathbf{A}.
(4) \mathbf{A} is true but \mathbf{R} is false.

Answer (3)

Sol. Stability of +1 oxidation state increase down the group in group 13, due to inert pair effect.
77. Iron (III) catalyses the reaction between iodide and persulphate ions, in which
A. Fe^{3+} oxidises the iodide ion
B. Fe^{3+} oxidises the persulphate ion
C. Fe^{2+} reduces the iodide ion
D. Fe^{2+} reduces the persulphate ion

Choose the most appropriate answer from the options given below:
(1) A only
(2) B only
(3) A and D only
(4) B and C only

Answer (3)
Sol. $21^{\ominus}+\mathrm{S}_{2} \mathrm{O}_{8}^{2-} \xrightarrow{\mathrm{Fe}^{3+}} \mathrm{I}_{2}+2 \mathrm{SO}_{4}^{2-}$
Mechanism
$21^{\ominus}+\mathrm{Fe}^{+3} \xrightarrow{\mathrm{Fe}^{3+}} \mathrm{I}_{2}+\mathrm{Fe}^{+2}$
$\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{Fe}^{2+} \longrightarrow 2 \mathrm{Fe}^{3+}+2 \mathrm{SO}_{4}^{2-}$
Fe^{3+} oxidises iodide to iodine
Fe^{2+} reduces persulphate ion
A and D are correct
78. Thiosulphate reacts differently with iodine and bromine in the reactions given below:
$2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}+\mathrm{I}_{2} \rightarrow \mathrm{~S}_{4} \mathrm{O}_{6}^{2-}+21^{-}$
$\mathrm{S}_{2} \mathrm{O}_{3}^{2-}+5 \mathrm{Br}_{2}+5 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{SO}_{4}^{2-}+4 \mathrm{Br}^{-}+10 \mathrm{H}^{+}$
Which of the following statement justifies the above dual behaviour of thiosulphate?
(1) Bromine undergoes oxidation and iodine undergoes reduction in these reactions
(2) Bromine is a weaker oxidant than iodine
(3) Bromine is a stronger oxidant than iodine
(4) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions

Answer (3)
Sol. Br_{2} oxidizes thiosulphate more than I_{2} oxidises so,
Br_{2} is stronger oxidising agent or oxidant than I_{2}.

Aakashians Gonquer JEE (Main) 2024 session-1

[^0]two Year classroom program
TWO YEAR CLASSROOM PRUGRAM
As per student response sheet and NTA answer key.

79. Match List I with List II

| LIST I
 (Elements) | | LIST II
 (Properties in their respective
 groups) | |
| :--- | :--- | :--- | :--- | ---: |
| A. | CI, S | I. | Elements with highest
 electronegativity |
| B. | Ge, As | II. | Elements with largest
 atomic size |
| C. | Fr, Ra | III. | Elements which show
 properties of both metals
 and non-metal |
| D. | F, O | IV. | Elements with highest
 negative electron gain
 enthalpy |

Choose the correct answer from the options given below:
(1) A-II, B-III, C-IV, D-I
(2) A-IV, B-III, C-II, D-I
(3) A-II, B-I, C-IV, D-III
(4) A-III, B-II, C-I, D-IV

Answer (2)
Sol. $\mathrm{Cl}, \mathrm{S} \Rightarrow$ Elements with highest negative electron gain enthalpy
$\mathrm{Ge}, \mathrm{As} \Rightarrow$ Elements which show property of both metals and non metals.
$\mathrm{Fr}, \mathrm{Ra} \Rightarrow$ Elements with largest atomic size.
$\mathrm{F}, \mathrm{O} \Rightarrow$ Elements with highest electronegativity
A-IV, B-III, C-II, D-I
80. Match List I with List II

LIST I (Molecule)		LIST II (Shape)	
A.	NH_{3}	I.	Square pyramid
B.	BrF_{5}	II.	Tetrahedral
C.	PCl_{5}	III.	Trigonal pyramidal
D.	CH_{4}	IV.	Trigonal bipyramidal

Choose the correct answer from the options given below:
(1) A-II, B-IV, C-I, D-III
(2) A-III, B-I, C-IV, D-II
(3) A-IV, B-III, C-I, D-II
(4) A-III, B-IV, C-I, D-II

Answer (2)
Sol. (A) $\mathrm{NH}_{3} \Rightarrow s p^{3} \Rightarrow$ Trigonal pyramidal
(B) $\mathrm{BrF}_{5} \Rightarrow s p^{3} d^{R} \Rightarrow$ Square pyramidal
(C) $\mathrm{PCl}_{5} \Rightarrow s p^{3} d \Rightarrow$ Trigonal bipyramidal
(D) $\mathrm{CH}_{4} \Rightarrow s p^{3} \Rightarrow$ Tetrahedral
$\mathrm{A} \rightarrow \mathrm{III}, \mathrm{B} \rightarrow \mathrm{I}, \mathrm{C} \rightarrow \mathrm{IV}, \mathrm{D} \rightarrow \mathrm{II}$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
81. Number of molecules from the following which are exceptions to octet rule is \qquad -
$\mathrm{CO}_{2}, \mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4} \cdot \mathrm{BF}_{3} . \mathrm{CH}_{4}, \mathrm{SiF}_{4}, \mathrm{ClO}_{2}, \mathrm{PCl} 5$, $\mathrm{BeF}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CHCl}_{3}, \mathrm{CBr}_{4}$

Answer (6)

Sol. $\mathrm{NO}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{BF}_{3}, \mathrm{ClO}_{2}, \mathrm{PCl}_{5}, \mathrm{BeF}_{2}$
These are exception of octet rule
82. A solution containing 10 g of an electrolyte AB_{2} in 100 g of water boils at $100.52^{\circ} \mathrm{C}$. The degree of ionization of the electrolyte (α) is \qquad $\times 10^{-1}$. (nearest integer)
[Given: Molar mass of $\mathrm{AB}_{2}=200 \mathrm{~g} \mathrm{~mol}^{-1}, \mathrm{~Kb}^{\text {(}}$ (molal boiling point elevation const. of water) $=0.52 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, boiling point of water $=$ $100^{\circ} \mathrm{C}: \mathrm{AB}_{2}$ ionises as $\mathrm{AB}_{2} \rightarrow \mathrm{~A}^{\left.2+2 B^{-}\right]}$

Answer (5)

[^1]two Year classroom program

** 4 - 95 95 PERCENTILERS

Our Stars

Sol. $\Delta \mathrm{T}_{\mathrm{b}}=0.52^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{k}_{\mathrm{b}} \times \mathrm{m}$
$0.52=i \times 0.52 \times \frac{10}{200 \times 0.1}$
$\mathrm{i}=2$
$\alpha=\frac{i-1}{n-1}$
$\mathrm{AB}_{2} \rightarrow \mathrm{~A}^{2+}+2 \mathrm{~B}^{-}$
$\mathrm{n}=3$
$\alpha=\frac{2-1}{3-1}$
$\alpha=\frac{1}{2}=0.5$

$$
=5 \times 10^{-1}
$$

83. If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the maximum amount of aniline yellow formed will be integer) \qquad g. (nearest integer)
(consider complete conversion).

Answer (591)

Sol.

Mole of aniline $=\frac{279}{93}=3 \mathrm{~mol}$
Mole of aniline yellow formed $=3 \mathrm{~mol}$
Mass $=3 \times 197$

$$
=591 \mathrm{~g}
$$

84.

Consider the figure provided.
1 mol of an ideal gas is kept in a cylinder, fitted with a piston, at the position A , at $18^{\circ} \mathrm{C}$. If the piston is moved to position B , keeping the temperature unchanged, then ' x ' L atm work is done in this reversible process.
$\mathrm{x}=$ \qquad L atm. (nearest integer)
[Given: Absolute temperature $={ }^{\circ} \mathrm{C}+273.15$, $\left.\mathrm{R}=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right]$

Answer (55)
Sol. $\mathrm{V}_{1}=100 \mathrm{~L}$
$V_{2}=10 \mathrm{~L}$
$W=-n R T \ln \frac{V_{2}}{V_{1}}$
$=-1 \times 0.08206 \times 291.15 \times 2.303 \log \frac{10}{100}$
$=55 \mathrm{~L} \mathrm{~atm}$
85. Major product B of the following reaction has
\qquad π-bond.

Answer (5)

Sol.

Number of π bonds in $B=5$
86. The number of optical isomers in following compound is: \qquad

Answer (32)

Sol.

Total stereogenic centre $=5$
Total optical isomer $=2^{n}$

$$
=2^{5}=32
$$

87. Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with Hinsberg's reagent is \qquad -

Answer (5)
Sol. $-\mathrm{NH}_{2}$ group containing compound can give solid with Hinsberg's reagent, which is soluble in NaOH solution

 and NH_{2} can give solid with Heinsberg reagent, which is soluble in NaOH solution
88. The 'spin only' magnetic moment value of MO_{4}^{2-} is
\qquad $B M$. (Where M is a metal having least metallic radii. among $\mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}$ and Zn).
(Given atomic number: $\mathrm{Sc}=21, \mathrm{Ti}=22, \mathrm{~V}=23, \mathrm{Cr}$ $=24, \mathrm{Mn}=25$ and $\mathrm{Zn}=30$)

RISHIS SHULLA
'As per student response sheet and NTA answer key.
"936 99+ عeacentlefs
$* 4150^{95+\text { PERCENTILERS }}$

Answer (5)
Sol. Chromium has least metallic radii among given metals.
$\mathrm{CrO}_{4}^{2-} \Rightarrow \mathrm{Cr}^{6+} \Rightarrow 3 d^{0}$
Number of unpaired electron $=0$
Magnetic moment $=0$
89. Consider the following reaction

$$
A+B \rightarrow C
$$

The time taken for A to become $1 / 4^{\text {th }}$ of its initial concentration is twice the time taken to become $1 / 2$ of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight line with a negative slope and a positive intercept on the concentration axis.

The overall order of the reaction is \qquad
Answer (1)
Sol. $A+B \rightarrow C$

$$
A \xrightarrow{t=x} \frac{A}{2} \xrightarrow{t=2 x} \frac{A}{4}
$$

Order w.r.t. $\mathrm{A}=1$
[B]

Order w.r.t. B = zero order
Overall order $=1+0=1$
90. A hypothetical electromagnetic wave is show below.

The frequency of the wave is $x \times 10^{19} \mathrm{~Hz}$.
$\mathrm{x}=$ \qquad (nearest integer).
Answer (5)
Sol. $\lambda=1.5 \times 4=6 \mathrm{pm}$

$$
\begin{aligned}
v & =\frac{C}{\lambda} \\
v & =\frac{3 \times 10^{8}}{6 \times 10^{-12}} \\
& =0.5 \times 10^{20} \\
y & =5 \times 10^{19} \\
x & =5
\end{aligned}
$$

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

[^0]: RISHI S SHUKLA

[^1]: RISHI S SHUKLA

