08/04/2024 Morning

Corporate Office: Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers & Solutions

JEE (Main)-2024 (Online) Phase-2

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
- (3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is. Chemistry Each part has only two sections: Section-A and Section-B.
- (4) Section A : Attempt all questions.
- (5) Section B : Attempt any 05 questions out of 10 Questions.
- (6) Section A: (01-20) / (31-50) / (61-80) contains 20 multiple choice questions (MCQs) which have only one correct answer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.
- (7) Section B: (21-30) / (51-60) / (81-90) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries +4 marks for correct answer and –1 mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

****936** 99+ PERCENTILERS

****4155** 95+ PERCENTILERS

oncludes Students from Classroom, Distance 6. Digital Courses

Our Stars

Tanishka Kabra
4 Year Classroom
ALL
INDIA
RANK
RANK
2022

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 1. Let y = y(x) be the solution of the differential equation $(1 + y^2)e^{\tan x} dx + \cos^2 x(1 + e^{2\tan x})dy = 0$,
 - y(0) = 1. Then $y\left(\frac{\pi}{4}\right)$ is equal to
 - (1) $\frac{2}{e^2}$
- (2) $\frac{1}{e^2}$

(3) $\frac{1}{e}$

(4) $\frac{2}{e}$

Answer (3)

- **Sol.** $(1+y^2)e^{\tan x}dx + \cos^2 x(1+e^{2\tan x})dy = 0$
 - $\frac{dy}{1+y^2} = -\frac{e^{\tan x} \cdot \sec^2 x \, dx}{1+e^{2\tan x}}$
 - $\int \frac{dy}{1+y^2} = -\int \frac{e^{\tan x} \cdot \sec^2 x \, dx}{1+e^{2\tan x}}$
 - Let $e^{\tan x} = t$
 - $e^{\tan x} \cdot \sec^2 x \, dx = dt$
 - $\int \frac{dy}{1+y^2} = -\int \frac{dt}{1+t^2}$
 - $\tan^{-1} v = -\tan^{-1} t + c$
 - $tan^{-1}y = -tan^{-1}(e^{tanx}) + c$
 - at x = 0, y = 1
 - $tan^{-1}(1) = -tan^{-1}(1) + c$
 - $\frac{\pi}{4} = -\frac{\pi}{4} + C$
 - $c=\frac{\pi}{2}$
 - $\tan^{-1} y = -\tan^{-1} (e^{\tan x}) + \frac{\pi}{2}$
 - Now, at $x = \frac{\pi}{4}$

- $\tan^{-1} y = -\tan^{-1}(e) + \frac{\pi}{2}$
- $\tan^{-1} y = \cot^{-1} e = \tan^{-1} \frac{1}{e}$
- $\Rightarrow y = \frac{1}{e}$
- 2. The number of critical points of the function $f(x) = (x-2)^{2/3} (2x+1)$ is
 - (1) 0

(2) 1

(3) 3

(4) 2

Answer (4)

- **Sol.** $f(x) = (x-2)^{2/3} (2x+1)$
 - $f'(x) = 2(x-2)^{2/3} + (2x+1) \times \frac{2}{3}(x-2)^{-1/3}$
 - $f'(x) = 2(x-2)^{2/3} + \frac{2(2x+1)}{3(x-2)^{1/3}}$
 - $f'(x) = \frac{6(x-2) + 2(2x+1)}{3(x-2)^{1/3}}$
 - $f'(x) = \frac{10x 10}{3(x 2)^{1/3}} = \frac{10(x 1)}{3(x 2)^{1/3}}$

Critical points 1, 2

- ⇒ 2 critical points
- 3. Let f(x) be a positive function such that the area bounded by y = f(x), y = 0 from x = 0 to x = a > 0 is $e^{-a} + 4a^2 + a 1$. Then the differential equation, whose general solution is $y = c_1 f(x) + c_2$, where c_1 and c_2 are arbitrary constants, is
 - (1) $8e^x + 1 \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$
 - (2) $8e^x + 1 \frac{d^2y}{dx^2} \frac{dy}{dx} = 0$
 - (3) $8e^x 1 \frac{d^2y}{dx^2} \frac{dy}{dx} = 0$
 - (4) $8e^x 1 \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$

Answer (1)

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

Sol.
$$\int_{0}^{a} f(x)dx = e^{-a} + 4a^{2} + a - 1$$

Differentiate equation w.r.t. 'a'

$$f(a) = -e^{-a} + 8a + 1$$

$$\Rightarrow f(x) = -e^{-x} + 8x + 1$$

And
$$y = c_1 f(x) + c_2$$

$$y = c_1(-e^{-x} + 8x + 1) + c_2$$

$$y' = c_1(e^{-x} + 8) \Rightarrow c_1 = \frac{y'}{e^{-x} + 8}$$

$$V'' = -c_1 e^{-x}$$

put value of c₁

$$\frac{d^2y}{dx^2} = \frac{-\frac{dy}{dx} \cdot e^{-x}}{\left(e^{-x} + 8\right)} = \frac{\frac{dy}{dx}}{\left(1 + 8e^x\right)}$$

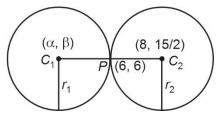
$$\Rightarrow (1+8e^x)\frac{d^2y}{dx^2} + \frac{dy}{dx} = 1$$

4. Let the circles C_1 : $(x - \alpha)^2 + (y - \beta)^2 = r_1^2$ and

$$C_2: (x-8)^2 + \left(y - \frac{15}{2}\right)^2 = r_2^2$$
 touch each other

externally at the point (6, 6). If the point (6, 6) divides the line segment joining the centres of the circles C_1 and C_2 internally in the ratio 2:1, then

$$\alpha + \beta + 4 r_1^2 + r_2^2$$
 equals


- (1) 145
- (2) 125
- (3) 110
- (4) 130

Answer (4)

Sol.
$$C_1 \to (x - \alpha)^2 + (y - \beta)^2 = r_1^2$$

$$C_2 \rightarrow (x-8)^2 + \left(y - \frac{15}{2}\right)^2 = r_2^2$$

Point P divide the line segment internally C_1C_2 in the ratio 2:1

$$\frac{\alpha \times 1 + 8 \times 2}{1 + 2} = 6, \ \boxed{\alpha = 2}$$

$$\frac{\beta \times 1 + \frac{15}{\alpha} \times 2}{1 + 2} = 6, \ \boxed{\beta = 3}$$

$$r_1 = \sqrt{(6-2)^2 + (6-3)^2} = \sqrt{25} = 5$$

$$r_2 = \sqrt{(8-6)^2 + (\frac{15}{\alpha} - 6)^2} = \frac{5}{2}$$

$$\alpha + \beta + 4\left(r_1^2 + r_2^2\right) = 2 + 3 + 4\left(5^2 + \left(\frac{5}{2}\right)^2\right)$$
$$= 5 + 4\left(\frac{125}{4}\right)$$
$$= 130$$

- 5. The sum of all the solutions of the equation $(8)^{2x}$ $16 \cdot (8)^x + 48 = 0$ is :
 - $(1) log_8(6)$
- $(2) 1 + \log_8(6)$
- $(3) 1 + \log_6(8)$
- $(4) log_8(4)$

Answer (2)

Sol. Given equation, $8^{2x} - 16.8^x + 48 = 0$

Let
$$8^x = t$$

$$\therefore t^2 - 16t + 48 = 0$$

$$\Rightarrow t = 4, 12$$

$$\Rightarrow$$
 8^x = 4, 12

$$\Rightarrow x = \log_8 4, \log_8 12$$

.: Sum of solution

 $= log_84 + log_812$

 $= log_8(48)$

 $= 1 + \log_8(6)$

- 6. The set of all α , for which the vectors $\vec{a} = \alpha t \hat{i} + 6 \hat{j} 3 \hat{k}$ and $\vec{b} = t \hat{i} 2 \hat{j} 2 \alpha t \hat{k}$ are inclined at an obtuse angle for all $t \in \mathbb{R}$, is
 - (1) [0, 1)
- (2) (-2, 0]
- $(3) \left(-\frac{4}{3},1\right)$
- $(4) \left[-\frac{4}{3}, 0\right]$

Answer (4)

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS
**4155 95+ PERCENTILERS

Sol. Given $\vec{a} = \alpha t \hat{i} + 6 \hat{j} - 3 \hat{k}$

and
$$\vec{b} = t\hat{i} - 2\hat{j} - 2\alpha t\hat{k}$$

angle between \vec{a} and \vec{b} is given by

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$$

We have, $\cos\theta < 0$ (: angle between \vec{a} and \vec{b} is obtuse)

$$\Rightarrow \vec{a} \cdot \vec{b} < 0$$

$$\Rightarrow \alpha t^2 - 12 + 6\alpha t < 0 \ \forall t \in \mathbb{R}$$

If $\alpha = 0$, then -12 < 0 (condition holds)

If
$$\alpha \neq 0 \implies \alpha < 0$$

And maximum value of $\alpha t^2 + 6\alpha t - 12 < 0$

$$\Rightarrow \frac{-D}{4a} < 0$$
 (where *D* is discriminant and $a = \alpha$)

$$\Rightarrow \frac{36\alpha^2 + 48\alpha}{4\alpha} > 0$$

$$\Rightarrow \alpha > \frac{-4}{3}$$

$$\therefore \alpha \in \left(\frac{-4}{3}, 0\right]$$

Let [t] be the greatest integer less than or equal to t. Let A be the set of all prime factors of 2310 and

$$f: A \to \mathbb{Z}$$
 be the function $f(x) = \left[\log_2 \left(x^2 + \left[\frac{x^3}{5} \right] \right) \right].$

The number of one-to-one function from A to the range of f is

$$(3)$$
 25

Answer (1)

Sol. $A = \{2, 3, 5, 7, 11\}$

$$f(x) = \left\lceil \log_2 \left(x^2 + \left[\frac{x^3}{5} \right] \right) \right\rceil$$

Ranges $f(x) = \{2, 3, 5, 6, 8\}$

Number of one-one $A \rightarrow R_f$

 $5 \times 4 \times 3 \times 2 \times 1 = 120$

If $\sin x = -\frac{3}{5}$, where $\pi < x < \frac{3\pi}{2}$, then 80(tan²x – cosx) is equal to

Answer (4)

Sol. $\sin x = -\frac{3}{5}$ where $\pi < x < \frac{3\pi}{2}$

$$\tan x = \frac{3}{4}, \cos x = \frac{-4}{5}$$

 \therefore 80(tan² x - cos x)

$$=80\left(\frac{9}{16}+\frac{4}{5}\right)$$

$$= 80\left(\frac{3}{16} + \frac{4}{5}\right)$$
$$= 80\left(\frac{45 + 64}{80}\right)$$
$$= 109$$

9. Let $I(x) = \int \frac{6}{\sin^2 x (1 - \cot x)^2} dx$. If I(0) = 3, then

 $I\left(\frac{\pi}{12}\right)$ is equal to

(1)
$$6\sqrt{3}$$

(2)
$$\sqrt{3}$$

(3)
$$3\sqrt{3}$$

(4)
$$2\sqrt{3}$$

Answer (3)

Sol.
$$I(x) = \int \frac{6}{\sin^2 x (1 - \cot x)^2} dx$$

$$I(x) = \int \frac{6}{(\sin x - \cos x)^2} \, dx$$

$$=\int \frac{6\sec^2 x}{(\tan x - 1)^2} dx$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

(PHY. OR CHEM. OR MATHS)

99+ PERCENTILERS

Let $tan x = t \Rightarrow sec^2 x dx = dt$

$$= \int \frac{6dt}{(t-1)^2}$$
$$= -\frac{6}{(t-1)} + c$$

$$=\frac{-6}{(\tan x-1)}+c$$

$$I(x) = \frac{6}{1 - \tan x} + c$$

$$I(0) = 3$$

$$\frac{6}{1-\tan 0}+c=3$$

$$c = -3$$

$$I(x) = \frac{6}{1 - \tan x} - 3$$

$$I\left(\frac{\pi}{12}\right) = \frac{6}{1 - \tan\left(\frac{\pi}{12}\right)} - 3$$

$$=\frac{6}{1-(2-\sqrt{3})}-3$$

$$=\frac{6}{\sqrt{3}-1}-3$$

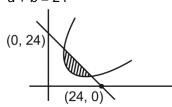
$$=\frac{6-3\sqrt{3}+3}{\sqrt{3}-1}$$

$$=\frac{9-3\sqrt{3}}{\sqrt{3}-1}$$

$$= \frac{3\sqrt{3}(\sqrt{3}-1)}{\sqrt{3}-1}$$

$$= 3\sqrt{3}$$

- 10. Let the sum of two positive integers be 24. If the probability, that their product is not less than $\frac{3}{4}$ times their greatest possible product, is $\frac{m}{n}$, where gcd(m, n) = 1, then n - m equals
 - (1) 9


(2) 10

(3) 11

(4) 8

Answer (2)

Sol. Take two numbers as a and b a + b = 24

For product to be maximum

$$\frac{a+b}{2} \ge \sqrt{ab}$$

144 > ab

Maximum product is 144

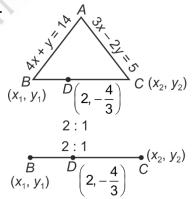
Now,
$$ab \ge \frac{3}{4} \cdot 144 = 108$$

Sample space = $\{(23, 1), (22, 2), ...\}$ Integer points on line in shaded region

 $\{(6, 18), (7, 17), (8, 16), \dots (18, 6)\}$

$$P(E) = \frac{n(E)}{n(S)} = \frac{13}{23} = \frac{m}{n} \Rightarrow n - m = 10$$

11. The equations of two sides AB and AC of a triangle ABC are 4x + y = 14 and 3x - 2y = 5, respectively.


The point $\left(2, -\frac{4}{3}\right)$ divides the third side BC

internally in the ratio 2:1, the equation of the side

- (1) x + 6y + 6 = 0 (2) x 6y 10 = 0(3) x 3y 6 = 0 (4) x + 3y + 2 = 0

Answer (4)

Sol.

Aakashians Conquer JEE (Main) 2024 SESSION-1

(PHY. OR CHEM. OR MATHS)

99+ PERCENTILERS

$$2 = \frac{2x_2 + x_1}{3}, \frac{-4}{3} = \frac{2y_2 + y_1}{3}$$

$$2x_2 + x_1 = 6$$
, $2y_2 + y_1 = -4$

$$x_1 = 6 - 2x_2$$

$$y_1 = -4 - 2y_2$$

$$4x_1 + v_1 = 14$$

$$3x_2 - 2v_2 = 5$$

From here, $x_2 = 1$, $y_2 = -1$, $x_1 = 4$, $y_1 = -2$

$$B(4, -2) C(1, -1)$$

$$y+2=\frac{-1+2}{1-4}(x-4)$$

$$-3y - 6 = x - 4$$

$$x + 3y + 2 = 0$$

12. If the shortest distance between the lines

$$L_1: \vec{r} = (2+\lambda)\hat{i} + (1-3\lambda)\hat{j} + (3+4\lambda)\hat{k}, \ \lambda \in \mathbb{R}$$

$$L_2: \vec{r} = 2(1+\mu)\hat{i} + 3(1+\mu)\hat{j} + (5+\mu)\hat{k}, \ \mu \in \mathbb{R}$$

is $\frac{m}{\sqrt{n}}$, where gcd(m, n) = 1, then the value of m +

n equals

Answer (4)

Sol.
$$L_1: \vec{r} = (2+\lambda)\hat{i} + (1-3\lambda)\hat{j} + (3+4\lambda)\hat{k}$$

$$L_1 = 2\hat{i} + \hat{j} + 3\hat{k} + \lambda(\hat{i} - 3\hat{j} + 4\hat{k})$$

$$L_2: \vec{r} = 2\hat{i} + 3\hat{j} + 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + \hat{k})$$

$$\vec{a}_1 = 2\hat{i} + \hat{j} + 3\hat{k}$$

$$\vec{a}_2 = 2\hat{i} + 3\hat{j} + 5\hat{k}$$

$$\vec{a}_2 - \vec{a}_1 = 2\hat{j} + 2\hat{k}$$

$$\vec{b}_1 = \hat{i} - 3\hat{j} + 4\hat{k}, \ \vec{b}_2 = 2\hat{i} + 3\hat{j} + \hat{k}$$

$$\vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -3 & 4 \\ 2 & 3 & 1 \end{vmatrix}$$

$$\hat{i}(-3-12) - \hat{j}(1-8) + \hat{k}(3+6)$$

$$=-15\hat{i}+7\hat{j}+9\hat{k}$$

$$|\vec{b}_1 \times \vec{b}_2| = \sqrt{225 + 49 + 81}$$

$$\left| \frac{(\vec{a}_2 - \vec{a}_1) \cdot (\vec{b}_1 \times \vec{b}_2)}{|\vec{b}_1 \times \vec{b}_2|} \right| = \frac{14 + 18}{\sqrt{355}} = \frac{32}{\sqrt{355}}$$

$$m + n = 387$$

13. If the set $R = \{(a, b) : a + 5b = 42, a, b \in \mathbb{N}\}$ has melements and $\sum_{n=1}^{m} (1-i^{n!}) = x+iy$, where $i = \sqrt{-1}$

, then the value of m + x + y is

Answer (2)

Sol. $R = \{(a, b) : a + 5b = 42\}$

Then $R = \{(2, 8), (7, 7), (12, 6), (17, 5), (22, 4), (27, 6), (1$ 3), (32, 2), (37, 1)}

and
$$\sum_{n=1}^{m=8} (1-i^{n!}) = x+iy$$

$$\therefore \sum_{n=1}^{8} (1-i^{n!}) = 8 - (i+i^2+i^6+1+1+1+1+1)$$

$$\therefore x = 5, y = -1$$

$$x + y + m = 5 - 1 + 8 = 12$$

14. Let $H: \frac{-x^2}{s^2} + \frac{y^2}{s^2} = 1$ be the hyperbola, whose eccentricity is $\sqrt{3}$ and the length of the latus rectum is $4\sqrt{3}$. Suppose the point $(\alpha, 6)$, $\alpha > 0$ lies on H. If β is the product of the focal distances of the point $(\alpha, 6)$, then $\alpha^2 + \beta$ is equal to

- (1) 171
- (2) 172
- (3) 169
- (4) 170

Answer (1)

Aakashians Conquer JEE (Main) 2024 SESSION-1

(PHY. OR CHEM. OR MATHS)

99+ PERCENTILERS

Sol.
$$H: \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$e = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{3}$$

$$\Rightarrow 1 + \frac{a^2}{h^2} = 3$$

$$\Rightarrow \frac{a^2}{b^2} = 2 \qquad \dots (1)$$

$$\frac{2a^2}{b} = 4\sqrt{3}$$

Using equation (1)

$$\frac{4b^2}{b} = 4\sqrt{3}$$

$$\Rightarrow b = \sqrt{3}$$

$$a=\sqrt{6}$$

$$H: \frac{x^2}{6} - \frac{y^2}{3} = -1$$

$$\frac{\alpha^2}{6} - 12 = -1$$

$$\frac{\alpha^2}{6} = 11$$

$$\alpha^{2} = 66$$

Focus: (0, bc)(0, -bc)

$$(0, 3), (0, -3)$$

$$\beta = \sqrt{\alpha^2 + 9} \times \sqrt{\alpha^2 + 81}$$

$$\beta = 105$$

$$\alpha^2 + \beta = 66 + 105$$

15. Let P(x, y, z) be a point in the first octant, whose projection in the *xy*-plane is the point Q. Let $OP = \gamma$; the angle between OQ and the positive *x*-axis be θ ; and the angle between OP and the positive z-axis be ϕ , where O is the origin. Then the distance of P from the x-axis is

(1)
$$\gamma \sqrt{1 + \cos^2 \theta \sin^2 \phi}$$
 (2) $\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$

(2)
$$\gamma \sqrt{1 + \cos^2 \phi \sin^2 \theta}$$

(3)
$$\gamma \sqrt{1-\sin^2\theta\cos^2\phi}$$
 (4) $\gamma \sqrt{1-\sin^2\phi\cos^2\theta}$

(4)
$$\gamma \sqrt{1-\sin^2\phi\cos^2\theta}$$

Answer (4)

Sol.
$$\overrightarrow{OP} = x\hat{i} + y\hat{j} + z\hat{k}$$

$$\overrightarrow{OQ} = x\hat{i} + y\hat{j}$$

$$|OP| = \gamma = \sqrt{x^2 + y^2 + z^2}$$

$$\cos \theta = \frac{x}{\sqrt{x^2 + y^2}} \Rightarrow \cos^2 \theta = \frac{x^2}{\gamma^2 - z^2} = \frac{x^2}{\gamma^2 - \gamma^2 \cos^2 \phi}$$

$$\cos \phi = \frac{z}{\sqrt{x^2 + v^2 + z^2}} = \frac{z}{\gamma}$$

Distance of P from x-axis = $\sqrt{y^2 + z^2}$

$$d = \sqrt{\gamma^2 - x^2}$$

$$\Rightarrow x^2 = \gamma^2 \sin^2 \phi \cos^2 \theta$$

$$\Rightarrow d = \sqrt{\gamma^2 - \gamma^2 \sin^2 \phi \cos^2 \theta}$$

$$= \gamma \sqrt{1 - \sin^2 \phi \cos^2 \theta}$$

16. Let $f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x - 10$. The number of points of local maxima of f in interval $(0, 2\pi)$ is

$$(2)$$
 3

Answer (1)

Sol.
$$f(x) = 4\cos^3 x + 3\sqrt{3}\cos^2 x - 10$$

$$f'(x) = 12\cos^2 x \cdot (-\sin x) + 6\sqrt{3}\cos x \cdot (-\sin x) = 0$$

$$= -6\sqrt{3}\cos x.\sin x \left(1 + \frac{2}{\sqrt{3}}\cos x\right) = 0$$

$$\cos x = 0$$
, $\sin x = 0$, $\cos x = \frac{-\sqrt{3}}{2}$

 \therefore Maxima at $\frac{5\pi}{6}$, $\frac{7\pi}{6}$

Aakashians Conquer JEE (Main) 2024 SESSION-1

(PHY. OR CHEM. OR MATHS)

99+ PERCENTILERS

17. Let $A = \begin{bmatrix} 2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b \end{bmatrix}$. If $A^3 = 4A^2 - A - 21I$, where *I* is

the identity matrix of order 3×3 , then 2a + 3b is equal to

- (1) 9
- (2) -13
- (3) -12
- (4) -10

Answer (2)

Sol.
$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 2-\lambda & a & 0 \\ 1 & 3-\lambda & 1 \\ 0 & 5 & b-\lambda \end{vmatrix} = 0$$

$$(2 - \lambda)[(3 - \lambda)(b - \lambda) - 5] - a[b - \lambda - 0] + 0 = 0$$

$$(2 - \lambda)[3b - 3\lambda - b\lambda + \lambda^2 - 5] - ab + a\lambda = 0$$

$$\lambda^{3} - (b+5) \lambda^{2} + (1-a+5b)\lambda + (10-6b+ab) = 0$$

$$A^3 - (b+5)A^2 + (1-a+5b)A + (10-6b+ab)I = 0$$

$$\Rightarrow$$
 b + 5 = 4, 1-a + 5b = 1, 10 - 6b + ab = 21

$$\Rightarrow$$
 a = -5. b = -1

$$\Rightarrow$$
 2a + 3b = -13

- 18. For the function $f(x) = (\cos x) x + 1$, $x \in \mathbb{R}$, between the following two statements
 - **(S1)** f(x) = 0 for only one value of x in $[0, \pi]$.
 - **(S2)** f(x) is decreasing in $\left[0, \frac{\pi}{2}\right]$ and increasing in

$$\left[\frac{\pi}{2},\,\pi\right].$$

- (1) Only (S1) is correct.
- (2) Both (S1) and (S2) are incorrect.
- (3) Only (S2) is correct.
- (4) Both (S1) and (S2) are correct.

Answer (1)

Sol. $f(x) = \cos x - x + 1$

$$f(x) = -\sin x - 1 \le 0$$

 \therefore f(x) is decreasing function

$$f(0) = 2$$

$$f(\pi) = -\pi$$

 \therefore Only one root in $[0, \pi]$

S₁ is correct

S₂ is incorrect

- 19. The value of $k \in \mathbb{N}$ for which the integral $I_n = \int_0^1 (1-x^k)^n dx \,, \, n \in \mathbb{N}, \, \text{satisfies } 147I_{20} = 148I_{21}$ is
 - (1) 10

(2) 7

(3) 14

(4) 8

Answer (2)

Sol.
$$I(21) = \int_{0}^{1} (1 - x^{k})^{21} dx$$

$$= \int_{0}^{1} (1 - x^{k}) (1 - x^{k})^{20} dx$$

$$= \int_{0}^{1} (1 - x^{k})^{20} dx - \int_{0}^{1} x^{k} (1 - x^{k})^{20} dx$$

$$I(21) = I(20) - \int_{0}^{1} x^{k} (1 - x^{k})^{20} dx$$

$$= I(20) - \int_{0}^{1} x \cdot x^{K-1} (1 - x^{k})^{20} dx$$

$$I(21) = I(20) - \left[\frac{\left(1 - x^k\right)^{21}}{-21 \, k} x - \int_0^1 \frac{\left(1 - x^k\right)^{21}}{-21 \, k} \, dx \right]$$

$$I(21) = I(20) - \frac{1}{21 k} I(20)$$

$$\Rightarrow [I(21)](21 k+1) = 21 KI(20)$$

$$\Rightarrow$$
 21 $K = 147 \Rightarrow K = 7$

- 20. Let z be a complex number such that |z + 2| = 1 and $Im\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$. Then the value $\left|Re\left(\overline{z+2}\right)\right|$ is
 - (1) $\frac{2\sqrt{6}}{5}$
- (2) $\frac{1+\sqrt{6}}{5}$
- (3) $\frac{24}{5}$
- (4) $\frac{\sqrt{6}}{5}$

Answer (1)

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

(Includes Students from Classroom, Distance & Digital Course)

Sol.
$$|z + 2| = 1$$

$$I_{m}\left(\frac{z+1}{z+2}\right) = \frac{1}{5}$$

$$\left| \operatorname{Re} \left(\overline{z+2} \right) \right| = ?$$

Let
$$z = x + iy$$

$$|z+2| = 1 \Rightarrow (x+2)^2 + y^2 = 1$$
 ...(1)

$$I_{m}\left(\frac{z+1}{z+2}\right) = \frac{1}{5} \Rightarrow I_{m}\left(\frac{x+iy+1}{x+iy+2}\right) = \frac{1}{5}$$

$$\Rightarrow I_{m} \left[\frac{\left[(x+1) + iy \right] \left[(x+2) - iy \right]}{\left(x+2 \right)^{2} + y^{2}} \right] = \frac{1}{5}$$

$$\frac{y(x+2)-y(x+1)}{(x+2)^2+y^2} = \frac{1}{5} \dots (2)$$

$$\Rightarrow y = \frac{1}{5}$$

Substituting in equation (1)

$$(x+2)^2 + \frac{1}{25} = 1$$

$$(x+2)^2 = \frac{24}{25}$$

$$\Rightarrow x = -2 \pm \frac{\sqrt{24}}{5}$$

$$\left| \operatorname{Re} \left(\overline{x + iy + 2} \right) \right|$$

$$= x + 2 = \pm \frac{\sqrt{24}}{5} = \frac{2\sqrt{6}}{5}$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Let
$$\vec{a} = 9\hat{i} - 13\hat{j} + 25\hat{k}$$
, $\vec{b} = 3i + 7\hat{j} - 13\hat{k}$ and $\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$ and $\vec{r} \cdot (\vec{b} - \vec{c}) = 0$, then $\frac{|593\vec{r} + 67\vec{a}|^2}{(593)^2}$ is equal to _____.

Answer (569)

Sol.
$$\vec{a} = 9\hat{i} - 13\hat{i} + 25\hat{k}$$

$$\vec{b} = 3\hat{i} + 7\hat{i} - 13\hat{k}$$

$$\vec{c} = 17\hat{i} - 2\hat{j} + \hat{k}$$

$$\vec{r} \times \vec{a} = (\vec{b} + \vec{c}) \times \vec{a}$$

$$(\vec{r} - (\vec{b} + \vec{c})) \times \vec{a} = 0$$

$$\Rightarrow \vec{r} = (\vec{b} + \vec{c}) + \lambda \vec{a}$$

$$\vec{r} = (20\hat{i} + 5\hat{j} - 12\hat{k}) + \lambda(9\hat{i} - 13\hat{j} + 25\hat{k})$$

$$= (20 + 9\lambda)\hat{i} + (5 - 13\lambda)\hat{j} + (25\lambda - 12)\hat{k}$$

Now
$$\vec{r} \cdot (\vec{b} - \vec{c}) = 0$$

$$\vec{r}.\left(-14\hat{i}+9\hat{j}-14\hat{k}\right)=0$$

Now

$$-14(20+9\lambda)+9(5-13\lambda)-14(25\lambda-12)=0$$

$$-593\lambda - 67 = 0$$

$$\lambda = -\frac{67}{593}$$

$$\vec{r} = (\vec{b} + \vec{c}) - \frac{67}{593}\vec{a}$$

$$\frac{\left|593\vec{r} + 67\vec{a}\right|^2}{\left|593\right|^2} = \left|\vec{b} + \vec{c}\right|^2 = \left|20\hat{i} + 5\hat{j} - 12\hat{k}\right|^2$$

= 569

22. Let the area of the region enclosed by the curve $y = \min \{\sin x, \cos x\}$ and the x-axis between $x = -\pi$ to $x = \pi$ be A. Then A^2 is equal to _____.

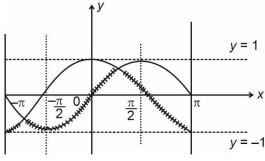
Answer (16)

Aakashians Conquer JEE (Main) 2024 SESSION-1

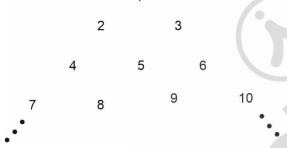
143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS


(Includes Students from Classroom, Distance & Digital Courses)

Sol. $y = f(x) = \min \{ \sin x, \cos x \}$


$$A = -\int_{-\pi}^{\frac{-3\pi}{4}} \cos x \, dx - \int_{\frac{-3\pi}{4}}^{0} \sin x \, dx + \int_{0}^{\frac{\pi}{4}} \sin x \, dx + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cos x \, dx$$

$$-\int_{\frac{\pi}{2}}^{\pi}\cos x\ dx$$

$$A = 4$$

$$A^2 = 16$$

23. Let the positive integers be written in the form

If the k^{th} row contains exactly k, numbers for every natural number k, then the row in which the number 5310 will be, is _____.

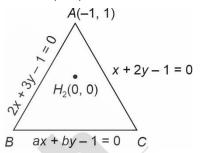
Answer (103)

Sol. Let 5310 lies in k^{th} row

 $\Rightarrow \text{First element of } k^{\text{th}} \text{ row is } \frac{(k-1)k}{2} + 1$

Last element of k^{th} row is $\frac{k(k+1)}{2}$

$$\Rightarrow \frac{(k-1)k}{2} + 1 \le 5310 \le \frac{k(k+1)}{2}$$


$$\Rightarrow k = 103$$

24. If the orthocentre of the triangle formed by the lines 2x + 3y - 1, x + 2y - 1 = 0 and ax + by - 1 = 0, is the centroid of another triangle, whose circumcentre and orthocentre respectively are (3, 4) and (-6, -8), then the value of |a - b| is _____.

Answer (16)

Sol. Let circumcentre, orthocentre and centroid of a triangle PQR are C_1 , H_1 and G_1 respectively

 \Rightarrow $G_1 \equiv (0, 0)$ orthocentre of $\triangle ABC$ is (0, 0)

$$m_{AH_2} = +\frac{b}{a} \Rightarrow \boxed{a+b=0}$$

eqⁿ of lines $H_2 C$ is $y = \frac{3}{2}x$

$$\Rightarrow$$
 point $C = \left(\frac{1}{4}, \frac{3}{8}\right)$ lies on $ax + by - 1 = 0$

$$\Rightarrow \frac{a}{4} + \frac{3}{8}b - 1 = 0 \Rightarrow \frac{a}{4} - \frac{3}{8}a - 1 = 0$$

$$\Rightarrow$$
 a = -8, b = 8

$$|a - b| = 16$$

25. Let
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r$$
 and

$$\beta = \left(\sum_{r=0}^{n} \frac{{}^{n}C_{r}}{r+1}\right) + \frac{1}{n+1} \text{ . If } 140 < \frac{2\alpha}{\beta} < 281 \text{, then the}$$

value of *n* is _____.

Answer (5)

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

Sol.
$$\alpha = \sum_{r=0}^{n} (4r^2 + 2r + 1)^n C_r$$

$$= 4 \sum_{r=0}^{n} r^2 {^n}C_r + 2 \sum_{r=0}^{n} r. {^n}C_r + \sum_{r=0}^{n} {^n}C_r$$

$$= 4n(n+1)2^{n-2} + 2. n. 2^{n-1} + 2^n$$

$$= 2^n(n(n+1) + n + 1) = 2^n(n+1)^2$$

$$\beta = \sum_{r=0}^{n} \left(\frac{{^n}C_r}{r+1}\right) + \left(\frac{1}{n+1}\right)$$

$$(1+x)^n = \sum_{r=0}^{n} {^n}C_r x^r$$

$$\int_{0}^{1} (1+x)^{n} dx = \sum_{r=0}^{n} \frac{{}^{n}C_{r}x^{r+1}}{r+1} \bigg|_{0}^{1} = \sum_{r=0}^{n} \frac{{}^{n}C_{r}}{r+1}$$

$$\frac{(1+x)^{n+1}}{n+1}\bigg|_0^1 = \frac{2^{n+1}-1}{n+1}$$

$$\Rightarrow \beta = \frac{2^{n+1} - 1 + 1}{(n+1)} = \frac{2^{n+1}}{n+1}$$

$$\Rightarrow \frac{2\alpha}{\beta} = \frac{2^{n+1}(n+1)^2}{\left(\frac{2^{n+1}}{n+1}\right)} = (n+1)^3 \in (140, 281)$$

$$\Rightarrow$$
 $(n+1)^3 = 216$

$$\Rightarrow$$
 $n+1=6 \Rightarrow n=5$

26. The value of

$$\lim_{x \to 0} 2 \left(\frac{1 - \cos x \sqrt{\cos 2x} \sqrt[3]{\cos 3x} ... \sqrt[10]{\cos 10x}}{x^2} \right)$$
is

Answer (55)

Sol.
$$\lim_{x\to 0} 2\left(\frac{1-\cos x (\cos 2x)^{\frac{1}{2}} (\cos 3x)^{\frac{1}{3}}...(\cos 10x)^{\frac{1}{10}}}{x^2}\right)$$

 $\left(\frac{0}{0} \text{ form}\right)$

Using L' hospital

$$2 \lim_{x \to 0} \frac{\sin x (\cos 2x)^{\frac{1}{2}} ... (\cos 10x)^{\frac{1}{10}} + ... (\sin 2x) (\cos x) (\cos 3x)^{\frac{1}{3}} + ...}{2x}$$

$$\Rightarrow \lim_{x \to 0} \left(\frac{\sin x}{x} + \frac{\sin 2x}{x} + \dots + \frac{\sin 10x}{x} \right)$$
$$= 1 + 2 + \dots + 10 = 55$$

27. If the range of $f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}$, $\theta \in \mathbb{R}$ is $[\alpha, \beta]$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $\frac{\alpha}{\beta}$, is equal to _____.

Answer (96)

Sol.
$$f(\theta) = \frac{\sin^4 \theta + 3\cos^2 \theta}{\sin^4 \theta + \cos^2 \theta}, \theta \in R$$

$$= 1 + \frac{2\cos^{2}\theta}{\sin^{4}\theta + \cos^{2}\theta} = 1 + \frac{2\cos^{2}\theta}{\cos^{4}\theta - \cos^{2}\theta + 1}$$

$$f(\theta) = 1 + \frac{2}{\left(\cos^2\theta + \frac{1}{\cos^2\theta} - 1\right)}, \cos\theta \neq 0$$

$$\cos^2 \theta + \frac{1}{\cos^2 \theta} \ge 2 \implies \cos^2 \theta + \frac{1}{\cos^2 \theta} - 1 \in [1, \infty)$$

$$\frac{1}{\cos^2 \theta + \frac{1}{\cos^2 \theta} - 1} \in (0, 1]$$

$$f(\theta) \in (1, 3]$$

When $\cos\theta = 0$; $f(\theta) = 1$

$$\Rightarrow$$
 $f(\theta) \in [1, 3] \Rightarrow \beta = 3, \alpha = 1 \Rightarrow \frac{\alpha}{\beta} = \frac{1}{3}$

Sum of infinite G.P.
$$=$$
 $\left(\frac{64}{1-\frac{1}{3}}\right) = 64 \times \frac{3}{2} = 96$

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

28. Let $A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$. If the sum of the diagonal elements of A^{13} is 3^n , then n is equal to _____.

Answer (7)

Sol.
$$A = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

$$A^2 = \begin{bmatrix} 3 & -3 \\ 3 & 0 \end{bmatrix} = 3 \begin{bmatrix} 1 & -1 \\ 1 & 0 \end{bmatrix}$$

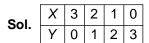
$$A^4 = 9 \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}$$

$$A^8 = 81 \begin{bmatrix} -1 & 1 \\ -1 & 0 \end{bmatrix}$$

$$A^{12} = 729 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$A^{13} = 729 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

$$A^{13} = \begin{bmatrix} 1458 & -729 \\ 729 & 729 \end{bmatrix}$$


 $Sum = 2187 = 3^n$

 $3^7 = 3^n$

n=7

29. Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables X and Y respectively denote the number of blue and yellow balls. If \overline{X} and \overline{Y} are the means of X and Y respectively, then $7\overline{X} + 4\overline{Y}$ is equal to

Answer (17)

$$\bar{X} = \sum_{i} X p(X)$$

$$\overline{Y} = \sum Y p(Y)$$

$$P(X=3) = P(Y=0) = \frac{{}^{5}C_{3}. {}^{4}C_{0}}{{}^{9}C_{3}} = \frac{{}^{5}C_{2}}{{}^{9}C_{3}} = \frac{5}{42}$$

$$P(X = 2) = P(Y = 1) = \frac{{}^{5}C_{2}. {}^{4}C_{1}}{{}^{9}C_{2}} = \frac{10}{21}$$

$$P(X = 1) = P(Y = 2) = \frac{{}^{5}C_{1} \cdot {}^{4}C_{2}}{{}^{9}C_{2}} = \frac{5}{14}$$

$$P(X = 0) = P(Y = 3) = \frac{{}^{5}C_{0}. {}^{4}C_{3}}{{}^{9}C_{3}} = \frac{4}{84} = \frac{1}{21}$$

$$\overline{X} = 3 \times \frac{5}{42} + 2 \times \frac{10}{21} + \frac{5}{14} + 0 \times \frac{1}{21} = \frac{15 + 40 + 15}{42} = \frac{70}{42}$$

$$\overline{Y} = 0 \times \frac{5}{42} + 1 \times \frac{10}{21} + 2 \times \frac{5}{14} + 3 \times \frac{1}{21} = \frac{20 + 30 + 6}{42} = \frac{56}{42}$$

$$\Rightarrow 7\bar{X} + 4\bar{Y} = 17$$

30. The number of 3-digit numbers, formed using the digits 2, 3, 4, 5 and 7, when the repetition of digits is not allowed, and which are not divisible by 3, is equal to _____.

Answer (36.00)

Sol. Possible triplets for which number is divisible by 3

$$(2, 3, 7), (2, 3, 4), (3, 5, 7), (3, 5, 4)$$

 \therefore Number of required numbers = ${}^{5}C_{3} \cdot 3! - 4 \times 3!$

$$= 3! \times (6)$$

$$= 6 \times 6 = 36$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

(Includes Students from Classroom, Distance & Digital Courses)

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

- 31. Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{I} \frac{\text{dyne}}{\text{cm}^2}$ where M is the mass and I is the extension of wire used in the experiment. Now error in Young modules (Y) is estimated by taking data from M-I plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and I are 500 g and 2 cm respectively then percentage error of Y is
 - (1) 0.2%
- (2) 0.02%
- (3) 0.5%
- (4) 2%

Answer (4)

Sol. $\frac{\Delta Y}{Y} = \frac{\Delta m}{m} + \frac{\Delta I}{I}$

$$\frac{\Delta Y}{Y} = \frac{5}{500} + \frac{.02}{2}$$

% age = 1 + 1 = 2%

- 32. A *LCR* circuit is at resonance for a capacitor *C*, inductance *L* and resistance *R*. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now
 - (1) Halved
- (2) Same
- (3) Double
- (4) Zero

Answer (3)

Sol. At resonance $i = \frac{v}{R}$

If
$$R \to \frac{R}{2}$$

$$\Rightarrow i \rightarrow 2i$$

33. Two planets A and B having masses m_1 and m_2 move around the sun in circular orbits of r_1 and r_2 radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\left(\frac{T_A}{T_B}\right)$ is

(1)
$$\frac{1}{27} \left(\frac{m_2}{m_1} \right)^3$$

(2)
$$27 \left(\frac{m_1}{m_2} \right)^3$$

$$(3) \left(\frac{r_1}{r_2}\right)^3$$

$$(4) \left(\frac{r_2}{r_1}\right)^{\frac{3}{2}}$$

Answer (1)

Sol.
$$\frac{v_1}{v_2} = \sqrt{\frac{r_2}{r_1}}$$

...(i

 $m_1 v_1 r_1 = h$

 $m_2^{} v_2^{} r_2^{} = 32$

$$\Rightarrow \frac{v_1}{v_2} = \frac{1}{3} \frac{m_2 r_2}{m_1 r_1}$$

...(ii)

From (i) & (ii)

$$\sqrt{\frac{r_2}{r_1}} = \frac{1}{3} \frac{m_2}{m_1} \frac{r_2}{r_1}$$

$$\frac{3m_1}{m_2} = \sqrt{\frac{r_2}{r_1}}$$

$$\frac{T_1}{T_2} = \left(\frac{r_1}{r_2}\right)^{3/2} = \left(\frac{m_2}{3m_1}\right)^3 = \frac{1}{27} \left(\frac{m_2}{m_1}\right)^3$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

- 34. Correct Bernoulli's equation is (symbols have their usual meaning)
 - (1) $P + \rho gh + \rho v^2 = \text{constant}$
 - (2) $P + \frac{1}{2}\rho gh + \frac{1}{2}\rho v^2 = \text{constant}$
 - (3) $P + mgh + \frac{1}{2}mv^2 = \text{constant}$
 - (4) $P + \rho g h + \frac{1}{2} \rho v^2 = \text{constant}$

Answer (4)

Sol.
$$P + \rho g h + \frac{1}{2} \rho v^2 = \text{constant}$$

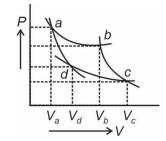
- 35. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:
 - (1) $2 \mu g$
- (2) $0.2 \mu g$
- (3) $10 \mu g$
- (4) 20 μg

Answer (4)

Sol.
$$\Delta m = \frac{BE}{C^2} = \frac{18 \times 10^8}{9 \times 10^{16}} = 2 \times 10^{-8} \text{ kg}$$

= $2 \times 10^{-5} \text{ g}$
= $20 \mu \text{g}$

- 36. In an expression $a \times 10^b$:
 - (1) b is order of magnitude of $a \le 5$
 - (2) a is order of magnitude for $b \le 5$
 - (3) b is order of magnitude for $a \ge 5$
 - (4) b is order of magnitude for $5 < a \le 10$


Answer (1)

Sol. In expression $a \times 10^b$, If $a \le 5$; $a \approx 1$ by round off

Order B

37. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V_a}$ and the

ratio
$$\frac{V_b}{V_c}$$
 is

$$(1) \quad \frac{V_a}{V_d} \neq \frac{V_b}{V_c}$$

$$(2) \quad \frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^2$$

(3)
$$\frac{V_a}{V_d} = \left(\frac{V_b}{V_c}\right)^{-1}$$
 (4)
$$\frac{V_a}{V_d} = \frac{V_b}{V_c}$$

$$(4) \quad \frac{V_a}{V_d} = \frac{V_b}{V_c}$$

Answer (4)

Answer (4)
Sol. (1)
$$P_aV_a = P_bV_b$$

 $P_cV_c = P_dV_d$

$$P_cV_c = P_dV_d$$

(2)
$$P_a V_a^{\gamma - 1} = P_d V_d^{\gamma - 1}$$
 ...(iii)

$$P_b V_b^{\gamma - 1} = P_c V_c^{\gamma - 1} \qquad \dots \text{(iv)}$$

(i) ÷ (iii)
$$\Rightarrow \frac{V_a}{V_a^{\gamma-1}} = \frac{P_b V_b}{P_d V_d^{\gamma-1}}$$
 (v)

(ii) ÷ (iv)
$$\Rightarrow \frac{V_c}{V_c^{\gamma-1}} = \frac{P_d V_d}{P_b V_b^{\gamma-1}}$$
 (vi)

$$(v) \times (vi) \quad \Rightarrow \quad \frac{V_a}{V_a^{\gamma-1}} \frac{V_c}{V_c^{\gamma-1}} = \frac{P_b V_b}{P_d V_d^{\gamma-1}} \times \frac{P_d V_d}{P_b V_b^{\gamma-1}}$$

$$\Rightarrow V_a^{\gamma-2}V_c^{\gamma-2} = V_d^{\gamma-1}V_b^{\gamma-2}$$

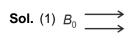
$$\Rightarrow \frac{V_a}{V_d} = \frac{V_b}{V_c}$$

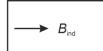
Aakashians Conquer JEE (Main) 2024 SESSION-1

(PHY. OR CHEM. OR MATHS)

99+ PERCENTILERS

JEE (Main)-2024: Phase-2 (08-04-2024)-Morning

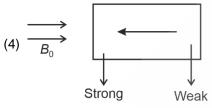



- 38. Paramagnetic substances:
 - A. Align themselves along the directions of external magnetic field.
 - B. Attract strongly towards external magnetic field.
 - C. Has susceptibility little more than zero.
 - D. Move from a region of strong magnetic field to weak magnetic field.

Choose the **most appropriate** answer from the options given below:

- (1) B, D only
- (2) A, B, C, D
- (3) A, B, C only
- (4) A, C only

Answer (4)



Magnetic Dipole align

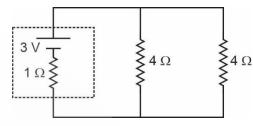
 $B_{\text{ind}} \ll B_0$

- (2) Paramagnetic substance are attracted weakly.
- (3) $0 < \chi << 1$

- 39. The diameter of a sphere is measured using a vernier calliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is
 - (1) 2.0 g/cm³
- (2) 1.7 g/cm³
- (3) 2.5 g/cm³
- (4) 2.2 g/cm³

Answer (1)

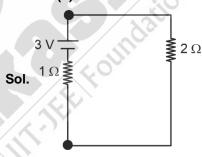
Sol. $LC = \frac{1}{10} mm$


Reading = 2 cm +
$$2 \times \frac{1}{10}$$
 mm = 2.02 cm

r = 1.01 cm

$$r = \frac{8.635}{\frac{4}{3}\pi(1.01)^3} = 2.0018$$

 $r \approx 2.0$


40. In the given circuit, the terminal potential difference of the cell is:

- (1) 3 V
- (2) 4 V
- (3) 2 V

(4) 1.5 V

Answer (3)

$$V_T = \left(\frac{3}{1+2}\right) \times 2 = 2 \text{ V}$$

- 41. Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm² is the light energy flux during span of 1 hour 30 minutes, then the area of the surface is:
 - (1) 0.1 m²
- (2) 0.2 m²
- (3) 0.02 m²
- (4) 20 m²

Answer (3)

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

(Includes Students from Classroom, Distance & Digital Courses)

Sol.
$$P = \frac{I}{C}$$

$$F = PA = \frac{I}{C} \times A$$

$$A = \frac{FC}{I} = \frac{2.4 \times 10^{-4} \times 3 \times 10^{8}}{360} \times 10^{-4}$$

$$=\frac{72}{3600}=0.02\,\text{m}^2$$

- 42. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). the ratio of specific heat of gases at constant volume respectively is:
 - $(1) \frac{5}{3}$

Answer (2)

Sol.
$$C_V = \frac{3}{2}R$$
 for monoatomic

$$C_V = \frac{5}{2}R$$
 for diatomic

Ratio =
$$\frac{3}{5}$$

- 43. Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is:
 - (1) $\sqrt{2}:\sqrt{3}:1$
- (2) $1:\sqrt{3}:2$
- (3) $\sqrt{3}:\sqrt{2}:1$ (4) $1:\sqrt{3}:\sqrt{2}$

Answer (2)

Sol.
$$P = \sqrt{2mk}$$

$$P_1: P_2: P_3 = \sqrt{0.4}: \sqrt{1.2}: \sqrt{1.6}$$

for same kinetic energy

$$= 2: 2\sqrt{3}: 4$$

1: $\sqrt{3}: 2$

- 44. A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and $v_{\scriptscriptstyle R}$ respectively. The ratio of their kinetic energies $(K_R: K_A)$ is
 - (1) 1:1
- (2) $m_R v_R : m_\Delta v_\Delta$
- (3) $m_{\rm R}: m_{\rm A}$
- (4) V_{R} : V_{A}

Answer (4)

Sol.
$$K = \frac{1}{2}mv^2 = \frac{1}{2}PV$$

$$\Rightarrow \frac{K_1}{K_2} = \frac{v_1}{v_2}$$
 for same momentum

- 45. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$):
 - (1) 220.0
 - (2) 118.9
 - (3) 140.5
 - (4) 139.4

Answer (4)

Sol. 30 minutes = 30 round of second hand

 $\equiv \frac{1}{2}$ round of minute hand

$$d_{s} - d_{m} = 30 \{2\pi r_{s}\} - \frac{1}{2} \{2\pi r_{m}\}$$

$$\pi \{60 \times 75 - 60\}$$

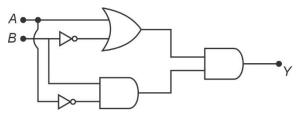
$$= \pi \times 60 \times 74 = 13941.6 \text{ cm}$$

$$\approx 139.4 \text{ m}$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

(PHY. OR CHEM. OR MATHS)

99+ PERCENTILERS



JEE (Main)-2024: Phase-2 (08-04-2024)-Morning

46. The output Y of following circuit for given inputs is:

- (1) A·B
- (2) $\Lambda \cdot B(\Lambda + B)$

(3) 0

(4) Ā·B

Answer (3)

Sol.
$$Y = (A + \overline{B}) \cdot (\overline{A} \cdot B)$$

= $A \cdot \overline{A} \cdot B + \overline{B} \cdot \overline{A} \cdot B$
= $0 + 0 = 0$

- 47. A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:
 - (1) 150 N
- (2) 300 N
- (3) 30 N
- (4) 3 N

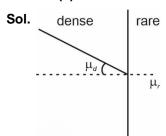
Answer (3)

Sol.
$$F = \frac{\Delta P}{\Delta t} = \frac{150}{1000} \times \frac{20}{0.1} = 30 \text{ N}$$

- 48. Two charged conducting spheres of radii *a* and *b* are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:
 - (1) \sqrt{ab}
- (2) ab

(3) $\frac{a}{b}$

 $(4) \frac{k}{\epsilon}$


Answer (3)

Sol.
$$V_A = V_B = \frac{Q_A}{4\pi \in_0 a} = \frac{Q_B}{4\pi \in_0 b}$$

$$\Rightarrow \frac{Q_A}{Q_B} = \frac{a}{b}$$

- 49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio
 - (1) 1:√2
- (2) 2:1
- (3) $\sqrt{2}:1$
- (4) 1:2

Answer (3)

$$\sin \theta_c = \frac{1}{\sqrt{2}} = \frac{\mu_d}{\mu_r}$$

$$\frac{\mu_d}{\mu_r} = \sqrt{2}$$

50. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:

(Assume $h = 6.63 \times 10^{-34} \text{ J s}$, $m_e = 9.0 \times 10^{-31} \text{ kg}$ and $m_p = 1836 \text{ times } m_e$)

- (2) 1: $\frac{1}{\sqrt{1836}}$
- (3) 1:1836
- (4) $1:\sqrt{1836}$

Answer (3)

Sol.
$$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2}mk}$$

$$\Rightarrow m_e k_e = m_p k_p$$

$$\frac{m_{\rm e}}{m_{\rm p}} = \frac{k_{\rm p}}{k_{\rm e}}$$

$$\Rightarrow \frac{k_p}{k_p} = \frac{1}{1836}$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

online to the structure of the structure o

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

51. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5 × 10⁻¹⁴ m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____ × 10⁵ ms approximately.

$$(\frac{1}{4\pi \in_0} = 9 \times 10^9 \text{ SI unit, mass of } \alpha \text{ particle} = 6.75$$

× $10^{-27} \text{ kg})$

Answer (156)

Sol.
$$\frac{1}{2}mv_0^2 = \frac{1}{4\pi \in_0} \frac{Z(e)}{r}$$

$$\frac{1}{2} \times 6.72 \times 10^{-27} v_0^2 = 9 \times 10^9 \times \frac{80 \times 2 \times 1.6 \times 1.6 \times 10^{-19} \times 10^{-19}}{4.5 \times 10^{-14}}$$

$$v_0^2 = \frac{2 \times 9 \times 80 \times 1.6 \times 1.6 \times 2}{6.72 \times 4.5} \times 10^{-38 + 14 + 27 + 9}$$

$$v_0^2=243.8\!\times\!10^{12}$$

$$v_0 = 15.6 \times 10^6$$

$$v_0 = 156 \times 10^5$$

52. A closed and open organ pipe have same lengths. If the ratio of frequencies of their seventh orvertones is $\left(\frac{a-1}{a}\right)$, then the value of a is

Answer (16)

Sol.
$$f_{0} = \frac{v}{2I}$$
 \Rightarrow $f_{07} = 8\frac{v}{2I}$ $f_{c} = \frac{v}{4I}$ \Rightarrow $f_{c7} = 15\frac{v}{4I}$ \Rightarrow $\frac{f_{c7}}{f_{c7}} = 15\frac{v}{4I}\frac{2I}{8v} = \frac{30}{32} = \frac{15}{16}$

53. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of 3 μT perpendicular to its direction. An electric field *E* is applied perpendicular to the direction of velocity and magnetic field. The value of *E*, so that electron

moves along the same path, is NC^{-1} .

(Given, mass of electron = 9×10^{-31} kg, electric charge = 1.6×10^{-19} C)

Answer (4)

Sol.
$$E = VB$$

$$E = \sqrt{\frac{2k}{m}} \times B$$

$$= \sqrt{\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \times 3 \times 10^{-6}$$

$$= \sqrt{\frac{16}{9} \times 10^{12}} \times 3 \times 10^{-6}$$

$$= \frac{4}{3} \times 10^{6} \times 3 \times 10^{-6}$$

$$= 4 \text{ N/C}$$

54. Resistance of a wire at 0 °C, 100 °C and t °C is found to be 10 Ω , 10.2 Ω and 10.95 Ω respectively. The temperature t in Kelvin scale is _____.

Answer (748)

Sol. From thermometry

$$\frac{t^{\circ} - 0}{100 - 0} = \frac{10.95 - 10.00}{10.2 - 10.00}$$

$$\frac{t^{\circ}}{100} = \frac{0.95}{0.20} = \frac{19}{4}$$

$$t^{\circ} = \frac{19}{4} \times 100 = 19 \times 25 = 475$$

$$k = 748$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

****936** 99+ PERCENTILERS

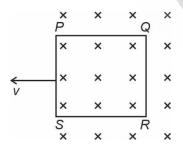
****4155** 95+ PERCENTILERS

**(Includes Students from Classroom, Distance & Digital Courses)

JEE (Main)-2024: Phase-2 (08-04-2024)-Morning

55. A liquid column of height 0.04 cm balances excess pressure of a soap bubble of certain radius. If density of liquid is 8 x 10³ kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is _____ cm.

(if
$$g = 10 \text{ m s}^{-2}$$
)


Answer (7)

Sol.
$$\frac{4S}{\pi} = h\rho g$$

$$\frac{4\times0.28}{\left(\frac{d}{2}\right)} = 4\times10^{-4}\times8\times10^{3}\times10$$

$$\frac{8 \times 0.28}{32} = d = \frac{8 \times 28}{32}$$
 cm = 7 cm

56. A square loop *PQRS* having 10 turns, area 3.6×10^{-3} m² and resistance 100 Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is ____ $\times 10^{-6}$ J.

Answer (3)

Sol.
$$A = 36 \times 10^{-4} \text{ m}^2$$

$$I = 6 \times 10^{-2} \text{ m}$$

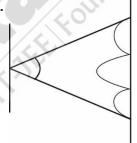
$$= 6 cm$$

$$v = \frac{6 \text{ cm}}{1 \text{ sec}} = 6 \text{ cm/s}$$

$$\varepsilon = Blvn^2 = 0.5 \times \frac{6}{100} \times \frac{6}{100}$$

$$= 18 \times 10^{-4} \text{ V}.$$

$$E = \frac{n^2 \varepsilon^2}{R} t = 100 \times \frac{18 \times 18 \times 10^{-4} \times 10^{-4}}{10^2} \times 1$$


$$= 324 \times 10^{-10} \times 10^{2}$$

$$= 3.24 \times 10^{-6}$$

57. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be _____ x 10⁻³ rad.

Answer (6)

Sol.

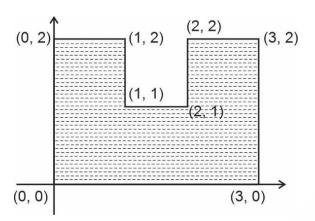
$$\theta = (2) \left(\frac{2\lambda}{a} \right)$$

$$=\frac{4\lambda}{a}=\frac{4\times600\times10^{-9}}{0.4\times10^{-3}}$$

$$= 6 \times 10^{-3}$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS) **936 99+ PERCENTILERS


**4155 95+ PERCENTILERS

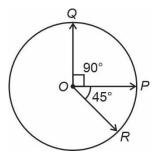
58. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is ______.

Answer (15)

Sol.
$$x_{cm} = 1.5$$

$$M_{\perp} = 6 \sigma$$

$$y_{+} = 1$$


$$M_{-} = -\sigma$$

$$y_{cm} = \frac{6\sigma \times 1 + (-\sigma) \times 1.5}{6\sigma - \sigma}$$

$$=\frac{6-1.5}{5}=\frac{4.5}{5}=0.9$$

$$\frac{x}{y} = \frac{1.5}{0.9} = \frac{15}{9}$$

59. Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is ______.

Answer (3)

Sol.
$$(\vec{P} + \vec{Q}) = \sqrt{2}A$$

$$R = A$$

$$\theta = 90^{\circ}$$

Resultant =
$$\sqrt{3}A$$

60. An electric field, $\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector $\hat{n} = \left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right)$. The electric flux for that surface is ______ V m.

Answer (12)

Sol.
$$Q = \vec{E} \cdot \vec{A}$$

$$=4\left(\frac{4+6+8}{6}\right)=\frac{18\times4}{6}=12$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

CHEMISTRY

SECTION - A

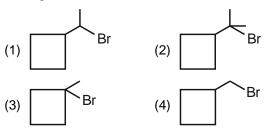
Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

61. Match List I with List II

LIST I (Name of the test)		List II (Reaction sequence involved) [M is metal]		
A.	Borax bead test	I.	$MCO_3 \to MO \xrightarrow[+\Delta]{Co(NO_3)_2} CoO \cdot MO$	
B.	Charcoal cavity test	II.	$MCO_3 \rightarrow MCI_2 \rightarrow M^{2+}$	
C.	Cobalt nitrate test	III.	$MSO_4 \xrightarrow{\ \ Na_2B_4O_7 \ \ } M(BO_2)_2 \to MBO_2 \to M$	
D.	Flame test	IV.	$MSO_4 \xrightarrow{\ \ Na_2CO_3 \ \ } MCO_3 \to MO \to M$	

Choose the correct answer from the options given below:


- (1) A-III, B-IV, C-I, D-II (2) A-III, B-I, C-II, D-IV
- (3) A-III, B-I, C-IV, D-II (4) A-III, B-II, C-IV, D-I

Answer (1)

- **Sol.** (A) Borax bead test $MSO_4 \xrightarrow{Na_2B_4O_7} M(BO_2)_2 \to MBO_2 \to M$
 - (B) Charcoal cavity test ${\rm MSO_4} \xrightarrow{ {\rm Na_2CO_3} \atop \Delta} {\rm MCO_3} \rightarrow {\rm MO} \rightarrow {\rm M}$
 - (C) Cobalt nitrate test ${\rm MCO_3} \rightarrow {\rm MO} \xrightarrow[+\Delta]{{\rm CO(NO_3)_2}} {\rm CoO\cdot MO}$
 - (D) Flame test $\label{eq:mco3} \mathrm{MCO_3} \rightarrow \mathrm{MCI_2} \rightarrow \mathrm{M}^{2+}$

So, $A \rightarrow (III)$, $B \rightarrow (IV)$, $C \rightarrow (I)$, $D \rightarrow (II)$.

62. Which among the following compounds will undergo fastest S_N2 reaction.

Answer (4)

- Sol. Rate of S_N2 reaction depends on steric hindrance, less the steric hindrance more will be rate of reaction B_r , it will undergo S_N2 reaction fastest.
- 63. Number of Complexes with even number of electrons in t₂g orbitals is

$$\begin{split} &[Fe(H_2O)_6]^{2+},\, [Co(H_2O)_6]^{2+},\, [Co(H_2O)_6]^{3+},\\ &[Cu(H_2O)_6]^{2+},\, [Cr(H_2O)_6]^{2+} \end{split}$$

- (1) 2 (2) 3
- (3) 5 (4) 1

Answer (2)

$$\begin{split} \textbf{Sol.} & \ [\text{Fe}(\text{H}_2\text{O})_6]^{2^+} \Rightarrow \text{Fe}^{2^+} \Rightarrow 3\text{d}^6 \Rightarrow \text{sp}^3\text{d}^2 \Rightarrow t_{2g}^4\text{e}_g^2 \\ & \ [\text{Co}(\text{H}_2\text{O})_6]^{2^+} \Rightarrow \text{Co}^{2^+} \Rightarrow 3\text{d}^7 \Rightarrow \text{sp}^3\text{d}^2 \Rightarrow t_{2g}^5\text{e}_g^2 \\ & \ [\text{Co}(\text{H}_2\text{O})_6]^{3^+} \Rightarrow \text{Co}^{3^+} \Rightarrow 3\text{d}^6 \Rightarrow \text{d}^2\text{sp}^3 \Rightarrow t_{2g}^6\text{e}_g^0 \\ & \ [\text{Cu}(\text{H}_2\text{O})_6]^{2^+} \Rightarrow \text{Cu}^{2^+} \Rightarrow 3\text{d}^9 \Rightarrow \text{sp}^3\text{d}^2 \Rightarrow t_{2g}^6\text{e}_g^3 \\ & \ [\text{Cr}(\text{H}_2\text{O})_6]^{2^+} \Rightarrow \text{Cr}^{2^+} \Rightarrow 3\text{d}^4 \Rightarrow \text{sp}^3\text{d}^2 \Rightarrow t_{2g}^3\text{e}_g^1 \end{split}$$

Three complexes having even number of electrons in t_{2q} .

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS) ****936** 99+ PERCENTILERS

****4155** 95+ PERCENTILERS

Jack of the structure of the structure

64. Match List I with List II

I	LIST I (Compound)	LIST II (Colour)	
A.	Fe ₄ [Fe(CN) ₆] ₃ ·xH ₂ O	I.	Violet
B.	[Fe(CN)₅NOS]⁴-	II.	Blood Red
C.	[Fe(SCN)] ²⁺	III.	Prussian Blue
D.	(NH ₄) ₃ PO ₄ ·12MoO ₃	IV.	Yellow

Choose the **correct** answer from the options given below.

- (1) A-III, B-I, C-II, D-IV (2) A-I, B-II, C-III, D-IV
- (3) A-II, B-III, C-IV, D-I (4) A-IV, B-I, C-II, D-III

Answer (1)

Sol. Fe₄[Fe(CN)₆]₃· \times H₂O \Rightarrow Prussian blue

 $[Fe(CN)_5NOS]^{4-} \Rightarrow Violet$

 $[Fe(SCN)]^{2+} \Rightarrow Blood red$

 $[NH_4]_3PO_4\cdot 12MoO_3 \Rightarrow Yellow$

So, $A \rightarrow (III)$, $B \rightarrow (I)$, $C \rightarrow (II)$, $D \rightarrow (IV)$.

65. Given below are two statements:

Statement I: Compound A IUPAC name of Compound A is 4-chloro-1,3-dinitrobenzene.

$$CH_3$$
 C_2H_{ϵ}

Statement II: Compound B IUPAC name of Compound B is 4-ethyl-2-methylaniline.

In the light of the above statements, choose the **most appropriate** answer from the options given below.

(1) Statement I is correct but Statement II is incorrect.

- (2) Both Statement I and Statement II are incorrect.
- (3) Statement I is incorrect but Statement II is correct.
- (4) Both Statement I and Statement II are correct.

Answer (3)

Sol.
$$NO_2$$

Correct name is 1-chloro-2,4-dinitro benzene Statement-I is incorrect.

$$\operatorname{CH}_3$$
 4-ethyl-2-methyl aniline $\operatorname{C}_2\operatorname{H}_5$

Statement-II is correct.

66. For the given hypothetical reactions, the equilibrium constants are as follows:

$$X \longrightarrow Y$$
; $K_1 = 1.0$

$$Y \rightleftharpoons Z$$
; $K_2 = 2.0$

$$Z \rightleftharpoons W; K_3 = 4.0$$

The equilibrium constant for the reaction $X \stackrel{\longleftarrow}{\longleftarrow} W$ is

- (1) 8.0
- (2) 7.0
- (3) 12.0
- (4) 6.0

Answer (2)

Sol. $X \rightleftharpoons Y$; $K_1 = 1.0$

$$Y \rightleftharpoons Z$$
; $K_2 = 2.0$

$$Z \rightleftharpoons W$$
; $K_3 = 4.0$

For the equilibrium constant value of

$$X \rightleftharpoons W$$
; $K = K_1 \cdot K_2 \cdot K_3$

$$K = 1 \times 2 \times 4 = 8$$

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**4155 95+ PERCENTILERS

**(Includes Students from Classroom, Distance & Digital Courses)

JEE (Main)-2024: Phase-2 (08-04-2024)-Morning

67. In the given compound, the number of 2° carbon atom/s is _____.

- (1) One
- (2) Three
- (3) Four
- (4) Two

Answer (1)

Number of 2° carbon atom = 1

- 68. An octahedral complex with the formula CoCl₃·nNH₃ upon reaction with excess of AgNO₃ solution gives 2 moles of AgCl. Consider the oxidation state of Co in the complex is 'x'. The value of "x + n" is
 - (1) 5

(2) 6

(3) 8

(4) 3

Answer (3)

Sol. $CoCl_3 \cdot nNH_3 \xrightarrow{AgNO_3} 2 \text{ mol of AgCl}$

it means 2 $\text{CI}^{\scriptsize{\scriptsize{\scriptsize{\scriptsize{O}}}}}$ ions will present in ionisation sphere.

So coordination compound should be

 $[\mathsf{Co}(\mathsf{NH_3})_5\mathsf{CI}]\mathsf{CI}_2$

Oxidation state of Cobalt is +3

x = 3

n = 5

(x + n) = 8

69. Among the following halogens

 F_2 , Cl_2 , Br_2 and l_2

Which can undergo disproportionation reactions?

- (1) F_2 and Cl_2
- (2) Only I₂
- (3) Cl₂, Br₂ and l₂
- (4) F₂, Cl₂ and Br₂

Answer (3)

Sol. As fluorine shows an oxidation of only –1 and has tendency to reduce itself only, it cannot undergo disproportionation reaction, other Cl₂, Br₂ and l₂ can undergo disproportionation reaction.

70. CHO

H — OH

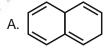
HO — H

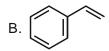
H — OH

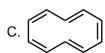
H — OH

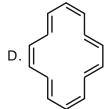
CH₂OH

The **incorrect** statement regarding the given structure is


- (1) has 4 asymmetric carbon atom
- (2) despite the presence of -CHO does not give Schiff's test
- (3) will coexist in equilibrium with 2 other cyclic structure
- (4) can be oxidized to a dicarboxylic acid with Br_2 water


Answer (4)


Sol. The given structure is of glucose.


Glucose does not give Schiff test due to absence of aldehyde group in ring structure, glucose on reaction with Br₂/H₂O give gluconic acid which is mono carboxylic acid.

71. Which of the following are aromatic?

- (1) A and C only
- (2) C and D only
- (3) B and D only
- (4) A and B only

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

**(Includes Students from Classroom, Distance & Digital Courses)

Answer (3)

- **Sol.** Compound (C) is non planer due to trans annular hydrogen interaction and hence non aromatic.
 - Compound (B) and (D) are only aromatic compounds.
- 72. Combustion of glucose (C₆H₁₂O₆) produces CO₂ and water. The amount of oxygen (in g) required for the complete combustion of 900 g of glucose is:

[Molar mass of glucose in g $mol^{-1} = 180$]

(1) 480

(2) 32

(3) 800

(4) 960

Answer (4)

Sol. $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

Mole of glucose $=\frac{900 \text{ g}}{18 \text{ g/mol}} = 5 \text{ mol}$

1 mol glucose reacts with 6 mol of O_2 , so 5 mol glucose will react with 30 mol O_2 .

Mole of O_2 required = 30 mol

Mass of O_2 required = 32×30 g

= 960 g

73. Given below are two statements:

Statement I: N(CH₃)₃ and P(CH₃)₃ can act as ligands to form transition metal complexes.

Statement II: As N and P are from same group, the nature of bonding of N(CH₃)₃ and P(CH₃)₃ is always same with transition metals.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Both Statement I and Statement II are correct.
- (3) Both Statement I and Statement II are incorrect.
- (4) Statement I is incorrect but Statement II is correct.

Answer (1)

Sol. N(CH₃)₃ and P(CH₃)₃ both can acts as ligand as both have lone pair of electron.

But bonding of both are different as $P(CH_3)_3$ has vacant d-orbital hence acts as sigma donor as well as π -acceptor but $N(CH_3)_3$ can acts only as σ -donor.

Statement - I is correct

Statement - II is incorrect

74. Identify the major products A and B respectively in the following set of reactions.

$$B \xleftarrow{CH_3 COCI} OH \xrightarrow{COnc. H_2SO_4} A$$

(2)
$$A = \bigcirc CH_3$$
 and $B = \bigcirc CH_3$ OCOCH₃

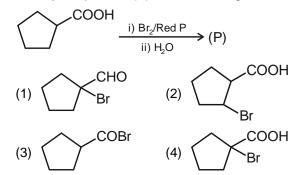
Answer (2)

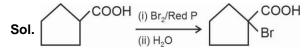
Sol.
$$CH_3$$
 $Conc. H_2SO_4$ OH_2 OH_2 OH_3 OH_4 OH_4

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS) **936 99+ PERCENTILERS

**4155 95+ PERCENTILERS


placetides Students from Classroom, Distance & Digital Courses)



75. Identify the product (P) in the following reaction:

Answer (4)

Given reaction is HVZ reaction.

76. Given below are two statements: One is labelled as **Assertion A** and the other is labelled as **Reason R**:

Assertion A: The stability order of +1 oxidation state of Ga, In and TI is Ga < In < TI.

Reason R: The inert pair effect stabilizes the lower oxidation state down the group.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) A is false but R is true.
- (2) Both **A** and **R** are true but **R** is NOT the correct explanation of **A**.
- (3) Both **A** and **R** are true and **R** is the correct explanation of **A**.
- (4) A is true but R is false.

Answer (3)

- **Sol.** Stability of +1 oxidation state increase down the group in group 13, due to inert pair effect.
- 77. Iron (III) catalyses the reaction between iodide and persulphate ions, in which
 - A. Fe3+ oxidises the iodide ion
 - B. Fe³⁺ oxidises the persulphate ion
 - C. Fe2+ reduces the iodide ion
 - D. Fe²⁺ reduces the persulphate ion

Choose the **most appropriate** answer from the options given below:

- (1) A only
- (2) B only
- (3) A and D only
- (4) B and C only

Answer (3)

Sol.
$$2l^{\Theta} + S_2O_8^{2-} \xrightarrow{Fe^{3+}} I_2 + 2SO_4^{2-}$$

Mechanism

$$2l^{\Theta} + Fe^{+3} \xrightarrow{Fe^{3+}} I_2 + Fe^{+2}$$

$$S_2O_8^{2-} + 2Fe^{2+} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$$

Fe3+ oxidises iodide to iodine

Fe2+ reduces persulphate ion

A and D are correct

78. Thiosulphate reacts differently with iodine and bromine in the reactions given below:

$$2S_2O_3^{2-} + I_2 \rightarrow S_4O_6^{2-} + 2I^{-}$$

$$S_2O_3^{2-} + 5Br_2 + 5H_2O \rightarrow 2SO_4^{2-} + 4Br^- + 10H^+$$

Which of the following statement justifies the above dual behaviour of thiosulphate?

- Bromine undergoes oxidation and iodine undergoes reduction in these reactions
- (2) Bromine is a weaker oxidant than iodine
- (3) Bromine is a stronger oxidant than iodine
- (4) Thiosulphate undergoes oxidation by bromine and reduction by iodine in these reactions

Answer (3)

Sol. Br₂ oxidizes thiosulphate more than I_2 oxidises so, Br₂ is stronger oxidising agent or oxidant than I_2 .

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

(Includes Students from Classroom, Distance & Digital Courses)

79. Match List I with List II

LIST I (Elements)		LIST II (Properties in their respective groups)			
A.	CI, S	I.	Elements with highest electronegativity		
B.	Ge, As	II.	Elements with largest atomic size		
C.	Fr, Ra	III.	Elements which show properties of both metals and non-metal		
D.	F, O	IV.	Elements with highest negative electron gain enthalpy		

Choose the **correct** answer from the options given below:

- (1) A-II, B-III, C-IV, D-I (2) A-IV, B-III, C-II, D-I
- (3) A-II, B-I, C-IV, D-III (4) A-III, B-II, C-I, D-IV

Answer (2)

Sol. Cl, S ⇒ Elements with highest negative electron gain enthalpy

Ge, As \Rightarrow Elements which show property of both metals and non metals.

Fr, Ra ⇒ Elements with largest atomic size.

F, O ⇒ Elements with highest electronegativity A-IV, B-III, C-II, D-I

80. Match List I with List II

LIST I (Molecule)		LIST II (Shape)		
A.	NH ₃	I.	Square pyramid	
B.	BrF ₅	II.	Tetrahedral	
C.	PCI ₅	III.	Trigonal pyramidal	
D.	CH ₄	IV.	Trigonal bipyramidal	

Choose the **correct** answer from the options given below:

- (1) A-II, B-IV, C-I, D-III (2) A-III, B-I, C-IV, D-II
- (3) A-IV, B-III, C-I, D-II (4) A-III, B-IV, C-I, D-II

Answer (2)

Sol. (A) $NH_3 \Rightarrow sp^3 \Rightarrow Trigonal pyramidal$

- (B) $BrF_5 \Rightarrow sp^3d^2 \Rightarrow Square pyramidal$
- (C) $PCl_5 \Rightarrow sp^3d \Rightarrow Trigonal bipyramidal$
- (D) $CH_4 \Rightarrow sp^3 \Rightarrow Tetrahedral$

 $A \rightarrow III, B \rightarrow I, C \rightarrow IV, D \rightarrow II$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

81. Number of molecules from the following which are exceptions to octet rule is _____.

CO₂, NO₂, $H_2SO_4 \cdot BF_3$. CH₄, SiF₄, ClO₂, PCl₅, BeF₂, C₂H₆, CHCl₃, CBr₄

Answer (6)

Sol. NO₂, H₂SO₄, BF₃, ClO₂, PCl₅, BeF₂

These are exception of octet rule

82. A solution containing 10 g of an electrolyte AB₂ in 100 g of water boils at 100.52°C. The degree of ionization of the electrolyte (α) is ____ × 10⁻¹. (nearest integer)

[Given: Molar mass of $AB_2 = 200$ g mol⁻¹, K_b (molal boiling point elevation const. of water) = 0.52 K kg mol⁻¹, boiling point of water = 100°C : AB_2 ionises as $AB_2 \rightarrow A^{2+}2B^{-1}$

Answer (5)

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

(Includes Students from Classroom, Distance & Digital Courses)

Sol. $\Delta T_b = 0.52$ °C

$$\Delta T_b = i \times k_b \times m$$

$$0.52 = i \times 0.52 \times \frac{10}{200 \times 0.1}$$

$$i = 2$$

$$\alpha = \frac{i-1}{n-1}$$

$$AB_2 \rightarrow A^{2+} + 2B^-$$

$$\alpha = \frac{2-1}{3-1}$$

$$\alpha = \frac{1}{2} = 0.5$$

$$= 5 \times 10^{-1}$$

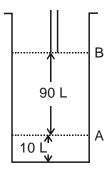
83. If 279 g of aniline is reacted with one equivalent of benzenediazonium chloride, the maximum amount of aniline yellow formed will be integer) _____ g. (nearest integer)

(consider complete conversion).

Answer (591)

Sol.
$$NH_2$$
 N_2CI O $+ O$ $N=N$ $N=N$

p-Aminoazobenene (yellow dye) (aniline yellow)


Mole of aniline =
$$\frac{279}{93}$$
 = 3 mol

Mole of aniline yellow formed = 3 mol

$$Mass = 3 \times 197$$

$$= 591 g$$

84.

Consider the figure provided.

1 mol of an ideal gas is kept in a cylinder, fitted with a piston, at the position A, at 18° C. If the piston is moved to position B, keeping the temperature unchanged, then 'x' L atm work is done in this reversible process.

x =_____ L atm. (nearest integer)

[Given: Absolute temperature = $^{\circ}$ C + 273.15, R = 0.08206 L atm mol⁻¹ K⁻¹]

Answer (55)

Sol.
$$V_1 = 100 L$$

$$V_2 = 10 L$$

$$W = -nRT ln \frac{V_2}{V_1}$$

$$= -1 \times 0.08206 \times 291.15 \times 2.303 \log \frac{10}{100}$$

= 55 L atm

85. Major product B of the following reaction has π -bond.

$$\begin{array}{c}
CH_2CH_3 \\
& \xrightarrow{\text{KMnO}_4 - \text{KOH}}
\end{array}$$

$$\begin{array}{c}
(A) \xrightarrow{\text{HNO}_3/\text{H}_2\text{SO}_4}
\end{array}$$
(B)

Answer (5)

Aakashians Conquer JEE (Main) 2024 SESSION-1

**143
100 PERCENTILERS
(PHY. OR CHEM. OR MATHS)

**936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

(Includes Students from Classroom, Distance & Digital Courses)

Sol.
$$\frac{\text{KMnO}_4 - \text{kOH}}{\Delta} \xrightarrow{\text{COOH}}$$

Number of π bonds in B = 5

86. The number of optical isomers in following compound is: _____

Answer (32)

Total stereogenic centre = 5

Total optical isomer = 2ⁿ

$$= 2^5 = 32$$

87. Number of amine compounds from the following giving solids which are soluble in NaOH upon reaction with Hinsberg's reagent is _____.

Answer (5)

Sol. -NH₂ group containing compound can give solid with Hinsberg's reagent, which is soluble in NaOH solution

$$\bigcap_{i} NH_{2} \longrightarrow NH_{2}$$

$$H_2N-NH-C-NH_2$$
, and NH_2 can give solid with Heinsberg reagent, which is soluble in NaOH solution

88. The 'spin only' magnetic moment value of MO₄²⁻ is

_____ BM. (Where M is a metal having least metallic radii. among Sc, Ti, V, Cr, Mn and Zn).

(Given atomic number: Sc = 21, Ti = 22, V = 23, Cr = 24, Mn = 25 and Zn = 30)

Aakashians Conquer JEE (Main) 2024 SESSION-1

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS) **936 99+ PERCENTILERS

**4155 95+ PERCENTILERS

planting of the control of the c

JEE (Main)-2024: Phase-2 (08-04-2024)-Morning

Answer (5)

Sol. Chromium has least metallic radii among given metals.

$$\text{CrO}_{4}^{2-} \Rightarrow \text{Cr}^{6+} \Rightarrow 3d^{0}$$

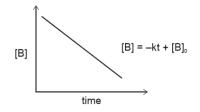
Number of unpaired electron = 0

Magnetic moment = 0

89. Consider the following reaction

$$A + B \rightarrow C$$

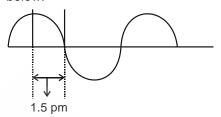
The time taken for A to become 1/4th of its initial concentration is twice the time taken to become 1/2 of the same. Also, when the change of concentration of B is plotted against time, the resulting graph gives a straight line with a negative slope and a positive intercept on the concentration axis.


The overall order of the reaction is _____.

Answer (1)

Sol. $A + B \rightarrow C$

$$A \xrightarrow{t=x} \frac{A}{2} \xrightarrow{t=2x} \frac{A}{4}$$


Order w.r.t. A = 1

Order w.r.t. B = zero order

Overall order = 1 + 0 = 1

 A hypothetical electromagnetic wave is show below.

The frequency of the wave is $x \times 10^{19}$ Hz.

 $x = \underline{\hspace{1cm}}$ (nearest integer).

Answer (5)

Sol.
$$\lambda = 1.5 \times 4 = 6 \text{ pm}$$

$$v = \frac{C}{\lambda}$$

$$v = \frac{3 \times 10^8}{6 \times 10^{-12}}$$

$$= 0.5 \times 10^{20}$$

$$v = 5 \times 10^{19}$$

$$x = 5$$

143 100 PERCENTILERS (PHY. OR CHEM. OR MATHS) ****936** 99+ PERCENTILERS

****4155** 95+ PERCENTILERS

((Includes Students from Classroom, Distance & Digital Courses)

