

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Time: 2 Hrs.

CHEMISTRY

Max. Marks: 80

Question Paper Code

T24 522

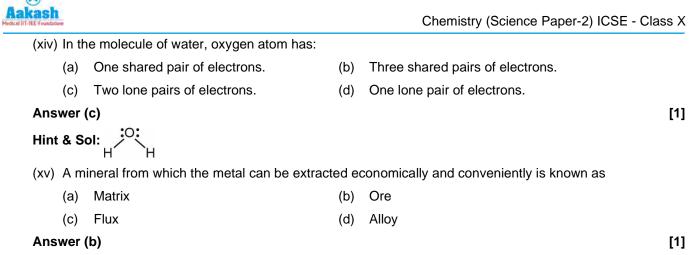
(Science Paper 2)

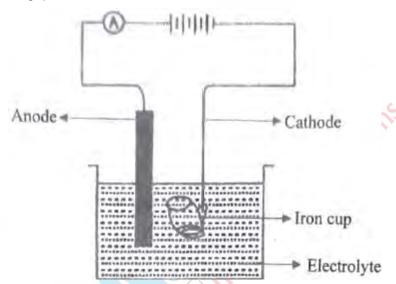
ICSE Board Class X Exam (2024)

Answers & Solutions

GENERAL INSTRUCTIONS

Read the following instructions very carefully and follow them:


- (i) Duration for the Test is 2 hours.
- (ii) Maximum Marks for Section-A and B is 40 each.
- (iii) The intended marks for questions or parts of questions are given in brackets [].
- (iv) Section A is compulsory. Attempt all questions from this section.
- (v) Attempt **any four** questions from **Section B**.
- (vi) Use of calculator is not permitted.
- (vii) It is mandatory to use Blue/Black ballpoint pen to write the answers on the paper provided separately.


		SECTION	-A (4	0 Marks)				
		(Attempt all quest	ions f	rom this Section.)				
Cho	Choose the correct answers to the questions from the given options.							
(Do	not c	opy the questions, write the correct answe	ers or	nly.)				
(i)	Uns	aturated hydrocarbons undergo:						
	(a)	Addition reaction	(b)	Substitution reaction				
	(c)	Oxidation reaction	(d)	Redox reaction				
Ans	wer ((a)			[1]			
Hint	t & Sol.: Unsaturated hydrocarbons undergo addition reaction to form saturated hydrocarbons.							
(ii)	In th	e 2 nd period Neon has maximum Ionizatio	on Po	tential because:				
	(a)	It has unstable electronic configuration.	(b)	It easily accepts electrons.				
	(c)	It easily loses electrons.	(d)	The outer most shell is completely filled.				
Ans	wer ((d)			[1]			
Hint	& Sol.: Neon has completely filled/stable electronic configuration.							
(iii)	Сор	Copper, Zinc and Tin are the metals alloyed to form						
	(a)	Duralumin	(b)	Brass				
	(c)	Bronze	(d)	Solder				
Ans	wer ((c)		Oth	[1]			
Hint	at & Sol.: Cu, Sn and Zn are alloyed to form bronze.							
(iv)	The metal hydroxide which reacts with both acids and alkalis to form salt and water is:							
	(a)	Calcium hydroxide	(b)	Magnesium hydroxide				
	(c)	Aluminium hydroxide	(d)	Ferric hydroxide				
Ans	wer ((c)	ço,		[1]			
Hint	t & So	ol.: Aluminium hydroxide is amphoteric in	natui	e.				
(v)	Rea	ction of an alcohol with a carboxylic acid i	n the	presence of concentrated H ₂ SO ₄ is termed as:				
	(a)	Halogenation	(b)	Esterification				
	(c)	Hydrogenation	(d)	Dehydrohalogenation				
Ans	wer ((b)			[1]			
Hint	t & So	ol.: An alcohol reacts with carboxylic acid	in the	e presence of conc. H_2SO_4 to give sweet smelling	ester.			
(vi)	Conv	rersion of Ethanol to Ethene by the action	of co	ncentrated sulphuric acid involves:				
	(a)	Dehydration	(b)	Dehydrogenation				
	(c)	Dehydrohalogenation	(d)	Hydrolysis				
Ans	wer ((a)			[1]			

Hint & Sol.: In the presence of conc. H_2SO_4 ethanol gives ethene and water.

(vii)	The	oxidizing agent in the equation S +	$2H_2SO_4 \rightarrow$	3SO ₂ + 2H ₂ O is:
()	(a)	Sulphur	(b)	Sulphuric acid
	(c)	Sulphur dioxide	(d)	Water
Ans	swer (·	()	
		ol.: Sulphuric acid oxidises sulphur	to sulphur c	dioxide (SO ₂).
		tron Affinity is maximum in :	·	
()	(a)	Mg	(b)	Ar
	(c)	Li	(d)	Br
Ans	swer ((d)		
		ol.: Bromine has high electron affini	ty due to its	s non-metallic nature.
		•	•	trolytic mixture used in the Hall-Heroult's process is
	(a)	Al ₂ O ₃	(b)	NaAIO ₂
	(c)	Na ₃ AIF ₆	(d)	CaF ₂
Ans	wer	(b)		
Hint	t & S	ol.: In Hall-Heroult's process, electro	olyte is a m	ixture of alumina, cryolite and fluorspar.
(x)	On	passing ammonia gas over heated o	copper oxid	e for some time, a reddish-brown residue is left be
	Wha	at property of ammonia is demonstra	ated here?	
	(a)	Basic property	(b)	Oxidising property
	(c)	Reducing property	(d)	Acidic property
Ans	wer ((c)		1211
Hint	t & S	ol.: Ammonia reduces heated metal	lic oxide to	give metal, water vapour and nitrogen gas.
(xi)	Rott	en egg smell is due to the liberation	i of:	COUL
	(a)	HCI gas	(b)	H ₂ S gas
	(c)	Cl ₂ gas	(d)	SO ₂ gas
Ans	wer ((b)		(KO)
Hin	t & S	ol: H ₂ S gas has rotten egg smell.		
(xii)	Amr	nonia gas is collected by downward	displaceme	ent of air since ammonia is:
	(a)	very slightly soluble in water.	(b)	heavier than air.
	(c)	lighter than air.	(d)	insoluble in water
Ans	wer	(c)	*	
Hint	t & S	ol: Ammonia being lighter than air c	ollected by	downward displacement of air.
(xiii)	Whi	ch of the following would occupy 22	.4 litres at S	S.T.P.?
	1.	32 g of oxygen gas		
	2.	2 moles of hydrogen gas		
	3.	6.022×10 ²³ molecules of ammonia	l	
	(a)	1 & 2	(b)	1 & 3
	(C)	2 & 3	(d)	1, 2 & 3
		mic weights : O = 16, H = 1, N = 14	1	
	[Ato	0		

- Hint & Sol: An ore is a mineral from which the metal can be extracted economically and conveniently.
- (i) The following sketch represents the electroplating of an Iron cup with Nickel metal. Study the diagram and answer the following questions: [5]

- (a) During electroplating the iron cup is placed at the cathode. Why?
- (b) Name the ion that must be present in the electrolyte.
- (c) State one condition that is necessary to ensure that the deposit is smooth, firm and even.
- (d) Write the reaction taking place at the cathode.
- (e) What change would you observe at the anode?
- (ii) Match the Column A with Column B:

Column A

- (a) Water
- (b) Alkali metal
- (c) Halogen
- (d) Calcium oxide
- (e) Weak acid

1. Lithium

Column B

- 2. Iodine
- 3. Covalent compound

[5]

- 4. Acetic acid
- 5. Ionic compound
- 6. Sulphuric acid

	(c)	The metal nitrate which on thermal decomposition forms a black residue is [zinc nitrate/copper nitrate]
	(d)	During the electrolysis of copper sulphate solution, if is used as electrodes, the colour of the electrolyte does not fade. [copper/platinum]
	(e)	The process of heating the concentrated ore in a limited supply or absence of air is [roasting/calcination]
(iv)	Stat	e the terms for the following: [5]
	(a)	The group obtained by removing one hydrogen atom from the parent alkane.
	(b)	Two metal plates or wires through which the current enters and leaves the electrolytic cell.
	(c)	The amount of substance which contains the same number of units as the number of atoms in carbon- 12.
	(d)	The tendency of an atom to pull a shared pair of electrons towards itself in a compound.
	(e)	The formula which represents the simplest ratio between the atoms of elements present in a compound.
(v)	(a)	Give the IUPAC names of the organic compounds represented by the structural formulae given
		below: [5]
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		2. $H - C - C - C - OH$
	(b)	Draw the structural diagram for the following organic compounds:
		1. 3-methyl pentane
		2. propyne
		3. methanal
Sol. 2 (i)	(a)	Iron cup is placed at cathode because during electrolytic reaction, the metal is always deposited at the cathode by gain of electrons. [1]
	(b)	Ni ²⁺ ions [1]
	(c)	A low current for a longer time should be used to ensure a smooth, firm and even deposit. [1]
	(d)	$Ni^{2+} + 2e^{-} \rightarrow Ni$ [1]
	(e)	The nickel anode (metal strip) will decrease in size as it continuously dissolves in solution by producing Ni ²⁺ ions. [1]
(ii)	(a)-:	3, (b)-1, (c)-2, (d)-5, (e)-4 [5 × 1]
		- 5 -

(iii) Complete the following sentences by choosing the correct answer from the brackets:

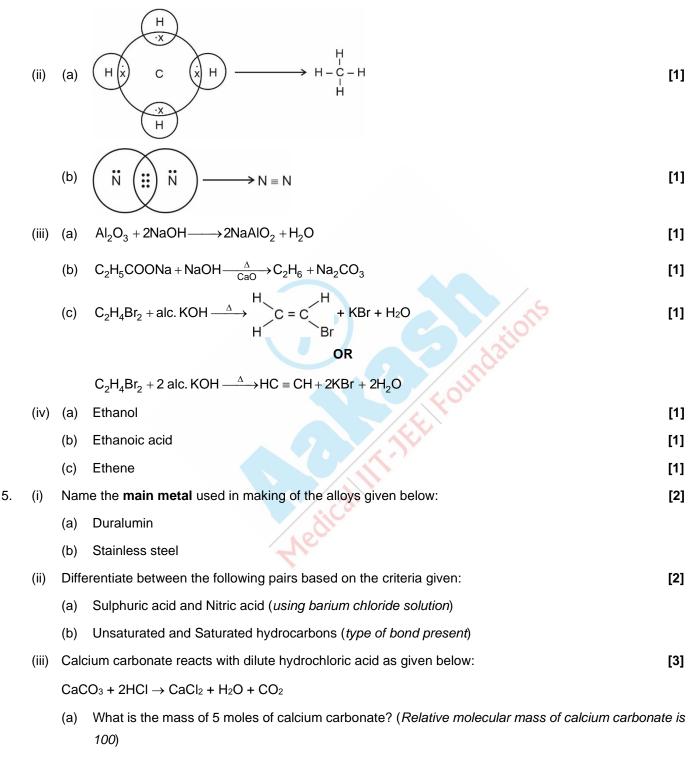
(a) The salt that can be prepared by Direct Combination is _____[FeCl₃/FeCl₂]

(b) The metallic oxide which can be reduced by using common reducing agents is $____ [Fe_2O_3/Al_2O_3]$

Chemistry (Science Paper-2) ICSE - Class X

Aakash

[5]


Aakash	2011	Chemistry (Science Pape	r-2) ICSE - Class X
(iii)	(a)	FeCl ₃	[1]
	(b)	Fe ₂ O ₃	[1]
	(c)	Copper nitrate	[1]
	(d)	Copper	[1]
	(e)	Calcination	[1]
(iv)	(a)	Alkyl group	[1]
	(b)	Electrodes	[1]
	(c)	Mole	[1]
	(d)	Electronegativity	[1]
	(e)	Empirical formula	[1]
(v)	(a)	1. 2, 3-Dichloropentane	[1]
		2. Propanoic acid	[1]
	(b)	H = C - H $H = H + H + H$ $H = H$ $H = H$ $H = H + H$ $H = H + H$ $H = H$ H $H = H$ H $H = H$ H $H = H$ H H $H = H$ H H H H H H H H H	[1] [1]
		SECTION-B (40 Marks)	
		(Attempt any four questions from this Section.)	
3. (i)	Rew	rrite the following statements by adding the correct word as shown in the example:	[2]
		Example:	
		Given Statement: Ammonia changes moist red litmus to blue.	
		Correct Statement: <u>Aqueous</u> ammonia changes moist red litmus to blue.	
	(a)	Sulphuric acid acts as a dehydrating agent.	
	(b)	Ammonia reacts with chlorine to give ammonium chloride and nitrogen.	
(ii)	Ider	tify only the anion present in the following compound:	[2]
	(a)	The compound on heating produces a colourless, odourless gas which turns lime no effect on acidified potassium dichromate solution.	water milky and has
	(b)	The solution of the compound which on treating with concentrated sulphuric acid a ferrous sulphate solution produces a brown ring.	nd freshly prepared

(iii)	Moł	nan has three solutions F	. Q and R having a	pH of 13. 5 and 2	respectively.	[3	
()		ch of the above solution	•	,		Ľ	
	(a) will react with Magnesium to liberate hydrogen gas?						
	(b)	will liberate ammonia h	-		oride?		
	(c)	will contain molecules	as well as ions?				
(iv)	The	following table is related	to an Industrial pro	ocess of an acid.		[3	
	N	lame of the process	Reactant	Catalyst	Final product		
		(a)	SO ₂ + O ₂	(b)	(c)		
	Ider	ntify (a), (b) and (c).	1				
601. (i)	(a)	Concentrated sulphur	ic acid acts as a del	nydrating agent.		['	
	(b)	Excess ammonia reac	ts with chlorine to g	ive ammonium ch	loride and nitrogen.	['	
(ii)	(a)	Carbonate ion $\left(CO_{3}^{2-}\right)$				ľ	
	(b)	Nitrate ion $\left(NO_{3}^{-}\right)$				ľ	
(iii)	(a)	R				[
()	(b)	Р				[
	(c)	Q			× / ~	[
(iv)	(a)	Contact process			riol	[
	(b)	V ₂ O ₅			dar	[
	(c)	H ₂ SO ₄			JUNE	[
. (i)	Defi	ine the following terms:				[
	(a)	Molar volume					
	(b)	Normal salt		12.00			
(ii)	Dra	w the <i>electron dot</i> struct	ure of:			[
	(a)	Methane molecule		3			
	(b)	Nitrogen molecule	die				
<i>/</i>		mic number: N = 7, C =				_	
(iii)		nplete and balance the fo	ollowing equations:			[
	(a)	Al_2O_3 + NaOH \rightarrow					
	(b)	C ₂ H ₅ COONa + NaOH	$\xrightarrow{\Delta}$ CaO				
	(c)	C ₂ H ₄ Br ₂ + alcoholic KC	$H \xrightarrow{\Delta}$				
(iv)	Cho	oose the organic compou	nd from the list give	n below to answe	r the following questions:	[
		Ethene Ethanoic ac	cid Ethanol Meth	nanal			
	(a)	The compound which o	loes not have a dou	uble bond in its st	ucture.		
	(b)	The compound which i	n its pure form turns	s into an ice like s	olid on cooling		

(c) The compound which is used for artificial ripening of fruits.

- Sol. (i)(a)One mole of any gaseous substance occupies a volume of 22.4 dm³ (litre) or 22400 cm³ (mL) at S.T.P.This volume is known as molar volume.[1]
 - (b) Normal salts are the salts formed by the complete replacement of the ionisable hydrogen atoms of an acid by a metallic ion or an ammonium ion. Normal salts have no ionisable hydrogen atoms. [1]

- (b) How many moles of HCI will react with 5 moles of calcium carbonate?
- (c) What is the volume of carbon dioxide liberated at S.T.P. at the same time?

Chen	nistr	y (Sc	ience Paper-2) ICSE - Class X	sh.
	(iv)	Ider	tify the gas evolved in each of the following reactions:	[3]
		(a)	Methane undergoes complete combustion.	
		(b)	Copper carbonate is heated.	
		(c)	MnO ₂ reacts with concentrated HCI.	
Sol.	(i)	(a)	Aluminium (95%)	[1]
		(b)	Iron (73%)	[1]
	(ii)	(a)	Sulphuric acid forms white precipitate with barium chloride solution whereas nitric acid does not.	
			$H_2SO_4 + BaCl_2 \rightarrow BaSO_4 \downarrow + 2HCl$ (White)	1/2]
			$2HNO_3 + BaCl_2 \rightarrow Ba(NO_3)_2 + 2HCl$ (Soluble)	1/2]
		(b)	Saturated hydrocarbons – All the carbon atoms are connected by a single bond.	1/2]
			Unsaturated hydrocarbons - At least two carbon atoms are either connected by a double bond	
		triple bond.		1/2]
	(iii)		$CO_3 + 2HCI \rightarrow CaCl_2 + H_2O + CO_2$	
		(a)	Relative molecular mass of calcium carbonate = 100	
			Molar mass of $CaCO_3 = 100 \text{ g/mol}$ Mass of 5 moles of calcium carbonate = (5 × 100) g = 500 g	[1]
		(b)	1 mole of calcium carbonate reacts with 2 moles of HCl	[1]
		(0)	\therefore 5 moles of calcium carbonate will react with 2 x 5 = 10 moles of HCl.	[1]
		(c)	Five moles of carbon dioxide gas is produced in the given reaction.	1.1
		(-)	According to Avagadro's Law	
			Volume of 1 mole of CO_2 at STP = 22.4 L	
			\therefore Volume of 5 moles of carbon dioxide gas at STP = 5 x 22.4 = 112 L	[1]
	(iv)	(a)	Carbon dioxide	[1]
		(b)	Carbon dioxide	[1]
		(c)	Chlorine	[1]
6.	(i)	X –	$HCI \rightleftharpoons H^{1+} + CI^{-}$ (in solution state)	[2]
		Y –	$PbBr_2 \rightleftharpoons Pb^{2+} + 2Br^{1-}$ (in molten state)	
		Fror	n the above reactions X or Y , identify the reaction which exhibits:	
		(a)	electrolytic dissociation	
		(b)	ionization	
	(ii)	Give	e reasons for the following :	[2]
		(a)	Inert gases do not form ions.	
		(b)	Covalent compounds have a low melting and boiling point.	

[3]

[3]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[2]

[3]

[3]

- (iii) Arrange the following as per the instructions given in the brackets:
 - (a) Carbon, Fluorine, Beryllium (decreasing order of atomic size)
 - (b) Sulphuric acid, Phosphoric acid. Acetic acid (*increasing order of number of replaceable H atoms per molecule*)
 - (c) Potassium, Lithium, Sodium (increasing order of ionization potential)
- (iv) Identify the following:
 - (a) An element in period 1 which can be placed in both group 1 and group 17 of the Periodic Table.
 - (b) The element having electronic configuration 2, 8, 6.
 - (c) The most electronegative element of period 3.
- **Sol.** (i) (a) Y
 - (b) X
 - (ii) (a) Inert gases have complete octet which is stable. Hence, they do not form ions. [1]
 - (b) Covalent compounds have low melting and boiling point due to weak forces of attraction.
 - (iii) (a) Beryllium > Carbon > Fluorine
 - (b) Acetic acid < Sulphuric acid < Phosphoric acid
 - (c) Potassium < Sodium < Lithium
 - (iv) (a) Hydrogen
 - (b) Sulphur
 - (c) Chlorine
- Rita was given an unknown salt for identification. She prepared a solution of the salt and divided it into two parts.
 - To the first part of the salt solution, she added a few drops of ammonium hydroxide and obtained a reddish-brown precipitate.
 - To the second part of the salt solution, she added a few drops of silver nitrate solution and obtained a white precipitate.

Name:

- (a) The cation present and
- (b) The anion present in the salt given for identification.
- (ii) Fill in the blanks by choosing the correct answer from the bracket:
 - (a) Carbon tetrachloride is a [polar/non-polar] covalent molecule.
 - (b) During electrolysis of acidulated water, the gas liberated at the anode is _____[oxygen/hydrogen].
- (iii) Ammonia burns in oxygen as shown below.

$4NH_3 \textbf{+} 3O_2 \rightarrow 2N_2 \textbf{+} 6H_2O$

If 240 cc of ammonia is burnt in 300 cc of oxygen, find out the composition of the resultant gaseous mixture at room temperature.

(iv) The following table shows the electronic configuration of the atoms A, B, C and D.

Element	А	В	С	D
Electronic configuration	2, 8, 8, 2	2, 6	2, 8, 7	2, 4

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[1]

[2]

[2]

10) $M/rite the for$	mula of the	aamnaund	formed between:
(a			compound	formed between:

- 1. A and B
- 2. D and C
- (b) Which of the above elements will exhibit catenation?

Sol. (i) (a) Ferric ion (Fe³⁺)

- (b) Chloride ion (Cl⁻)
- (ii) (a) Non-polar
 - (b) Oxygen
- (iii) $4NH_3 + 3O_2 \longrightarrow 2N_2 + 6H_2O_{240 \text{ cc}} 300 \text{ cc}$
 - 4 Volume of NH₃ reacts with 3 volume of O₂
 - \therefore 240 cc of NH3 will react with 180 cc of O2
 - NH₃ is a limiting reagent

Now, 4 volume NH_3 produces = 2 volume N_2

- \therefore 240 cc of NH_3 produces 120 cc of N_2
- and 240 cc of NH_3 produces 360 cc of H_2O
- \therefore Amount of O₂ remains unreacted = 120 cc
- So, the resultant gaseous mixture contains
 - $N_2 = 120 \text{ cc}$ $H_2O = 360 \text{ cc}$
 - $O_2 = 120 \text{ cc}$
- (iv) (a) 1. AB
 - 2. DC4
 - (b) D
- 8. (i) Choose the correct answer from the list given below:

Zinc blende, C₂H₂, Calamine, CH, Haematite

- (a) The ore which can be concentrated by magnetic separation.
- (b) Empirical formula of Ethyne.
- (ii) Give balanced equation for the following reaction:
 - (a) Copper reacts with concentrated Nitric acid.
 - (b) Aluminium nitride is treated with warm water.
- (iii) Match the salts underlined in Column A with the most suitable method of preparation given in Column B [3]

Foundations

Column A

(c) CaCO₃ from CaCl₂

Column B

- (a) ZnCl₂ from Zn 1. Precipitation
- (b) KNO₃ from KOH 2. Direct combination
 - 3. Displacement reaction
 - 4. Neutralization

(iv)	-	lrogen chloride gas is prepa pride.	red in tl	he laboratory by the action of concentrated sulphuric acid or	sodium [3]				
	(a)	Give balanced chemical e	quation	o for the above reaction.					
	(b)		the method of collection of the gas formed above.						
	(c)	What is the property of su	hat is the property of sulphuric acid that makes it a suitable reagent for the reaction?						
Sol. (i)	(a)	Haematite can be concent	trated b	by magnetic separation.	[1]				
	(b)	Empirical formula of ethyr	ne is C⊦	ł.	[1]				
(ii)	(a)	$Cu + 4HNO_3 \xrightarrow{\Delta} Cu(NC)$	(b ₃) ₂ + 2	$H_2O + 2NO_2$	[1]				
	(b)	$\begin{array}{c} AIN + 3H_2O \longrightarrow AI(OH)_3\\ \text{Warm} \end{array}$	+ NH ₃ 1	\mathbf{h}	[1]				
(iii)		Column A		Column B					
	(a)	ZnCl ₂ from Zn	3.	Displacement reaction	[1]				
	(b)	KNO ₃ from KOH	4.	Neutralization	[1]				
	(c)	CaCO ₃ from CaCl ₂	1.	Precipitation	[1]				
(iv)	(a)	$NaCl + H_2SO_4 \xrightarrow{<200^{\circ}C}$	NaHSC	D ₄ + HCl(g)	[1]				
				OR					
		2NaCl+H ₂ SO ₄ - Above 200	^{⊃°C} →Na	a ₂ SO ₄ + 2HCl(g)					
	(b)	HCI gas is collected by the		rd displacement of air as it is heavier than air (1.28 times). I	t cannot				

 be collected over water as it is highly soluble in water
 [1]

 (c)
 Sulphuric acid is a suitable reagent for the laboratory preparation of hydrogen chloride gas because it is non-volatile in nature.

 [1]

- - -