Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2024 (Online) Phase-1

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is Chemistry. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section-A ($\mathbf{0 1} \mathbf{- 2 0}$) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section-B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.

Chirag Falor 4 Year Classroom
T AIR ${ }_{\text {JEE (Adv.) }}$ 2020

2340
2160 Classroom +180 Distance $\mathcal{\&}$ Digital
Aakashians Qualified in JEE (Advanced) 2023

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The function $f: \mathbb{N}-\{1\} \rightarrow \mathbb{N}$; defined by $f(n)=$ the highest prime factor of n, is:
(1) Both one-one and onto
(2) Neither one-one nor onto
(3) One-one only
(4) Onto only

Answer (2)

Sol. Largest prime factors of two different natural numbers can be same so it is many one.

For example $f(6)=3, f(12)=3$

$$
f(10)=5, f(15)=5
$$

As range of $f(x)$ is set of prime number so range of $f(x)$ is proper subset of co-domain so f is into.
2. Let $x=x(t)$ and $y=y(t)$ be solutions of the differential equations $\frac{d x}{d t}+a x=0$ and $\frac{d y}{d t}+b y=0$ respectively, $a, b \in \mathbb{R}$. Given that $x(0)=2 ; y(0)=1$ and $3 y(1)=2 x(1)$, the value of t, for which $x(t)=y(t)$, is :
(1) $\log _{3} 4$
(2) $\log _{\frac{2}{3}} 2$
(3) $\log _{\frac{4}{3}} 2$
(4) $\log _{4} 3$

Answer (3)
Sol. $\frac{d x}{d t}+a x=0$

$$
\begin{aligned}
& \Rightarrow \int \frac{1}{x} d x=-\int a d t \\
& \Rightarrow \ln |x|=-a t+c \\
& \Rightarrow x= \pm e^{c} \cdot e^{-a t}=\lambda e^{-a t} \\
& \Rightarrow x(0)=2 \Rightarrow \lambda=2 \\
& \Rightarrow x=2 e^{-a t} \\
& \text { Now, } \frac{d y}{d t}+b y=0 \\
& \Rightarrow \int \frac{1}{y} d y=-\int b d t \Rightarrow \ln (y)=-b t+c \\
& \Rightarrow y= \pm e^{c} \cdot e^{-b t}=\mu \cdot e^{-b t} \\
& y(0)=1 \\
& \therefore \mu=1 \\
& \Rightarrow y=e^{-b t} \\
& 3 y(1)=2 x(1) \\
& 3 e^{-b}=2\left(2 e^{-a}\right)=4 e^{-a} \\
& e^{-b+a}=\frac{4}{3} \\
& \Rightarrow x(t)=y(t) \\
& \Rightarrow e^{-b t}=2 e^{-a t} \\
& \Rightarrow e^{-b t+a t}=2 \\
& \Rightarrow e^{(-b+a) t}=2 \\
& \Rightarrow\left(\frac{4}{3}\right)^{t}=2 \\
& \Rightarrow t \ln \frac{4}{3}=\ln 2 \\
& \Rightarrow t=\ln \frac{4}{3} \\
& \Rightarrow \\
& \Rightarrow
\end{aligned}
$$

3. Let $S=\{1,2,3, \ldots, 10\}$. Suppose M is the set of all the subsets of S, then the relation $R=\{(A, B): A \cap B \neq \phi ; A, B \in M\}$ is:
(1) Reflexive only
(2) Symmetric and transitive only
(3) Symmetric only
(4) Symmetric and reflexive only

Answer (3)
Sol. $S=\{1,2,3, \ldots, 10\}$ and $R=\{(A, B): A \cap B \neq \phi$;
$A, B \in M\}$
$A \in M$
$A \cap A=A \neq \phi$
So, R is not reflexive
If $(A, B) \in R$
$\Rightarrow \quad A \cap B=\phi$
$\Rightarrow \quad(B, A) \in R$
So, R is symmetric
If $(A, B),(B, C) \in R \Rightarrow A \cap B=\phi$ and $B \cap C=\phi$
$\Rightarrow A \cap C$ is not necessary ϕ.
Hence, $A \cap C$ not necessarily belongs to R.
So, R is not transitive relation.
eg:- $A=\{1,2\}, B=\{3,4\}, C=\{2,5\}$
here, $A \cap B=\phi, B \cap C=\phi$
but $A \cap C=\{2\} \neq \phi$
So, option (3) is correct.
4. If $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^{4}}}-\sqrt{2}}{x^{4}}$ and
$b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}}$, then the value of $a b^{3}$ is :
(1) 30
(2) 32
(3) 25
(4) 36

Answer (2)
Sol. $a=\lim _{x \rightarrow 0} \frac{\sqrt{1+\sqrt{1+x^{4}}}-\sqrt{2}}{x^{4}}$

$$
\begin{aligned}
& \text { and } b=\lim _{x \rightarrow 0} \frac{\sin ^{2} x}{\sqrt{2}-\sqrt{1+\cos x}} \\
& a=\lim _{x \rightarrow 0} \frac{1+\sqrt{1+x^{4}}-2}{x^{4}\left(\sqrt{1+\sqrt{1+x^{4}}}+\sqrt{2}\right)} \\
& =\frac{1}{2 \sqrt{2}} \lim _{x \rightarrow 0} \frac{\sqrt{1+x^{4}}-1}{x^{4}} \\
& =\frac{1}{2 \sqrt{2}} \lim _{x \rightarrow 0} \frac{\left(1+x^{4}\right)-1}{x^{4}\left(\sqrt{1+x^{4}}+1\right)} \\
& =\frac{1}{2 \sqrt{2}}\left(\frac{1}{2}\right)=\frac{1}{4 \sqrt{2}} \\
& \Rightarrow a=\frac{1}{4 \sqrt{2}} \\
& b=\lim _{x \rightarrow 0} \frac{\left(1-\cos { }^{2} x\right)(\sqrt{2}+\sqrt{1+\cos x})}{2-(1+\cos x)} \\
& b=\lim _{x \rightarrow 0}(1+\cos x)(\sqrt{2}+\sqrt{1+\cos x}) \\
& \Rightarrow b=2(2 \sqrt{2}) \\
& \Rightarrow b=4 \sqrt{2} \\
& \text { So, } a b^{3}=\frac{1}{4 \sqrt{2}}(4 \sqrt{2})^{3} \\
& a b^{3}=32
\end{aligned}
$$

So, option (2) is correct.
5. The length of the chord of the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{16}=1$, whose mid point is $\left(1, \frac{2}{5}\right)$, is equal to :
(1) $\frac{\sqrt{2009}}{5}$
(2) $\frac{\sqrt{1691}}{5}$
(3) $\frac{\sqrt{1541}}{5}$
(4) $\frac{\sqrt{1741}}{5}$

Answer (2)

Sol.

$$
\begin{aligned}
& T=S_{1} \Rightarrow \frac{x}{25}+\frac{y\left(\frac{2}{5}\right)}{16}=\frac{1}{25}+\frac{4}{16 \times 25} \\
& \Rightarrow \frac{x}{25}+\frac{y}{40}=\frac{5}{100} \\
& \Rightarrow 4 x+\frac{5}{2} y=5 \Rightarrow 8 x+5 y-10=0 \\
& \frac{x^{2}}{25}+\frac{y^{2}}{16}=1 \Rightarrow(4 x)^{2}+(5 y)^{2}=400 \\
& \Rightarrow \quad(4 x)^{2}+(8 x-10)^{2}=400 \\
& \Rightarrow \quad 4 x^{2}+(4 x-5)^{2}=100 \\
& \Rightarrow \quad 20 x^{2}-40 x-75=0 \\
& \Rightarrow \quad 4 x^{2}-8 x-15=0 \\
& I=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
&=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left\{\frac{\left(10-8 x_{2}\right)}{5}-\frac{\left.\left(10-8 x_{1}\right)\right)^{2}}{5}\right\}^{2}} \\
&=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\frac{64}{25}\left(x_{2}-x_{1}\right)^{2}} \\
&= \sqrt{\frac{89}{25}} \sqrt{\left(x_{2}-x_{1}\right)^{2}} \\
&= \sqrt{\frac{89}{25}} \sqrt{\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}} \\
&=\frac{\sqrt{89}}{5} \sqrt{4+4 \times \frac{15}{4}}=\frac{1}{5} \sqrt{89} \times \sqrt{19} \\
&=\frac{\sqrt{1691}}{5}
\end{aligned}
$$

6. If $S=\{z \in C:|z-i|=|z+i|=|z-1|\}$, then $n(S)$ is:
(1) 3
(2) 0
(3) 2
(4) 1

Answer (4)

Sol. z will be circumcentre of the triangle with vertices i,
$-i$ and 1 (which is unique)
$\Rightarrow z=0+0 i$
\therefore Only one element exist in S

7. Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$

Given below are two statements :
Statement I: $f(-x)$ is the inverse of the matrix $f(x)$.
Statement II: $f(x) f(y)=f(x+y)$.
In the light of the above statements, choose the correct answer from the options given below
(1) Both Statement I and Statement II are true
(2) Both Statement I is false but Statement II is true
(3) Statement I is true but Statement II is false
(4) Both Statement I and Statement II are false

Answer (1)
Sol. $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$

Chirag Falor
4 Year Classroom
AIR
JIR (Adv.)
2020

23 MO| 2160 Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom
$f(x) \cdot f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}\cos y & -\sin y & 0 \\ \sin y & \cos y & 0 \\ 0 & 0 & 1\end{array}\right]$
$=\left[\begin{array}{ccc}\cos (x+y) & -\sin (x+y) & 0 \\ \sin (x+y) & \cos (x+y) & 0 \\ 0 & 0 & 1\end{array}\right]$
$=f(x+y)$
So, statement II is true.
$f(x) f(-x)=1$
So, $f(-x)$ is inverse of $f(x)$.
So, statement I is true.
8. ${ }^{n-1} C_{r}=\left(k^{2}-8\right){ }^{n} C_{r+1}$ if and only if:
(1) $2 \sqrt{3}<k<3 \sqrt{3}$
(2) $2 \sqrt{3}<k \leq 3 \sqrt{2}$
(3) $2 \sqrt{2}<k<2 \sqrt{3}$
(4) $2 \sqrt{2}<k \leq 3$

Answer (4)

Sol. ${ }^{n-1} C_{r}=\left(k^{2}-8\right) \frac{n}{r+1}{ }^{n-1} C_{r}$
$k^{2}-8=\frac{r+1}{n}$
$0<k^{2}-8 \leq 1$
$8<k^{2} \leq 9$
$2 \sqrt{2}<k \leq 3$ or $-3 \leq k<-2 \sqrt{2}$
9. The distance of the point $(7,-2,11)$ from the line $\frac{x-6}{1}=\frac{y-4}{0}=\frac{z-8}{3} \quad$ along the line $\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-5}{6}$ is:
(1) 12
(2) 21
(3) 14
(4) 18

Answer (3)

Sol. Let $P(7,-2,11)$
and line $\frac{x-6}{1}=\frac{y-4}{0}=\frac{z-8}{3}$
Let General point be ' Q '
$\therefore \quad Q \equiv(\lambda+6,4,3 \lambda+8)$
$\therefore \quad \overrightarrow{P Q}=(1-\lambda,-6,-3 \lambda-3)$
As we have to find distance along
$\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-5}{6}$
$\therefore \quad \frac{1-\lambda}{2}=\frac{-6}{-3}=\frac{-3 \lambda-3}{6}$
$\frac{1-\lambda}{2}=2=\frac{-3 \lambda-3}{6}$
$\therefore \quad \frac{1-\lambda}{2}=2$
$1-\lambda=4$
$\lambda=-3$
Putting in (I)
$Q \equiv(3,4,-1)$
and $P \equiv(7,-2,11)$
$\therefore P Q=\sqrt{(3-7)^{2}+(4+2)^{2}+(-1-11)^{2}}$
$=\sqrt{(-4)^{2}+(6)^{2}(-12)^{2}}$
$=\sqrt{16+36+144}$
$=\sqrt{196}$
$=14$
Option (3) is correct
10. Four distinct points $(2 k, 3 k),(1,0),(0,1)$ and $(0,0)$ lie on a circle for k equal to:
(1) $\frac{3}{13}$
(2) $\frac{2}{13}$
(3) $\frac{5}{13}$
(4) $\frac{1}{13}$

Chirag Falor
4 Year Classroom
AIR
AIR (Adv.)
2020

$2340 \mid 2160$ Classroom + 180 Distance \mathcal{A} Digital

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

${ }_{3}^{\text {AIR }}$

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
(femole)
AIR-16 cRL
JEE (Adv.)
2022

Answer (3)

Sol. General equation of circle is
$x^{2}+y^{2}+2 g x+2 f y+c=0$
As it passes through $(0,0)(0,1)(1,0)$
$\therefore \quad c=0$
Now $2 g+1=0$
$\Rightarrow g=\frac{-1}{2}$
$2 f+1=0$
$f=\frac{-1}{2}$
Hence equation of circle is
$x^{2}+y^{2}-x-y=0$
Also point $(2 k, 3 k)$ lies on the circle.
$\therefore 4 k^{2}+9 k^{2}-5 k=0$
$\Rightarrow 13 k^{2}-5 k=0$
$\Rightarrow k=0, k=\frac{5}{13}$
$\therefore \quad k=\frac{5}{13}$
11. If $\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=a+b \sqrt{2}+c \sqrt{3}$, where a, b, c are rational numbers, then $2 a+3 b-4 c$ is equal to
(1) 10
(2) 8
(3) 4
(4) 7

Answer (2)

Sol. $\int_{0}^{1} \frac{1}{\sqrt{3+x}+\sqrt{1+x}} d x=a+b \sqrt{2}+c \sqrt{3}$
Taking L.H.S.
Multiply and divide by $\sqrt{3+x}-\sqrt{1+x}$
$=\int_{0}^{1} \frac{\sqrt{3+x}-\sqrt{1+x}}{2} d x$
$=\frac{1}{2} \int_{0}^{1}(\sqrt{3+x}-\sqrt{1+x}) d x$
$=\frac{1}{2}\left[\frac{2}{3}(3+x)^{3 / 2}-\frac{2(1+x)^{3 / 2}}{3}\right]_{0}^{1}$
$=\frac{1}{3}\left[4^{3 / 2}-2^{3 / 2}-3^{3 / 2}+1\right]$
$=\frac{1}{3}[8-2 \sqrt{2}-3 \sqrt{3}+1]$
$=\frac{1}{3}(9-2 \sqrt{2}-3 \sqrt{3})$
$=3-\frac{2 \sqrt{2}}{3}-\sqrt{3}$
By comparing, we get :
$a=3$
$b=-2 / 3$
$c=-1$
$2 a+3 b-4 c$
$=6+3(-2 / 3)-4(-1)$
$=6-2+4$
$=8$
12. Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3(\hat{i}-\hat{j}+\hat{k})$. Let \vec{c} be the vector such that $\vec{a} \times \vec{c}=\vec{b}$ and $\vec{a} \cdot \vec{c}=3$. Then $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$ is equal to :
(1) 24
(2) 20
(3) 32
(4) 36

Answer (1)
Sol. $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=3(\hat{i}-\hat{j}+\hat{k})$
$\vec{a} \cdot \vec{c}=3$

$\vec{a} \times \vec{c}=\vec{b}$
Taking cross product of \vec{a} in equation (2),
$\vec{a} \times(\vec{a} \times \vec{c})=\vec{a} \times \vec{b}$
$(\vec{a} \cdot \vec{c}) \vec{a}-(\vec{a} \cdot \vec{a}) \vec{c}=\vec{a} \times \vec{b}$
$\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 1 \\ 3 & -3 & 3\end{array}\right|$
$=\hat{i}(6+3)-\hat{j}(3-3)+\hat{k}(-3-6)$
$\vec{a} \times \vec{b}=9 \hat{i}-9 \hat{k}$
$\vec{a} \cdot \vec{a}=(\hat{i}+2 \hat{j}+\hat{k}) \cdot(\hat{i}+2 \hat{j}+\hat{k})$
$=1+4+1=6$
Putting all these values in equation (3)

$$
\begin{aligned}
& \Rightarrow 3(\hat{i}+2 \hat{j}+\hat{k})-6 \vec{c}=9 \hat{i}-9 \hat{k} \\
& \Rightarrow 6 \vec{c}=3 \hat{i}+6 \hat{j}+3 \hat{k}-9 \hat{i}+9 \hat{k} \\
& \Rightarrow 6 \vec{c}=-6 \hat{i}+6 \hat{j}+12 \hat{k} \\
& \Rightarrow \vec{c}=-\hat{i}+\hat{j}+2 \hat{k}
\end{aligned}
$$

Now, $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$

$$
\begin{aligned}
& \vec{c} \times \vec{b}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 1 & 2 \\
3 & -3 & 3
\end{array}\right| \\
& =\hat{i}(9)-\hat{j}(-9)+\hat{k}(0) \\
& =9 \hat{i}+9 \hat{j} \\
& (\vec{c} \times \vec{b})-\vec{b}-\vec{c} \\
& =9 \hat{i}+9 \hat{j}-3 \hat{i}+3 \hat{j}-3 \hat{k}+\hat{i}-\hat{j}-2 \hat{k} \\
& =7 \hat{i}+11 \hat{j}-5 \hat{k}
\end{aligned}
$$

$a \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$
$(\hat{i}+2 \hat{j}+\hat{k}) \cdot(7 \hat{i}+11 \hat{j}-5 \hat{k})$
$=7+22-5$
$=24$
13. The number of common terms in the progressions 4, 9, 14, 19, \qquad up
(1) 7
(2) 9
(3) 8
(4) 5

Answer (1)

Sol. Given A.P.
4, 9, 14, 19, Upto 25 terms
Here $d_{1}=5$
$a_{n}=a+(n-1) d$
$a_{25}=4+(25-1) 5$
$a_{25}=4+24(5)$
$a_{25}=124$
So, A.P. is
$4,9,14,19, \ldots .124$
Second A.P. is given as
$3,6,9,12, \ldots$ upto 37 term.
Here $d_{2}=3$
$a_{n}=a+(n-1) d$
$a_{n}=3+(n-1) \cdot 3$
$a_{37}=3+36(3)$
$a_{37}=111$
So, A.P. is
3, 6, 9, 12, 111

Chirag Falor
4 Year Classroom
2020

31

$\stackrel{\text { AIR }}{36}$

Aakash Gupta Tanishq Mandhane
Kamyak Channa Dhruv Sanjay Jain

2 Year Classroom

Shivanshu Kuma IIT, Madras 4 Year Classroom

L.C.M. of d_{1} and $d_{2}=15$

So, A.P. of common terms becomes
9, 24, 39, 99
$a_{n}=a+(n-1) d$
$99=9+(n-1) 15$
$\frac{90}{15}=n-1$
$n=7$
14. If (a, b) be the orthocentre of the triangle whose vertices are $(1,2),(2,3)$ and $(3,1)$, and $I_{1}=\int_{a}^{b} x \sin \left(4 x-x^{2}\right) d x, I_{2}=\int_{a}^{b} \sin \left(4 x-x^{2}\right) d x, \quad$ then $36 \frac{l_{1}}{l_{2}}$ is equal to :
(1) 80
(2) 72
(3) 66
(4) 88

Answer (2)

Sol. Slope of $A B=1$.
Altitude through C

$y-1=-1(x-3)$
$\Rightarrow x+y=4$.
Orthocentre (a, b) lies on this
$\Rightarrow a+b=4$
Now, $I_{1}=\int_{a}^{b} x \cdot \sin \left(4 x-x^{2}\right) d x$
$=\int_{a}^{b}(a+b-x) \sin \left(4(a+b-x)-(a+b-x)^{2}\right) d x$
$=\int_{a}^{b}(4-x) \sin \left(4 x-x^{2}\right) d x \quad\{u \operatorname{sing}(\mathrm{i})\}$
$\Rightarrow \quad l_{1}=4 \cdot l_{2}-l_{1}$
$\Rightarrow \frac{l_{1}}{l_{2}}=2$.
$\Rightarrow 36 \frac{l_{1}}{l_{2}}=72$
15. If the shortest distance of the parabola $y^{2}=4 x$ from the centre of the circle $x^{2}+y^{2}-4 x-16 y+64=0$
(1) 20
(2) 16
(3) 24
(4) 36

Answer (1)
Sol. Any normal to $y^{2}=4 x$

$y=m x-2 m-m^{3}$.
If it passes through $(2,8)$
$8=2 m-2 m-m^{3}$.
$\Rightarrow \quad m=-2$
Feet of normal on parabola.
$P\left(a m^{2},-2 a m\right) \equiv(4,4)$
$d^{R}=O P^{2}=(4-2)^{2}+(4-8)^{2}$
$=4+16=20$

16. Consider the function.
$f(x)= \begin{cases}\frac{a\left(7 x-12-x^{2}\right)}{b\left|x^{2}-7 x+12\right|} & , x<3 \\ 2^{\frac{\sin (x-3)}{x-[x]}} & , x>3 \\ b & , x=3\end{cases}$
Where $[x]$ denotes greatest integer less than or equal to x, If S denotes the set of all ordered pairs (a, b) such that $f(x)$ is continuous at $x=3$, then the number of elements in S is:
(1) Infinitely many
(2) 2
(3) 1
(4) 4

Answer (3)

Sol. If $f(x)$ is continuous at $x=3$

$$
\begin{aligned}
& \Rightarrow f(3)=f\left(3^{+}\right)=f\left(3^{-}\right) \\
& \Rightarrow b=\lim _{x \rightarrow 3^{+}} 2^{\frac{\sin (x-3)}{x-[x]}}=\lim _{x \rightarrow 3^{-}} \frac{a}{b} \frac{\left(7 x-12-x^{2}\right)}{\left|x^{2}-7 x+12\right|} \\
& \Rightarrow \lim _{x \rightarrow 3^{+}} 2^{\frac{\sin (x-3)}{x-[x]}} \\
& \Rightarrow \lim _{h \rightarrow 0} 2^{\frac{\sin h}{h}}=2 \\
& \left(7 x-12-x^{2}\right)=-\left(x^{2}-7 x+12\right)=-(x-3)(x-4) \\
& \Rightarrow\left(x^{2}-7 x+12\right) \text { will open positive } \\
& \Rightarrow \lim _{x \rightarrow 3^{-}} \frac{a}{b} \frac{\left(7 x-12-x^{2}\right)}{\left(x^{2}-7 x+12\right)}=\lim _{x \rightarrow 3^{-}} \frac{-a}{b}=2 \\
& \Rightarrow-a=2 b \Rightarrow a=-2 b=-4 \\
& \Rightarrow(a, b)=\{(-4,2)\} \\
& \Rightarrow \text { Only } 1 \text { ordered pair }
\end{aligned}
$$

17. If the shortest distance between the lines $\frac{x-4}{1}=\frac{y+1}{2}=\frac{z}{-3} \quad$ and $\quad \frac{x-\lambda}{2}=\frac{y+1}{4}=\frac{z-2}{-5} \quad$ is $\frac{6}{\sqrt{5}}$, then the sum of all possible values of λ is:
(1) 7
(2) 10
(3) 5
(4) 8

Answer (4)

Sol.

Shortest distance $P Q$ is given by

$$
\begin{aligned}
& \left|\frac{\vec{V}_{1} \times \vec{V}_{2} \overrightarrow{A B}}{\left|\vec{V}_{1} \times \vec{V}_{2}\right|}\right|=\frac{6}{\sqrt{5}} \\
& \vec{V}_{1} \times \vec{V}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & -3 \\
2 & 4 & -5
\end{array}\right|=2 \hat{i}-\hat{j}
\end{aligned}
$$

$$
\Rightarrow\left|V_{1} \times \nabla_{2}\right|=\sqrt{5}
$$

$$
\overrightarrow{A B}=(\lambda-4) \hat{i}+2 \hat{k}
$$

$$
\Rightarrow\left|\frac{\vec{V}_{1} \times \vec{V}_{2}}{\vec{V}_{1} \times \vec{V}_{2}} \cdot \overrightarrow{A B}\right|=\frac{6}{\sqrt{5}} \Rightarrow\left|\frac{2(\lambda-4)}{\sqrt{5}}\right|=\frac{6}{\sqrt{5}}
$$

$$
\Rightarrow|\lambda-4|=3
$$

$$
\Rightarrow \lambda-4=3 \text { or }-3
$$

$\lambda=1$ or 7
\Rightarrow Sum of $\lambda=8$

18. The portion of the line $4 x+5 y=20$ in the first quadrant is trisected by the lines, L_{1} and L_{2} passing through the origin. The tangent of an angle between the lines L_{1} and L_{2} is:
(1) $\frac{2}{5}$
(2) $\frac{8}{5}$
(3) $\frac{25}{41}$
(4) $\frac{30}{41}$

Answer (4)

Sol.

$A_{x} \equiv \frac{5(1)+2(0)}{3}=\frac{5}{3}$
$\Rightarrow A \equiv\left(\frac{5}{3}, \frac{8}{3}\right)$
$A_{y}=\frac{0(1)+2(4)}{3}=\frac{8}{3}$
Similarly, $B \equiv\left(\frac{10}{3}, \frac{4}{3}\right)$
\Rightarrow Slope of $A O=\frac{8}{5}$
Slope of $O B=\frac{2}{5}$
$\tan \theta=\left|\frac{\frac{8}{5}-\frac{2}{5}}{1+\frac{16}{25}}\right|=\left|\frac{\frac{6}{5}}{41 / 25}\right|=\frac{30}{41}$
19. If A denotes the sum of all, the coefficients in the expansion of $\left(1-3 x+10 x^{2}\right)^{n}$ and B denotes the sum of all the coefficients in the expansion of ($1+$ $\left.x^{2}\right)^{n}$, then:
(1) $3 A=B$
(2) $B=A^{3}$
(3) $A=3 B$
(4) $A=B^{3}$

Answer (4)

Sol. $A=$ sum of coefficient $=\left(1-3(1)+10(1)^{2}\right)^{n}=8^{n}$
(Putting $x=1$)
$B=$ Sum of coefficient $=\left(1+(1)^{2}\right)^{n}=2^{n}$
$\Rightarrow 8^{n}=\left(2^{3}\right)^{n}=\left(2^{n}\right)^{3}=B^{3}$
$\Rightarrow A=B^{3}$
20. Let $a_{1}, a_{2}, \ldots a_{10}$ be 10 observations such that $\sum_{k=1}^{10} a_{k}=50$ and $\sum_{\forall k<j} a_{k} \cdot a_{j}=1100$. Then the standard of deviation of $a_{1}, a_{2}, \ldots, a_{10}$ is equal to:
(1) 5
(2) $\sqrt{115}$
(3) 10
(4) $\sqrt{5}$

Answer (4)

Sol. $\sum_{\forall k<j} a_{k} \cdot a_{j}=\left(\frac{\sum_{k=j}^{10} \sum_{j=1}^{10} a_{k} a_{j}-\sum_{k=1}^{10} a_{k} a_{k}}{2}\right)$

$$
\begin{aligned}
\sum_{k=1}^{10} \sum_{j=1} a_{k} a_{j} & =\left(a_{1}+a_{2}+\ldots+a_{10}\right)\left(a_{1}+a_{2}+. .+a_{10}\right) \\
& =(50)(50)=2500 \\
\Rightarrow \sum_{k=1}^{10} a_{k}^{2} & =2500-2 \sum_{\forall k<j} a_{k} a_{j} \\
& =2500-2 \times 1100=300
\end{aligned}
$$

Standard deviation (σ)
$\Rightarrow \sigma=\sqrt{\frac{\sum a_{x}^{2}}{10}-\left(\frac{\sum a_{k}}{10}\right)^{2}}$
$=\sqrt{\frac{300}{10}-\left(\frac{50}{10}\right)^{2}}=\sqrt{30-25}=\sqrt{5}$

Chirag Falor
4 Year Classroom

- AIR

JEE (Adv.)
2020

23 H0 2160 Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

Year Classro IIT, Bombay

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
21. Let the area of region $\left\{(x, y): x-2 y+4 \geq 0, x+2 y^{2}\right.$ $\left.\geq 0, x+4 y^{2} \leq 8, y \geq 0\right\}$ be $\frac{m}{n}$, where m and n are coprime numbers. Then $m+n$ is equal to \qquad .

Answer (119)

Sol.

Area between these curve will be
$\int_{-2}^{-1}\left(-\sqrt{\frac{-x}{2}}+\frac{x+4}{2}\right) d x+\int_{-1}^{0}\left(\sqrt{\frac{8-x}{4}}-\sqrt{\frac{-x}{2}}\right) d x$
$+\int_{0}^{8} \sqrt{\frac{8-x}{4}} d x=\frac{107}{12}=\frac{m}{n}$
$\Rightarrow m+n=119$
22. Let $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in \mathbb{R}$. Then $f^{\prime}(10)$ is equal to \qquad .

Answer (202)

Sol. $f(x)=x^{3}+x^{2} f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3)$

$$
\begin{align*}
& f^{\prime}(x)=3 x^{2}+2 x f^{\prime}(1)+f^{\prime \prime}(2) \tag{2}\\
& f^{\prime \prime \prime}(x)=6 x+2 f^{\prime}(1) \\
& f^{\prime \prime \prime}(x)=6 \\
& \Rightarrow f^{\prime \prime \prime}(3)=6 \\
& f^{\prime \prime}(2)=12+2 f^{\prime}(1) \quad \ldots(1) \tag{1}\\
& f^{\prime}(1)=3+2 f^{\prime}(1)+f^{\prime \prime}(2) \ldots(2)
\end{align*}
$$

adding (1) \& (2)
$0=15+3 f^{\prime}(x) \Rightarrow f^{\prime}(1)=-5$
$f^{\prime \prime}(2)=12-10=2$
Now
$f^{\prime}(10)=300+20(-5)+2$
$=300-100+2=202$
23. Let the set of all $a \in \mathbb{R}$ such that the equation $\cos 2 x$ $+a \sin x=2 a-7$ has a solution be $[p, q]$ and $r=$ $\tan 9^{\circ}-\tan 27^{\circ}-\frac{1}{\cot 63^{\circ}}+\tan 81^{\circ}$, then qpr is equal to \qquad .

Answer (48)

Sol. $\cos 2 x+a \sin x=2 a-7$
$1-2 \sin ^{2} x+a \sin x=2 a-7$
Let $\sin x=t$
$2 t^{2}-a t+2 a-8=0$
$\Rightarrow(t-2)(2 t+4-a)=0$
$\Rightarrow a=2 \sin x+4$
$\therefore a \in[2,6] \Rightarrow p=2$ and $q=6$.
Now
$\tan \theta+\cot \theta=2 \operatorname{cosec} 2 \theta$
$r=2 \operatorname{cosec} 18^{\circ}-2 \operatorname{cosec} 54^{\circ}$
$=2\left[\frac{4}{\sqrt{5}-1}-\frac{4}{\sqrt{5}+1}\right]$
$=8 \times \frac{2}{5-1}=4,=r$
\therefore pqr $=2 \times 6 \times 4=48$.
24. If the solution of the differential equation ($2 x+3 y-$ 2) $d x+(4 x+6 y-7) d y=0, y(0)=3$, is $\alpha x+\beta y+3$ $\log _{e}|2 x+3 y-\gamma|=6$, then $\alpha+2 \beta+3 \gamma$ is equal to
\qquad -

Answer (29)

Sol. $(2 x+3 y-2) d x+(4 x+6 y-7) d y=0$

$\frac{d y}{d x}=-\left(\frac{2 x+3 y-2}{4 x+6 y-7}\right)$
Let $2 x+3 y=t$
$2+3 \frac{d y}{d x}=\frac{d t}{d x}$
$\frac{1}{3}\left[\frac{d t}{d x}-2\right]=-\left(\frac{t-2}{2 t-7}\right)$
$\frac{d t}{d x}-2=-\left(\frac{3 t-6}{2 t-7}\right)$
$\frac{d t}{d x}=2-\frac{3 t-6}{2 t-7}$
$\frac{d t}{d x}=\frac{t-8}{2 t-7}$
$\int\left(\frac{2 t-7}{t-8}\right) d t=\int d x$
$=\int 2 d t+\int \frac{a}{t-8} d t=\int d x$
$=2 t+9 \ln |t-8|=x+c$
$=2(2 x+3 y)+9|2 x+3 y-8|=x+c$
$\because y(0)=3$
$\Rightarrow c=18$
$=3 x+6 y+9 \ln (|2 x+3 y-8|)=18$
$=x+2 y+3 \ln |2 x+3 y-8|=6$
$\Rightarrow \alpha=1, \beta=2, \gamma=8$
Now
$\alpha+2 \beta+3 \gamma$
$=1+4+24=29$
25. A fair die is tossed repeatedly until a six is obtained. Let X denote the number of tosses required and let $a=P(X=3), b=P(X \geq 3)$ and $c=P(X \geq 6 \mid X>3)$. Then $\frac{b+c}{a}$ is equal to \qquad .

Answer (12)

Sol. $a=P(X=3) \Rightarrow$ third toss obtains 6 at first time
$\Rightarrow P(A)=\frac{1}{6}$ (obtaining a six)
$P(\bar{A})=\frac{5}{6}$ (not obtaining a six)
$\Rightarrow a=P(X=3)=\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}=\frac{25}{216}=\frac{5^{2}}{6^{3}}$
$\Rightarrow b=P(X \geq 3)=$
$\frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\ldots$.
\Rightarrow It is a G.P. with first term $=\frac{25}{216}=\frac{5^{2}}{6^{3}}$ and common ratio $\left(\frac{5}{6}\right)$

$$
\begin{aligned}
& \Rightarrow \text { Sum }=\frac{\frac{25}{216}}{1-\frac{5}{6}}=\frac{25}{36}=\left(\frac{5}{6}\right)^{2} \\
& c=P\left(\frac{x \geq 6}{x>3}\right)=\frac{P(x \geq 6 \cap x>3)}{P(x>3)}=\frac{P(x \geq 6)}{P(x>3)}
\end{aligned}
$$

$$
P(x>3)=\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\ldots=\frac{\frac{5^{3}}{6^{4}}}{1-\frac{1}{5}}=\frac{5^{3}}{6^{3}}
$$

$$
P(x \geq 6)=\frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{5}{6} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{6} \times \frac{1}{6}+\ldots=\frac{\frac{5}{}^{6}}{1-\frac{5}{6}}=\left(\frac{5^{5}}{6^{5}}\right)
$$

$$
c=\frac{\frac{5^{5}}{6^{5}}}{\frac{5^{3}}{6^{3}}}=\frac{5^{2}}{6^{2}}=\left(\frac{5}{6}\right)^{2}
$$

$$
\frac{b+c}{a}=\frac{\frac{25}{36}+\frac{25}{36}}{\frac{25}{216}}=2 \times \frac{25}{36} \times \frac{216}{25}=12
$$

26. The least positive integral value of α, for which the angle between the vectors $\alpha \hat{i}-2 \hat{j}+2 \hat{k}$ and $\alpha \hat{i}+2 \alpha \hat{j}-2 \hat{k}$ is acute, is \qquad

Answer (5)

Sol. $(\alpha \hat{i}-2 j+2 \hat{k}) \cdot(\alpha \hat{i}+2 \alpha j-2 \hat{k})>0$
$\alpha^{2}-4 \alpha-4>0$
$(\alpha-2)^{2}>8$
$(\alpha-2-2 \sqrt{2})(\alpha-2+2 \sqrt{2})>0$
$\alpha \in(-\infty, 2-2 \sqrt{2}) \cup(2+2 \sqrt{2}, \infty)$
\Rightarrow Least integral value of α is 5
27. If α satisfies the equation $x^{2}+x+1=0$ and $(1+\alpha)^{7}$ $=A+B \alpha+C \alpha^{2}, A, B, C \geq 0$ then $5(3 A-2 B-C)$ is equal to \qquad -

Answer (5)

Sol. $\because \quad \alpha^{2}+\alpha+1=0$

$$
\begin{aligned}
\Rightarrow & \alpha=\frac{-1 \pm \sqrt{1-4}}{2}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i \\
& \alpha=\omega, \omega^{2} \\
& \text { If } \alpha=\omega \\
& (1+\alpha)^{7}=(1+\omega)^{7}=\left(-\omega^{2}\right)^{7}=-\omega^{14}=-\omega^{2} \\
\Rightarrow & -\omega^{2}=A+B \omega+C \omega^{2} \\
\Rightarrow & A+B \omega+(C+1) \omega^{2}=0 \\
\Rightarrow & 2 A-B-C=1 \text { and } B-C=1 \\
\Rightarrow & B=C+1, A=B=C+1 \\
\Rightarrow & 5(3 A-2 B-C)=5(3 C+3-2 C-2-C)=5
\end{aligned}
$$

$$
\text { If } \alpha=\omega^{2}
$$

$$
\begin{gathered}
\\
(1+\alpha)^{7}=\left(1+\omega^{2}\right)^{7}=-\omega^{7}=-\omega \\
\Rightarrow \\
-\omega=A+B \omega^{2}+C \omega^{4}=A+B \omega^{2}+C \omega
\end{gathered}
$$

$$
\begin{aligned}
\Rightarrow & A+B \omega^{2}+(C+1) \omega=0 \\
& 2 A-B-C=1 \text { and } B-C=1 \\
\Rightarrow & B=C+1, A=B=C+1 \\
\Rightarrow & 5(3 A-2 B-C)=5
\end{aligned}
$$

28. Let for a differentiable function $f:(0, \infty) \rightarrow R$,
$f(x)-f(y) \geq \log _{e}\left(\frac{x}{y}\right)+x-y, \forall x, y \in(0, \infty)$. Then
$\sum_{n=1}^{20} f^{\prime}\left(\frac{1}{n^{2}}\right)$ is equal to \qquad

Answer (2890)

Sol. $f(x)-f(y) \geq \ln \left(\frac{x}{y}\right)+x-y$
Put $x=x+h$ and $y=x$, where $h>0$
$\Rightarrow f(x+h)-f(x) \geq \ln \left(\frac{x+h}{x}\right)+(x+h)-x$
$\Rightarrow \frac{f(x+h)-f(x)}{h} \geq \frac{\ln \left(\frac{x+h}{x}\right)+h}{h}$
$\Rightarrow f^{\prime}(x) \geq \lim _{h \rightarrow 0} \frac{\ln \left(1+\frac{h}{x}\right)}{h}+1$
$\Rightarrow \quad f^{\prime}(x) \geq \frac{1}{x}+1$

$$
f(y)-f(x) \leq \ln \left(\frac{y}{x}\right)+y-x
$$

Put $y \rightarrow x+h, x \rightarrow x$ where $h>0$

$$
\begin{aligned}
& f(x+h)-f(x) \leq \ln \left(\frac{x+h}{x}\right)+h \\
& \frac{f(x+h)-f(x)}{h} \leq \frac{\ln \left(1+\frac{h}{x}\right)}{h}+1
\end{aligned}
$$

$\Rightarrow \quad f^{\prime}(x) \leq \frac{1}{x}+1$
From (i) and (ii),
$f^{\prime}(x)=1+\frac{1}{x}=\frac{x+1}{x}$
$\Rightarrow f^{\prime}\left(\frac{1}{n^{2}}\right)=n^{2}+1$
$\Rightarrow \quad \sum_{n=1}^{20} f^{\prime}\left(\frac{1}{n^{2}}\right)=20+\frac{20 \times 21 \times 41}{6}=2890$
29. If $8=3+\frac{1}{4}(3+p)+\frac{1}{4^{2}}(3+2 p)+\frac{1}{4^{3}}(3+3 p)+\ldots \infty$, then the value of p is \qquad
Answer (9)
Sol. $S=3+\frac{1}{4}(3+p)+\frac{1}{4^{2}}(3+2 p)+\frac{1}{4^{3}}(3+3 p)+\ldots \infty$

$$
\begin{aligned}
T_{n} & =\frac{1}{4^{n-1}}(3+(n-1) p)=t_{n}+t_{n}^{\prime} \\
t_{n} & =\frac{3}{4^{n-1}} \\
\Rightarrow \quad s_{n} & =3\left(1+\frac{1}{4}+\frac{1}{4^{2}}+\ldots\right)=4 \\
s_{n}^{\prime} & =\frac{p}{4}\left(1+\frac{2}{4}+\frac{3}{4^{2}}+\ldots \infty\right)
\end{aligned}
$$

Let $R=1+\frac{2}{4}+\frac{3}{4^{2}}+\ldots$

$$
\begin{aligned}
& \frac{R}{4}=\frac{1}{4}+\frac{2}{4^{2}}+\ldots \\
\Rightarrow & \frac{3 R}{4}=1+\frac{1}{4}+\frac{1}{4^{2}}+\ldots=\frac{4}{3} \Rightarrow R=\frac{16}{9} \\
\Rightarrow & S=4+\frac{p}{4} \times \frac{16}{9}=8 \\
\Rightarrow & p=9
\end{aligned}
$$

30. Let $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], B=\left[B_{1}, B_{2}, B_{3}\right]$, where B_{1}, B_{2},
B_{3} are column matrics and $A B_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], A B_{2}=\left[\begin{array}{l}2 \\ 3 \\ 0\end{array}\right]$,

$$
A B_{3}=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]
$$

If $\alpha=[B]$ and β is the sum of all the diagonal elements of B, then $\alpha^{3}+\beta^{3}$ is equal to \qquad

Answer (0)

Sol. $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right],|A|=1$

$$
\begin{aligned}
& A^{-1}=\operatorname{adj}(A)=\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
-1 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
-1 & 1 & 1 \\
-1 & 0 & 2
\end{array}\right] \\
& \Rightarrow B_{1}=A^{-1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right] \\
& \Rightarrow B_{2}=A^{-1}\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right] \\
& \Rightarrow B_{3}=A^{-1}\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right] \\
& \Rightarrow B=\left[\begin{array}{ccc}
1 & 2 & 2 \\
-1 & 1 & 0 \\
1 & -2 & -1
\end{array}\right] \\
& \Rightarrow \beta=1, \alpha=-1 \Rightarrow \alpha^{3}+\beta^{3}=0
\end{aligned}
$$

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. Given below are two statements:

Statement-I : Viscosity of gases is greater than that of liquids.

Statement-II : Surface tension of a liquid decreases due to the presence of insoluble impurities.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Statement-I is incorrect but statement-II is correct
(2) Statement-I is correct but statement-II is incorrect
(3) Both Statement-I and Statement-II are incorrect
(4) Both Statement-I and Statement-II are correct

Answer (1)

Sol. Viscosity of liquids is greater than gas.
Surface tension decreases due to the presence of impurities.
32. 0.08 kg air is heated at constant volume through $5^{\circ} \mathrm{C}$. The specific heat of air at constant volume is $0.17 \mathrm{kcal} / \mathrm{kg}^{\circ} \mathrm{C}$ and $\mathrm{J}=4.18$ joule $/ \mathrm{cal}$. The change in its internal energy is approximately.
(1) 284 J
(2) 298 J
(3) 318 J
(4) 142 J

Answer (1)

Sol. $\Delta U=m C \Delta T$

$$
\begin{aligned}
& =0.08 \times 0.17 \times 4.18 \times 10^{3} \times 5 \\
& =284 \mathrm{~J}
\end{aligned}
$$

33. Identify the physical quantity that cannot be measured using spherometer :
(1) Radius of curvature of convex surface
(2) Radius of curvature of concave surface
(3) Specific rotation of liquids
(4) Thickness of thin plates

Answer (3)

Sol. Spherometer cannot measure specific rotation of liquids.
34. Position of an ant (S in metres) moving in $Y-Z$ plane is given by $S=2 t^{2} \hat{j}+5 \hat{k}$ (where t is in second). The magnitude and direction of velocity of the ant at $t=1 \mathrm{~s}$ will be :
(1) $4 \mathrm{~m} / \mathrm{s}$ in y-direction
(2) $9 \mathrm{~m} / \mathrm{s}$ in z-direction
(3) $16 \mathrm{~m} / \mathrm{s}$ in y-direction
(4) $4 \mathrm{~m} / \mathrm{s}$ in x-direction

Answer (1)

Sol. $\vec{v}=\frac{d \vec{s}}{d t}$

$$
\vec{v}=4 t \hat{j}
$$

At $t=1 \mathrm{~s}$
$\vec{v}=4 \hat{j}$

Chirag Falor
4 Year Classroom
AIR
AIR
JEE (Adv.)
2020

35. An electric charge $10^{-6} \mu \mathrm{C}$ is placed at origin (0,0) m of $X-Y$ co-ordinate system. Two points P and Q are situated at $(\sqrt{3}, \sqrt{3}) \mathrm{m}$ and $(\sqrt{6}, 0) \mathrm{m}$ respectively. The potential difference between the points P and Q will be :
(1) $\sqrt{6} \mathrm{~V}$
(2) 0 V
(3) 3 V
(4) $\sqrt{3} \mathrm{~V}$

Answer (2)

Sol. $V=\frac{K Q}{r}$
at $P: r_{1}=\sqrt{6}$
at $Q: r_{2}=\sqrt{6}$
$\therefore \quad V_{P}=V_{Q}$
$\Rightarrow \Delta V=0$
36. A proton moving with a constant velocity passes through a region of space without any change in its velocity. If \vec{E} and \vec{B} represent the electric and magnetic fields respectively, then the region of space may have :
(A) $E=0, B=0$
(B) $E=0, B \neq 0$
(C) $E \neq 0, B=0$
(D) $E \neq 0, B \neq 0$

Choose the most appropriate answer from the options given below :
(1) (A), (C) and
(D) only
(2) (A), (B) and (C) only
(3) (A), (B) and
(D) only
(4)
(B), (C) and (D) only

Answer (3)

Sol. For constant velocity, net force on charge particle should be zero.

That is possible for A, B and D .
37. The radius of third stationary orbit of electron for Bohr's atom is R. The radius of fourth stationary orbit will be :
(1) $\frac{16}{9} R$
(2) $\frac{9}{16} R$
(3) $\frac{4}{3} R$
(4) $\frac{3}{4} R$

Answer (1)

Sol. For $3^{\text {rd }}$ orbit
$R=r_{0} \frac{(3)^{2}}{Z}$
$R^{\prime}=r_{0} \frac{(4)^{2}}{Z}$
$\therefore \quad R^{\prime}=\left(\frac{16}{9}\right) R$
38. The average kinetic energy of a monoatomic molecule is 0.414 eV at temperature : (Use $K_{B}=$ $\left.1.38 \times 10^{-23} \mathrm{~J} / \mathrm{mol}-\mathrm{K}\right)$
(1) 3000 K
(2) 3200 K
(3) 1500 K
(4) 1600 K

Answer (2)
Sol. $E=\frac{3}{2} K_{B} T$
$0.414 \times 1.6 \times 10^{-19}=\frac{3}{2} \times 1.38 \times 10^{-23} T$
$T=3200 \mathrm{~K}$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

39. A wire of resistance R and length L is cut into 5 equal parts. If these parts are joined parallely, then resultant resistance will be :
(1) $\frac{1}{5} R$
(2) $\frac{1}{25} R$
(3) $5 R$
(4) $25 R$

Answer (2)

Sol. Resistance of each part $=\frac{R}{5}$
$\therefore \quad R_{\mathrm{eq}}=\left(\frac{1}{5}\right)\left(\frac{R}{5}\right)=\frac{R}{25}$
40. A rectangular loop of length 2.5 m and width 2 m is placed at 60° to a magnetic field of $4 T$. The loop is removed from the field in 10 s . The average emf induced in the loop during this time is:
(1) +2 V
(2) -2 V
(3) -1 V
(4) +1 V

Answer (4)
Sol. $E_{\mathrm{avg}}=-\frac{\Delta \phi}{\Delta t}$
$\Delta \phi=-B A \cos 60^{\circ}$
$=-4 \times 2.5 \times 2 \frac{1}{2}$
$=-10$
$E_{\text {avg }}=\frac{+10}{10}=1 \mathrm{~V}$
41. A train is moving with a speed of $12 \mathrm{~m} / \mathrm{s}$ on rails which are 1.5 m apart. To negotiate a curve of radius 400 m , the height by which the outer rail should be raised with respect to the inner rail is (Given $g=10 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 4.8 cm
(2) 4.2 cm
(3) 6.0 cm
(4) 5.4 cm

Answer (4)

Sol. $\tan \theta=\frac{v^{2}}{r g}=\frac{h}{w}$
$\therefore \quad h=\frac{v^{2}}{r g} w$
$=\frac{(12)^{2} \times 1.5}{400 \times 10}$
$=0.054 \mathrm{~m}$
$=5.4 \mathrm{~cm}$
42. Which of the following circuits is reverse-biased?
(1)

(2)

(3)

(4)

Answer (4)

Sol. For reverse bias $V_{P}<V_{N}$, that is true for option (4)

43. If the refractive index of the material of a prism is $\cot \left(\frac{A}{2}\right)$, where A is the angle of prism then angle of minimum deviation will be
(1) $\frac{\pi}{2}-2 A$
(2) $\pi-2 A$
(3) $\frac{\pi}{2}-A$
(4) $\pi-A$

Answer (2)

Sol. For minimum deviation
$\mu=\frac{\sin \frac{(\delta+A)}{2}}{\sin \left(\frac{A}{2}\right)}=\cot \left(\frac{A}{2}\right)$
$\delta=\pi-2 A$
44. Two bodies of mass 4 g and 25 g are moving with equal kinetic energies. The ratio of magnitude of their linear momentum is
(1) $5: 4$
(2) $2: 5$
(3) $3: 5$
(4) $4: 5$

Answer (2)
Sol. $K=\frac{P^{2}}{2 m}$
$\frac{P_{1}^{2}}{2 m_{1}}=\frac{P_{2}^{2}}{2 m_{2}}$
$\frac{P_{1}}{P_{2}}=\sqrt{\frac{m_{1}}{m_{2}}}=\frac{2}{5}$
45. A wire of length 10 cm and radius $\sqrt{7} \times 10^{-4} \mathrm{~m}$ is connected across the right gap of a meter bridge. When a resistance of 4.5Ω is connected on the left gap by using a resistance box, the balance length is found to be at 60 cm from the left end. If the resistivity of the wire is $R \times 10^{-7} \Omega \mathrm{~m}$, then value of R is
(1) 35
(2) 63
(3) 70
(4) 66

Answer (4)
Sol. $\frac{4.5}{60}=\frac{S}{40}$
$\therefore \quad S=3 \Omega=\frac{\rho /}{A}$
$\rho=\frac{S A}{l}=66 \times 10^{-7}$
$\therefore \quad R=66$
46. The acceleration due to gravity on the surface of earth is g. If the diameter of earth reduces to half of its original value and mass remains constant, then acceleration due to gravity on the surface of earth would be :
(1) $4 g$
(2) $\frac{g}{4}$
(3) $2 g$
(4) $\frac{g}{2}$

Answer (1)
Sol. $\because g=\frac{G M}{R^{2}}$
If $R^{\prime}=\frac{R}{2}$
$\Rightarrow g^{\prime}=4 g$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

234012160 Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

3

1 Year Classroom 29

Ka

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

ALL
AIR-16 cRL
JEE (Adv.) 2022
47. A body of mass 1000 kg is moving horizontally with a velocity $6 \mathrm{~m} / \mathrm{s}$. If 200 kg extra mass is added, the final velocity (in m/s) is:
(1) 3
(2) 2
(3) 5
(4) 6

Answer (3)

Sol. By conservation of momentum

$$
\begin{aligned}
& 1000 \times 6=1200 \times \mathrm{V} \\
& \Rightarrow \quad v=5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

48. A plane electromagnetic wave propagating in x-direction is described by $E_{y}=\left(200 \mathrm{Vm}^{-1}\right)$ $\sin \left[1.5 \times 10^{7} t-0.05 x\right]$; The intensity of the wave is:
(Use $\varepsilon_{0}=0.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$)
(1) $26.6 \mathrm{Wm}^{-2}$
(2) $35.4 \mathrm{Wm}^{-2}$
(3) $53.1 \mathrm{Wm}^{-2}$
(4) $106.2 \mathrm{Wm}^{-2}$

Answer (3)
Sol. $I=\frac{1}{2} \in_{0} E_{0}^{2} C$
$=\frac{1}{2} \times 8.85 \times 10^{-12} \times(200)^{2} \times\left(3 \times 10^{8}\right)$
$=53.1 \mathrm{~W} \mathrm{~m}^{-2}$
49. Given below are two statements:

Statement (I): Planck's constant and angular momentum have same dimensions.

Statement (II): Linear momentum and moment of force have same dimensions.

In the light of the above statements, choose the correct answer from the options given below:
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are false
(3) Statement I is false but Statement II is true
(4) Both Statement I and Statement II are true

Answer (1)
Sol. $[h]=\left[M L^{2} T^{-1}\right]$
$[L]=\left[M L^{2} T^{-1}\right]$
$[P]=\left[M L T^{-1}\right]$
$[F L]=\left[M L T^{-2}\right] \times[L]$

$$
=\left[M L^{2} T^{-2}\right]
$$

50. A convex lens of focal length 40 cm forms an image of an extended source of light on a photoelectric cell. A current I is produced. The lens is replaced by another convex lens having the same diameter but focal length 20 cm . The photoelectric current now is:
(1) $4 /$
(2) I
(3) $\frac{1}{2}$
(4) 21

Answer (2)

Sol. As the diameter is same, number of photons will be same.
$\therefore \quad I^{\prime}=1$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
51. A particle starts from origin at $t=0$ with a velocity $5 \hat{i} \mathrm{~m} / \mathrm{s}$ and moves in $x-y$ plane under action of a force which produces a constant acceleration of $(3 \hat{i}+2 \hat{j}) \mathrm{m} / \mathrm{s}^{2}$. If the x-coordinate of the particle at that instant is 84 m , then the speed of the particle at this time is $\sqrt{\alpha} \mathrm{m} / \mathrm{s}$. The value of α is \qquad -.

Answer (673)
Sol. $x=5 t+\frac{1}{2} \times 3 t^{2}=84$
$\therefore t=6 \mathrm{~s}$
$\vec{v}=5 \hat{i}+6(3 \hat{i}+2 \hat{j})$
$\vec{v}=23 \hat{i}+12 \hat{j}$
$v=\sqrt{673}$

Chirag Falor
4 Year Classroom
AIR
AIR
JEE (Adv.)
2020
$2340 \mid 2160$ Classroom + 180 Distance \& Digital Aakashians Qualified in JEE (Advanced) 2023

Tanishka Kabra 4 Year Classroom
\qquad
AIR-16 cRL JEE (Adv.) 2022
52. Two long, straight wires carry equal currents in opposite directions as shown in figure. The separation between the wires is 5.0 cm . The magnitude of the magnetic field at a point P midway between the wires is \qquad μT. (Given: $\mu_{0}=4 \pi \times$ $10^{-7} \mathrm{TmA}^{-1}$)

Answer (160)

Sol. $B=2 \times \frac{\mu_{0} i}{2 \pi\left(\frac{d}{2}\right)}=160 \times 10^{-6} \mathrm{~T}$
53. If average depth of an ocean is 4000 m and the bulk modulus of water is $2 \times 10^{9} \mathrm{Nm}^{-2}$, then fractional compression $\frac{\Delta V}{V}$ of water at the bottom of ocean is $\alpha \times 10^{-2}$. The value of α is \qquad . (Given, $g=10 \mathrm{~ms}^{-2}, \rho=1000 \mathrm{~kg} \mathrm{~m}^{-3}$)

Answer (2)

Sol. $B=-\frac{\Delta P}{\left(\frac{\Delta V}{V}\right)}$

$$
\begin{aligned}
\therefore-\frac{\Delta V}{V} & =\frac{1000 \times 10 \times 4000}{2 \times 10^{9}} \\
& =2 \times 10^{-2}
\end{aligned}
$$

54. Four particles each of mass 1 kg are placed at four corners of a square of side 2 m . Moment of inertia of system about an axis perpendicular to its plane and passing through one of its vertex is \qquad kgm^{2}.

Answer (16)

Sol. $I=2\left(M a^{2}\right)+M(\sqrt{2} a)^{2}$
$I=4 M a^{2}$

$$
=4 \times 1 \times 4=16
$$

55. A thin metallic wire having cross sectional area of $10^{-4} \mathrm{~m}^{2}$ is used to make a ring of radius 30 cm . A positive charge of $2 \pi \mathrm{C}$ is uniformly distributed over the ring, while another positive charge of 30 pC is kept at the centre of the ring. The tension in the ring is \qquad N ; provided that the ring does not get deformed (neglect the influence of gravity).
(given, $\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9} \mathrm{SI}$ units)
Answer (3)
Sol. Force on one half of the ring $=\frac{2 K \lambda Q}{r}$

$$
\begin{aligned}
\therefore T & =\frac{K \lambda Q}{r} \\
& =9 \times 10^{9} \times \frac{2 \pi}{2 \pi \times 0.3} \times \frac{30 \times 10^{-12}}{0.3} \\
& =3 \mathrm{~N}
\end{aligned}
$$

56. A particle executes simple harmonic motion with an amplitude of 4 cm . At the mean position, velocity of the particle is $10 \mathrm{~cm} / \mathrm{s}$. The distance of the particle from the mean position when its speed becomes 5 cm / s is $\sqrt{\alpha} \mathrm{cm}$, where $\alpha=$ \qquad .
Answer (12)
Sol. $v=\omega \sqrt{A^{2}-x^{2}}$

$$
\begin{aligned}
& \Rightarrow v=\omega A \sqrt{1-\frac{x^{2}}{A^{2}}} \\
& \Rightarrow 5=10 \sqrt{1-\frac{x^{2}}{4^{2}}} \\
& \Rightarrow \frac{1}{4}=1-\frac{x^{2}}{4^{2}} \\
& \Rightarrow x=\sqrt{\frac{3}{4} \times 4^{2}}=\sqrt{12} \mathrm{~cm}
\end{aligned}
$$

$23 / 40 \mid 2160$ Classroom + 180 Distance \& Digital Aakashians Qualified in JEE (Advanced) 2023

57. Two immiscible liquids of refractive indices $\frac{8}{5}$ and $\frac{3}{2}$ respectively are put in a beaker as shown in the figure. The height of each column is 6 cm . A coin is placed at the bottom of the beaker. For near normal vision, the apparent depth of the coin is $\frac{\alpha}{4} \mathrm{~cm}$. The value of α is \qquad .

Answer (31)

Sol. Apparent depth $=\frac{d_{1}}{\mu_{1}}+\frac{d_{2}}{\mu_{2}}$ $=\frac{6}{\left(\frac{3}{2}\right)}+\frac{6}{\left(\frac{8}{5}\right)}=\frac{31}{4} \mathrm{~cm}$
58. In a nuclear fission process, a high mass nuclide (A $=236)$ with binding energy $7.6 \mathrm{MeV} /$ Nucleon dissociated into middle mass nuclides $(A=118)$, having binding energy of $8.6 \mathrm{MeV} / \mathrm{Nucleon}$. The energy released in the process would be \qquad MeV.

Answer (236)

Sol. $A \rightarrow 2 B$

$$
\begin{aligned}
& \Delta E=2 \times 118 \times 8.6-236 \times 7.6 \\
& \Delta E=236 \mathrm{MeV}
\end{aligned}
$$

59. Two coils have mutual inductance 0.002 H . The current changes in the first coil according to the relation $i=i_{0} \sin \omega t$, where $i_{0}=5 \mathrm{~A}$ and $\omega=5 \pi \mathrm{rad} / \mathrm{s}$. The maximum value of emf in the second coil is $\frac{\pi}{\alpha}$ V. The value of α is \qquad -.

Answer (2)

Sol. $\phi_{2}=M i_{1}$

$$
\begin{aligned}
|E| & =\left|\frac{d \phi_{2}}{d t}\right|=M i_{0} \omega \cos \omega t \\
E_{\max } & =M i_{0} \omega \\
& =0.002 \times 5 \times 50 \pi \\
& =0.5 \pi
\end{aligned}
$$

60. The charge accumulated on the capacitor connected in the following circuit is \qquad $\mu \mathrm{C}$. (Given $\mathrm{C}=150 \mu \mathrm{~F}$)

Answer (400)

Sol. $V_{A}=10-\frac{10}{3}=\frac{20}{3} V$

$$
\begin{aligned}
& V_{B}=10-6=4 \mathrm{~V} \\
& V_{A}-V_{B}=\frac{8}{3} \mathrm{~V} \\
& Q=C V_{A B}=150 \times 10^{-6} \times \frac{8}{3}=400 \mu \mathrm{C}
\end{aligned}
$$

Chirag Falor
4 Year Classroom
T AIR
2020
 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom and many more

Tanishka Kabra 4 Year Classroom

AIR-16 crL
ALL
INDIA
RANK
2022

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Given below are two statements :

Statement (I) : p-nitrophenol is more acidic than m -nitrophenol and o-nitrophenol.
Statement (II) : Ethanol will give immediate turbidity with Lucas reagent.
In the light of the above statements, choose the correct answer from the options given below.
(1) Statement I is false but Statement II is true
(2) Statement I is true but Statement II is false
(3) Both Statement I and Statement II are true
(4) Both Statement I and Statement II are false

Answer (2)

Sol. p-Nitrophenol is more acidic than m-nitrophenol and o-nitrophenol.

The electron withdrawing group $-\mathrm{NO}_{2}$ stabilizes phenoxide ion through -R effect at para and ortho position.
$-\mathrm{NO}_{2}$ group in meta position will show -l effect.
Presence of $-\mathrm{NO}_{2}$ group at ortho position it form hydrogen bonding with -OH group.

Hence, acidity is less than p-nitrophenol order of acidic strength.
p-nitrophenol > o-nitrophenol > m-nitrophenol

Ethanol will not give immediate turbidity with Lucas reagent.
3° alcohol will give white turbidity immediately statement I is true but statement II is false.
62. Two nucleotides are joined together by a linkage known as
(1) Peptide linkage
(2) Disulphide linkage
(3) Glycosidic linkage
(4) Phosphodiester linkage

Answer (4)

Sol. Two nucleotides are joined together by phosphodiester linkage between 5^{\prime} and 3^{\prime} carbon atoms of pentose sugar.

Phosphodiester

3^{\prime} end of chain
63. Cyclohexene
 is \qquad type of an organic compound.
(1) Acyclic
(2) Benzenoid non-aromatic
(3) Alicyclic
(4) Benzenoid aromatic

Answer (3)

Chirag Falor
4 Year Classroom
AIR
EE (Adv.)
2020

234012160 Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

Sol.

The given compound belongs to alicyclic compounds.
64. The electronic configuration for Neodymium is [Atomic Number for Neodymium 60]
(1) $[X e] 4 f^{4} 6 s^{2}$
(2) $[X e] 4 f^{1} 5 d^{1} 6 s^{2}$
(3) $[X e] 5 f^{7} 7 s^{2}$
(4) $[\mathrm{Xe}] 4 \mathrm{f}^{6} 6 \mathrm{~s}^{2}$

Answer (1)

Sol. The electronic configuration of Neodymium is

$$
{ }_{60} \mathrm{Nd}:[\mathrm{Xe}] 4 \mathrm{f}^{4} 6 \mathrm{~s}^{2}
$$

65. IUPAC name of following compound (P) is

(P)
(1) 1,1-Dimethyl-3-ethylcyclohexane
(2) 1-Ethyl-3,3-dimethylcyclohexane
(3) 3-Ethyl-1,1-dimethylcyclohexane
(4) 1-Ethyl-5,5-dimethylcyclohexane

Answer (3)

Sol.

Numbering is done in such a way that all locants should get lowest possible number.

Name of substituent written according to alphabetical order

3-Ethyl-1,1-dimethylcyclohexane
66. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : Melting point of Boron (2453 K) is unusually high in group 13 elements.

Reason (R) : Solid Boron has very strong crystalline lattice.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
(2) Both (A) and (R) are correct and (R) is the correct explanation of (A)
(3) (A) is false but (R) is true
(4) (A) is true but (R) is false

Answer (2)

Sol. Melting point of Boron is unusually high due to very strong crystalline lattice.

Both (A) and (R) are correct and (R) is correct explanation of (A).
67. A solution of two miscible liquids showing negative deviation from Raoult's law will have :
(1) increased vapour pressure, decreased boiling point
(2) increased vapour pressure, increased boiling point
(3) decreased vapour pressure, decreased boiling point
(4) decreased vapour pressure, increased boiling point

Answer (4)

Sol. A solution of two miscible liquids showing negative deviation due to decrease in vapour pressure and increase in boiling point.

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020
68. Consider the following complex ions
$\mathrm{P}=\left[\mathrm{FeF}_{6}\right]^{3-}$
$\mathrm{Q}=\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
The correct order of the complex ions, according to their spin only magnetic moment values (in B.M.) is :
(1) $R<Q<P$
(2) $R<P<Q$
(3) $\mathrm{Q}<\mathrm{R}<\mathrm{P}$
(4) $Q<P<R$

Answer (3)
Sol. $\mathrm{P}=\left[\mathrm{FeF}_{6}\right]^{3-}$
$\mathrm{Q}=\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
$\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
F^{\ominus} with Fe^{+3}, and $\mathrm{H}_{2} \mathrm{O}$ with Fe^{+2} behaves as WFL and pairing does not takes place
$\left[\mathrm{FeF}_{6}\right]^{3-}=3 d^{5}=\mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{2}$
Number of unpaired electron $=5$

$$
\begin{aligned}
\mu & =\sqrt{n(\mathrm{n}+2)} \mathrm{BM} \\
& =\sqrt{5(5+2)} \mathrm{BM} \\
& =\sqrt{35} \mathrm{BM}
\end{aligned}
$$

$\left[\mathrm{V}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}=3 \alpha^{\beta} \quad \mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{eg}^{0}$
$\mathrm{n}=3$
$\mu=\sqrt{15} B M$
$\mathrm{R}=\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}=3 d^{6}=\mathrm{t}_{2 \mathrm{~g}}^{4} \mathrm{e}_{\mathrm{g}}^{2}$
$\mathrm{n}=4$
$\mu=\sqrt{24} B M$
Q $<\mathrm{R}<\mathrm{P}$
69. Highest enol content will be shown by :
(1)

(2)

(3)

(4)

Answer (3)
Sol. Highest enol content will shown by

Due to formation of aromatic compound.
70. Which of the following is strongest Bronsted base?
(1)

(2)

(3)

(4)

Answer (2)

Sol. Bronsted base are those which can donate its lone pair to H^{+}ion.
more easily the compound can donate its lone pair to H^{+}strong will be basic character
 is strongest Bronsted base due to availability of lone pair.
In other option lone pair is delocalised
71. Choose the polar molecule from the following :
(1) CHCl_{3}
(2) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(3) CCl_{4}
(4) CO_{2}

Answer (1)

Sol. The molecule which has permanent dipole moment are said to be polar molecule.

CHCl_{3} is polar molecule
72. Yellow compound of lead chromate gets dissolved on treatment with hot NaOH solution. The product of lead formed is a :
(1) Neutral complex with coordination number four
(2) Dianionic complex with coordination number four
(3) Tetraanionic complex with coordination number six
(4) Dianionic complex with coordination number six

Answer (2)

Sol. $\mathrm{PbCrO}_{\text {yellow }} \xrightarrow{\substack{\text { hol } \\ \text { NaOH }}} \mathrm{Na}_{2} \mathrm{CrO}_{4}+\underset{\text { complex }}{\left[\mathrm{Pb}(\mathrm{OH})_{4}\right]^{2-}}$
The complex formed is $\left[\mathrm{Pb}(\mathrm{OH})_{4}\right]^{2-}$ which has coordination number $=4$ and complex is dianionic due to presence of (-2) charge.
73. Which of the following has highly acidic hydrogen?
(1)

(2)

(3)

(4)

Answer (4)

Sol. After removal of H^{+}ion, negative charge is formed, more stable the negative charge more will be the acidic strength.

Due to cross conjugation of negative charge it is most stabilised anion.

So compound is most acidic.

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

234012160 Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

1 Year Classroom 2
 2 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 cRL
ALL
JEE (Adv.)
2022
74. The correct statement regarding nucleophilic substitution reaction in a chiral alkyl halide is :
(1) Retention occurs in $\mathrm{S}_{\mathrm{N}} 1$ reaction and inversion occurs in $\mathrm{S}_{2} 2$ reaction
(2) Racemisation occurs in both $\mathrm{S}_{\mathrm{N} 1}$ and $\mathrm{S}_{\mathrm{N} 2}$ reactions
(3) Racemisation occurs in $\mathrm{S}_{\mathrm{N}} 1$ reaction and inversion occurs in $\mathrm{S}_{\mathrm{N}} 2$ reaction
(4) Racemisation occurs in $\mathrm{S}_{\mathrm{N}} 1$ reaction and retention occurs in $\mathrm{S}_{\mathrm{N}} 2$ reaction.

Answer (3)
Sol. In $\mathrm{S}_{\mathrm{N}} 1$ reaction carbocation is formed as intermediate. Hence both side attack is possible, racemic product is formed.

In $\mathrm{S}_{\mathrm{N}} 2$ reaction, nucleophile attack from back side takes place and hence inversion in configuration takes place.
75. Given below are two statements :

Statement (I): Aqueous solution of ammonium carbonate is basic

Statement (II) : Acidic/basic nature of salt solution of a salt of weak acid and weak base depends on K_{a} and K_{b} value of acid and the base forming it.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both statement-I and Statement-II are correct
(2) Both statement-I and Statement-II are incorrect
(3) Statement-I is correct but Statement-II is incorrect
(4) Statement-I is incorrect but Statement-II is correct

Answer (1)

Sol. Aq solution of ammonium carbonate is basic. The salt is made from weak acid ($\mathrm{H}_{2} \mathrm{CO}_{3}$) and weak base $\left(\mathrm{NH}_{4} \mathrm{OH}\right)$, acidic or basic nature depends on value of K_{a} of weak acid and K_{b} of weak base

If solution is basic
Kb (weak base) $>\mathrm{K}_{\mathrm{a}}$ (weak acid)
$\mathrm{K}_{\mathrm{a}}\left(\mathrm{H}_{2} \mathrm{CO}_{3}\right)=4.3 \times 10^{-7}$
$\mathrm{Kb}\left(\mathrm{NH}_{4} \mathrm{OH}\right)=1.8 \times 10^{-5}$
$K_{b}>K_{a}$ so solution is basic
Both statements are correct
76. NaCl reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ to give reddish fumes (B), which react with NaOH to give yellow solution (C). (B) and (C) respectively are :
(1) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{CrO}_{4}$
(2) $\mathrm{Na}_{2} \mathrm{CrO}_{4}, \mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(3) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(4) $\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{KHSO}_{4}$

Answer (1)
Sol. $4 \mathrm{NaCl}+\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+6 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow$

$$
\underset{(\mathrm{B})}{2 \mathrm{CrO}_{2} \mathrm{Cl}_{2}}+4 \mathrm{NaHSO}_{4}+2 \mathrm{KHSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}
$$

77. Which of the following electronic configuration would be associated with the highest magnetic moment?
(1) $[\mathrm{Ar}] 3 \mathrm{~d}^{8}$
(2) $[\mathrm{Ar}] 3 \mathrm{~d}^{6}$
(3) $[\mathrm{Ar}] 3 \mathrm{~d}^{3}$
(4) $[\mathrm{Ar}] 3 \mathrm{~d}^{7}$

Answer (2)

Sol. [Ar] 3d ${ }^{6}$ have 4 unpaired electrons which has highest magnetic moment.

78. Given below are two statements:

Statement (I): The $4 f$ and $5 f$-series of elements are placed separately in the Periodic table to preserve the principle of classification.
Statement (II): s-block elements can be found in pure form in nature.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I is false but Statement II is true
(2) Statement I is true but Statement II is false
(3) Both Statement I and Statement II are false
(4) Both Statement I and Statement II are true

Answer (2)
Sol. s-block elements are highly reactive and hence can't be found in pure form in nature.
\Rightarrow Statement II is incorrect.
79. The ascending order of acidity of -OH group in the following compounds is :
(A) $\mathrm{Bu}-\mathrm{OH}$
(B)

(C)

(D)

(E)

Choose the correct answer from the options given below :
(1) (C) $<$ (A) $<$ (D) $<$ (B) $<$ (E)
(2) (A) $<$ (C) $<$ (D) $<$ (B) $<$ (E)
(3) (A) $<$ (D) $<$ (C) $<$ (B) $<$ (E)
(4) (C) $<$ (D) $<$ (B) $<$ (A) $<$ (E)

Answer (2)

Sol.

Acidic strength order
$\mathrm{Bu}-\mathrm{OH}$ is aliphatic alcohol.
80. Element not showing variable oxidation state is:
(1) Bromine
(2) Chlorine
(3) lodine
(4) Fluorine

Answer (4)

Sol. Fluorine does not show variable oxidation state due to absence of vacant d-orbital.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10. The answer to each question should be rounded-off to the nearest integer.
81. - Sum of bond order of CO and NO^{+}is \qquad .
Answer (6)
Sol. CO and NO^{+}both are Isoelectronic to N_{2} i.e. both have 14 electrons.

Both have bond order equal to 3
Bond order of $\mathrm{CO}=3$
Bond order of $\mathrm{NO}^{+}=3$
Sum $=3+3=6$

Chirag Falor
4 Year Classroom
AIR
${ }_{\text {JEE (Adv.) }}$
2020
82. Mass of methane required to produce 22 g of CO_{2} after complete combustion is \qquad g .
(Given Molar mass in $\mathrm{g} \mathrm{mol}^{-1}$

$$
\begin{aligned}
& C=12.0 \\
& H=1.0 \\
& O=16.0)
\end{aligned}
$$

Answer (8)

Sol. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
Moles of $\mathrm{CO}_{2}=\frac{22}{44}=\frac{1}{2}$
Moles of $\mathrm{CH}_{4}=\frac{1}{2}$
Mass of $\mathrm{CH}_{4}=\frac{1}{2} \times 16$

$$
=8 \mathrm{gm}
$$

83. From the given list, the number of compounds with +4 oxidation state of Sulphur is \qquad .
$\mathrm{SO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{SOCl}_{2}, \mathrm{SF}_{4}, \mathrm{BaSO}_{4}, \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$

Answer (3)

Sol. $\mathrm{H}_{2} \mathrm{SO}_{3}, \mathrm{SOCl}_{2}, \mathrm{SF}_{4}$ have +4 oxidation state of sulphur.
84. 3-Methylhex-2-ene on reaction with HBr in presence of peroxide forms an addition product (A). The number of possible stereoisomers for ' A ' is
\qquad .
Answer (4)
Sol.

(A) has 2 chiral carbons

Possible stereoisomers $=(2)^{2}=4$
85. Consider the following data for the given reaction $2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$

	1	2	3
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	0.005	0.01	0.02
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}\right)$	7.5×10^{-4}	3.0×10^{-3}	1.2×10^{-2}

The order of the reaction is \qquad .

Answer (2)

Sol. Comparing rate values in experiment 2 and 3

$$
\begin{aligned}
& \frac{r_{3}}{r_{2}}=4=\left(\frac{0.02}{0.01}\right)^{x} \\
& x=2
\end{aligned}
$$

Order of reaction is 2
86. If three moles of an ideal gas at 300 K expand isothermally from $30 \mathrm{dm}^{3}$ to $45 \mathrm{dm}^{3}$ against a constant opposing pressure of 80 kPa , then the amount of heat transferred is \qquad J.

Answer (1200)

Sol. $W=-P_{\text {ext }}(\Delta V)$

$$
\begin{aligned}
& =-80 \times 10^{3} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}(45-30) \times 10^{-3} \mathrm{~m}^{3} \\
& =-80 \times(15) \mathrm{N} \cdot \mathrm{~m} \\
& =-1200 \mathrm{~J} \\
& q+W=\Delta E=0 \\
& q=+1200 \mathrm{~J}
\end{aligned}
$$

87. Among the given organic compounds, the total number of aromatic compounds is \qquad -.
(A)

(B)

Chirag Falor
4 Year Classroom

- AIR

JEE (Adv.)
2020

23 MO 2160 Classroom + 180 Distance \mathcal{A} Digital

Aakashians Qualified in JEE (Advanced) 2023

$$
27 \underbrace{\text { AIR }}_{\substack{\text { Aditya Neeraje } \\ \text { ITT, Bombay }}}
$$ 28

 42

Shivanshu Kumar IIT, Madras 4 Year Classroom

(C)

(D)

Answer (3)

Sol. Compound (A) is not aromatic due to presence of $s p^{3}$ carbon between the rings.
88. The number of electrons present in all the completely filled subshells having $\mathrm{n}=4$ and $\mathrm{s}=+\frac{1}{2}$ is \qquad .
(Where $n=$ principal quantum number and
$s=$ spin quantum number)

Answer (16)

Sol. Total $\left(n^{2}\right)$ electrons present with $s=+\frac{1}{2}$
\Rightarrow Total 16 electrons with $\mathrm{n}=4$ and $\mathrm{s}=+\frac{1}{2}$
89. Among the following, total number of meta directing functional groups is \qquad (Integer based)
$-\mathrm{OCH}_{3},-\mathrm{NO}_{2},-\mathrm{CN},-\mathrm{CH}_{3},-\mathrm{NHCOCH}_{3},-\mathrm{COR}$, $-\mathrm{OH},-\mathrm{COOH},-\mathrm{Cl}$

Answer (4)

Sol. Meta directing groups:
$-\mathrm{NO}_{2}$
-CN
-COR
$-\mathrm{COOH}$
Total 4 groups are meta directing groups.
90. The mass of silver (Molar mass of $\mathrm{Ag}: 108 \mathrm{gmol}^{-1}$) displaced by a quantity of electricity which displaces 5600 mL of O_{2} at S.T.P. will be \qquad g.

Answer (108)

Sol. $2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
moles of $\mathrm{O}_{2}=\frac{5.6}{22.4}=0.25$
moles of electrons $=(0.25 \times 4)=1$

$$
\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}
$$

moles of $\mathrm{Ag}=1$
mass of $\mathrm{Ag}=108 \mathrm{gm}$

Chirag Falor 4 Year Classroom

2340
2160 Classroom + 180 Distance $\mathcal{\&}$ Digital Aakashians Qualified in JEE (Advanced) 2023

Aditya Neeraje
2 Year Classroom

8

Aakash Gupta Tanishq Mandhane
 4 Year Classroom

K
amyak Channa Dhruv Sanjay Jain 4 Year Classroom IIT, Banjay J IIT, Bombay 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom nd many more

Tanishka Kabra 4 Year Classroom

ALL
JEE (Adv.)
2022

