29/01/2024

Evening

Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2024 (Online) Phase-1

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300 .
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is Chemistry. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A (01-20) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section - B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.

Chirag Falor
4 Year Classroom
T AIR
${ }_{\text {JIEE (Adv.) }}^{\text {AIR }}$
2020

Tanishka Kabra 4 Year Classroom

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If $\sin \left(\frac{y}{x}\right)=\log _{e}|x|+\frac{\alpha}{2}$ is the solution of the differential equation $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$ and $y(1)=\frac{\pi}{3}$, then α^{2} is equal to
(1) 4
(2) 9
(3) 3
(4) 12

Answer (3)

Sol. $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}-y \cos \left(\frac{y}{x}\right)=x$
$\Rightarrow \cos \left(\frac{y}{x}\right)\left[x \frac{d y}{d x}-y\right]=x$
$\Rightarrow \cos \left(\frac{y}{x}\right)\left[\frac{x \frac{d y}{d x}-y}{x^{2}}\right]=\frac{1}{x}$
Let $\frac{y}{x}=t$
$\frac{x \frac{d y}{d x}-y}{x^{2}}=\frac{d t}{d x}$
$\Rightarrow \cos t \frac{d t}{d x}=\frac{1}{x}$
$\Rightarrow \quad \int \cos t d t=\int \frac{1}{x} d x$
$\Rightarrow \sin t=\ln |x|+C$
$y(1)=\frac{\pi}{3}$
$\Rightarrow \sin \frac{\pi}{3}=0+C \Rightarrow C=\frac{\sqrt{3}}{2}$
\therefore Solution is $\sin \frac{y}{x}=\ln |x|+\frac{\sqrt{3}}{2}$
$\therefore \quad \alpha^{2}=3$
2. The function $f(x)=\frac{x}{x^{2}-6 x-16}, x \in \mathbb{R}-\{-2,8\}$
(1) Decreases in $(-2,8)$ and increases in $(-\infty,-2) \cup(8, \infty)$
(2) Decreases $(-\infty,-2) \cup(-2,8) \cup(8, \infty)$
(3) Increases in $(-\infty,-2) \cup(-2,8) \cup(8, \infty)$
(4) Decreases $(-\infty,-2)$ and increases in $(8, \infty)$

Answer (2)

Sol. $f(x)=\frac{x}{x^{2}-6 x-16}$

$$
\begin{aligned}
& f^{\prime}(x)=\frac{\left(x^{2}-6 x-16\right)-x(2 x-6)}{\left(x^{2}-6 x-16\right)^{2}} \\
& =\frac{x^{2}-6 x-16-2 x^{2}+6 x}{\left(x^{2}-6 x-16\right)^{2}} \\
& =\frac{-x^{2}-16}{\left(x^{2}-6 x-16\right)^{2}}<0 \forall x \in D_{f}
\end{aligned}
$$

$f(x)$ is decreasing in $(-\infty,-2) \cup(-2,8) \cup(8, \infty)$
3. Let $P(3,2,3), Q(4,6,2)$ and $R(7,3,2)$ be the vertices of $\triangle P Q R$. Then, the angle $\angle Q P R$ is
(1) $\frac{\pi}{6}$
(2) $\cos ^{-1}\left(\frac{7}{18}\right)$
(3) $\frac{\pi}{3}$
(4) $\cos ^{-1}\left(\frac{1}{18}\right)$

Answer (3)

Chirag Falor
4 Year Classroom
2020
$2340{ }^{2160}{ }^{\text {Classroom }+180}$ Distance Disital
Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

Kamyak Channa Dhruv Sanjay Jain

IIT, Bombay

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

INDIA
RANK
2022

Sol. $P(3,2,3), Q(4,6,2), R(7,3,2)$

Direction ratio of $P R=4,1,1$
Direction ratio of $P Q=1,4,1$

$$
\begin{aligned}
& \cos (\angle Q P R)=\left|\frac{1 \times 4+4 \times 1+1 \times 1}{\sqrt{16+1+1} \sqrt{1+16+1}}\right| \\
& \cos (\angle Q P R)=\frac{1}{2} \\
& \Rightarrow \angle Q P R=\cos ^{-1}\left(\frac{1}{2}\right) \\
& \Rightarrow \angle Q P R=\frac{\pi}{3}
\end{aligned}
$$

4. Let $x=\frac{m}{n}$ (m, n are co-prime natural numbers) be a solution of the equation $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$ and let $\alpha, \beta(\alpha>\beta)$ be the roots of the equation $m x^{2}-n x-$ $m+n=0$. Then the point (α, β) lies on the line
(1) $5 x+8 y=9$
(2) $5 x-8 y=-9$
(3) $3 x+2 y=2$
(4) $3 x-2 y=-2$

Answer (1)

Sol. $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}, x>0$
$\because x>0$
$\sin ^{-1} x=\theta \in 1^{\text {st }}$ Quadrant

$$
\begin{aligned}
& \Rightarrow \quad \cos 2 \theta=\frac{1}{9} \\
& =1-2 \sin ^{2} \theta=\frac{1}{9}
\end{aligned}
$$

$\Rightarrow \sin ^{2} \theta=\frac{4}{9}$
$\Rightarrow \quad x^{2}=\frac{4}{9}$
$\Rightarrow \quad x=\frac{2}{3}=\frac{m}{n}$
$\Rightarrow m=2$ and $n=3$
$m x^{2}-n x-m+n=0$
$\Rightarrow 2 x^{2}-3 x+1=0$
Roots are $1, \frac{1}{2}$
$\alpha=1, \beta=\frac{1}{2}$
So, $(\alpha, \beta)=\left(1, \frac{1}{2}\right)$
and (α, β) lies on $5 x+8 y=9$
Hence, option (1) is correct
5. The sum of the solution $x \in \mathbb{R}$ of the equation $\frac{3 \cos 2 x+\cos ^{3} 2 x}{\cos ^{6} x-\sin ^{6} x}=x^{3}-x^{2}+6$ is
(1) 3
(2) 1
(3) -1
(4) 0

Answer (3)
Sol. Given: $\frac{3 \cos 2 x+\cos ^{3} 2 x}{\cos ^{6} x-\sin ^{6} x}=x^{3}-x^{2}+6$

$$
\begin{aligned}
& \Rightarrow \frac{\cos 2 x\left(3+\cos ^{2} 2 x\right)}{\left(\cos ^{2} x-\sin ^{2} x\right)\left[\sin ^{4} x+\cos ^{4} x+\sin ^{2} x \cos ^{2} x\right]} \\
& =x^{3}-x^{2}+6 \\
& \Rightarrow \frac{3+\cos ^{2} 2 x}{1-\sin ^{2} x \cos ^{2} x}=x^{3}-x^{2}+6 \\
& \Rightarrow 4\left(\frac{3+\cos ^{2} 2 x}{4-\sin ^{2} 2 x}\right)=x^{3}-x^{2}+6 \\
& \Rightarrow x^{3}-x^{2}+2=0 \\
& \Rightarrow(x+1)\left(x^{2}-2 x+2\right)=0 \\
& \Rightarrow(x+1)\left((x-1)^{2}+1\right)=0 \\
& \therefore \text { Sum of solutions }=-1
\end{aligned}
$$

Chirag Falor
4 Year Classroom
T AIR
2020

23 HO| 2160 Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

27
 Aditya Neeraje IIT, Bombay

AIR
20

Aakash Gupta Tanishq Mandhane

AIR
31 36

6. Let r and θ respectively be the modulus and amplitude of the complex number $z=2-i\left(2 \tan \frac{5 \pi}{8}\right)$, then (r, θ) is equal to
(1) $\left(2 \sec \frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$
(2) $\left(2 \sec \frac{5 \pi}{8}, \frac{3 \pi}{8}\right)$
(3) $\left(2 \sec \frac{11 \pi}{8}, \frac{11 \pi}{8}\right)$
(4) $\left(2 \sec \frac{3 \pi}{8}, \frac{3 \pi}{8}\right)$

Answer (4)
Sol. $z=2-2 i \frac{\sin \frac{5 \pi}{8}}{\cos \frac{5 \pi}{8}}$
$=\frac{2}{\cos \frac{5 \pi}{8}}\left(\cos \frac{5 \pi}{8}-i \sin \frac{5 \pi}{8}\right)$
$=2 \sec \frac{5 \pi}{8} e^{i\left(-\frac{5 \pi}{8}\right)}$
$=2 \sec \frac{3 \pi}{8} e^{i \pi} e^{i\left(-\frac{5 \pi}{8}\right)}$
$=2 \sec \frac{3 \pi}{8} e^{i \frac{3 \pi}{8}}$
$\therefore \quad r=2 \sec \frac{3 \pi}{8}, \theta=\frac{3 \pi}{8}$
7. Let A be the point of intersection of the lines $3 x+2 y=14,5 x-y=6$ and B be the point of intersection of the lines $4 x+3 y=8,6 x+y=5$. The distance of the point $P(5,-2)$ from the line $A B$ is
(1) $\frac{5}{2}$
(2) 8
(3) 6
(4) $\frac{13}{2}$

Answer (3)

Sol. A is point of intersection of line $3 x+2 y=14$
and $5 x-y=6$
On solving,

$$
\begin{aligned}
& 3 x+2 y=14 \\
& 10 x-2 y=12 \\
& 13 x=26 \\
& x=2 \text { and } y=4
\end{aligned}
$$

Point $A(2,4)$
Similarly, B is

$$
\begin{aligned}
& 4 x+3 y=8 \\
& \frac{18 x+3 y=15}{14 x=7} \\
& x=\frac{1}{2} \text { and } y=2
\end{aligned}
$$

Point $B\left(\frac{1}{2}, 2\right)$
\therefore Line $A B$ is $y-4=\frac{-2}{-\frac{3}{2}}(x-2)$

$$
\begin{aligned}
& y-4=\frac{4}{3}(x-2) \\
& 3 y-12=4 x-8 \\
& 4 x-3 y+4=0
\end{aligned}
$$

\therefore Distance of $P(5,-2)$ from $A B$ is

$$
\begin{aligned}
& =\frac{|4(5)-3(-2)+4|}{\sqrt{(4)^{2}+(-3)^{2}}} \\
& =\frac{|20+6+4|}{5} \\
& =6
\end{aligned}
$$

8. An integer is chosen at random from the integers $1,2,3, \ldots, 50$. The probability that the chosen integer is a multiple of atleast one of 4,6 and 7 is
(1) $\frac{14}{25}$
(2) $\frac{8}{25}$
(3) $\frac{21}{50}$
(4) $\frac{9}{50}$

Answer (3)

Chirag Falor
4 Year Classroom
ThIR $\begin{aligned} & \text { JEE (Adv.) }\end{aligned}$ 2020
${ }^{\text {AIR }}$

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain IIT, Bombay
2 Year Classroom

Aakash Gupta Tanishq Mandhane
 $\begin{array}{lc}\text { Year Classroom } & \text { IIT, Bombay } \\ 4 \text { Year Classroom }\end{array}$

Shivanshu Kuma IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
IFemat AIR-16 crL
JEE (Adv.) 2022

Sol. Take $P(A)=$ Probability that number is multiple of 4 $P(B)=$ Probability that number is multiple of 6
$P(C)=$ Probability that number is multiple of 7
$P(A)=\frac{12}{50}, P(B)=\frac{8}{50}$ and $P(C)=\frac{7}{50}$
$P(A \cap B)=\frac{4}{50}$ (Multiple of 12)
$P(B \cap C)=\frac{1}{50}$ (Multiple of 42)
$P(A \cap C)=\frac{1}{50}$ (Multiple of 28)
$P(A \cap B \cap C)=0$ (Multiple of 84)
$P(A \cup B \cap C)=P(A)+P(B)+P(C)-$

$$
\begin{aligned}
& P(A \cap B)-P(B \cap C)-P(A \cap C)+P(A \cap B \cap C) \\
= & \frac{12}{50}+\frac{8}{50}+\frac{7}{50}-\frac{4}{50}-\frac{1}{50}-\frac{1}{50}+0=\frac{21}{50}
\end{aligned}
$$

9. Let a unit vector $\hat{u}=x \hat{i}+y \hat{j}+z \hat{k}$ make angles $\frac{\pi}{2}, \frac{\pi}{3}$ and $\frac{2 \pi}{3}$ with the vectors $\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}$, $\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k} \quad$ and $\quad \frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$ respectively, If $\vec{v}=\frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k}$, then $|\hat{u}-\vec{v}|^{2}$ is equal to
(1) 9
(2) 7
(3) $\frac{11}{2}$
(4) $\frac{5}{2}$

Answer (4)

Sol. $\frac{x}{\sqrt{2}}+\frac{z}{\sqrt{2}}=0$

$$
\begin{align*}
& \frac{y}{\sqrt{2}}+\frac{z}{\sqrt{2}}=\frac{1}{2} \tag{2}\\
& \frac{x}{\sqrt{2}}+\frac{y}{\sqrt{2}}=\frac{-1}{2} \tag{3}
\end{align*}
$$

From (1) and (3)
$\frac{y}{\sqrt{2}}-\frac{z}{\sqrt{2}}=-\frac{1}{2}$
From (2) and (4)
$\sqrt{2} y=0$
$y=0$
and $z=\frac{1}{\sqrt{2}}, x=-\frac{1}{\sqrt{2}}$
$\therefore \vec{v}-\vec{u}=\sqrt{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$
$|\vec{v}-\vec{u}|=\sqrt{2+\frac{1}{2}}$
$|\vec{v}-\vec{u}|=\sqrt{\frac{5}{2}}$
$\therefore|\vec{v}-\vec{u}|^{2}=\frac{5}{2}$
10. If each term of a geometric progression a_{1}, a_{2}, a_{3}, \ldots. with $a_{1}=\frac{1}{8}$ and $a_{2} \neq a_{1}$, is arithmetic mean of the next two terms and $S_{n}=a_{1}+a_{2}+\ldots .+a_{n}$, then $S_{20}-S_{18}$ is equal to
(1) -2^{18}
(2) 2^{18}
(3) -2^{15}
(4) 2^{15}

Answer (3)
Sol. Given $a_{1}=\frac{1}{8}$
a, $a r, a r^{2}, a r^{3}, \ldots$
Also, a_{2} is arithmetic mean of next two terms
$\therefore \quad 2 a r=a r^{2}+a r^{3}$

$$
\begin{aligned}
& 2 a r=r\left(a r+a r^{2}\right) \\
& 2 a=a r+a r^{2} \\
& 2=r+r^{2} \\
& r^{2}+r-2=0 \\
& (r+2)(r-1)=0 \\
& r \neq 1
\end{aligned}
$$

Chirag Falor
4 Year Classroom
TAIR $\begin{aligned} & \text { JEE (Adv.) }\end{aligned}$ 2020

$2340{ }^{2160}{ }^{\text {Classroom }+180}$ Distances 8 igital

Aakashians Qualified in JEE (Advanced) 2023

27

 AIR28

Aakash Gupta Tanishq Mandhane
AIR
31

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain
 IIT, Bombay 4 Year Classroom

$$
\begin{aligned}
\Rightarrow & r=-2 \\
\therefore \quad & S_{20}-S_{18}=\frac{a\left(1-r^{20}\right)}{1-r}-\frac{a\left(1-r^{18}\right)}{1-r} \\
& =\frac{1}{8}\left(\frac{1}{3}\left(1-r^{20}-1+r^{18}\right)\right) \\
& =\frac{1}{24} \cdot 2^{18}(1-4) \\
& =\frac{-2^{18}}{8} \Rightarrow-2^{15}
\end{aligned}
$$

11. Let $A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$ and $P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$. The sum of the prime factors of $\left|P^{-1} A P-2 l\right|$ is equal to
(1) 26
(2) 27
(3) 66
(4) 23

Answer (1)
Sol. $\mid P^{-1} A P-2 \|$
$=\left|P^{-1} A P-2\left(P^{-1} P\right)\right|$
$=\left|P^{-1}\right|| | A P-2 P \mid$
$=\left|P^{-1}\right||A-2 \||P|$
$=|A-2| \mid$
$A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$
$A-2 I=\left[\begin{array}{ccc}0 & 1 & 2 \\ 6 & 0 & 11 \\ 3 & 3 & 0\end{array}\right]$
$|A-2| \mid=-1(-33)+2(18)$

$$
=69
$$

Prime factors of $69=3,23$
Sum $=26$
12. Number of ways of arranging 8 identical books into 4 identical shelves where any number of shelves may remain empty is equal to
(1) 15
(2) 18
(3) 12
(4) 16

Answer (1)

Sol. Given that 8 identical books have to be arranged in 4 identical shelves.

I	II	III	IV
8	0	0	0
7	1	0	0
6	2	0	0
6	1	1	0
5	3	0	0
5	2	1	0
5	1	1	1
4	4	0	0
4	3	1	0
4	2	2	0
4	2	1	1
3	3	2	0
3	3	1	1
3	2	2	1
2	2	2	2
Total	25 cases are possible.		

13. Let $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=12 \vec{a}+4 \vec{b}$, where O is the origin, If S is the parallelogram with adjacent sides $O A$ and $O C$, then $\frac{\text { area of the quadrilateral } O A B C}{\text { area of } S}$ is equal to \qquad
(1) 6
(2) 7
(3) 10
(4) 8

Answer (4)

Chirag Falor
4 Year Classroom
AIR
${ }_{\text {JIR (Adv.) }}$
2020

Aakash Gupta Tanishq Mandhane

36

2 Year Classroom

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 crL
JEE (Adv.) 2022

Sol. $S=|\overline{O A} \times \overline{O C}|=|\bar{a} \times \bar{b}|$
Area of quadrilateral OABC
$=\frac{1}{2}|\overline{C A} \times \overline{O B}|$
$=\frac{1}{2}|(\bar{b}-\bar{a}) \times(12 \bar{a}+4 \bar{b})|$
$=\frac{1}{2} \cdot 16|\bar{a} \times \bar{b}|$
Required ratio $=8$
14. If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and the mean of the first four observations is $\frac{7}{2}$, then the variance of the first four observations in equal to
(1) $\frac{77}{12}$
(2) $\frac{105}{4}$
(3) $\frac{4}{5}$
(4) $\frac{5}{4}$

Answer (4)

Sol. $n=5$
Mean $\bar{x}=\frac{24}{5}$
Take data as $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$
So, $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=24$
Mean of first 4 observation is $\frac{7}{2}$
$x_{1}+x_{2}+x_{3}+x_{4}=14$
$\Rightarrow x_{5}=10$
Variance of first 5 observations.
$\frac{\sum_{i=1}^{5} x_{i}^{2}}{n}-(\bar{x})^{2}=\frac{194}{25}$
$\frac{\sum_{i=1}^{5} x_{i}^{2}}{5}-\frac{576}{25}=\frac{194}{25}$
$\Rightarrow 5 \sum_{i=1}^{5} x_{i}^{2}-576=194$
$\Rightarrow 5 \sum_{i=1}^{5} x_{i}^{2}=770$
$\Rightarrow x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}+100=154$
$\Rightarrow \quad \sum_{i=1}^{4} x_{i}^{2}=54$
Variance of first 4 terms:
$\frac{\sum_{i=1}^{4} x_{i}^{2}}{4}-\frac{49}{4}=\frac{54-49}{4}=\frac{5}{4}$
15. The distance of the point $(2,3)$ from the line $2 x-3 y$ $+28=0$, measured parallel to the line $\sqrt{3 x}-y+1=0$, is equal to
(1) $4 \sqrt{2}$
(2) $6 \sqrt{3}$
(3) $3+4 \sqrt{2}$
(4) $4+6 \sqrt{3}$

Answer (4)

Sol. Given line $y=\sqrt{3} x+1$
Inclination $=\frac{\pi}{3}$
Any point on line though $(2,3)$ and parallel to given line.

$$
P\left(2+r \cos \frac{\pi}{3}, 3+r \sin \frac{\pi}{3}\right) \equiv\left(2+\frac{r}{2}, 3+\frac{r \sqrt{3}}{2}\right)
$$

If P lies on $2 x-3 y+28=0$
$2\left(2+\frac{r}{2}\right)-3\left(3+\frac{r \sqrt{3}}{2}\right)+28=0$
$\Rightarrow|r|=4+6 \sqrt{3}=$ Required distance

Chirag Falor
4 Year Classroom
AIR $\begin{aligned} & \text { JEE (Adv.) }\end{aligned}$ 2020

2 Year Classroom

Aakash Gupta Tanishq Mandhane

K
Kamyak Channa Dhruv Sanjay Jain Year Classroom $\quad 4$ Year Classroam

Shivanshu Kuma IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
AIR-16 cRL
JEE (Adv.) 2022
16. The function $f(x)=2 x+3(x)^{\frac{2}{3}}, x \in \mathrm{R}$, has
(1) Exactly one point of local minima and no point of local maxima
(2) Exactly one point of local maxima and no point of local minima
(3) Exactly two points of local maxima and exactly one point of local minima
(4) Exactly one point of local maxima and exactly one point of local minima

Answer (4)

Sol. $f(x)=2 x+3 x^{\frac{2}{3}}, x \in R$

$$
\begin{aligned}
& f^{\prime}(x)=2+3\left(\frac{2}{3}\right) x^{\frac{-1}{3}} \\
& =2\left(\begin{array}{c}
\left.1+\frac{1}{x^{\frac{1}{3}}}\right)=\frac{2\left(x^{\frac{1}{3}}+1\right)}{x^{\frac{1}{3}}} \\
+\quad-\quad+ \\
+1
\end{array}+\frac{+}{-1}\right.
\end{aligned}
$$

$f(x)$ changes from +ve to -ve at $x=-1$
\Rightarrow point of local maxima
$f(x)$ changes from -ve to +ve at $x=0$
\Rightarrow point of local minima
17. Let $y=\log _{e}\left(\frac{1-x^{2}}{1+x^{2}}\right),-1<x<1$. Then at $x=\frac{1}{2}$, the value of $225\left(y^{\prime}-y^{\prime \prime}\right)$ is equal to
(1) 742
(2) 746
(3) 732
(4) 736

Answer (4)

Sol. $y=\ln \left(\frac{1-x^{2}}{1+x^{2}}\right), x \in(-1,1)$
$\frac{d y}{d x}=\frac{d}{d x}\left(\ln \left(1-x^{2}\right)\right)-\frac{d}{d x}\left(\ln \left(1+x^{2}\right)\right)$
$=\frac{1}{\left(1-x^{2}\right)}(-2 x)-\frac{(2 x)}{\left(1+x^{2}\right)}$
$=-2 x\left[\frac{1}{1-x^{2}}+\frac{1}{1+x^{2}}\right]=\frac{-4 x}{1-x^{4}}$
$y^{\prime}=\frac{-4 x}{1-x^{4}}$
$y^{\prime \prime}=\frac{d}{d x}\left(\frac{-4 x}{1-x^{4}}\right)=\frac{\left(1-x^{4}\right)[-4]-[-4 x]\left[-4 x^{3}\right]}{\left(1-x^{4}\right)^{2}}$
$=(-4) \frac{\left[1-x^{4}+4 x^{4}\right]}{\left(1-x^{4}\right)^{2}}$
$=\frac{(-4)\left(1+3 x^{4}\right)}{\left(1-x^{4}\right)^{2}}$
At $x=\frac{1}{2}$

$$
y^{\prime}=\frac{-2}{1-\frac{1}{16}}=\frac{-32}{15},
$$

$$
y^{\prime \prime}=\frac{(-4)\left[1+\frac{3}{16}\right]}{\left(1-\frac{1}{16}\right)^{2}}=\frac{(16)(-4)(19)}{225}
$$

$$
225\left(y^{\prime}-y^{\prime \prime}\right)=225\left[\frac{-32}{15}+\frac{16 \times 4 \times 19}{225}\right]
$$

$$
=16 \times 4 \times 19-32 \times 15
$$

$$
=32[38-15]=32 \times 23
$$

$$
=736
$$

Chirag Falor
4 Year Classroom
ThIR JEE (Adv.) $^{\text {A }}$ 2020

18. If $\int \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^{3} x \cos ^{3} x \sin (x-\theta)}} d x=$
$A \sqrt{\cos \theta \tan x-\sin \theta}+B \sqrt{\cos \theta-\sin \theta \cot x}+C$, where C is the integration constant, then $A B$ is equal to
(1) $2 \sec \theta$
(2) $4 \operatorname{cosec}(2 \theta)$
(3) $4 \sec \theta$
(4) $8 \operatorname{cosec}(2 \theta)$

Answer (4)

Sol. $I=\int \frac{\left(\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x\right) d x}{\sqrt{\sin ^{3} x \cos ^{3} x \sin (x-\theta)}}$

$$
\begin{aligned}
& I=\int \frac{\sec ^{\frac{3}{2}} x d x}{\sqrt{\sin (x-\theta)}+\int \frac{\operatorname{cosec}^{\frac{3}{2}} x d x}{\sqrt{\sin (x-\theta)}}} \begin{array}{l}
I=\int \frac{\sec ^{2} x d x}{\sqrt{\sec x \sin (x-\theta)}}+\int \frac{\operatorname{cosec}^{2} x d x}{\sqrt{\operatorname{cosec} x \sin (x-\theta)}} \\
I=\int \frac{\sec ^{2} x d x}{\sqrt{\tan x \cos \theta-\sin \theta}}+\int \frac{\operatorname{cosec}^{2} x d x}{\sqrt{\cos \theta-\cot x \sin \theta}}
\end{array}
\end{aligned}
$$

$$
I_{1}=\int \frac{\sec ^{2} x d x}{\sqrt{\tan x \cos \theta-\sin \theta}}
$$

$$
\text { Let } \tan x \cos \theta-\sin \theta=t^{2}
$$

$\Rightarrow \sec ^{2} x d x=\frac{2 t d t}{\cos \theta}$

$$
I_{1}=\int \frac{\frac{2 t d t}{\cos \theta}}{t}=\frac{2 t}{\cos \theta}+C_{1}=\frac{2}{\cos \theta} \sqrt{\tan x \cot \theta-\sin \theta}+C_{1}
$$

$$
I_{2}=\frac{2}{\sin \theta} \sqrt{\cos \theta-\sin \theta \cot x}+C_{2}
$$

$$
\Rightarrow I_{1}+I_{2} \Rightarrow B=\frac{2}{\sin \theta}, A=\frac{2}{\cos \theta}
$$

$$
\Rightarrow A B=\frac{4}{\sin \theta \cos \theta}=8 \operatorname{cosec} 2 \theta
$$

19. If R is the smallest equivalence relation on the set $\{1,2,3,4\}$ such that $\{(1,2),(1,3)\} \subset R$, then the number of elements in R is \qquad
(1) 8
(2) 10
(3) 12
(4) 15

Answer (2)

Sol. R is smallest equivalence relation
$\Rightarrow \quad R$ must have $(1,1),(2,2),(3,3),(4,4)$
(For reflexive)
\Rightarrow Now R is $\{(1,1),(1,2),(2,2),(1,3),(3,3)$,
$(4,4)\}$
\Rightarrow For symmetric relation
$(1,2)$ must have $(2,1)$
$(1,3)$ must have $(3,1)$
$\Rightarrow R$ now is
$\{(1,1),(1,2),(2,1),(2,2),(1,3),(3,1),(3,3)$,
$(4,4)\}$
Since $(2,1)$ and $(1,3)$ is in R
$\Rightarrow(2,3)$ must be there
$\Rightarrow(3,2)$ must be there
$\Rightarrow\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4),(3,2)$,
$(2,3),(1,3),(3,1)\}$
$\Rightarrow R$ must have minimum 10 elements.
20. If $\log _{e} a, \log _{e} b, \log _{e} c$ are in an A.P. and $\log _{e} a-$ $\log _{e} 2 b, \log _{e} 2 b-\log _{e} 3 c, \log _{e} 3 c-\log _{e} a$ are also in an A.P., then $a: b: c$ is equal to
(1) $25: 10: 4$
(2) $9: 6: 4$
(3) $16: 4: 1$
(4) $6: 3: 2$

Answer (2)

Sol. In $a, \ln b, \ln c \rightarrow$ A.P.
$\Rightarrow 2 \ln b=\ln a+\ln c$
$\Rightarrow b^{2}=a c$
$\ln a-\ln 2 b, \ln 2 b-\ln 3 c, \ln 3 c-\ln a \rightarrow$ A.P.

2340
2160 Classroom + 180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

Tanishka Kabra 4 Year Classroom
(A) $\begin{gathered}\text { AIR-16crı } \\ \text { JEE(Adv.) }\end{gathered}$

ALL
INDIA
RANK

12022

$$
\begin{aligned}
& \Rightarrow 2 \ln \left(\frac{2 b}{3 c}\right)=\ln \left(\frac{a}{2 b}\right)+\ln \left(\frac{3 c}{a}\right)=\ln \left[\left(\frac{a}{2 b}\right)\left(\frac{3 c}{a}\right)\right] \\
& \Rightarrow \frac{4 b^{2}}{9 c^{2}}=\left(\frac{a}{2 b}\right)\left(\frac{3 c}{a}\right)=\frac{3 c}{2 b} \\
& \Rightarrow 8 b^{3}=27 c^{5} \\
& \Rightarrow 2 b=3 c \\
& \frac{9 c^{2}}{4}=a c \Rightarrow c=\frac{4}{9} a \\
& \qquad c=\frac{2}{3} b \\
& a: b: c=\frac{9}{4} c: \frac{3}{2} c: c \\
& a: b: c \Rightarrow=\frac{9}{4}: \frac{3}{2}: c \Rightarrow a: b: c \Rightarrow 9: 6: 4
\end{aligned}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10. The answer to each question should be rounded-off to the nearest integer.
21. Let the set $C=\left\{(x, y) \mid x^{2}-2^{y}=2023, x, y \in N\right\}$.

Then $\sum_{(x, y) \in C}(x+y)$ is equal to \qquad -

Answer (46)

Sol. $C=\left\{(x, y) \mid x^{2}-2^{y}=2023, x, y \in N\right\}$

$$
\begin{aligned}
& x^{2}-2023=2^{y} \\
& x^{2}-2025=2^{y}-2 \\
& \Rightarrow \quad x^{2}-45^{2}=2^{y}-2 \\
& =\quad(x-45)(x+45)=2\left(2^{y-1}-1\right)
\end{aligned}
$$

For $x \in$ even, no solution
$x \in$ odd, $\Rightarrow x=2 m+1$

$$
\begin{aligned}
& (2 m-44)(2 m+46)=2\left(2^{y-1}-1\right) \\
& \Rightarrow \quad 4(m-22)(m+23)=2 \underbrace{\left(2^{y-1}-1\right)}_{\text {Odd Number }}
\end{aligned}
$$

\Rightarrow No solution form
$\Rightarrow x=45$ or $x=-45$
$\Rightarrow 2^{y-1}=1 \Rightarrow y=1$
$(45,1),(-45,1)$ solution
$\because \quad x, y \in N \Rightarrow x+y=45+1=46$
22. Let the area of the region $\{(x, y)$: $0 \leq x \leq 3,0 \leq y \leq$ $\left.\min \left\{x^{2}+2,2 x+2\right\}\right\}$ be A. Then $12 A$ is equal to
\qquad -.

Answer (164)

Sol. $\left\{(x, y): 0 \leq x \leq 3,0 \leq y \leq \min \left\{x^{2}+2,2 x+2\right\}\right\}$ $\min \left(x^{2}+2,2 x+2\right)= \begin{cases}x^{2}+2 & 0 \leq x \leq 2 \\ 2 x+2 & 2 \leq x \leq 3\end{cases}$

$A=\int_{0}^{2}\left(x^{2}+2\right) d x+\frac{1}{2}[6+8] \times 1=164$
23. Let O be the origin, and M and N be the points on the lines $\frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3}$ and $\frac{x+8}{12}=\frac{y+2}{5}$ $=\frac{z+11}{9}$ respectively such that $M N$ is the shortest distance between the given line. Then $\overrightarrow{O M} \cdot \overrightarrow{O N}$ is equal to \qquad .

Answer (9)

Chirag Falor
4 Year Classroom
T AIR
${ }_{\text {JEE (Adv.) }}$
2020

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

Sol. $L_{1}: \frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3}=\lambda$
Any point of $L_{1}:(4 \lambda+5, \lambda+4,3 \lambda+5): M$
$L_{2}: \frac{x+8}{12}=\frac{y+2}{5}=\frac{z+11}{9}=\mu$
Any point on $L_{2}:(12 \mu-8,5 \mu-2,9 \mu-11): N$
DR of $M N<4 \lambda-12 \mu+13, \lambda-5 \mu+6,3 \lambda-9 \mu+16>$
Now
$4(4 \lambda-12 \mu+13)+(\lambda-5 \mu+6)+3(3 \lambda-9 \mu+16)$
$=0$ and
$12(4 \lambda-12 \mu+13)+5(\lambda-5 \mu+6)+9(3 \lambda-9 \mu+$ 16) $=0$
$\Rightarrow \lambda=-1$ and $\mu=1$
$\therefore \quad M(1,3,2)$ and $N(4,3,-2)$
$O M \cdot O N=1 \cdot(4)+3 \cdot(3)+2(-2)$
$=4+9-4=9$
24. If $\int_{\pi}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$, where α, β and $\frac{\pi}{6}$
γ are rational numbers, then $3 \alpha+4 \beta-\gamma$ is equal to
\qquad _.
Answer (6)
Sol. $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}|\sin x-\cos x| d x$

$$
\begin{aligned}
& =\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}(\sin x-\cos x) d x \\
& =2 \sqrt{2}-\sqrt{3}-1 \\
& \Rightarrow \alpha=-1 \quad \beta=2, \quad \gamma=-1
\end{aligned}
$$

$\therefore 3 \alpha+4 \beta-\gamma=3(-1)+4(2)-(-1)$
$=6$
25. Remainder when $64^{32^{32}}$ is divided by 9 is equal to
\qquad _.

Answer (1)

Sol. Remainder $64^{32^{32}}$ when divided by 9 .

$$
64 \equiv 1(\bmod 9)
$$

$64^{32^{32}} \equiv 1^{32^{32}}(\bmod 9)$
\Rightarrow Remainder $=1$
26. Let the slope of the line $45 x+5 y+3=0$ be $27 r_{1}+\frac{9 r_{2}}{2}$ for some $r_{1}, r_{2} \in \mathbb{R}$. Then $\lim _{x \rightarrow 3}\left(\int_{3}^{x} \frac{8 t^{2}}{\frac{3 r_{2} x}{2}-r_{2} x^{2}-r_{1} x^{3}-3 x} d t\right)$ is equal to
\qquad $-$

Answer (12)

Sol. $27 r_{1}+\frac{9 r_{2}}{2}=-9$

$$
54 r_{1}+9 r_{2}+18=0
$$

$$
\ell=\lim _{x \rightarrow 3}\left(\int_{3}^{x} \frac{8 t^{2} d t}{\frac{3 r_{2} x}{2}-r_{2} x^{2}-r_{1} x^{3}-3 x}\right)
$$

$$
=\lim _{x \rightarrow 3} \frac{\int_{3}^{x} 8 t^{2} d t}{\frac{3 r_{2} x}{2}-r_{2} x^{2}-r_{1} x^{3}-3 x} \text { Form }: \frac{0}{0}
$$

Using L-H rule

$$
\lim _{x \rightarrow 3} \frac{8 x^{2}}{\frac{3 r_{2}}{2}-2 r_{2} x-3 r_{1} x^{2}-3}=\frac{8 \times 9 \times 2}{-9 r_{2}-54 r_{1}-6}=12
$$

27 Aditya Neeraje
IIT, Bombay

2 Year Classroom 2340

2160 Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

36

K

Aakash Gupta Tanishq Mandhane

$\begin{array}{lc}1 \text { Year Classroom } & \text { IIT, Bombay } \\ & 4 \text { Year Classroom }\end{array}$

Shivanshu Kuma IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom ALL
AIR-16 cRL
INDIA

JEE (Adv.) | ALL |
| :--- |
| RDIA |
| RANK | 12022

27. Let $f(x)=\sqrt{\lim _{r \rightarrow x}\left\{\frac{2 r^{2}\left[(f(r))^{2}-f(x) f(r)\right]}{r^{2}-x^{2}}-r^{3} e^{\frac{f(r)}{r}}\right\}}$ be differentiable in $(-\infty, 0) \cup(0, \infty)$ and $f(1)=1$. Then the value of ea, such that $f(a)=0$, is equal to
\qquad _.

Answer (2)

Sol. $f(x)=\sqrt{\lim _{r \rightarrow x}\left(\frac{2 r^{2} f(r) f(r)-f(x)}{(r+x)(r-x)}-r^{3} e^{\frac{f(r)}{r}}\right)}$

$$
\begin{aligned}
& f(x)=\sqrt{\frac{2 x^{2} f(x) f^{\prime}(x)}{2 x}-x^{3} e^{\frac{f(x)}{x}}} \\
& \Rightarrow y^{2}=x y \frac{d y}{d x}-x^{3} e^{\frac{y}{x}} \\
& \Rightarrow \frac{y^{2}}{x^{2}}=\frac{y}{x} \frac{d y}{d x}-x e^{\frac{y}{x}}
\end{aligned}
$$

Put $y=t x$
$\Rightarrow \quad \frac{d y}{d x}=t+x \frac{d t}{d x}$
$t^{2}=t^{2}+t x \frac{d t}{d x}-x e^{t}$
$t \frac{d t}{d x}=e^{t}$
$d x=t e^{-t} d t$
$\Rightarrow \quad x=-e^{-t}(t+1)+c$
$x=-e^{-\frac{y}{x}}\left(\frac{y}{x}+1\right)+c \because f(1)=1 \Rightarrow c=1+\frac{2}{e}$
$f(a)=0)$
$a=-1(0+1)+1+\frac{2}{e}$
$\Rightarrow a e=2$
28. Let $P(\alpha, \beta)$ be a point on the parabola $y^{2}=4 x$. If P also lies on the chord of the parabola $x^{2}=8 y$ whose mid-point is $\left(1, \frac{5}{4}\right)$, then $(\alpha-28)(\beta-8)$ is equal to
\qquad .

Answer (192)

Sol. $P(\alpha, \beta)$ lies on $y^{2}=4 x \Rightarrow \beta^{2}=4 \alpha$
Equation of chord of $x^{2}=8 y$ whose mid-point is $\left(1, \frac{5}{4}\right)$ is
$T=S_{1}$

$$
\begin{aligned}
& x \times 1-4\left(y+\frac{5}{4}\right)=1^{2}-8 \cdot \frac{5}{4} \\
& x-4 y-5=-9 \\
& x-4 y+4=0
\end{aligned}
$$

$\because \quad(\alpha, \beta)$ lies on $x-4 y+4=0$
$\Rightarrow \alpha-4 \beta+4=0$

$$
\begin{equation*}
\frac{\beta^{2}}{4}-4 \beta+4=0 \tag{ii}
\end{equation*}
$$

$$
\beta^{2}-16 \beta+16=0
$$

$$
(\beta-8)^{2}=48 \Rightarrow \beta=8 \pm 4 \sqrt{3}
$$

$\because \quad$ Intersection point of $x^{2}=8 y$ and $x-4 y+4=0$ are $\left(-2, \frac{1}{2}\right)$ and $(4,2)$

$$
\begin{aligned}
\Rightarrow & \alpha \in(-2,4), \beta \in\left(\frac{1}{2}, 2\right) \\
\Rightarrow & \beta=8-4 \sqrt{3} \Rightarrow(\beta-8)=-4 \sqrt{3} \\
\Rightarrow & \alpha=32-16 \sqrt{3}-4 \\
& \alpha=28-16 \sqrt{3} \Rightarrow(\alpha-28)=-16 \sqrt{3} \\
\Rightarrow & (\alpha-28)(\beta-8)=192
\end{aligned}
$$

Chirag Falor
4 Year Classroom

42

Shivanshu Kuma IIT, Madras 4 Year Classroom
29. Let α, β be the roots of the equation $x^{2}-\sqrt{6} x+3=0$ such that $\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$. Let a, b be integers not divisible by 3 and n be a natural number such that $\frac{\alpha^{99}}{\beta}+\alpha^{98}=3^{n}(a+i b), i=\sqrt{-1}$.

Then $n+a+b$ is equal to \qquad .

Answer (49)

Sol. $x^{2}-\sqrt{6} x+3=0$

$$
\begin{aligned}
& x=\frac{\sqrt{6} \pm \sqrt{6-12}}{2}, \alpha+\beta=\sqrt{6}, \alpha \beta=3 \\
& x=\frac{\sqrt{6}}{2} \pm \frac{\sqrt{6}}{2} i \\
& \alpha=\frac{\sqrt{6}}{2}(1+i), \quad \beta=\frac{\sqrt{6}}{2}(1-i) \\
& S=\frac{\alpha^{99}}{\beta}+\alpha^{98} \\
& \Rightarrow \quad=\alpha^{99}\left(\frac{1}{\beta}+\frac{1}{\alpha}\right) \\
& =\alpha^{99}\left(\frac{\alpha+\beta}{\alpha \beta}\right) \\
& =\alpha^{99}\left(\frac{\sqrt{6}}{3}\right) \\
& =\frac{(\sqrt{6})^{100}}{2^{99} \cdot 3} \times(1+i)^{99} \\
& \because \quad(1+i)=\sqrt{2} e^{i \frac{\pi}{4}} \\
& \Rightarrow(1+i)^{99}=(\sqrt{2})^{99} e^{i \frac{99 \pi}{4}} \\
& =(\sqrt{2})^{99}\left(\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{2}} i\right)
\end{aligned}
$$

$\Rightarrow S=\frac{(\sqrt{6})^{100}}{3 \cdot 2^{99}} \times(\sqrt{2})^{98}(1-i)$
$=\frac{(\sqrt{3})^{100}}{3}(1-i)=3^{49}(1-i)$
$\Rightarrow n=49, a=1, b=-1$
$\Rightarrow n+a+b=49$
30. Let for any three distinct consecutive terms a, b, c of an A.P., the lines $a x+b y+c=0$ be concurrent at the point P and $Q(\alpha, \beta)$ be a point such that the system of equations.
$x+y+z=6$,
$2 x+5 y+\alpha z=\beta$ and
$x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^{2}$ is equal to \qquad _.

Answer (113)

Sol. $b-a=c-b$

$$
\begin{aligned}
& a-2 b+c=0 \\
& \Rightarrow \quad a x+b y+c=0 \text { are concurrent at } P(1,-2) \\
& \because \quad x+y+z=6, \\
& \\
& \\
& 2 x+5 y+\alpha z=\beta, \\
& \\
& x+2 y+3 z=4 \\
& \Delta=8-\alpha, \\
& \Delta_{1}= \\
& \Delta_{2}= \\
& \Delta_{2}=2 \alpha+2 \beta-\beta+70, \\
& \Delta_{3}=6-\beta \text { for infinitely many solutions } \\
& \Delta= \\
& \Delta 1=\Delta_{2}=\Delta_{3}=0 \\
& \Rightarrow
\end{aligned}
$$

Chirag Falor 4 Year Classroom
T AIR ${ }_{\text {JEE (Adv.) }}^{\text {AIR }}$ 2020

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. A stone of mass 900 g is tied to a string and moved in a vertical circle of radius 1 m making 10 rpm . The tension in the string, when the stone is at the lowest point is
(if $\pi^{2}=9.8$ and $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(1) 9.8 N
(2) 8.82 N
(3) 97 N
(4) 17.8 N

Answer (1)

Sol. $\omega=10 \mathrm{rpm}=10 \times \frac{\pi}{30}=\frac{\pi}{3} \mathrm{rad} / \mathrm{s}$

$$
\begin{aligned}
& T-m g=m \omega^{2} r \quad m=0.9 \mathrm{~kg}, r=1 \mathrm{~m} \\
& T-0.9 \times 9.8=0.9 \times \frac{\pi^{2}}{9} \times 1 \\
& T=0.9 \times 9.8\left\{1+\frac{1}{9}\right\} \\
& =0.9 \times 9.8 \times \frac{10}{9} \\
& =9.8 \mathrm{~N}
\end{aligned}
$$

32. The temperature of a gas having 2.0×10^{25} molecules per cubic meter at 1.38 atm
(Given, $k=1.38 \times 10^{-23} \mathrm{JK}^{-1}$) is
(1) 300 K
(2) 200 K
(3) 500 K
(4) 100 K

Answer (3)

Sol. $P V=N k T$

$$
\begin{aligned}
& \Rightarrow \quad P=\frac{N}{V} k T=n k T \\
& \Rightarrow \quad 1.38 \times 101325=2 \times 10^{25} \times 1.38 \times 10^{-23} T \\
& \Rightarrow \quad T=\frac{101325}{200} \approx 500 \mathrm{~K}
\end{aligned}
$$

33. If the distance between object and its two times magnified virtual image produced by a curved mirror is 15 cm , the focal length of the mirror must be
(1) -12 cm
(2) $\frac{10}{3} \mathrm{~cm}$
(3) -10 cm
(4) 15 cm

Answer (3)

Sol. Let $|u|=x$

$$
\begin{array}{ll}
\frac{1}{v}+\frac{1}{u}=\frac{1}{f} & m=-\frac{v}{u} \\
\frac{1}{2 x}-\frac{1}{x}=\frac{1}{f} & 2=\frac{-v}{-x} \\
-\frac{1}{2 x}=\frac{1}{f} & v=2 x
\end{array}
$$

$f=-2 x$
$f=-10 \mathrm{~cm}$

$$
\text { Also } 3 x=15 \Rightarrow x=5 \mathrm{~cm}
$$

34. A bob of mass ' m ' is suspended by a light string of length ' L '. It is imparted a minimum horizontal velocity at the lowest point A such that it just completes half circle reaching the top most positive
B. The ratio of kinetic energies $\frac{(K . E)_{A}}{(K . E)_{B}}$ is

(1) $3: 2$
(2) $2: 5$
(3) $5: 1$
(4) $1: 5$

Answer (3)

Sol. $V_{L}=\sqrt{5 g L}$
A lowest
$V_{H}=\sqrt{g L}$
B topmost
$\frac{K_{A}}{K_{B}}=\frac{\frac{1}{2} m 5 g L}{\frac{1}{2} m g L}=\frac{5}{1}$
35. A particle is moving in a straight line. The variation of position ' x ' as a function of time ' t is given as $x=\left(f^{3}-6 t^{2}+20 t+15\right) \mathrm{m}$. The velocity of the body when its acceleration becomes zero is
(1) $6 \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $8 \mathrm{~m} / \mathrm{s}$
(4) $4 \mathrm{~m} / \mathrm{s}$

Answer (3)
Sol. $x=t^{3}-6 t^{2}+20 t+15$
$\Rightarrow \quad v=3 t^{2}-12 t+20$
$\Rightarrow a=6 t-12$
for $a=0 \Rightarrow t=2$
and $v_{2}=3 \times 2^{2}-12 \times 2+20$

$$
\begin{aligned}
& =12-24+20 \\
& =8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

36. In the given circuit, the current in resistance R_{3} is :

(1) 1.5 A
(2) 1 A
(3) 2.5 A
(4) 2 A

Answer (2)

Sol.

$$
\begin{aligned}
& i=\frac{10}{5}=2 \mathrm{~A} \\
& \Rightarrow i_{3}=\frac{i}{2}=1 \mathrm{~A}
\end{aligned}
$$

37. Two sources of light emit with a power of 200 W . The ratio of number of photons of visible light emitted by each source having wavelengths 300 nm and 500 nm respectively, will be :
(1) $1: 5$
(2) $3: 5$
(3) $5: 3$
(4) $1: 3$

Answer (2)
Sol. $P=\frac{\Delta n}{\Delta t} E_{P h}$ and $E_{P h} \propto \frac{1}{\lambda}$

$$
\begin{aligned}
& \Rightarrow \frac{\Delta n_{1}}{\Delta t} \times \frac{1}{300}=\frac{\Delta n_{2}}{\Delta t} \times \frac{1}{500} \\
& \Rightarrow \frac{\Delta n_{1}}{\Delta n_{2}}=\frac{3}{5}
\end{aligned}
$$

Chirag Falor
4 Year Classroom
AIR
AIR (Adv.)
2020

$2340{ }^{2160}$ Classrom + Ho Distances 8 igital

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane
 IIT, Bombay 1 Year Classroom 4 Year Classroom Sivanshu Kum IIT, Madras Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 cRL JEE (Adv.) 2022
38. A plane electromagnetic wave of frequency 35 MHz travels in free space along the X-direction. At a particular point (in space and time) $\vec{E}=9.6 \hat{j} \mathrm{~V} / \mathrm{m}$. The value of magnetic field at this point is :
(1) $9.6 \hat{j} T$
(2) $9.6 \times 10^{-8} \hat{k} T$
(3) $3.2 \times 10^{-8} \hat{i} \mathrm{~T}$
(4) $3.2 \times 10^{-8} \hat{k} T$

Answer (4)

Sol. $E=c B$
$\Rightarrow B=\frac{9.6}{3 \times 10^{8}}=3.2 \times 10^{-8} \mathrm{~T}$
39. N moles of a polyatomic gas $(f=6)$ must be mixed with two moles of a monoatomic gas so that the mixture behaves as a diatomic gas. The value of N is :
(1) 6
(2) 4
(3) 3
(4) 2

Answer (2)
Sol. $<f>=\frac{N_{1} f_{1}+N_{2} f_{2}}{N_{1}+N_{2}}$
$\Rightarrow 5=\frac{N 6+2 \times 3}{N+2}$
$\Rightarrow 5 N+10=6 N+6$
$\Rightarrow N=4$
40. The bob of a pendulum was released from a horizontal position. The length of the pendulum is 10 m . If it dissipates 10% of its initial energy against air resistance, the speed with which the bob arrives at the lowest point is
[Use, g : $10 \mathrm{~ms}^{-2}$]
(1) $6 \sqrt{5} \mathrm{~ms}^{-1}$
(2) $5 \sqrt{5} \mathrm{~ms}^{-1}$
(3) $2 \sqrt{5} \mathrm{~ms}^{-1}$
(4) $5 \sqrt{6} \mathrm{~ms}^{-1}$

Answer (1)

Sol. $\frac{9}{10} m g \ell=\frac{1}{2} m v^{2}$
$\Rightarrow v=\sqrt{1.8 g \ell}$
$=\sqrt{180}$
$=6 \sqrt{5} \mathrm{~m} / \mathrm{s}$
41. An electric field is given by $(6 \hat{i}+5 \hat{j}+3 \hat{k}) \mathrm{N} / \mathrm{C}$. The electric flux through a surface area $30 \hat{i} \mathrm{~m}^{2}$ lying in YZ -plane (in SI unit) is :
(1) 180
(2) 60
(3) 150
(4) 90

Answer (1)
Sol. $\phi_{E}=\vec{E} \cdot \vec{A}$
$\Rightarrow \phi_{E}=180$ SI unit
42. A planet takes 200 days to complete one revolution around the Sun. If the distance of the planet from Sun is reduced to one fourth of the original distance, how many days will it take to complete one revolution
(1) 20
(2) 25
(3) 50
(4) 100

Answer (2)
Sol. $T^{2} \propto R^{3}$

$$
\begin{aligned}
& \Rightarrow \quad \frac{T_{1}}{T_{2}}=\frac{R^{\frac{3}{2}}}{\left(\frac{R}{4}\right)^{\frac{3}{2}}}=8 \\
& \Rightarrow \quad T_{2}=\frac{200}{8}=25
\end{aligned}
$$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

$2340{ }^{2 \text { 2160 Classroom }+ \text { Heo Distances } 8 \text { Digtal }}$

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane Kamyak Channa Dhruv Sanjay Jain IIT, Bombay IIT, Bombay

Tanishka Kabra 4 Year Classroom
43. The truth table for this given circuit is :

(1)

A	B	Y
0	0	1
0	1	1
1	0	1
1	1	0

(2)

A	B	Y
0	0	1
0	1	0
1	0	1
1	1	0

(3)

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	1

(4)

A	B	Y
0	0	0
0	1	1
1	0	0
1	1	1

Answer (4)

Sol. $Y=A \cdot B+\bar{A} \cdot B$
$=(A+\bar{A}) B=B$
44. In an a.c. circuit, voltage and current are given by: $V=100 \sin (100 t) V$ and $I=100 \sin \left(100 t+\frac{\pi}{3}\right) \mathrm{mA}$ respectively.

The average power dissipated in one cycle is :
(1) 25 W
(2) 2.5 W
(3) 10 W
(4) 5 W

Answer (2)

Sol. $P=V_{r m s} l_{\mathrm{ms}} \cos d$
$=\frac{100}{\sqrt{2}} \times \frac{100}{\sqrt{2}} \cos ^{\frac{\pi}{3}} \times 10^{-3}$
$=2.5 \mathrm{~W}$
45. A physical quantity Q is found to depend on quantities a, b, c by the relation $Q=\frac{a^{4} b^{3}}{c^{2}}$. The percentage error in a, b and c are $3 \%, 4 \%$ and 5% respectively.
Then, the percentage error in Q is :
(1) 14%
(2) 34%
(3) 66%
(4) 43%

Answer (2)
Sol. $\frac{\Delta Q}{Q}=\frac{4 \Delta a}{a}+\frac{3 \Delta b}{b}+\frac{2 \Delta c}{c}$
$\%$ error $=4 \times 3 \%+3 \times 4 \%+2 \times 5 \%$
$=(12+12+10) \%$
$=34 \%$
46. A small liquid drop of radius R is divided into 27 identical liquid drops. If the surface tension is T, then the work done in the process will be:
(1) $\frac{1}{8} \pi R^{2} T$
(2) $8 \pi R^{2} T$
(3) $4 \pi R^{2} T$
(4) $3 \pi R^{2} T$

Answer (2)

Sol. $27 \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi R^{3}$

$$
\begin{aligned}
\Rightarrow & R=3 r \\
\therefore \quad & W=\Delta V=27 \times T \times 4 \pi\left(\frac{R}{3}\right)^{2}-T \times 4 \pi R^{2} \\
& T 4 \pi R^{2} \times 2 \\
& W=8 \pi R^{2} T
\end{aligned}
$$

Chirag Falor
4 Year Classroom
AIR
AIR
JEE (Adv.)
2020

23 MO| 2160 Classroom + 180 Distance \mathcal{A} Digital

Aakashians Qualified in JEE (Advanced) 2023

$$
27 \text { Aditya Neeraje }
$$ AIR

28

Aakash Gupta Tanishq Mandhane

31

AIR

Kamyak Channa Dhruv Sanjay Jain

47. A wire of length L and radius r is clamped at one end. If its other end is pulled by a force F, its length increases by l. If the radius of the wire and the applied force both are reduced to half of their original values keeping original length constant, the increase in length will become:
(1) 3 times
(2) $\frac{3}{2}$ times
(3) 2 times
(4) 4 times

Answer (3)
Sol. $\Delta I=\frac{F I}{Y A}$
$\frac{\Delta I_{1}}{\Delta I_{2}}=\frac{F_{1}}{A_{1}} \frac{A_{2}}{F_{2}}$
$=\frac{2}{4}=\frac{1}{2}$
48. Two particles X and Y having equal charges are being accelerated through the same potential difference. Thereafter they enter normally in a region of uniform magnetic field and describes circular paths of radii R_{1} and R_{2} respectively. The mass ratio of X and Y is :
(1) $\left(\frac{R_{1}}{R_{2}}\right)^{2}$
(2) $\left(\frac{R_{2}}{R_{1}}\right)$
(3) $\left(\frac{R_{1}}{R_{2}}\right)$
(4) $\left(\frac{R_{2}}{R_{1}}\right)^{2}$

Answer (1)

Sol. $q V=K$

$$
\text { and, } r=\frac{\sqrt{2 m k}}{q B}
$$

$\Rightarrow \frac{r_{1}}{r_{2}}=\frac{\sqrt{m_{1}}}{\sqrt{m_{2}}}=\frac{R_{1}}{R_{2}}$
$\Rightarrow\left(\frac{R_{1}}{R_{2}}\right)^{2}=\frac{m_{1}}{m_{2}}$
49. In Young's double slit experiment, light from two identical sources are superimposing on a screen. The path difference between the two lights reaching at a point on the screen is $7 \lambda / 4$. The ratio of intensity of fringe at this point with respect to the maximum intensity of the fringe is :
(1) $\frac{1}{3}$
(2) $\frac{1}{4}$
(3) $\frac{3}{4}$
(4) $\frac{1}{2}$

Answer (4)
Sol. $I=I_{0} \cos ^{2}\left(\frac{\Delta \phi}{2}\right)$
$\Delta \phi=\frac{2 \pi}{\lambda} \times \frac{7 \lambda}{4}=\frac{7}{2} \pi \equiv \frac{3}{2} \pi$
$\Rightarrow \quad \frac{I}{I_{0}}=\cos ^{2} \frac{3}{4} \pi=\frac{1}{2}$
50. Given below are two statements:

Statement I: Most of the mass of the atom and all its positive charge are concentrated in a tiny nucleus and the electrons revolve around it, is Rutherford's model.

Statement II : An atom is a spherical cloud of positive charges with electrons embedded in it, is a special case of Rutherford's model.

In the light of the above statements, choose the most appropriate from the options given below
(1) Both statement I and statement II are false
(2) Both statement I and statement II are true
(3) Statement I is true but statement II is false
(4) Statement I is false but statement II is true

Answer (3)

Sol. Rutherford model gave the planetary model of atom.
Statement I is correct and statement II is incorrect.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
51. A charge of $4.0 \mu \mathrm{C}$ is moving with a velocity of $4.0 \times 10^{6} \mathrm{~ms}^{-1}$ along the positive y-axis under a magnetic field \vec{B} of strength $(2 \hat{k}) \mathrm{T}$. The force acting on the charge is $x \hat{i} \mathrm{~N}$. The value of x is
\qquad .

Answer (32)
Sol. $F=|q(\vec{v} \times \vec{B})|$

$$
\begin{aligned}
& =4 \times 10^{-6} \times 4 \times 10^{6} \times 2 \\
& =32
\end{aligned}
$$

52. In the given figure, the charge stored in $6 \mu \mathrm{~F}$ capacitor, when point A and B are joined by a connecting wire is \qquad $\mu \mathrm{C}$.

Answer (36)

Sol.

$q=6 \times 6 \mu \mathrm{C}=36 \mu \mathrm{C}$
53. Hydrogen atom is bombarded with electrons accelerated through a potential difference of V, which causes excitation of hydrogen atoms. If the experiment is being performed at $T=0 \mathrm{~K}$, the minimum potential difference needed to observe any Balmer series lines in the emission spectra will be $\frac{\alpha}{10} V$, where $\alpha=$ \qquad .

Answer (121)

$K \longrightarrow 1$

$$
\begin{aligned}
|\Delta E| & =13.6\left\{1-\frac{1}{9}\right\} \\
& =12.08=\frac{\alpha}{10}
\end{aligned}
$$

$$
\alpha=121
$$

Chirag Falor 4 Year Classroom

- AIR

AIR (Adv.)
2020

Aditya Neeraje 2 Year Classroom

Aakash Gupta Tanishq Mandhane
 4 Year Classroom

Kamyak Chann $\stackrel{\text { AIR }}{3}$
 nyak Chan 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classros ear Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 cRL ALL INDIA
RANK
(Femome) JEE (Adv.) 2022

JEE (Main)-2024 : Phase-1 (29-01-2024)-Evening
54. A horizontal straight wire 5 m long extending from east to west falling freely at right angle to horizontal component of earths magnetic field $0.60 \times 10^{-4} \mathrm{Wbm}^{-2}$. The instantaneous value of emf induced in the wire when its velocity is $10 \mathrm{~ms}^{-1}$ is \qquad $\times 10^{-3} \mathrm{~V}$.

Answer (3)
Sol. $\varepsilon=B / v$

$$
\begin{aligned}
& =0.6 \times 10^{-4} \times 5 \times 10 \\
\varepsilon & =3 \times 10^{-3} \mathrm{~V}
\end{aligned}
$$

55. Two metallic wires P and Q have same volume and are made up of same material. If their area of cross sections are in the ratio 4:1 and force F_{1} is applied to P, an extension of $\Delta /$ is produced. The force which is required to produce same extension in Q is F_{2}.
The value of $\frac{F_{1}}{F_{2}}$ is \qquad .

Answer (16)
Sol. $\Delta I=\frac{F I}{Y A}=\frac{F V}{Y A^{2}}$
$\frac{\Delta l_{1}}{\Delta I_{2}}=\frac{F_{1}}{A_{1}^{2}} \frac{A_{2}^{2}}{F_{2}}$
$\frac{F_{1}}{16 F_{2}}=\frac{\Delta l}{\Delta l}$
$\frac{F_{1}}{F_{2}}=16$
56. A simple harmonic oscillator has an amplitude A and time period 6π second. Assuming the oscillation starts from its mean position, the time required by it to travel from $x=A$ to $x=\frac{\sqrt{3}}{2} A$ will be $\frac{\pi}{x} \mathrm{~s}$, where $x=$ \qquad .

Answer (2)

Sol. $x=A \quad x=\frac{\sqrt{3}}{2} A$
$\Rightarrow \theta=30^{\circ}$
$t=\frac{T}{12}=\frac{6 \pi}{12}=\frac{\pi}{2}=\frac{\pi}{x} \Rightarrow x=2$.
57. A particle is moving in a circle of radius 50 cm in such a way that at any instant the normal and tangential components of it's acceleration are equal. If its speed at $t=0$ is $4 \mathrm{~m} / \mathrm{s}$, the time taken to complete the first revolution will be $\frac{1}{\alpha}\left[1-e^{-2 \pi}\right] \mathrm{s}$, where $\alpha=$ \qquad .

Answer (8)

Sol. $\frac{v^{2}}{r}=\left|\frac{d v}{d t}\right| \Rightarrow \frac{d t}{r}=\left|\frac{d v}{v^{2}}\right| \Rightarrow \frac{t}{r}=\left|\frac{1}{v_{0}}-\frac{1}{v}\right|$
$\frac{v^{2}}{r}=\left|\frac{v d v}{d x}\right| \Rightarrow\left|\frac{d v}{v}\right|=\frac{d x}{r} \Rightarrow\left|\ln \frac{v}{v_{0}}\right|=\frac{s}{r}=\frac{2 \pi r}{r}$
$\Rightarrow \quad \frac{v}{v_{0}}=e^{ \pm 2 \pi}$
$v=v_{0} e^{ \pm 2 \pi}$
$\frac{t}{r}=\left|\frac{1}{v_{0}}-\frac{1}{v_{0} e^{ \pm 2 \pi}}\right|$
$\Rightarrow t=\frac{1}{8}\left[1-e^{-2 \pi}\right]=\frac{1}{\alpha}\left[1-e^{-2 \pi}\right] \Rightarrow \alpha=8$
58. In the given circuit, the current flowing through the resistance 20Ω is 0.3 A , while the ammeter reads 0.9 A . The value of R_{1} is \qquad Ω.

Answer (30)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

23 4. 2160 Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023
 28

Aakash Gupta Tanishq Mandhane

1 Year Classroom AIR

ditya Neeraje 2 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16cRL JEE (Adv.) 2022

Sol. $V_{R_{1}}=V_{20}=V_{15}=0.3 \times 20=6 \mathrm{~V}$

$\Rightarrow \quad i_{1}=0.2 \mathrm{~A}$

$$
R_{1}=\frac{6}{0.2}=30 \Omega
$$

59. A body of mass 5 kg moving with a uniform speed $3 \sqrt{2} \mathrm{~ms}^{-1}$ in $X-Y$ plane along the line $y=x+4$. The angular momentum of the particle about the origin will be \qquad $\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-1}$.

Answer (60)

Sol.

$L=m v r_{1}$
$=5 \times 3 \sqrt{2} \times \frac{4}{\sqrt{2}}=60$ SI unit
60. In a single slit diffraction pattern, a light of wavelength $6000 \AA$ is used. The distance between the first and third minima in the diffraction pattern is found to be 3 mm when the screen in placed 50 cm away from slits. The width of the slit is
\qquad $\times 10^{-4} \mathrm{~m}$.

Answer (2)

Sol. $d \sin \theta=n \lambda$ for minima

$$
\theta_{1}=\frac{\lambda}{d}
$$

$$
\theta_{3}=\frac{3 \lambda}{d}
$$

$$
\Delta \theta=\frac{2 \lambda}{d}
$$

$$
D \Delta \theta=\frac{2 \lambda}{d} D=3 \mathrm{~mm}=\frac{2 \times 6000 \times 10^{-10}}{d} \times \frac{1}{2}
$$

$$
\Rightarrow \quad d=\frac{6 \times 10^{-7}}{3 \times 10^{-3}}=2 \times 10^{-4} \mathrm{~m}
$$

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. The element having the highest first ionization enthalpy is
(1) C
(2) N
(3) Al
(4) Si

Answer (2)

Sol. In general ionisation enthalpy increases on moving left to right in the period and decreases on moving top to bottom in group. Hence $1^{\text {st }}$ ionisation enthalpy is highest for N .
62. Which of the following reaction is correct?
(1)

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONH}_{2}+\mathrm{Br}_{2}+\mathrm{NaOH} \longrightarrow
$$

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{O}
$$

(2)

(3)

(4)

Answer (4)

Sol. The correct organic products of given reactions are as follows

1. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CONH}_{2}+\mathrm{Br}_{2}+\mathrm{NaOH} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
2. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{HNO}_{2}{ }^{\circ} \mathrm{C}} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
3.

(Major monobromination)
4.

Hence option (4) is correct.
63. A reagent which gives brilliant red precipitate with Nickel ions in basic medium is
(1) Dimethyl glyoxime
(2) Meta-dinitrobenzene
(3) Neutral FeCl_{3}
(4) Sodium nitroprusside

Answer (1)

Sol. $\mathrm{Ni}^{2+}+$ dimethyl glyoxime

64. The correct IUPAC name of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is
(1) Potassium tetraoxopermanganate (VI)
(2) Potassium tetraoxidomanganate (VI)
(3) Dipotassium tetraoxidomanganate (VII)
(4) Potassium tetraoxidomanganese (VI)

Answer (2)

Sol. IUPAC name of $\mathrm{K}_{2} \mathrm{MnO}_{4}$ is
Potassium tetraoxidomanganate (VI)
65. Given below are two statements :

Statement I : Fluorine has most negative electron gain enthalpy in its group.
Statement II: Oxygen has least negative electron gain enthalpy in its group.
In the light of the above statements, choose the most appropriate from the options given below.
(1) Statement I is true but Statement II is false
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is false but Statement II is true

Answer (4)

Sol. $-\Delta_{\mathrm{eg}} \mathrm{H}: \mathrm{S}>\mathrm{Se}>\mathrm{Te}>\mathrm{Po}>\mathrm{O} \Rightarrow 16^{\text {th }}$ group
$-\Delta_{\text {eg }} \mathrm{H}: \mathrm{Cl}>\mathrm{F}>\mathrm{Br}>\mathrm{I} \Rightarrow 17^{\text {th }}$ group
66. Alkyl halide is converted into alkyl isocyanide by reaction with
(1) KCN
(2) NaCN
(3) $\mathrm{NH}_{4} \mathrm{CN}$
(4) AgCN

Answer (4)
Sol. $\mathrm{RX}+\mathrm{AgCN} \longrightarrow \underset{\text { (Major) }}{\mathrm{RNC}}+\mathrm{AgX}$
67. Chromatographic technique/s based on the principle of differential adsorption is/are
A. Column chromatography
B. Thin layer chromatography
C. Paper chromatography

Choose the most appropriate answer from the options given below:
(1) A only
(2) C only
(3) B only
(4) A \& B only

Answer (4)

Sol. Column chromatography and thin layer chromatography is based on principle of differential adsorption while paper chromatography is a type of partition chromatography.
68. The ascending acidity order of the following H atoms is

(1) D $<$ C $<$ B $<$ A
(2) A $<$ B $<$ C $<$ D
(3) C $<$ D $<$ B $<$ A
(4) A $<$ B $<$ D $<$ C

Answer (3)

Sol. Order of acidic strength of H attached to carbon : $\mathrm{C}_{s p}>\mathrm{C}_{s p^{2}}>\mathrm{C}_{s p^{3}}$. Further differentiation is based on electronic effect of substituents, hence correct order is $\mathrm{C}<\mathrm{D}<\mathrm{B}<\mathrm{A}$.
69. The product A formed in the following reaction is

(1)

(2)

(3)

(4)

Answer (3)

234012160 Classroom + 180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

Sol.

(A)
70. According to IUPAC system, the compound
 is named as
(1) 1-Hydroxyhex-2-ene
(2) Cyclohex-1-en-2-ol
(3) Cyclohex-1-en-3-ol
(4) Cyclohex-2-en-1-ol

Answer (4)

Sol.
 is Cyclohex-2-en-1-ol
71. Match List-I with List-II.

	List-I (Bio Polymer)		List-II (Monomer)
A.	Starch	I.	Nucleotide
B.	Cellulose	II.	α-glucose
C.	Nucleic acid	III.	β-glucose
D.	Protein	IV.	α-amino acid

Choose the correct answer from the options given below:
(1) $\mathrm{A} \rightarrow \mathrm{I}, \mathrm{B} \rightarrow \mathrm{III}, \mathrm{C} \rightarrow \mathrm{IV}, \mathrm{D} \rightarrow \mathrm{II}$
(2) $\mathrm{A} \rightarrow \mathrm{IV}, \mathrm{B} \rightarrow \mathrm{II}, \mathrm{C} \rightarrow \mathrm{I}, \mathrm{D} \rightarrow$ III
(3) $\mathrm{A} \rightarrow \mathrm{II}, \mathrm{B} \rightarrow \mathrm{III}, \mathrm{C} \rightarrow \mathrm{I}, \mathrm{D} \rightarrow \mathrm{IV}$
(4) $\mathrm{A} \rightarrow \mathrm{II}, \mathrm{B} \rightarrow \mathrm{I}, \mathrm{C} \rightarrow \mathrm{III}, \mathrm{D} \rightarrow \mathrm{IV}$

Answer (3)

Sol. Biopolymer
Starch
Cellulose
Nucleic acid
Protein

Monomer
α-D-glucose
β-D-glucose
Nucleotide
α-amino acid (Natural amino acids)
72. Identify the reagents used for the following conversion

(1) $\mathrm{A}=$ DIBAL-H, $\mathrm{B}=\mathrm{NaOH}_{\text {(alc) }}, \mathrm{C}=\mathrm{Zn} / \mathrm{HCl}$
(2) $\mathrm{A}=\mathrm{DIBAL}-\mathrm{H}, \mathrm{B}=\mathrm{NaOH}_{(\mathrm{aq})}, \mathrm{C}=\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{KOH}$, ethylene glycol
(3) $\mathrm{A}=\mathrm{LiAlH}_{4}, \mathrm{~B}=\mathrm{NaOH}_{(\text {alc })}, \mathrm{C}=\mathrm{Zn} / \mathrm{HCl}$
(4) $\mathrm{A}=\mathrm{LiAlH}_{4}, \mathrm{~B}=\mathrm{NaOH}_{(\text {aq })}, \mathrm{C}=\mathrm{NH}_{2}-\mathrm{NH}_{2} / \mathrm{KOH}$, ethylene glycol

Answer (2)

Sol.

73. Phenol treated with chloroform in presence of sodium hydroxide, which further hydrolyzed in presence of an acid results
(1) Benzene-1, 3-diol
(2) Salicylic acid
(3) 2-Hydroxybenzaldehyde
(4) Benzene-1, 2-diol

Answer (3)

Chirag Falor
4 Year Classroom
T AIR
AIR (Adv.)
2020
$2340{ }^{22600}$ Classrom +1 Ho 0 istancese 0 Distal Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain

UV Sanjay J 4 Year Classroom

Sol.

2-Hydroxybenzaldehyde
is Reimer Tiemann reaction.
74. Anomalous behavior of oxygen is due to its
(1) Small size and low electronegativity
(2) Large size and high electronegativity
(3) Large size and low electronegativity
(4) Small size and high electronegativity

Answer (4)
Sol. Anomalous behavior of oxygen is due to small size and high electronegativity as compared to the elements of group 16.
75. Match List-I with List-II.

	List-I (Compound)		List-II $\left(\mathbf{p K}_{\mathrm{a}}\right.$ value)
A.	Ethanol	I.	10.0
B.	Phenol	II.	15.9
C.	m-Nitrophenol	III.	7.1
D.	p-Nitrophenol	IV.	8.3

Choose the correct answer from the options given below:
(1) $\mathrm{A} \rightarrow \mathrm{III}, \mathrm{B} \rightarrow \mathrm{IV}, \mathrm{C} \rightarrow \mathrm{I}, \mathrm{D} \rightarrow \mathrm{II}$
(2) $\mathrm{A} \rightarrow \mathrm{IV}, \mathrm{B} \rightarrow \mathrm{I}, \mathrm{C} \rightarrow \mathrm{II}, \mathrm{D} \rightarrow$ III
(3) $\mathrm{A} \rightarrow \mathrm{I}, \mathrm{B} \rightarrow \mathrm{II}, \mathrm{C} \rightarrow \mathrm{III}, \mathrm{D} \rightarrow \mathrm{IV}$
(4) A \rightarrow II, B \rightarrow I, C \rightarrow IV, D \rightarrow III

Answer (4)

Sol. Order of acidic strength of H attached to Oxygen depend on electronic effect of substituents attached to Oxygen.
pK_{a} : Ethanol > Phenol > m-Nitrophenol > p-Nitrophenol is in the order of electro withdrawing effect/strength of substituent.
76. Match List I with List II.

List I (Spectral Series for Hydrogen)		List II (Spectral Region/Higher Energy State)	
A.	Lyman	I.	Infrared region
B.	Balmer	II.	UV region
C.	Paschen	III.	Infrared region
D.	Pfund	IV.	Visible region

Choose the correct answer from the options given below:
(1) A-I, B-III, C-II, D-IV
(2) A-II, B-III, C-I, D-IV
(3) A-I, B-II, C-III, D-IV
(4) A-II, B-IV, C-III, D-I

Answer (4)
Sol. Correct match is as follows:

Spectral series for hydrogen	Spectral region/Higher Energy state
Lyman	UV region
Balmer	Visible region
Paschen	Infrared region
Pfund	Infrared region

77. Which of the following acts as a strong reducing agent? (Atomic number: $\mathrm{Ce}=58$, $\mathrm{Eu}=63, \mathrm{Gd}=64$, $\mathrm{Lu}=71$)
(1) Gd^{3+}
(2) Eu^{2+}
(3) Lu^{3+}
(4) Ce^{4+}

Answer (2)

Sol. Eu^{2+} is a strong reducing agent changing to the common +3 state while all other are provided at their higher oxidation states.
78. Which of the following statement are correct about Zn, Cd and Hg ?
A. They exhibit high enthalpy of atomization as the d-subshell is full.
B. Zn and Cd do not show variable oxidation state while Hg shows +I and + II.
C. Compounds of Zn, Cd and Hg are paramagnetic in nature.
D. Zn, Cd and Hg are called soft metals.

Choose the most appropriate from the options given below:
(1) B, D only
(2) C, D only
(3) B, C only
(4) A, D only

Answer (1)

Sol. Zn, Cd and Hg are not regarded as transition elements as they have $(n-1) d^{10} \mathrm{~ns}^{2}$ configuration so they have low enthalpy of atomization and their compounds are diamagnetic in general.
79. Which one of the following will show geometrical isomerism?
(1)

(2)

(3)

(4)

Answer (2)

Sol. The geometrical isomers of

\&

While in case of other structures geometrical isomerism is not possible.
80. On passing a gas, ' X ', through Nessler's regent, a brown precipitate is obtained. The gas ' X ' is
(1) Cl_{2}
(2) NH_{3}
(3) $\mathrm{H}_{2} \mathrm{~S}$
(4) CO_{2}

Answer (2)

Sol. Nessler's reagent is used for the test of NH_{3}.

Chirag Falor 4 Year Classroom
T AIR
JEE (Adv.)
2020

234012160 Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

Shivanshu Kumar IIT, Madras ear Classroom

Tanishka Kabra 4 Year Classroom

INDIA
RANK
(Femole) JEE (Adv.) 2022

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
81. Standard enthalpy of vapourisation for CCl_{4} is 30.5 $\mathrm{kJ} \mathrm{mol}^{-1}$. Heat required for vapourisation of 284 g of CCl_{4} at constant temperature is \qquad kJ.
(Given molar mass in $\mathrm{g} \mathrm{mol}^{-1} ; \mathrm{C}=12, \mathrm{Cl}=35.5$)

Answer (56)

Sol. Moles of $\mathrm{CCl}_{4}=\frac{284}{154}=1.8$

$$
\begin{aligned}
\text { Heat required } & =1.8 \mathrm{~mol} \times 30.5 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& =56.24 \mathrm{~kJ} \\
& \simeq 56 \mathrm{~kJ}
\end{aligned}
$$

82. The oxidation number of iron in the compound formed during brown ring test for NO_{3}^{-}ion is \qquad .

Answer (1)

Sol. Brown ring complex is $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right]^{2+}$. It has Fe at +1 oxidation state that can be explained by magnetic moment data of complex. It is an example of ligand to metal charge transfer that is why Fe has +1 and NO has +1 oxidation state.
83. The following concentrations were observed at 500 K for the formation of NH_{3} from N_{2} and H_{2}. At equilibrium ; $\left[\mathrm{N}_{2}\right]=2 \times 10^{-2} \mathrm{M},\left[\mathrm{H}_{2}\right]=3 \times 10^{-2} \mathrm{M}$ and $\left[\mathrm{NH}_{3}\right]=1.5 \times 10^{-2} \mathrm{M}$. Equilibrium constant for the reaction is \qquad .

Answer (417)

Sol. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{C}} & =\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \\
& =\frac{\left[1.5 \times 10^{-2}\right]^{2}}{\left[2 \times 10^{-2}\right]\left[3 \times 10^{-2}\right]^{3}} \\
& =416.67 \simeq 417
\end{aligned}
$$

84. A constant current was passed through a solution of AuCl_{4}^{-}ion between gold electrodes. After a period of 10.0 minutes, the increase in mass of cathode was 1.314 g . The total charge passed through the solution is \qquad $\times 10^{-2} \mathrm{~F}$.
(Given atomic mass of $\mathrm{Au}=197$)

Answer (2)

Sol. Moles of Au deposited $=\frac{1.314}{197}$
Equivalents of Au deposited $=$ Equivalents of charge conducted
$\frac{1.314 \times 3}{197}=$ Charge in F

$$
\begin{aligned}
& =0.02001 \\
& \simeq 2 \times 10^{-2}
\end{aligned}
$$

As one equivalent charge is one faraday.
85. The half-life of radioisotope bromine- 82 is 36 hours. The fraction which remains after one day is \qquad $\times 10^{-2}$.
(Given antilog $0.2006=1.587$)
Answer (63)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

$2340{ }^{2660}$ Classrom +180 Distances 8 Digtal
Aakashians Qualified in JEE (Advanced) 2023

Sol. $\lambda=\frac{2.303}{t} \log \frac{N_{0}}{N_{t}}$

$$
\frac{2.303 \times .301}{36}=\frac{2.303}{24} \log \frac{N_{0}}{N_{t}}
$$

$\log \frac{N_{0}}{N_{t}}=0.2006$
$\frac{N_{0}}{N_{t}}=1.587$

$$
\begin{aligned}
\frac{N_{t}}{N_{0}} & =0.6301 \\
& =63 \times 10^{-2}
\end{aligned}
$$

86. The total number of anti bonding molecular orbitals, formed from $2 s$ and $2 p$ atomic orbitals in a diatomic molecules is

Answer (4)

Sol. In the formation of diatomic molecule, the total number of $2 s$ and $2 p$ orbitals participate is 8 . So, 8 molecular orbitals will form four of which will be antibonding, hence answer will be 4.
87. Molality of $0.8 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution (density $1.06 \mathrm{~cm}^{-3}$) is \qquad $\times 10^{-3} \mathrm{~m}$.

Answer (815)

Sol. Molality $=\frac{\text { Molarity } \times 10^{3}}{(1000 \times \mathrm{d})-(\text { Molarity } \times \text { Molar mass })}$

$$
\begin{aligned}
& =\frac{0.8 \times 10^{3}}{1000 \times 1.06-0.8 \times 98} \\
& =0.81499 \\
& =815 \times 10^{-3}
\end{aligned}
$$

88. The total number of molecules with zero dipole moment among $\mathrm{CH}_{4}, \mathrm{BF}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{NH}_{3}, \mathrm{CO}_{2}$ and SO_{2} is \qquad .
Answer (3)
Sol. $\mathrm{CH}_{4}, \mathrm{BF}_{3}, \mathrm{CO}_{2}$ are nonpolar while $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{NH}_{3}$ and SO_{2} are polar that can be explained by their geometry.
CH_{4} : Tetrahedral, BF_{3} : Trigonal planar,
CO_{2} : Linear
89. If 50 mL of 0.5 M oxalic acid is required to neutralise 25 mL of NaOH solution, the amount of NaOH in 50 mL of given NaOH solution is \qquad g.

Answer (4)

Sol. Let molarity of NaOH is M .
Equivalents of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=$ Equivalents of NaOH
$0.5 \times 50 \times 10^{-3} \times 2=\mathrm{M} \times 25 \times 10^{-3} \times 1$
M = 2
Mass of NaOH in 50 mL of such solution

$$
\begin{aligned}
& =2 \times 50 \times 10^{-3} \times 40 \\
& =4 \mathrm{~g}
\end{aligned}
$$

90. The total number of 'Sigma' and 'Pi' bonds in 2-formylhex-4-enoic acid is \qquad -

Answer (22)

Sol. 2-formylhex-4-enoic acid is

Sigma bonds : 19
pi bonds : 3

Chirag Falor 4 Year Classroom T AIR AIR (Adv.) 2020

