Medical|IIT-JEE|Foundations
Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers \& Solutions

Time : 3 hrs.

JEE (Main)-2024 (Online) Phase-2

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300 .
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is. Chemistry Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A : (01-20) / (31-50) / (61-80) contains 20 multiple choice questions (MCQs) which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section - B: (21-30) / (51-60) / (81-90) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.

Aakashians Conquer JEE (Main) 2024 SEssion-1

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The area enclosed between the curves $y=x|x|$ and $y=x-|x|$ is:
(1) $\frac{2}{3}$
(2) $\frac{8}{3}$
(3) 1
(4) $\frac{4}{3}$

Answer (4)

Sol. $y=x|x| \& y=x-|x|$

$y=x|x|= \begin{cases}x^{2}, & x>0 \\ -x^{2}, & x<0\end{cases}$
$y=x-|x|= \begin{cases}0, & x>0 \\ 2 x, & x<0\end{cases}$
Point of intersections are $(0,0) \&(-2,4)$.

$$
\begin{aligned}
\therefore & \text { Area }=\int_{-2}^{0}\left(-x^{2}-2 x\right) d x \\
& =\left[\frac{-x^{3}}{3}-\frac{2 x^{2}}{2}\right]_{-2}^{0} \\
& =-\left[\frac{8}{3}-4\right]=\frac{4}{3} \text { sq. unit }
\end{aligned}
$$

2. The differential equation of the family of circles passing through the origin and having centre at the line $y=x$ is:
(1) $\left(x^{2}-y^{2}+2 x y\right) d x=\left(x^{2}-y^{2}-2 x y\right) d y$
(2) $\left(x^{2}+y^{2}+2 x y\right) d x=\left(x^{2}+y^{2}-2 x y\right) d y$
(3) $\left(x^{2}+y^{2}-2 x y\right) d x=\left(x^{2}+y^{2}+2 x y\right) d y$
(4) $\left(x^{2}-y^{2}+2 x y\right) d x=\left(x^{2}-y^{2}+2 x y\right) d y$

Answer (1)
Sol. Equation of circle passing through origin \& having centre at the line $y=x$ is

$(x-t)^{2}+(y-t)^{2}=2 t^{2}$
$x^{2}+y^{2}+t^{2}+t^{2}-2 t x-2 t y=2 t^{2}$
$x^{2}+y^{2}=2 t(x+y)$
Now differentiate
$2 x+2 y y^{\prime}=2 t\left(1+y^{\prime}\right)$
$t=\frac{x+y y^{\prime}}{1+y^{\prime}}$
Now, $x^{2}+y^{2}=2\left(\frac{x+y y^{\prime}}{1+y^{\prime}}\right)(x+y)$
$x^{2}+y^{2}+x^{2} \frac{d y}{d x}+y^{2} \frac{d y}{d x}$
$=2\left(x^{2}+x y+x y \frac{d y}{d x}+y^{2} \frac{d y}{d x}\right)$
$d x\left(x^{2}+y^{2}-2 x^{2}-2 x y\right)=d y\left(2 x y+2 y^{2}-x^{2}-y^{2}\right)$
$d x\left(x^{2}-y^{2}+2 x y\right)=d y\left(x^{2}-y^{2}-2 x y\right)$

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

3. If $y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$, then at $\theta=$ $\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$ is equal to:
(1) $\frac{3}{2}$
(2) $\frac{1}{2}$
(3) 1
(4) 2

Answer (4)

Sol. $y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$

$$
\begin{aligned}
& =\frac{2 \cos ^{2} \theta+2 \cos \theta-1}{4 \cos ^{3} \theta+8 \cos ^{2} \theta+2 \cos \theta-2} \\
& =\frac{2 \cos ^{2} \theta+2 \cos \theta-1}{\left(2 \cos ^{2} \theta+2 \cos \theta-1\right)(2 \cos \theta+2)}
\end{aligned}
$$

$$
=\frac{1}{2(1+\cos \theta)}=\frac{1}{4 \cos ^{2} \theta / 2}=\frac{\sec ^{2} \theta / 2}{4}
$$

$$
y^{\prime}(\theta)=\frac{1}{4}\left(2 \sec \frac{\theta}{2} \cdot \sec \frac{\theta}{2} \cdot \tan \frac{\theta}{2} \cdot \frac{1}{2}\right)
$$

$$
=\frac{1}{4} \sec ^{2} \frac{\theta}{2} \cdot \tan \frac{\theta}{2}
$$

$$
y^{\prime \prime}(\theta)=\frac{1}{4}\left(\tan \frac{\theta}{2}\right)\left(\sec ^{2} \frac{\theta}{2} \cdot \tan \frac{\theta}{2}\right)
$$

$$
+\frac{1}{4} \sec ^{2} \frac{\theta}{2} \cdot \sec ^{2} \frac{\theta}{2} \cdot \frac{1}{2}
$$

at $\theta=\frac{\pi}{2}, y(\theta)=\frac{1}{2}, y^{\prime}(\theta)=\frac{1}{2}, y^{\prime \prime}(\theta)=1$
$\therefore \quad y+y^{\prime}+y^{\prime \prime}=2$
4. The values of m, n for which the system of equations

$$
\begin{aligned}
& x+y+z=4 \\
& 2 x+5 y+5 z=17 \\
& x+2 y+m z=n
\end{aligned}
$$

has infinitely many solutions, satisfy the equation:
(1) $m^{2}+n^{2}-m n=39$
(2) $m^{2}+n^{2}+m n=68$
(3) $m^{2}+n^{2}-m-n=46$
(4) $m^{2}+n^{2}+m+n=64$

Answer (1)
Sol. The given system of linear equations can be represented as,
$\left(\begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 2 & 5 & 5 & 17 \\ 1 & 2 & m & n\end{array}\right)$
$\sim\left(\begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 0 & 3 & 3 & 9 \\ 0 & 1 & m-1 & n-4\end{array}\right)$
$\sim\left(\begin{array}{ccc|c}1 & 1 & 1 & 4 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & m-2 & n-7\end{array}\right)$
\because System of equations has infinitely many solutions
$\therefore \quad m=2 \& n=7$
Which satisfy equation given in option (1).
(i.e., $2^{2}+7^{2}-14=39$)
5. Let $\beta(m, n)=\int_{0}^{1} x^{m-1}(1-x)^{n-1} d x, m, n>0$. If $\int_{0}^{1}\left(1-x^{10}\right)^{20} d x=a \times \beta(b, c)$, then $100(a+b+c)$ equals \qquad .
(1) 2012
(2) 1021
(3) 2120
(4) 1120

Answer (3)

Sol. Given integral, $I=\int_{0}^{1}\left(1-x^{10}\right)^{20} d x$
take $x^{10}=t$
$\Rightarrow 10 x^{9} d x=d t$
$\therefore \quad I=\frac{1}{10} \int_{0}^{1}(1-t)^{20} t^{-9 / 10} d t$

Aakashians Conquer JEE (Main) 2024 sEssion-1

300/300
101
100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

$=\frac{1}{10} \int_{0}^{1} t^{\frac{1}{10}-1}(1-t)^{21-1} d t$
$=\frac{1}{10} \beta\left(\frac{1}{10}, 21\right)$
$\therefore \quad a=\frac{1}{10}, b=\frac{1}{10} \& c=21$
$\therefore 100(a+b+c)$
$=100\left(\frac{1}{10}+\frac{1}{10}+21\right)=2120$
6. Let the set $S=\{2,4,8,16, \ldots, 512\}$ be partitioned into 3 sets A, B, C with equal number of elements such that $\quad A \cup B \cup C=S \quad$ and $A \cap B=B \cap C=A \cap C=\phi$. The maximum number of such possible partitions of S is equal to:
(1) 1520
(2) 1680
(3) 1640
(4) 1710

Answer (2)

Sol. Given set $S=\left\{2^{1}, 2^{2}, \ldots 2^{9}\right\}$ which consist of 9 elements.

Maximum number of possible partitions (in set A, B and C)
$={ }^{9} C_{3} \cdot{ }^{6} C_{3} \cdot{ }^{3} C_{3}=1680$
7. Let the circle $C_{1}: x^{2}+y^{2}-2(x+y)+1=0$ and C_{2} be a circle having centre at $(-1,0)$ and radius 2 . If the line of the common chord of C_{1} and C_{2} intersects the y-axis at the point P, then the square of the distance of P from the centre of C_{1} is:
(1) 6
(2) 1
(3) 2
(4) 4

Answer (3)

Sol. $C_{1}: x^{2}+y^{2}-2(x+y)+1=0$

$$
\begin{aligned}
& C_{2}:(x+1)^{2}+y^{2}=(2)^{2} \\
& \quad x^{2}+y^{2}+2 x-3=0
\end{aligned}
$$

Common chord is

$$
\begin{aligned}
& C_{1}-C_{2}=0 \\
& \Rightarrow 2 x+y-2=0
\end{aligned}
$$

also, this line intersects the y-axis at the point
$P(y, 0)$.
$\Rightarrow y=2$
$P(2,0)$
Distance of point P from $(1,1)$ is

$$
\begin{gathered}
d=\sqrt{(2-1)^{2}+(0-1)^{2}} \\
=\sqrt{1^{2}+1^{2}} \\
d=\sqrt{2} \\
\Rightarrow d^{2}=2
\end{gathered}
$$

8. Let $\alpha \beta \neq 0$ and $A=\left[\begin{array}{ccc}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$. If $B=\left[\begin{array}{ccc}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$ is the matrix of cofactors of the elements of A, then $\operatorname{det}(A B)$ is equal to:
(1) 343
(2) 125
(3) 216
(4) 64

Answer (3)
Sol. $A=\left[\begin{array}{ccc}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right], B=\left[\begin{array}{ccc}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$
Cofactor of A-matrix is
$=\left[\begin{array}{ccc}2 \alpha^{2}-\alpha \beta & -\left(2 \alpha^{2}+\beta^{2}\right) & \alpha^{2}+\alpha \beta \\ -\left(2 \alpha^{2}-3 \alpha\right) & (2 \alpha \beta+3 \beta) & -(2 \alpha \beta) \\ \alpha \beta-3 \alpha & -\left(\beta^{2}-3 \alpha\right) & \beta \alpha-\alpha^{2}\end{array}\right]$
which is equal to matrix B

So, by comparing elements of two matrix
$\Rightarrow \alpha \beta-3 \alpha=-2 \alpha$
$\Rightarrow \alpha \beta-\alpha=0$
$\Rightarrow \alpha(\beta-1)=0$
$\Rightarrow \alpha=0$ or $\beta=1[\because \alpha$ cannot be 0$]$
$\Rightarrow \beta=1$
and $-\beta^{2}+3 \alpha=5$
$\Rightarrow 3 \alpha=6$
$\Rightarrow \alpha=2$

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & 2 & 1 \\
-1 & 2 & 4
\end{array}\right] \\
& \begin{aligned}
& \operatorname{Det}(A B)=|A||B|=|A|\left|(\operatorname{adjA})^{\top}\right| \\
&=|A| \cdot|A|^{2} \\
&=|A|^{3} \\
&=(6-18+18)^{3} \\
&=6^{3} \\
&=216
\end{aligned}
\end{aligned}
$$

9. The coefficients a, b, c in the quadratic equations $a x^{2}+b x+c=0$ are from the set $\{1,2,3,4,5,6\}$. If the probability of this equation having one real root bigger than the other p, then $216 p$ equals
(1) 57
(2) 38
(3) 19
(4) 76

Answer (2)

Sol. Equation is $a x^{2}+b x+c=0$
D > 0 [for roots to be real \& distinct]
$\Rightarrow b^{2}-4 a c>0$
For $b<2$ no value of $a \& c$ are possible
For $b=3 \Rightarrow a c<\frac{9}{4}$
$(a, c) \in\{(1,1),(1,2),(2,1)\} \Rightarrow 3$ cases
For $b=4 \Rightarrow a c<4$
$(a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3)\} \Rightarrow 5$ cases

For $b=5 \Rightarrow a c<\frac{25}{4}$
$(a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3),(2,2)$, $(4,1),(1,4),(3,2),(2,3),(5,1),(1,5),(1,6)$, $(6,1)\}=14$ cases

For $b=6 \Rightarrow a c<9$
$(a, c) \in\{(1,1),(1,2),(2,1),(3,1),(1,3),(2,2)$,
$(4,1),(1,4),(3,2),(2,3),(5,1),(1,5),(1,6)$,
$(6,1),(2,4),(4,2)\}=16$ cases
Total cases $=3+5+14+16=38$ cases
\Rightarrow Probability, $p=\frac{38}{216}$
$\Rightarrow 216 p=38$
10. Let $S_{1}=\{z \in C:|z| \leq 5\}$,
$S_{2}=\left\{z \in C: \operatorname{lm}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0\right\}$ and
$S_{3}=\{z \in C: \operatorname{Re}(z) \geq 0\}$. Then the area of the region $S_{1} \cap S_{2} \cap S_{3}$ is :
(1) $\frac{125 \pi}{6}$
(2) $\frac{125 \pi}{4}$
(3) $\frac{125 \pi}{24}$
(4) $\frac{125 \pi}{12}$

Answer (4)

Sol. $S_{1}=\{z \in C:|z| \leq 5\}$

$$
S_{2}=\operatorname{Im}\left(\frac{z+1-\sqrt{3} i}{1-\sqrt{3} i}\right) \geq 0
$$

Take $z=x+i y$

$$
=\frac{x+i y+1-\sqrt{3} i}{1-\sqrt{3} i} \times \frac{1+\sqrt{3} i}{1+\sqrt{3} i}
$$

RISHI S SHUKLA
two Year classroom program

$$
=\frac{x+i y+1-\sqrt{3} i+\sqrt{3} i x-\sqrt{3} y+\sqrt{3} i+3}{1+3}
$$

$$
=y+\sqrt{3} x \geq 0
$$

$S_{3}=x \geq 0$

$y+\sqrt{3} x=0$
$y=-\sqrt{3} x$
Slope $=-\sqrt{3}$
$90+\theta=120^{\circ}$
$\theta=30^{\circ}$
$90-\theta=60^{\circ}$
In first quadrant we have angle $\frac{\pi}{2}$
so, total angle $90^{\circ}+60^{\circ}=150^{\circ}$
So, area $\frac{\pi r^{2}}{2 \pi} \times \frac{5 \pi}{6}=\frac{125 \pi}{12}$
11. Let $A(-1,1)$ and $B(2,3)$ be two points and P be a variable point above the line $A B$ such that the area of $\triangle P A B$ is 10 . If the locus of P is $a x+b y=15$, then $5 a+2 b$ is :
(1) $-\frac{12}{5}$
(2) $-\frac{6}{5}$
(3) 4
(4) 6

Answer (3)

Sol.

Locus of P,
$a x+b y=15$
Take point P as (h, k)
Area of $\triangle A B P$
$=\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right|=10$
$=\frac{1}{2}|-1(3-k)+2(k-1)+h(1-3)|=10$
$=|-3+k+2 k-2+h-3 h|=20$
$=|3 k-2 h-5|=20$
$=-(3 k-2 h-5)=20 \Rightarrow 2 h-3 k=15$
$a=2, b=-3$
$\therefore 5 a+2 b=4$
12. Consider three vectors $\vec{a}, \vec{b}, \vec{c}$. Let $|\vec{a}|=2,|\vec{b}|=3$ and $\vec{a}=\vec{b} \times \vec{c}$. If $\alpha \in\left[0, \frac{\pi}{3}\right]$ is the angle between the vectors \vec{b} and \vec{c}, then the minimum value of $27|\vec{c}-\vec{a}|^{2}$ is equal to :
(1) 110
(2) 121
(3) 105
(4) 124

Answer (4)
Sol. $\vec{a}=\vec{b} \times \vec{c}$
$|\vec{a}|=2,|\vec{b}|=3$
$\vec{a} \cdot \vec{b}=0$ and $\vec{a} \cdot \vec{c}=0$
$|\vec{c}-\vec{a}|^{2}=|\vec{c}|^{2}+|\vec{a}|^{2}-2 \vec{c} \cdot \vec{a}$
$=4+|\vec{c}|^{2}$

$$
\begin{aligned}
& |\vec{a}|=|\vec{b} \times \vec{c}|=|\vec{b}| \sin \alpha|\vec{c}| \\
& \Rightarrow \sin \alpha|\vec{c}|=\frac{2}{3} \\
& \Rightarrow \sin ^{2} \alpha=\frac{4}{9|\vec{c}|^{2}} \\
& \Rightarrow|\vec{c}|^{2}=\frac{4}{9 \sin ^{2} \alpha} \\
& \Rightarrow|\vec{c}-\vec{a}|^{2}=4+\frac{4}{9 \sin ^{2} \alpha}
\end{aligned}
$$

For $|\vec{c}-\vec{a}|^{2}$ to be minimum for $\alpha \in\left[0, \frac{\pi}{3}\right]$ $\sin \alpha=\frac{\sqrt{3}}{2}$

$$
27|\vec{c}-\vec{a}|^{2}=27\left[4+\frac{4.4}{9.3}\right]
$$

$$
=27\left[\frac{124}{27}\right]=124
$$

13. For $x \geq 0$, the least value of K for which $4^{1+x}+4^{1-x}, \frac{K}{2}, 16^{x}+16^{-x}$ are three consecutive terms of an A.P., is equal to :
(1) 16
(2) 8
(3) 10
(4) 4

Answer (3)

Sol. $4^{1+x}+4^{1-x}, \frac{K}{2}, 16^{x}+16^{-x} \rightarrow$ A.P.
$\Rightarrow \quad K=4^{1+x}+4^{1-x}+4^{2 x}+4^{-2 x}$
Let $4^{x}=t$

$$
\begin{aligned}
\Rightarrow & K=4 t+\frac{4}{t}+t^{2}+\frac{1}{t^{2}} \\
& =t^{2}+\frac{1}{t^{2}}+4\left(t+\frac{1}{t}\right) \\
& =\left(t+\frac{1}{t}\right)^{2}+4\left(t+\frac{1}{t}\right)-2
\end{aligned}
$$

Let $t+\frac{1}{t}=y$

$$
\Rightarrow \quad y \in[2, \infty)
$$

$K=y^{2}+4 y-2$
$\frac{-b}{2 a}=-2$
K is minimum at $y=2$
$K_{\text {min }}=(2)^{2}+4 \times 2-2$

$$
=10
$$

14. Let $f, g: \mathbf{R} \rightarrow \mathbf{R}$ be defined as:
$f(x)=|x-1|$ and $g(x)=\left\{\begin{array}{cc}e^{x} & x \geq 0 \\ x+1, & x \leq 0\end{array}\right.$
Then the function $f(g(x)$ is
(1) Both one -one and onto
(2) Onto but not one-one
(3) One-one but not onto
(4) Neither one-one nor onto

Answer (4)

Sol. $f(x)= \begin{cases}x-1, & x \geq 1 \\ 1-x & x<0\end{cases}$

$$
\begin{aligned}
f(g(x)) & = \begin{cases}g(x)-1, & g(x) \geq 1 \\
1-g(x) & g(x)<1\end{cases} \\
& =\left\{\begin{array}{cl}
e^{x}-1 & x \geq 0 \\
-x & x<0
\end{array}\right.
\end{aligned}
$$

15. 60 words can be made using all the letters of the word BHBJO, with or without meaning. If these words are written as in a dictionary, then the $50^{\text {th }}$ word is:
(1) HBBJO
(2) JBBOH
(3) OBBHJ
(4) OBBJH

Answer (4)

Sol. BHBJO
B, H, J, O
B

$\underline{H}_{----} \rightarrow \frac{4!}{2!}=12$
$\underline{J}_{----} \rightarrow \frac{4!}{2!}=\frac{12}{48}$
O $\underline{\mathrm{B}} \underline{\mathrm{B}} \underline{\mathrm{H}} \underline{\mathrm{J}} \rightarrow 49$
으므렌 $\rightarrow 50$
16. Let $f:[-1,2] \rightarrow \mathbf{R}$ be given by $f(x)=2 x^{2}+x+\left[x^{2}\right]-$ $[x]$, where $[f]$ denotes the greatest integer less than or equal to t. The number of points, where f is not continuous, is:
(1) 4
(2) 3
(3) 6
(4) 5

Answer (1)

Sol. $f(x)=2 x^{2}+x+\left[x^{2}\right]-[x]=2 x^{2}+\left[x^{2}\right]+\{x\}$

$$
f(-1)=2+1+0=3
$$

$$
f\left(-1^{+}\right)=2+0+0=2
$$

$f\left(0^{-}\right)=0+1=1$
$f\left(0^{+}\right)=0+0+0=0$
$f\left(1^{+}\right)=2+1+0=3$
$f\left(1^{-}\right)=2+0+1=3$
$f\left(2^{-}\right)=8+3+1=12$
$f\left(2^{+}\right)=8+4+0=12$
\therefore discontinuous at $x=0, \sqrt{2}, \sqrt{3},-1$
17. Let $\vec{a}=2 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k}$ and \vec{c} be three vectors such that $(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i})=\vec{a} \times(\vec{c}+\hat{i})$. If $\vec{a} \cdot \vec{c}=-29$, then $\vec{c} .(-2 \hat{i}+\hat{j}+\hat{k})$ is equal to:
(1) 12
(2) 5
(3) 15
(4) 10

Answer (2)
Sol. $(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i}+\vec{a})=0$

$$
\begin{aligned}
& \Rightarrow \quad \vec{c}+\hat{i}= \lambda(\vec{a}+\vec{b}+\hat{i}+\vec{a}) \\
&=\lambda(2 \vec{a}+\vec{b}+\hat{i}) \\
&=\lambda(7 \hat{i}+8 \hat{j}) \\
& \Rightarrow \quad \vec{c}=(7 \lambda-1) \hat{i}+8 \lambda \hat{j} \\
& \vec{c} \cdot \vec{a}=-29 \\
& \Rightarrow 14 \lambda-2+40 \lambda=-29 \\
& \Rightarrow 54 \lambda=-27 \\
& \Rightarrow \quad \lambda=-\frac{1}{2} \\
& \therefore \quad \vec{c}=\left(\frac{-7}{2}-1\right) \hat{i}-4 \hat{j}=\frac{-9}{2} \hat{i}-4 \hat{j} \\
& \vec{c} \cdot(-2 \hat{i}+\hat{j}+\hat{k})=9-4=5
\end{aligned}
$$

18. Let (α, β, γ) be the image of the point $(8,5,7)$ in the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-2}{5}$. Then $\alpha+\beta+\gamma$ is equal to:
(1) 20
(2) 14
(3) 18
(4) 16

Answer (2)

Aakashians Conquer JEE (Main) 2024 sEssion-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Sol. $(x, y, z) \equiv(2 \lambda+1,3 \lambda+1,5 \lambda+2)$

DR of $P Q$:
($2 \lambda-7,3 \lambda-6,5 \lambda-5$)
DR of line : $(2,3,5)$
$\therefore 2(2 \lambda-7)+3(3 \lambda-6)+5(5 \lambda-5)=0$
$\Rightarrow \lambda=\frac{3}{2}$
$\therefore \quad Q\left(4, \frac{7}{2}, \frac{19}{2}\right)$
$\therefore \quad(\alpha, \beta, y) \equiv(0,2,12) \quad\left(Q\right.$ is mid point of $\left.P \& P^{\prime}\right)$

$$
\alpha+\beta+y \equiv 14
$$

19. Let $A B C D$ and $A E F G$ be squares of side 4 and 2 units, respectively. The point E is on the line segment $A B$ and the point F is on the diagonal $A C$. Then the radius r of the circle passing through the point F and touching the line segments $B C$ and $C D$ satisfies:
(1) $r^{2}-8 r+8=0$
(2) $r=1$
(3) $2 r^{2}-4 r+1=0$
(4) $2 r^{2}-8 r+7=0$

Answer (1)

Sol.

$C F=4 \sqrt{2}-2 \sqrt{2}=2 \sqrt{2}=r+r \sqrt{2}$

$$
\begin{aligned}
& \Rightarrow \quad(2-r) \sqrt{2}=r \\
& \Rightarrow \quad \sqrt{2}=\left(\frac{r}{2-r}\right) \Rightarrow 2=\frac{r^{2}}{(2-r)^{2}} \\
& \Rightarrow 2\left(r^{2}-4 r+4\right)=r^{2} \\
& \Rightarrow r^{2}-8 r+8=0
\end{aligned}
$$

20. If the constant term in the expansion of $\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$, is $\alpha \times 2^{8} \times \sqrt[5]{3}$, then 25α is equal to :
(1) 724
(2) 693
(3) 742
(4) 639

Answer (2)
Sol. $\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[5]{3}}\right)^{12}$
$T_{r+1}={ }^{12} C r\left(\frac{\sqrt[5]{3}}{x}\right)^{12-r}\left(\frac{2 x}{\sqrt[3]{5}}\right)^{r}$
For constant term $-12+r+r=0$
$\Rightarrow r=6$
\therefore Constant term $={ }^{12} C_{6} \frac{(3)^{\frac{6}{5}}}{6}(2)^{6}$
$(5)^{3}$
$={ }^{12} C_{6} \times \frac{2^{6}}{25} \times 3.3^{\frac{1}{5}}$
$=\frac{231}{25} \times 2^{8} \cdot 3^{\frac{1}{5}} \cdot 3$
$=\frac{693}{25} \cdot 2^{8} \sqrt[5]{3}$
$\therefore \quad \alpha=\frac{693}{25}$
$25 \alpha=693$

Aakashians Conquer JEE (Main) 2024 sEssion-1

100 PERCENTILERS (PHY. OR CHEM. OR MATHS)

Our Stars

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
21. Let $a>0$ be a root of the equation $2 x^{2}+x-2=0$. If $\lim _{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^{2}\right)\right)}{(1-a x)^{2}}=\alpha+\beta \sqrt{17}$, where α, $\beta \varepsilon Z$, then $\alpha+\beta$ is equal to \qquad .

Answer (170)

Sol. $\because 2 x^{2}+x-2=0$ has two roots where

$$
a=\frac{\sqrt{17}-1}{4} \text { and another root is } \frac{-\sqrt{17}-1}{4}
$$

And $2+x-2 x^{2}=-2\left(x-\frac{1}{a}\right)\left(x+\frac{4}{\sqrt{17}+1}\right)$
Now $\lim _{x \rightarrow \frac{1}{a}} \frac{16\left(1-\cos \left(2+x-2 x^{2}\right)\right)}{(1-a x)^{2}}$
$=\lim _{x \rightarrow \frac{1}{a}} \frac{32 \sin ^{2}\left(\frac{2+x-2 x^{2}}{2}\right)}{a^{2}\left(\frac{1}{a}-x\right)^{2}}$
$=\lim _{x \rightarrow \frac{1}{a}} \frac{\left(x+\frac{4}{\sqrt{17}+1}\right)^{2} 32 \cdot\left(\sin \left(\frac{1}{2} \cdot(-2)\right)\left(x-\frac{1}{a}\right)\left(x+\frac{4}{\sqrt{17}+1}\right)\right)^{2}}{a^{2}\left(\left(x-\frac{1}{a}\right)\left(x+\frac{4}{\sqrt{17}+1}\right)\right)^{2}}$
$=2 \cdot\left(\frac{1}{a}+\frac{4}{\sqrt{17}+1}\right)^{2} \cdot\left(\frac{4}{\sqrt{17}-1}\right)^{2}$
$=2\left(\frac{4}{\sqrt{17}-1}+\frac{4}{\sqrt{17}+1}\right)^{2} \cdot\left(\frac{4}{\sqrt{17}-1}\right)^{2}$
$=\frac{17 \times 4}{18-2 \sqrt{17}}=\frac{68}{9-\sqrt{17}}$
$=17(9+\sqrt{17})$
$\alpha+\beta=170$
22. Let the maximum and minimum values of $\left(\sqrt{8 x-x^{2}-12}-4\right)^{2}+(x-7)^{2}, x \in R$ be M and m, respectively. Then $M^{2}-m^{2}$ is equal to \qquad _.

Answer (1600)

Sol. Let $y=\sqrt{8 x-x^{2}-12} \Rightarrow(x-4)^{2}+y^{2}=2^{2}$
$\Rightarrow d=(y-4)^{2}+(x-7)^{2}$

$\Rightarrow \quad M=P A^{2}=16+25=41$

$$
m=P Q^{2}=(\sqrt{16+9}-2)^{2}=9
$$

$\Rightarrow \quad M^{2}-m^{2}=1681-81=1600$
23. Let the mean and the standard deviation of the probability distribution

\boldsymbol{X}	α	1	0	-3
$\boldsymbol{P}(\boldsymbol{X})$	$\frac{1}{3}$	K	$\frac{1}{6}$	$\frac{1}{4}$

be μ and σ respectively. If $\sigma-\mu=2$, then $\sigma+\mu$ is equal to \qquad ـ.

Answer (5*)

Sol. Mean $(\mu)=\Sigma x_{i} P\left(x_{i}\right)$
Standard deviation $(\sigma)=\sqrt{\left(\Sigma x_{i}^{2} P\left(x_{i}\right)\right)-\mu^{2}}$
$\Rightarrow \mu=\frac{1}{3} \alpha+K-\frac{3}{4}$
$\sigma=\sqrt{\left(\frac{1}{3} \alpha^{2}+K+0+\frac{9}{4}\right)-\left(\frac{1}{3} \alpha+K-\frac{3}{4}\right)^{2}}$
$\because \quad \Sigma P_{i}=1 \Rightarrow \frac{1}{3}+K+\frac{1}{6}+\frac{1}{4}=1$
$\Rightarrow K=\frac{1}{4} \Rightarrow \mu=\frac{1}{3} \alpha-\frac{1}{2}$
$\because \sigma-\mu=2$
$\sigma^{2}=(\mu+2)^{2}$

Aakashians Conquer JEE (Main) 2024 sEssIon-1

301/301
101

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

$$
\begin{aligned}
& \frac{1}{3} \alpha^{2}+\frac{5}{2}-\mu^{2}=(\mu+2)^{2} \\
& \frac{1}{3} \alpha^{2}+\frac{5}{2}=\left(\frac{1}{3} \alpha-\frac{1}{2}\right)^{2}+\left(\frac{1}{3} \alpha+\frac{3}{2}\right)^{2} \\
& \Rightarrow \alpha=0,6 \\
& \text { If } \alpha=0, K=\frac{1}{4} \\
& \begin{array}{ll}
\mu=-\frac{1}{2}, \sigma=\frac{3}{2} & \text { If } \alpha=6, K=\frac{1}{4} \\
\sigma+\mu=1 & \sigma=\frac{3}{2}, \sigma=\frac{7}{2} \\
& \sigma+\mu=5
\end{array}
\end{aligned}
$$

Both (1) and (5) are correct but according to NTA (5) is correct
24. If $f(t)=\int_{0}^{\pi} \frac{2 x d x}{1-\cos ^{2} t \sin ^{2} x}, 0<t<\pi$, then the value of $\int_{0}^{\pi} \frac{\pi^{2} d t}{f(t)}$ equals \qquad .

Answer (1)

Sol. $f(t)=\int_{0}^{\pi} \frac{2 x d x}{1-\cos ^{2} t \sin ^{2} x}$

$$
\begin{aligned}
& x \rightarrow \pi-x \\
& f(t)=\int_{0}^{\pi} \frac{2(\pi-x) d x}{1-\cos ^{2} t \sin ^{2} x}=2 \pi \int_{0}^{\pi} \frac{d x}{1-\cos ^{2} t \sin ^{2} x}-f(t) \\
& \Rightarrow f(t)=\pi \int_{0}^{\pi} \frac{d x}{1-\cos ^{2} t \sin ^{2} x} \\
& \quad=2 \pi \int_{0}^{\frac{\pi}{2}} \frac{d x}{1-\cos ^{2} t \sin ^{2} x} \\
& f(t)=2 \pi \int_{0}^{\frac{\pi}{2}} \frac{\sec ^{2} x d x}{\sec ^{2} x-\cos ^{2} t \tan ^{2} x} \\
& I_{1}=\int \frac{\sec ^{2} x d x}{\sec ^{2} x-\cos ^{2} t \tan ^{2} x}
\end{aligned}
$$

Put $\cos t \tan x=\lambda \Rightarrow \cos t \sec ^{2} x d x=d \lambda$
$I_{1}=\int \frac{d \lambda}{\cos t \cdot\left(1+\lambda^{2} \sec ^{2} t-\lambda^{2}\right)}=\int \frac{d \lambda}{\cos t\left(1+\lambda^{2} \tan ^{2} t\right)}$

$$
\begin{aligned}
&= \frac{1}{\cos t \cdot \tan ^{2} t} \cdot \int \frac{d \lambda}{\lambda^{2}+\cos ^{2} t}= \\
&=\frac{1}{\cos t \tan ^{2} t} \\
& \times \frac{1}{\cos t} \tan ^{-1}(\lambda \tan t) \\
& \sin t \tan ^{-1}(\sin t \tan x) \\
& \Rightarrow\left.f(t)=\frac{2 \pi}{\sin t} \tan ^{-1}(\sin t \tan x)\right]_{0}^{\frac{\pi}{2}}=\frac{\pi^{2}}{\sin t} \\
& \Rightarrow \int_{0}^{\frac{\pi}{2}} \frac{\pi^{2} d t}{f(t)}=\int_{0}^{\frac{\pi}{2}} \sin t d t=1
\end{aligned}
$$

25. Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}+\frac{2 x}{\left(1+x^{2}\right)^{2}} y=x e^{\frac{1}{\left(1+x^{2}\right)}} ; y(0)=0$.
Then the area enclosed by the curve $f(x)=y(x) e^{-\frac{1}{\left(1+x^{2}\right)}}$ and the line $y-x=4$ is

Answer (18)

Sol. $\frac{d y}{d x}+\frac{2 x}{\left(1+x^{2}\right)^{2}} y=x e^{\frac{1}{1+x^{2}}} ; y(0)=0$
I.F. of linear differential equation,

$$
\begin{aligned}
& \text { I.F. }=e^{\int \frac{2 x}{\left(1+x^{2}\right)^{2}}} d x=e^{\left(\frac{-1}{1+x^{2}}\right)} \\
& \begin{aligned}
\Rightarrow y\left(e^{\left(\frac{-1}{1+x^{2}}\right)}\right) & =\int x \cdot e^{\frac{1}{1+x^{2}}} \cdot e^{\left(\frac{-1}{1+x^{2}}\right)} d x \\
& =\frac{x^{2}}{2}+c
\end{aligned}
\end{aligned}
$$

$$
\Rightarrow y(0)=0 \Rightarrow 0\left(e^{-1}\right)=c \Rightarrow c=0
$$

$$
\Rightarrow y=\frac{e^{\frac{1}{1+x^{2}}} \cdot x^{2}}{2}
$$

Area between curve $y e^{\left(\frac{-1}{1+x^{2}}\right)}=\frac{x^{2}}{2}$ and $y-x=4$
$\Rightarrow 2(x+4)=x^{2} \Rightarrow x^{2}-2 x-8=0$
$\Rightarrow(x-4)(x+2)=0$
$\int_{-2}^{4}\left[(x+4)-\frac{x^{2}}{2}\right] d x=\frac{x^{2}}{2}+4 x-\left.\frac{x^{3}}{6}\right|_{-2} ^{4}$
$=\left(8+16-\frac{64}{6}\right)-\left(2-8+\frac{8}{6}\right)$
= $30-12=18$
26. Let a line perpendicular to the line $2 x-y=10$ touch the parabola $y^{2}=4(x-9)$ at the point P. The distance of the point P from the centre of the circle $x^{2}+y^{2}-14 x-8 y+56=0$ is \qquad _.

Answer (10)

Sol. Line perpendicular to $2 x-y=10$ have slope $=\frac{-1}{2}$
\Rightarrow Line tangent to parabola $y^{2}=4(x-9)$ with slope m is

$$
\begin{aligned}
y=m(x-9)+\frac{1}{m} & , m=\frac{-1}{2} \\
\Rightarrow \quad y=\frac{-(x-9)}{2}-2 & \Rightarrow 2 y=-x+9-4 \\
& \Rightarrow 2 y+x=5
\end{aligned}
$$

Solving the tangent and parabola we get point P
$\left(\frac{5-x}{2}\right)^{2}=4(x-9) \Rightarrow x^{2}-10 x+25=16 x-144$
$\Rightarrow x^{2}-26 x+169=0 \Rightarrow(x-13)^{2}=0$
$\Rightarrow P \equiv(13,-4)$
Distance of P from the centre of circle $(7,4)$ is $\sqrt{(13-7)^{2}+(-4-4)^{2}}=\sqrt{36+64}=10$ units.
27. Let the point $(-1, \alpha, \beta)$ lie on the line of the shortest distance between the lines $\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$ and $\frac{x+2}{-1}=\frac{y+6}{2}=\frac{z-1}{0}$. Then $(\alpha-\beta)^{2}$ is equal to
\qquad -

Answer (25)

Sol.

$\overrightarrow{A B} \perp \vec{L}_{1}$ and $\overrightarrow{A B} \perp \vec{L}_{2}$
$\overrightarrow{A B}=(-3 m-2+n+2,4 m+2-2 n+6,2 m+5-1)$
$=(-3 m+n, 4 m-2 n+8,2 m+4)$
$\overrightarrow{A B} \perp \vec{L}_{1}$
$\Rightarrow-3(-3 m+n)+4(4 m-2 n+8)+2(2 m+4)=0$
$(9 m+16 m+4 m)+(-3 n-8 n)+32+8=0$
$\Rightarrow 29 m-11 n+40=0$
$\overrightarrow{A B} \perp \vec{L}_{2}$
$\Rightarrow-1(-3 m+n)+2(4 m-2 n+8)+0(2 m+4)=0$
$\Rightarrow 3 m-n+8 m-4 n+16=0$
$\Rightarrow 11 m-5 n+16=0 \Rightarrow m=-1, n=1$
$\Rightarrow A \equiv(1,-2,3), \quad B \equiv(-3,-4,1)$
$A B$ line $\Rightarrow \frac{x-1}{2}=\frac{y+2}{1}=\frac{z-3}{1}$
$\Rightarrow \alpha=-2, \quad \beta=3$
$\Rightarrow(\alpha-\beta)^{2}=25$
28. If $1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+$
$\frac{49-20 \sqrt{6}}{180}+\ldots .$. upto $\infty=2+\left(\sqrt{\frac{b}{a}}+1\right) \log _{e}\left(\frac{a}{b}\right)$,
where a and b are integers with $\operatorname{gcd}(a, b)=1$ then $11 a+18 b$ is equal to \qquad -.
Answer (76)
Sol. $S=1+\frac{\sqrt{3}-\sqrt{2}}{2 \sqrt{3}}+\frac{5-2 \sqrt{6}}{18}+\frac{9 \sqrt{3}-11 \sqrt{2}}{36 \sqrt{3}}+\ldots \infty$
$=1+\frac{(1-\sqrt{2} / \sqrt{3})}{2}+\frac{(1-\sqrt{2} / \sqrt{3})^{2}}{6}+\frac{(1-\sqrt{2} / \sqrt{3})^{3}}{12}+\ldots \infty$

Our Stars

RISHI S SHUKLA
two Year classroom program

let $1-\frac{\sqrt{2}}{\sqrt{3}}=a$
$S=1+\frac{a}{2}+\frac{a^{2}}{6}+\frac{a^{3}}{12}+\ldots$
$=1+\left(1-\frac{1}{2}\right) a+\left(\frac{1}{2}-\frac{1}{3}\right) a^{2}+\left(\frac{1}{3}-\frac{1}{4}\right) a^{3}+\ldots$
$=1+\left(a+\frac{a^{2}}{2}+\frac{a^{3}}{3} \cdots \infty\right)+\frac{1}{a}\left(\frac{-a^{2}}{2}-\frac{a^{3}}{3}-\frac{a^{4}}{4} \ldots \infty\right)$
$=-\ln (1-a)+\frac{1}{a}\left(-a-\frac{a^{2}}{2}-\frac{a^{3}}{3} \cdots \infty\right)+2$
$=-\ln (1-a)+\frac{1}{a} \ln (1-a)+2$
$=2+\left(\frac{1}{a}-1\right) \ln (1-a)$
$=2+\left(\frac{\sqrt{3}}{\sqrt{3}-\sqrt{2}}-1\right) \ln \left(1-1+\sqrt{\frac{2}{3}}\right)$
$=2+\frac{\sqrt{2}}{\sqrt{3}-\sqrt{2}} \ln \sqrt{\frac{2}{3}}$
$=2+\left(\frac{\sqrt{6}+2}{1} \cdot \frac{1}{2} \ln \frac{2}{3}\right)$
$=2+\left(\sqrt{\frac{3}{2}}+1\right) \ln \frac{2}{3}$
$\therefore 11 a+18 b=76$
29. The number of real solutions of the equation $x|x+5|+2|x+7|-2=0$ is \qquad

Answer (03.00)

Sol. $x|x+5|+2|x+7|-2=0$

(i) $d x \geq-5 \Rightarrow x(x+5)+2(x+7)-2=0$

$$
x^{2}+7 x+12=0 \Rightarrow x=-3,-4
$$

(ii) $x \in(-7,-5)$

$$
\begin{aligned}
& x(-x-5)+2(x+7)-2=0 \\
& -x^{2}-3 x+12=0 \\
& \Rightarrow x^{2}+3 x-12=0 \\
& \Rightarrow x=\frac{-3-\sqrt{57}}{2} \text { satisfy }
\end{aligned}
$$

(iii) $x \leq-7$

$$
\begin{aligned}
& \Rightarrow x(-x-5)+2(-x-7)-2=0 \\
& -x^{2}-7 x-16=0 \Rightarrow x^{2}+7 x+16=0
\end{aligned}
$$

No solution
30. The number of solutions of $\sin ^{2} x+\left(2+2 x-x^{2}\right) \sin x$ $-3(x-1)^{2}=0$, where $-\pi \leq x \leq \pi$, is \qquad .

Answer (2)

Sol. $\sin ^{2} x+\left(3-(x-1)^{2}\right) \sin x-3(x-1)^{2}=0$

$$
\sin ^{2} x+3 \sin x-(x-1)^{2} \sin x-3(x-1)^{2}=0
$$

$$
\left.\sin x(\sin x+3)-(x-1)^{2}\right)[\sin x+3]=0
$$

$$
\underbrace{(\sin x+3)}_{\sin x \neq-3} \quad \underbrace{\left(\sin x-(x-1)^{2}\right)}_{\sin x=(x-1)^{2}}=0
$$

Not Possible

There are two intersections between this graph.
So, Number of solution will be 2 .

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

31. A galvanometer of resistance 100Ω when connected in series with 400Ω measures a voltage of upto 10 V . The value of resistance required to convert the galvanometer into ammeter to read upto 10 A is $x \times 10^{-2} \Omega$. The value of x is
(1) 800
(2) 2
(3) 20
(4) 200

Answer (3)
Sol. $I_{g}(100+400)=10$
$\Rightarrow I_{g}=0.02 \mathrm{~A}$
Now,
Shunt $(S)=\frac{100 I_{g}}{(10-0.02)}$
$\approx 0.2 \mathrm{~A}$
$\therefore \quad x=20$
32. If n is the number density and d is the diameter of the molecule, then the average distance covered by a molecule between two successive collisions (i.e. mean free path) is represented by
(1) $\frac{1}{\sqrt{2 n \pi d^{2}}}$
(2) $\frac{1}{\sqrt{2} n \pi d^{2}}$
(3) $\sqrt{2} n \pi d^{2}$
(4) $\frac{1}{\sqrt{2} n^{2} \pi^{2} d^{2}}$

Answer (2)

Sol. $\lambda_{\text {mean }}=\frac{1}{\sqrt{2} n \pi d^{2}}$
33. A man carrying a monkey on his shoulder does cycling smoothly on a circular track of radius 9 m and completes 120 resolutions in 3 minutes. The magnitude of centripetal acceleration of monkey is (in $\mathrm{m} / \mathrm{s}^{2}$)
(1) $16 \pi^{2} \mathrm{~ms}^{-2}$
(2) $4 \pi^{2} \mathrm{~ms}^{-2}$
(3) Zero
(4) $57600 \pi^{2} \mathrm{~ms}^{-2}$

Answer (1)

Sol. $a_{c}=\omega^{2} r$

$$
\begin{aligned}
& =\left(\frac{120}{3 \times 60} \times 2 \pi\right)^{2} \times 9 \\
& =16 \pi^{2} \mathrm{~ms}^{-2}
\end{aligned}
$$

34. The vehicles carrying inflammable fluids usually have metallic chains touching the ground
(1) To alert other vehicles
(2) To conduct excess charge due to air friction to ground and prevent sparking
(3) To protect tyres from catching dirt from ground
(4) It is a custom

Answer (2)

Sol. Usually metallic chains are hung to allow the charge generated on the vehicles pass to the ground.
35. Match List-I with List-II :

List-I		List-II	
EM-Wave		Wavelength Range	
(A)	Infra-red	(I)	$<10^{-3} \mathrm{~nm}$
(B)	Ultraviolet	(II)	400 nm to 1 nm
(C)	X-rays	(III)	1 mm to 700 nm
(D)	Gamma rays	(IV)	1 nm to $10^{-3} \mathrm{~nm}$

two Year classroom program
Tw I
As per student response sheet and NTA answer key.

Our Stars

Choose the correct answer from the options given below
(1) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
(2) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(3) (A)-(I), (B)-(III), (C)-(II), (D)-(IV)
(4) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Answer (1)

Sol. Theoretical
Infra-red $\rightarrow 1$ mm to 700 nm
Ultraviolet $\rightarrow 400 \mathrm{~nm}$ to 1 nm
X-rays $\rightarrow 1 \mathrm{~nm}$ to $10^{-3} \mathrm{~nm}$
γ-rays \rightarrow Less than $10^{-3} \mathrm{~nm}$
36. What is the dimensional formula of $a b^{-1}$ in the equation $\left(P+\frac{a}{V^{2}}\right)(V-b)=R T$, where letters have their usual meaning.
(1) $\left[M^{6} L^{7} \mathrm{~T}^{4}\right]$
(2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(3) $\left[\mathrm{M}^{0} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
(4) $\left[M^{-1} L^{5} T^{3}\right]$

Answer (2)

Sol. $[a]=\left[P V^{2}\right]$

$$
[b]=[V]
$$

$$
\therefore\left[\frac{a}{b}\right]=[P V]
$$

$$
=[\text { Work }]
$$

37. Which of the following statement is not true about stopping potential $\left(V_{0}\right)$?
(1) If depends on the nature of emitter material
(2) It depends upon frequency of the incident light
(3) It increases with increase in intensity of the incident light
(4) It is $1 / \mathrm{e}$ times the maximum kinetic energy of electrons emitted

Answer (3)

Sol. Stopping potential is independent of intensity of light. It depends on frequency of light.
38. During an adiabatic process, if the pressure of a gas is found to be proportional to the cube of its absolute temperature, then the ratio of $\frac{C_{P}}{C_{V}}$ for the gas is
(1) $\frac{5}{3}$
(2) $\frac{3}{2}$
(3) $\frac{7}{5}$
(4) $\frac{9}{7}$

Answer (2)

Sol. $P \propto T^{3}$
$\Rightarrow P T^{-3}=$ const.
and, $P T \frac{\gamma}{1-\gamma}=$ const.
$\frac{\gamma}{1-\gamma}=-3$
$\Rightarrow \gamma=-3+3 \gamma$
$\Rightarrow 3=2 \gamma$
$\Rightarrow \gamma=\frac{3}{2}$
39. The output (Y) of logic circuit given below is 0 only when

(1) $A=0, B=0$
(2) $A=0, B=1$
(3) $A=1, B=0$
(4) $A=1, B=1$

Answer (1)

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Sol. $Y=(A+B)+(B \cdot 1)$

$$
\begin{aligned}
& =A+B+B \\
& =A+B
\end{aligned}
$$

40. The ratio of heat dissipated per second through the resistance 5Ω and 10Ω in the circuit given below is

(1) $4: 1$
(2) $1: 2$
(3) $2: 1$
(4) $1: 1$

Answer (3)
Sol. In parallel

$$
\begin{aligned}
& P \propto \frac{1}{R} \\
& \therefore \quad \frac{P_{5 \Omega}}{P_{10 \Omega}}=\frac{10}{5}=2
\end{aligned}
$$

41. A heavy box of mass 50 kg is moving on a horizontal surface. If co-efficient of kinetic friction between the box and horizontal surface is 0.3 then force of kinetic friction is
(1) 1.47 N
(2) 14.7 N
(3) 147 N
(4) 1470 N

Answer (3)
Sol. $f_{k}=\mu_{k} m g$

$$
\begin{aligned}
& =0.3 \times 50 \times 9.8 \\
& =147 \mathrm{~N}
\end{aligned}
$$

42. A body is moving unidirectionally under the influence of a constant power source. Its displacement in time t is proportional to
(1) $t^{2 / 3}$
(2) $t^{3 / 2}$
(3) t^{2}
(4) t

Answer (2)
Sol. $P=$ constant

$$
\begin{aligned}
\Rightarrow & \frac{F d s}{d t}=C \\
& m \frac{v d v}{d s} \cdot \frac{d s}{d t}=C \\
\Rightarrow & v \propto \sqrt{t} \\
\Rightarrow & \frac{d s}{d t} \propto \sqrt{t} \\
\Rightarrow & s \propto t^{3 / 2}
\end{aligned}
$$

43. A satellite revolving around a planet in stationary orbit has time period 6 hours. The mass of planet is one-fourth the mass of earth. The radius orbit of planet is
(Given = Radius of geo-stationary orbit for earth is $4.2 \times 10^{4} \mathrm{~km}$)
(1) $1.05 \times 10^{4} \mathrm{~km}$
(2) $1.4 \times 10^{4} \mathrm{~km}$
(3) $1.68 \times 10^{5} \mathrm{~km}$
(4) $8.4 \times 10^{4} \mathrm{~km}$

Answer (1)

Sol. $\frac{T_{1}}{T_{2}}=\left(\frac{r_{1}}{r_{2}}\right)^{3 / 2} \sqrt{\frac{m_{2}}{m_{1}}}$
$\Rightarrow \frac{24}{6}=\left(\frac{4.2 \times 10^{4}}{r_{2}}\right)^{3 / 2} \sqrt{\frac{m / 4}{m}}$
$\Rightarrow \quad r_{2}=1.05 \times 10^{4} \mathrm{~km}$

100 PERCENTILERS [PHY. OR CHEM. OR MATHS)

Our Stars

44. The electrostatic force $\left(\vec{F}_{1}\right)$ and magnetic force $\left(\vec{F}_{2}\right)$ acting on a charge q moving with velocity v can be written
(1) $\vec{F}_{1}=q \vec{E}, \vec{F}_{2}=q(\vec{V} \times \vec{B})$
(2) $\vec{F}_{1}=q \vec{B}, \vec{F}_{2}=q(\vec{B} \times \vec{V})$
(3) $\vec{F}_{1}=q \vec{V} \cdot \vec{E}, \vec{F}_{2}=q(\vec{B} \cdot \vec{V})$
(4) $\vec{F}_{1}=q \vec{E}, \vec{F}_{2}=q(\vec{B} \times \vec{V})$

Answer (1)

Sol. $\vec{F}_{1}=\vec{F}_{E}=q \vec{E}$
$\vec{F}_{2}=\vec{F}_{B}=q(\vec{v} \times \vec{B})$
45. A particle moves in $x-y$ plane under the influence of a force \vec{F} such that its linear momentum is $\vec{p}(t)=\hat{i} \cos (k t)-\hat{j} \sin (k t)$. If k is constant, then angle between \vec{F} and \vec{p} will be
(1) $\frac{\pi}{3}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{2}$

Answer (4)

Sol. $\vec{p}=\cos (k t) \hat{i}-\sin (k t) \hat{j}$

$$
\begin{aligned}
& \begin{aligned}
\vec{F}= & \frac{d \vec{p}}{d t}=-k \sin (k t) \hat{i}-k \cos (k t) \hat{j} \\
\vec{F} \cdot \vec{p} & =-k \sin (k t) \cos (k t)+k \sin (k t) \cos (k t) \\
& =0 \\
\therefore \quad \theta & =90^{\circ}=\frac{\pi}{2} \mathrm{rad} .
\end{aligned}
\end{aligned}
$$

46. A vernier callipers has 20 divisions on the vernier scale, which coincides with $19^{\text {th }}$ division on the main scale. The least count of the instrument is 0.1 mm . One main scale division is equal to \qquad mm .
(1) 2
(2) 1
(3) 5
(4) 0.5

Answer (1)
Sol. 20 VSD = 19 MSD
$1 \mathrm{VSD}=\frac{19}{20} \mathrm{MSD}$
$0.1 \mathrm{~mm}=\left(1-\frac{19}{20}\right) \mathrm{MSD}$
$\therefore \quad \mathrm{MSD}=\frac{0.1 \times 20}{1}$

$$
=2 \mathrm{~mm}
$$

47. A series LCR circuit is subjected to an ac signal of $200 \mathrm{~V}, 50 \mathrm{~Hz}$. If the voltage across the inductor $(\mathrm{L}=10 \mathrm{mH})$ is 31.4 V , then the current in this circuit is \qquad .
(1) 63 A
(2) 10 A
(3) 10 mA
(4) 68 A

Answer (2)

Sol. $V_{L}=\|(\omega L)=31.4$

$$
\begin{aligned}
& \Rightarrow \quad I=\frac{31.4}{2 \times 3.14 \times 50 \times 10 \times 10^{-3}} \\
&=10 \mathrm{~A}
\end{aligned}
$$

Aakashians Gonquer JEE (Main) 2024 session-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

48. Match List-I with List-II :

List-I

(A) A force that restores an elastic body of unit area of its original state
(B) Two equal and opposite forces parallel to opposite faces
(C) Forces perpendicular everywhere to the surface per unit area same everywhere
(D) Two equal and opposite forces perpendicular to opposite faces

List-II

Bulk modulus
(II) Young's modulus
(III) Stress
(IV) Shear modulus

Choose the correct answer from the options given below :
(1) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(2) (A)-(II), (B)-(IV), (C)-(I), (D)-(III)
(3) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
(4) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)

Answer (1)

Sol. Stress $=\frac{\text { restoring force }}{\text { area }}$
\Rightarrow Two parallel equal and opposite forces cause shear.
49. Given below are two statements :

Statement I : When the white light passed through a prism, the red light bends lesser than yellow and violet.

Statement II : The refractive indices are different for different wavelengths in dispersive medium.

In the light of the above statements, chose the correct answer from the options given below :
(1) Statement I is false but Statement II is true
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is true but Statement II is false

Answer (2)

Sol. $\lambda_{\text {Red }}>\lambda_{\text {Blue }}$
Also μ is different for different λ.
$\therefore \quad$ Both statements are true.
50. The angular momentum of an electron in a hydrogen atom is proportional to :
(where r is the radius of orbit of electron)
(1) \sqrt{r}
(2) r
(3) $\frac{1}{\sqrt{r}}$
(4) $\frac{1}{r}$

Answer (1)
Sol. $L=m v r \propto n$

```
mvr}\propto\sqrt{}{r
```


SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
51. A hollow sphere is rolling on a plane surface about its axis of symmetry. The ratio of rotational kinetic energy to its total kinetic energy is $\frac{x}{5}$. The value of x is \qquad .

Answer (2)

Aakashians Conquer JEE (Main) 2024 sEssion-1

RISHIS SHUKLA
two Year classroom program
Tw Y Yâ classhoom phogram
As per student response sheet and NTA answer

Perfect Score!
$300 / 300$
101 NTA answer key.

.-Uncludes Students from Classrom, Distance 8 Dightal Courses) ${ }_{9}^{\circ}$

Our Stars

Sol. $K . E_{R}=\frac{1}{2}\left(\frac{2}{3} M R^{2}\right) \omega^{2} \quad \because V=R \omega$

$$
=\frac{1}{3} M V^{2}
$$

$K . E_{T_{r}}=\frac{1}{2} M V^{2}$
$\therefore \quad \frac{K \cdot E_{R}}{K \cdot E_{R}+K \cdot E_{T r}}=\frac{\frac{1}{3}}{\frac{1}{2}+\frac{1}{3}}=\frac{2}{5}$
$\Rightarrow x=2$
52. The shortest wavelength of the spectral lines in the Lyman series of hydrogen spectrum is $915 \AA$. The longest wavelength of spectral lines in the Balmer series will be \qquad Å.

Answer (6588)

Sol. $\frac{1}{915}=R_{H}\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)$
(For Lyman)
$\Rightarrow \quad \frac{1}{\lambda}=R_{H}\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right) \quad$ (For Balmer)
$\Rightarrow \lambda=6588 \AA$
53. The maximum height reached by a projectile is 64 m . If the initial velocity is halved, the new maximum height of the projectile is \qquad m.

Answer (16)

Sol. $\frac{u^{2} \sin ^{2} \theta}{2 g}=64$

$$
\text { Now } u^{\prime}=\frac{u}{2}
$$

$H^{\prime}=\frac{1}{4} \times \frac{u^{2} \sin \theta}{2 g}=\frac{64}{4}=16 \mathrm{~m}$
54. A sonometer wire of resonating length 90 cm has a fundamental frequency of 400 Hz when kept under some tension. The resonating length of the wire with fundamental frequency of 600 Hz under same tension \qquad cm .
Answer (60)
Sol. $f \propto \frac{1}{l}$

$$
\begin{aligned}
& \therefore \frac{F_{1}}{F_{2}}=\frac{I_{2}}{l_{1}} \\
& \Rightarrow \frac{400}{600}=\frac{I_{2}}{90} \\
& \Rightarrow I_{2}=60 \mathrm{~cm}
\end{aligned}
$$

55. The electric field at point p due to an electric dipole is E. The electric field at point R on equatorial line will be $\frac{E}{x}$. The value of x :

Answer (16)

Sol. $E=\frac{2 k p}{r^{3}}$
$E_{R}=\frac{k p}{(2 r)^{3}}=\frac{1}{8}\left(\frac{E}{2}\right)$

$$
=\frac{E}{16}
$$

$\therefore x=16$

Aakashians Conquer JEE (Main) 2024 sEssion-1

As per student response sheet and NTA answer key.

100 PERCENTILERS
[PHY. OR CHEM. OR MATHS]

Our Stars

56. In a single slit experiment, a parallel beam of green light of wavelength 550 nm passes through a slit of width 0.20 mm . The transmitted light is collected on a screen 100 cm away. The distance of first order minima from the central maximum will be $x \times 10^{-5} \mathrm{~m}$. The value of x is

Answer (275)

Sol. $y=\frac{n \lambda D}{a}$

$$
\begin{aligned}
& =\frac{1 \times\left(550 \times 10^{-9}\right)(1)}{\left(0.2 \times 10^{-3}\right)} \\
& =275 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

57.

A hydraulic press containing water has two arms with diameters as mentioned in the figure. A force of 10 N is applied on the surface of water in the thinner arm. The force required to be applied on the surface of water in the thicker arm to maintain equilibrium of water is \qquad N.

Answer (1000)

Sol. $\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}$
(By Pascal's law)

$$
\begin{aligned}
\Rightarrow F_{1} & =10\left(\frac{14^{2}}{1.4^{2}}\right) \\
& =10 \times 100 \\
& =1000 \mathrm{~N}
\end{aligned}
$$

58. A wire of resistance 20Ω is divided into 10 equal parts, resulting pairs. A combination of two parts are connected in parallel and so on. Now resulting pairs of parallel combination are connected in series. The equivalent resistance of final combination is \qquad Ω.

Answer (5)

Sol. \longrightarrow rernerner $\times 5 \quad r=\frac{20}{10}=2 \Omega$
$\therefore \quad R_{\mathrm{eq}}=\left(\frac{r}{2}\right) \times 5=5 \Omega$
59. The current in an inductor is given by $I=(3 t+8)$ where t is in second. The magnitude of induced emf produced in the inductor is 12 mV . The self-inductance of the inductor \qquad mH .

Answer (4)
Sol. $\varepsilon=\left|L \frac{d i}{d t}\right|, \frac{d i}{d t}=3$

$$
\begin{aligned}
& \Rightarrow 12 \times 10^{-3}=L(3) \\
& \Rightarrow L=4 \mathrm{mH}
\end{aligned}
$$

60. A solenoid of length 0.5 m has a radius of 1 cm and is made up of ' m ' number of turns. It carries a current of 5 A . If the magnitude of the magnetic field inside the solenoid is $6.28 \times 10^{-3} \mathrm{~T}$ then the value of m is \qquad .

Answer (500)

Sol. $B=\mu_{0} n i$
$6.28 \times 10^{-3}=\left(4 \pi \times 10^{-7}\right)\left(\frac{m}{0.5}\right) 5$
$m=500$

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

\qquad

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. The number of complexes from the following with no electrons in the t_{2} orbital is \qquad .
$\mathrm{TiCl} 4,\left[\mathrm{MnO}_{4}\right]^{-},\left[\mathrm{FeO}_{4}\right]^{--},\left[\mathrm{FeCl}_{4}\right]^{-},\left[\mathrm{CoCl}_{4}\right]^{2-}$
(1) 4
(2) 2
(3) 3
(4) 1

Answer (3)
Sol. $\mathrm{TiCl}_{4} \rightarrow \mathrm{Ti}^{+4} \rightarrow[\mathrm{Ar}] 4 s^{0} 3 d^{0} \rightarrow \mathrm{e}^{0} \mathrm{t}_{2}^{0}$
$\left[\mathrm{MnO}_{4}\right]^{\ominus} \rightarrow \mathrm{Mn}^{+7} \rightarrow[\mathrm{Ar}] 4 s^{0} 3 d^{0} \rightarrow \mathrm{e}^{0} \mathrm{t}_{2}^{0}$
$\left[\mathrm{FeO}_{4}\right]^{2-} \rightarrow \mathrm{Fe}^{+6} \rightarrow[\mathrm{Ar}] 4 s^{0} 3 d^{0} \rightarrow \mathrm{e}^{0} \mathrm{t}_{2}^{0}$
$\left[\mathrm{FeCl}_{4}\right]^{\ominus} \rightarrow \mathrm{Fe}^{3+} \rightarrow[\mathrm{Ar}] 4 s^{0} 3 d^{5} \rightarrow \mathrm{e}^{2} \mathrm{t}_{2}^{3}$
$[\mathrm{CoCl} 4]^{2-} \rightarrow \mathrm{Co}^{+2} \rightarrow[\mathrm{Ar}] 4 s^{0} 3 d^{7} \rightarrow \mathrm{e}^{4} \mathrm{t}_{2}^{3}$
Three complexes have no electrons in t_{2} orbital
62. Identify the major product in the following reaction.

(1)

(2)

(3)

(4)

Answer (4)

Sol.

63. Which one of the following reactions is NOT possible?
(1)

(2)

(3)

(4)

Answer (2)

Sol.

The above reaction is not possible as due to resonance $\mathrm{C}-\mathrm{O}$ bond has partial double bond character. So, bond strength will increase and substitution will be less likely.
64. Coagulation of egg, on heating is because of :
(1) Biological property of protein remains unchanged
(2) The secondary structure of protein remains unchanged
(3) Breaking of the peptide linkage in the primary structure of protein occurs
(4) Denaturation of protein occurs

Aakashians Conquer JEE (Main) 2024 sEssion-1

TWO YEAR CLASSROOM PROGRAM

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Answer (4)

Sol. On heating, denaturation of protein occurs in which only primary structure remains intact. This results in coagulation of egg.
65. The correct statements from the following are :
(A) The decreasing order of atomic radii of group 13 elements is $\mathrm{TI}>\mathrm{In}>\mathrm{Ga}>\mathrm{Al}>\mathrm{B}$.
(B) Down the group 13 electronegativity decreases from top to bottom.
(C) Al dissolves in dil. HCl and liberates H_{2} but conc. HNO_{3} renders Al passive by forming a protective oxide layer on the surface.
(D) All elements of group 13 exhibits highly stable +1 oxidation state.
(E) Hybridisation of Al in $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is $s p^{3} q^{2}$.
(1) (C) and (E) only
(2) (A) and (C) only
(3) (A), (C) and (E) only
(4) (A), (B), (C) and (E) only

Answer (1)

Sol. (A) Group-13 size : $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In} \simeq \mathrm{TI}$
(B) In Group-13, Al has exceptional lower EN $\mathrm{EN}: \mathrm{B}>\mathrm{TI}>\mathrm{In}>\mathrm{Ga}>\mathrm{Al}$
(C) $2 \mathrm{Al}+6 \mathrm{HCl} \rightarrow 2 \mathrm{AlCl}_{3}+3 \mathrm{H}_{2}$
$\mathrm{Al}+\mathrm{HNO}_{3} \rightarrow \mathrm{No}$ reaction
(Due to protective oxide layer)
(D) +1 oxidation state is observed mainly for heavier Group-13 element like TI.
B and Al do not show +1 oxidation state
(E) $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+} \rightarrow$ Hybridisation : $s p^{3} d^{\ell}$
66. While preparing crystals of Mohr's salt, dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to a mixture of ferrous sulphate and ammonium sulphate, before dissolving the mixture in water, dil $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added here to :
(1) Prevent the hydrolysis of ferrous sulphate
(2) Make the medium strongly acidic
(3) Prevent the hydrolysis of ammonium sulphate
(4) Increase the rate of formation of crystals

Answer (1)

Sol. While preparing crystal of Mohr's salt, dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to prevent hydrolysis of ferrous sulphate.
67. The correct nomenclature for the following compound is

(1) 2-carboxy-4-hydroxyhept-7-enal
(2) 2-carboxy-4-hydroxyhept-6-enal
(3) 2-formyl-4-hydroxyhept-7-enoic acid
(4) 2-formyl-4-hydroxyhept-6-enoic acid

Answer (4)

Sol.

2-formyl-4-hydroxyhept-6-enoic acid
68. The metal atom present in the complex MABXL (where A, B, X and L are unidentate ligands and M is metal) involves $s p^{3}$ hybridization. The number of geometrical isomers exhibited by the complex is
(1) 2
(2) 4
(3) 0
(4) 3

Answer (3)
Sol. [MABXL] $\rightarrow s p^{3} \rightarrow$ Tetrahedral
Tetrahedral complexes do not show G. I. as they have same relative position.
69. Match List-I with List-II.

	List-I		List-II
(A)	ICl	(I)	T-shape
(B)	ICl_{3}	(II)	Square pyramidal
(C)	CIF_{5}	(III)	Pentagonal bipyramidal
(D)	IF_{7}	(IV)	Linear

RISHIS SHUKLA
two Year classroom program
mo Yean classhoom program
As per student response sheet and NTA answerkey.
"936 99. pereewilers
*4145 95+ PERCENTILERS

Our Stars

Choose the correct answer from the options given below:
(1) (A)-(IV), (B)-(III), (C)-(II), D-(I)
(2) (A)-(IV), (B)-(I), (C)-(II), D-(III)
(3) (A)-(I), (B)-(III), (C)-(II), D-(IV)
(4) (A)-(I), (B)-(IV), (C)-(III), D-(II)

Answer (2)

Sol. ICI $\rightarrow s p^{3} \rightarrow 1 \mathrm{bp}+3 \mathrm{lp} \rightarrow$ Linear
$\mathrm{ICl}_{3} \rightarrow s p^{3} d \rightarrow 3 \mathrm{bp}+2 \mathrm{lp} \rightarrow$ T-shape
$\mathrm{ClF}_{5} \rightarrow s p^{3} d^{2} \rightarrow 5 \mathrm{bp}+1 \mathrm{lp} \rightarrow$ Square Pyramidal
$\mathrm{IF}_{7} \rightarrow s p^{3} d^{\beta} \rightarrow 7$ bp only \rightarrow Pentagonal bipyramidal
(A)-(IV), (B)-(I), (C)-(II), D-(III)
70. Consider the given chemical reaction:

Product " A " is
(1) Oxalic acid
(2) Picric acid
(3) Adipic acid
(4) Acetic acid

Answer (3)

Sol.

71. The quantity of silver deposited when one coulomb charge is passed through AgNO_{3} solution:
(1) 1 chemical equivalent of silver
(2) 1 g of silver
(3) 1 electrochemical equivalent of silver
(4) 0.1 g atom of silver

Answer (3)

Sol. $\mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-} \rightarrow \mathrm{Ag}(\mathrm{s})$
$w=Z q$
$q=1 C$
$\mathrm{w}=\mathrm{Z}=1$ electrochemical equivalent
72.

Consider the above reaction sequence and identify the major product P.
(1) Methanal
(2) Methoxymethane
(3) Methanoic acid
(4) Methane

Answer (4)

Sol.

73. Given below are two statements:

Statement I: On passing $\mathrm{HCl}_{(g)}$ through a saturated solution of BaCl_{2}, at room temperature white turbidity appears.
Statement II: When HCl gas is passed through a saturated solution of NaCl , sodium chloride is precipitated due to common ion effect.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Both statement I and Statement II are incorrect
(2) Statement I is incorrect but Statement II is correct
(3) Statement I is correct but Statement II is incorrect
(4) Both Statement I and Statement II are correct

RISHIS SHUKLA
two Year classroom program
two yan classhoum program
As per student response sheet and NTA answer ker
"936 99• perearilers
*4145 ${ }^{95+\text { PERCENTILERS }}$

Answer (4)

Sol. $\mathrm{Cl}^{\ominus}+$ saturated solution of $\mathrm{BaCl}_{2} \rightarrow \mathrm{BaCl}_{2}$ will (white) precipitate.
$\mathrm{Cl}^{\ominus}+$ saturated solution of $\mathrm{NaCl} \rightarrow \mathrm{NaCl}$ will precipitate.
74. The number of moles of methane required to produce $11 \mathrm{~g} \mathrm{CO}_{2}(\mathrm{~g})$ after complete combustion is (Given molar mass of methane in $\mathrm{g} \mathrm{mol}^{-1}: 16$)
(1) 0.5
(2) 0.25
(3) 0.75
(4) 0.35

Answer (2)

Sol. $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
mol of $\mathrm{CO}_{2}=\frac{11}{44}=\frac{1}{4} \mathrm{~mol}$
mol of CH_{4} required $=\frac{1}{4}=0.25 \mathrm{~mol}$
75. For the electro chemical cell

$$
\mathrm{M}\left|\mathrm{M}^{2+}\right||\mathrm{X}| \mathrm{X}^{2-}
$$

If $E_{\left(M^{2+} / M\right)}^{\circ}=0.46 \mathrm{~V}$ and $E_{\left(x / X^{2-}\right)}^{\circ}=0.34 \mathrm{~V}$
Which of the following is correct?
(1) $\mathrm{E}_{\text {cell }}=-0.80 \mathrm{~V}$
(2) $\mathrm{M}+\mathrm{X} \rightarrow \mathrm{M}^{2+}+\mathrm{X}^{2-}$ is a spontaneous reaction
(3) $\mathrm{E}_{\text {cell }}=0.80 \mathrm{~V}$
(4) $\mathrm{M}^{2+}+\mathrm{X}^{2-} \rightarrow \mathrm{M}+\mathrm{X}$ is a spontaneous reaction

Answer (4)

Sol. $E_{\text {cell }}^{\circ}=E_{X \mid X^{2-}}^{\circ}-E_{M^{2+} \mid M}^{\circ}$

$$
\begin{aligned}
& =0.34-0.46 \\
& =-0.12 \mathrm{~V} \text { (Non-spontaneous) }
\end{aligned}
$$

So, reverse reaction will be spontaneous.

$$
\mathrm{M}^{2+}+\mathrm{X}^{2-} \rightarrow \mathrm{M}+\mathrm{X}
$$

76. Match List-I with List-II

List-I (Pair of Compounds)		List-I (Isomerism)	
(A)	n-propanol and Isopropanol	(I)	Metamerism
(B)	Methoxypropane and ethoxyethane	(II)	Chain Isomerism
(C)	Propanone and propanal	(III)	Position Isomerism
(D)	Neopentane and Isopentane	(IV)	Functional Isomerism

(1) (A) - (II), (B) - (I), (C) - (IV), (D) - (III)
(2) $(\mathrm{A})-$ (III), (B) - (I), (C) - (IV), (D) - (II)
(3) (A) - (I), (B) - (III), (C) - (IV), (D) - (II)
(4) (A) - (III), (B) - (I), (C) - (II), (D) - (IV)

Answer (2)

Sol.

77. The number of ions from the following that have the ability of liberate hydrogen from a dilute acid is \qquad -.
$\mathrm{Ti}^{2+}, \mathrm{Cr}^{2+}$ and V^{2+}
(1) 3
(2) 0
(3) 1
(4) 2

Answer (1)

Aakashians Gonquer JEE (Main) 2024

Our Stars

Sol. Ions with negative SRP can liberate H^{2} from a dilute acid.
$\mathrm{Ti}^{2+}, \mathrm{Cr}^{2+}, \mathrm{V}^{2+}$ all can liberate H_{2} gas from a dilute acid.
78. Identify A and B in the given chemical reaction sequence:

(1)

(2)

(3)
 в

(4)

Answer (4)

Sol.

79. Given below are two statements :

Statement I: The metallic radius of Na is $1.86 \AA$ and the ionic radius of $\mathrm{Na}+$ is lesser than $1.86 \AA$.
Statement II : lons are always smaller in size than the corresponding elements.

In the light of the above statement, choose the correct answer from the options given below:
(1) Statement I is correct but Statement II is false
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is incorrect but Statement II is true

Answer (1)

Sol. Cation are smaller in size than their parent atom due to more $Z_{\text {eff }}$ while anion are bigger in size than their parent atom due to more inter electronic repulsion. So, Statement-I is correct \& Statement-II is false
80. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): NH_{3} and NF_{3} molecule have pyramidal shape with a lone pair of electrons on nitrogen atom. The resultant dipole moment of NH_{3} is greater than that of NF_{3}.

Reason (R): In NH_{3} the orbital dipole due to lone pair is in the same direction as the resultant dipole moment of the N - H bonds. F is the most electronegative element.

In the light of the above statement, choose the correct answer from the option given below:
(1) (A) is false but (R) is true
(2) (A) is true but (R) is false
(3) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
(4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Answer (4)

Aakashians Conquer JEE (Main) 2024 SESSION-1

Our Stars

RISHIS SHUKLA
two Year classroom program
nw yan classhoum program
As per student response sheet and NTA answer key.
"936 9 sp paeameras
** 1 4 $5-3$ 95+ PERCENTILERS

*(Includes Students from Classroom, Distance $\&$ Digital Courses) is

Sol.

Dipole moment of NH_{3} is higher than NF_{3} as μ of lone-pair is in same direction as the resultant dipole moment of $\mathrm{N}-\mathrm{H}$ bonds.

So, both (A) \& (R) are true , \& (R) is the correct explanation of (A)

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.
81. Considering acetic acid dissociates in water, its dissociation constant is 6.25×10^{-5}. If 5 mL of acetic acid is dissolved in 1 litre water, the solution will freeze at $-x \times 10^{-2}{ }^{\circ} \mathrm{C}$, provided pure water freezes at $0^{\circ} \mathrm{C}$.
$\mathrm{x}=$ \qquad . (Nearest integer)

Given : $\left(K_{f}\right)_{\text {water }}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
density of acetic acid is $1.2 \mathrm{~g} \mathrm{~mol}^{-1}$. molar mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$. molar mass of acetic acid $=60 \mathrm{~g} \mathrm{~mol}^{-1}$. density of water $=1 \mathrm{~g} \mathrm{~cm}^{-3}$
Acetic acid dissociates as

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{\ominus}+\mathrm{H}^{\oplus}
$$

Answer (19)

Sol. $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$

$$
\begin{aligned}
& \alpha=\sqrt{\frac{K_{a}}{C}}=\sqrt{\frac{6.25 \times 10^{-5}}{\frac{1.2 \times 5}{60}}} \\
& =\sqrt{625 \times 10^{-6}}=25 \times 10^{-3}
\end{aligned}
$$

$\mathrm{i}=1+(2-1)(0.025)$
$=1.025$
$\Delta \mathrm{T}_{\mathrm{f}}=1.025 \times 1.86 \times 0.1$
$=0.19065$
$\mathrm{T}_{\mathrm{f}}=-19.065 \times 10^{-2}$
$x \Rightarrow 19$
82. Xg of ethanamine was subjected to reaction with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ followed by hydrolysis to liberate N_{2} and HCl . The HCl generated was completely neutralised by 0.2 moles of $\mathrm{NaOH} . \mathrm{X}$ is \qquad g ,

Answer (9)

Sol. $\mathrm{HCl}+\mathrm{NaOH} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
mol of $\mathrm{HCl}=0.2 \mathrm{~mol}$

0.2 mol HCl would be generated by 0.2 mol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$
$x=0.2 \times 45=9 \mathrm{~g}$
83. Number of compounds from the following with zero dipole moment is \qquad .
$\mathrm{HF}, \mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{CH}_{4}, \mathrm{CHCl}_{3}, \mathrm{SiF}_{4}, \mathrm{H}_{2} \mathrm{O}$, BeF_{2}

Answer (6)

Sol.

$\mu \neq 0$

$\mu \neq 0$

Aakashians Conquer JEE (Main) 2024 session-1

Our Stars

As per student response sheet and NTA answer key.

$\mu=0$

$\mu=0$

$\mu \neq 0$

$\mu=0$
84. In the Claisen-Schmidt reaction to prepare 351 g of dibenzalacetone using 87 g of acetone, the amount of benzaldehyde required is \qquad g. (Nearest integer)

Answer (318)

Sol.

mol of benzaldehyde required $=1.5 \times 2$

$$
=3 \mathrm{~mol}
$$

mass $=318 \mathrm{~g}$
85. The product (C) in the following sequence of reactions has \qquad π bonds.

Answer (4)

Sol.

(A)

(C)

Number of π bonds in (C) $=4$
86. Using the given figure, the ratio of R_{f} values of sample A and sample C is $x \times 10^{-2}$. Value of x is
\qquad

Samples (A, B, C)
Fig: Paper chromatography of Samples

Answer (50)

Sol. $R_{f}=\frac{\text { Distance travelled by the substance from base line }(x)}{\text { Distance travelled by the solvent from base line }(y)}$
$\frac{\left(\mathrm{R}_{\mathrm{f}}\right)_{A}}{\left(\mathrm{R}_{\mathrm{f}}\right)_{\mathrm{C}}}=\frac{\frac{5}{12.5}}{\frac{10}{12.5}}=0.5$
$=50 \times 10^{-2}$
$\mathrm{x}=50$
87. Consider the following single step reaction in gas phase at constant temperature.
$2 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}$
The initial rate of the reaction is recorded as r_{1} when the reaction starts with 1.5 atm pressure of A and 0.7 atm pressure of B. After some time the rate r_{2} is recorded when the pressure of C becomes 0.5 atm . The ratio $r_{1}: r_{2}$ is \qquad $\times 10^{-1}$. (Nearest integer)

Answer (315)

SESSION-1

Our Stars

100 PERCENTILERS [PHY. OR CHEM. OR MATHS]

Sol. $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \rightarrow \mathrm{C}(\mathrm{g})$
As this is single step reaction,
$r=k_{f}[A]^{2}[B]^{2}$

2A(g)	B(g)	C (g)
$\mathrm{t}=0 \quad 1.5$	0.7	0
$\mathrm{t}=\mathrm{t}$ ' $1.5-2 \mathrm{x}$	$0.7-\mathrm{x}$	x
$\Rightarrow \mathrm{x}=0.5 \mathrm{~atm}$		
$\mathrm{r}_{1}=\mathrm{kff}_{\mathrm{f}}(1.5)^{2}(0.7)$		
$\mathrm{r}_{2}=\mathrm{k}_{\mathrm{f}}(0.5)^{2}(0.2)$		
$\frac{r_{1}}{r_{2}}=\frac{9 \times 7}{2}=31.5$		

$=315 \times 10^{-1}$
88. The fusion of chromite ore with sodium carbonate in the presence of air leads to the formation of products A and B along with the evolution of CO_{2}. The sum of spin-only magnetic moment values of A and B is \qquad B.M. (Nearest integer)
[Given atomic number: $\mathrm{C}: 6, \mathrm{Na}: 11, \mathrm{O}: 8, \mathrm{Fe}: 26$, Cr: 24]

Answer (6)

Sol. $4 \mathrm{FeCr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow 8 \mathrm{Na}_{2} \mathrm{CrO}_{4}(\mathrm{~A})+$

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}
$$

(B)

$\mathrm{B}: \stackrel{+3}{\left.\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Fe}^{+3} \rightarrow[\mathrm{Ar}] 4 s^{0} 3 a^{5} \Rightarrow \mu=5.9 \mathrm{BM},{ }^{2}\right)}$
Sum of magnetic moments of $A \& B \simeq 6$
89. In an atom, total number of electrons having quantum numbers $n=4,\left|m_{1}\right|=1$ and $m_{s}=-\frac{1}{2}$ is \qquad .

Answer (6)

Sol. $n=4 ;\left|m_{\|}\right|=1$ and $m_{s}=-\frac{1}{2}$

Total orbitals with $m_{l}=+1$ or -1
$=6$
Total e^{-}with $n=4 ;\left|\mathrm{m}_{1}\right|=1 ; \mathrm{m}_{\mathrm{s}}=-\frac{1}{2}=6$
90. Combustion of 1 mole of benzene is expressed at
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$.
The standard enthalpy of combustion of 2 mol of benzene is - ' x ' kJ . $\mathrm{x}=$ \qquad .

Given :

1. Standard Enthalpy of formation of 1 mol of $\mathrm{C}_{6} \mathrm{H}_{6}$ (I), for the reaction 6 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow$ $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{I})$ is $48.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
2. Standard Enthalpy of formation of 1 mol of $\mathrm{CO}_{2}(\mathrm{~g})$, for the reaction $\mathrm{C}($ graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow$ $\mathrm{CO}_{2}(\mathrm{~g})$ is $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
3. Standard and Enthalpy of formation of 1 mol of $\mathrm{H}_{2} \mathrm{O}(1)$, for the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \text { is }-286 \mathrm{~kJ} \mathrm{~mol}^{-1} \text {. }
$$

Answer (6535)
Sol. $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$=6 \times(-393.5)+3(-286)-48.5$
$=-3267.5 \mathrm{~kJ} / \mathrm{mol}$
For 2 mol of benzene $=-6535 \mathrm{~kJ} / \mathrm{mol}$
$x=6535$

