Corporate Office : Aakash Tower, 8, Pusa Road, New Delhi-110005 | Ph.: 011-47623456

Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2024 (Online) Phase-1

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300 .
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is Chemistry. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A (01-20) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section-B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.

Chirag Falor
4 Year Classroom
T AIR
${ }_{\text {JIEE (Adv.) }}^{\text {AIR }}$
2020

Aakashians Qualified in JEE (Advanced) 2023

Kamyak Channa IIT, Bombay 4 Year Classroom

Dhruv Sanjay Jai IIT, Bombay 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. Let $f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function satisfying $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$ for all $x, y, f(y) \neq 0$. If $f^{\prime}(1)=2024$, then
(1) $x f^{\prime}(x)-2024 f(x)=0$
(2) $x f^{\prime}(x)-2023 f(x)=0$
(3) $x f^{\prime}(x)+2024 f(x)=0$
(4) $x f^{\prime}(x)+f(x)=2024$

Answer (1)

Sol. $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$
Put $x=y=1$
$f(1)=1$
Now put $x=1$
$\Rightarrow \quad f\left(\frac{1}{y}\right)=\frac{1}{f(y)}$
$f(y)= \pm y^{n}$
but $f(1)=1 \Rightarrow f(y)=y^{n}$
$f^{\prime}(y)=n y^{n-1}$
$f^{\prime}(1)=n=2024$
$\therefore f(x)=x^{2024}$
$f^{\prime}(x)=2024 x^{2023}$
$\Rightarrow x f^{\prime}(x)=2024 f(x)$
$\Rightarrow x f^{\prime}(x)-2024 f(x)=0$
2. Let \vec{a} and \vec{b} be two vectors such that $|\vec{b}|=1$ and $|\vec{b} \times \vec{a}|=2$. Then $|(\vec{b} \times \vec{a})-\vec{b}|^{2}$ is equal to
(1) 5
(2) 1
(3) 3
(4) 4

Answer (1)

Sol. $|\vec{b}|=1$ and $|\vec{b} \times \vec{a}|=2$
Now, $|(\vec{b} \times \vec{a})-\vec{b}|^{2}=|\vec{b} \times \vec{a}|^{2}+|\vec{b}|^{2}-2 \vec{b} \cdot(\vec{b} \times \vec{a})$
$=(2)^{2}+(1)^{2}-0=5$
3. Let $A(\alpha, 0)$ and $B(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point P divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-25=10$ be a directrix of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the corresponding focus be S. If from S, the perpendicular on the x-axis passes through P, then the length of the latus rectum of E is equal to
(1) $\frac{32}{5}$
(2) $\frac{25}{3}$
(3) $\frac{32}{9}$
(4) $\frac{25}{9}$

Answer (1)
Sol. $5 x+7 y=50$
When $x=0, y=\frac{50}{7} \Rightarrow B\left(0, \frac{50}{7}\right)$
When $y=0, x=10 \Rightarrow A(10,0)$
$P=\left(\frac{0+3 \times 10}{10}, \frac{7 \times \frac{50}{7}+0}{10}\right)=(3,5)$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020
$2340 \mid 2160$ Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

27
 Aditya Neeraje
 AIR 28

Aakash Gupta Tanishq Mandhane

AIR
5

Kamyak Channa Dhruv Sanjay Jain IIT, Bombay $\stackrel{\text { AIR }}{36}$

Shivanshu Kumar IIT, Madras 4 Year Classroom
and many more

$a e=3$
$\frac{a}{e}=\frac{25}{3}$
$\Rightarrow a=5, b=4$
Length of latus rectum $=\frac{2 b^{2}}{a}=\frac{32}{5}$
4. Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$. Let the tangents to the curve $y=f(x)$ at $(1, f(1))$ and $(3, f(3))$ make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive x-axis. If $27 \int_{1}^{3}\left(\left(f^{\prime}(t)\right)^{2}+1\right) f^{\prime \prime}(t) d t=\alpha+\beta \sqrt{3}$, where α, β are integers, then the value of $\alpha+\beta$ equal
(1) -14
(2) -16
(3) 36
(4) 26

Answer (4)
Sol. $f^{\prime}(1)=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}}$
$f^{\prime}(3)=\tan \frac{\pi}{4}=1$
$I=27 \int_{1}^{3}\left(\left(f^{\prime}(t)\right)^{2}+1\right) f^{\prime \prime}(t) d t$
Let $f^{\prime}(t)=u$
$f^{\prime \prime}(t) d t=d u$

$$
\begin{aligned}
& I=27 \int_{\frac{1}{\sqrt{3}}}^{1}\left(u^{2}+1\right) d u \\
& =27\left[\frac{u^{3}}{3}+u\right]_{1 / \sqrt{3}}^{1} \\
& =27\left[\frac{1}{3}+1-\frac{1}{9 \sqrt{3}}-\frac{1}{\sqrt{3}}\right] \\
& =27\left[\frac{4}{3}-\frac{10}{9 \sqrt{3}}\right] \\
& =\left[36-\frac{30}{\sqrt{3}}\right]=36-10 \sqrt{3} \\
& \alpha=36, \beta=-10 \\
& \Rightarrow \alpha+\beta=36-10=26
\end{aligned}
$$

5. Let a and b be real constants such that the function f defined by $f(x)=\left\{\begin{array}{cc}x^{2}+3 x+a & , x \leq 1 \\ b x+2 & , x>1\end{array}\right.$ be differentiable on \mathbb{R}. Then, the value of $\int_{-2}^{2} f(x) d x$ equals
(1) $\frac{15}{6}$
(2) 17
(3) 21
(4) $\frac{19}{6}$

Answer (2)
Sol. Given function
$f(x)=\left\{\begin{array}{ll}x^{2}+3 x+a & ; x \leq 1 \\ b x+2 & ; x>1\end{array}\right.$ is differentiable on \mathbb{R}
$\therefore f(x)$ is continuous at $x=1$,
$\Rightarrow f(1)=\lim _{x \rightarrow+^{+}} f(x)$
$\Rightarrow a+4=b+2$
$\Rightarrow-a+b=2$
also, $f^{\prime}(x)= \begin{cases}2 x+3 & ; x \leq 1 \\ b & ; x>1\end{cases}$
$\because f$ is differentiable at $x=1$
$\Rightarrow b=5$
\therefore from equation (1), $a=3$

$$
\therefore \quad \int_{-2}^{2} f(x) d x=\int_{-2}^{1}\left(x^{2}+3 x+3\right) d x+\int_{1}^{2}(5 x+2) d x
$$

$=\left[\frac{x^{3}}{3}+\frac{3 x^{2}}{2}+3 x\right]_{-2}^{1}+\left[\frac{5 x^{2}}{2}+2 x\right]_{1}^{2}$
$=6+\frac{3}{2}+12-\frac{5}{2}$
$=18-1=17$
6. If the domain of the function $f(x)=\log _{e}\left(\frac{2 x+3}{4 x^{2}+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ is $(\alpha, \beta]$,
then the value of $5 \beta-4 \alpha$ is equal to
(1) 10
(2) 11
(3) 12
(4) 9

Answer (3)

Chirag Falor
4 Year Classroom
AIR $\begin{aligned} & \text { JEE (Adv.) }\end{aligned}$
2020

Aakash Gupta Tanishq Mandhane

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain 2 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom
 AIR-16 cRL
A
JEE (Adv.
2022

Sol. Given function,
$f(x)=\log _{e}\left(\frac{2 x+3}{4 x^{2}+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$
Clearly, $\frac{2 x+3}{4 x^{2}+x-3}>0$
$\Rightarrow \frac{2 x+3}{(4 x-3)(x+1)}>0$

$\therefore \quad x \in\left(\frac{-3}{2},-1\right) \cup\left(\frac{3}{4}, \infty\right)$
Also, $-1 \leq \frac{2 x-1}{x+2} \leq 1$
$\Rightarrow \frac{2 x-1}{x+2}+1 \geq 0$
$\frac{2 x-1}{x+2}-1 \leq 0$

\Rightarrow| $\frac{3 x+1}{x+2} \geq 0$ | |
| :--- | :--- |
| $+\quad-2$ | + |
| -2 | $-1 / 3$ |

$\therefore \quad x \in(-\infty,-2) \cup\left[-\frac{1}{3}, \infty\right)$ and $x \in(-2,3]$
$\therefore \quad x \in\left(\frac{3}{4}, 3\right] \equiv(\alpha, \beta]$
$\therefore 5 \beta-4 \alpha=15-3=12$
7. Let $\vec{a}=\hat{i}+\alpha \hat{j}+\beta \hat{k}, \alpha, \beta, \in \mathbb{R}$. Let a vector \vec{b} be such that the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$ and $|\vec{b}|^{2}=6$. If $\vec{a} \cdot \vec{b}=3 \sqrt{2}$, then the value of $\left(\alpha^{2}+\beta^{2}\right)$ $|\vec{a} \times \vec{b}|^{2}$ is
(1) 75
(2) 85
(3) 90
(4) 95

Answer (3)

Sol. $\vec{a} \cdot \vec{b}=3 \sqrt{2}$
$|\vec{a}||\vec{b}| \cos \frac{\pi}{4}=3 \sqrt{2}$
$|\vec{a}| \sqrt{6} \cdot \frac{1}{\sqrt{2}}=3 \sqrt{2}$

$$
\begin{aligned}
& |\vec{a}|=\sqrt{6}=\sqrt{1+\alpha^{2}+\beta^{2}} \\
& \begin{aligned}
& \alpha^{2}+\beta^{2}=5 \\
&|\vec{a} \times \vec{b}|^{2}=|\vec{a}|^{2}|\vec{b}|^{2} \sin ^{2} \frac{\pi}{4} \\
&=6 \times 6 \times \frac{1}{2}=18
\end{aligned}
\end{aligned}
$$

So, $\left(\alpha^{2}+\beta^{2}\right)|\vec{a} \times \vec{b}|^{2}=5 \times 18=90$
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x}{\left(1+x^{4}\right)^{1 / 4}}$, and $g(x)=f(f(f(f(x))))$. Then, $18 \int_{0}^{\sqrt{2 \sqrt{5}}} x^{2} g(x) d x$ is equal to
(1) 33
(2) 39
(3) 36
(4) 42

Answer (2)
Sol. $f(x)=\frac{x}{\left(1+x^{\frac{1}{4}}\right.}$

$$
\begin{aligned}
& f(f(x))=\frac{\left(1+x^{4}\right)^{\frac{1}{4}}}{\left(1+2 x^{4}\right)^{\frac{1}{4}}} \\
& f(f(f(x)))=\frac{x}{\left(1+3 x^{4}\right)^{\frac{1}{4}}} \\
& \therefore g(x)=f(f(f(f(x))))=\frac{x}{\left(1+4 x^{4}\right)^{\frac{1}{4}}} \\
& \therefore I=18 \int_{0}^{\sqrt{2 \sqrt{5}}} x^{2} g(x) d x=18 \int_{0}^{\sqrt{2 \sqrt{5}}} \frac{x^{3}}{\left(1+4 x^{4}\right)^{\frac{1}{4}}}
\end{aligned}
$$

Put $1+4 x^{4}=t^{4}$
$4 x^{3} d x=t^{3} d t$
$\therefore I=18 \int_{1}^{3} \frac{t^{2}}{4} d t$
$=18\left(\frac{1}{12}\left(3^{3}-1^{3}\right)\right)=\frac{13}{6} \times 18=39$

Chirag Falor
4 Year Classroom
AIR
${ }_{\text {JIRE (Adv.) }}$
2020
$2340{ }^{2160}$ Classrom + Ho Distances 8 isital
Aakashians Qualified in JEE (Advanced) 2023

27
 eraje
 Aditya Neeraje

Aakash Gupta Tanishq Mandhane

AIR
3

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kuma IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
JEE (Adv.)
2022
9. If z is a complex number, then the number of common roots of the equations $z^{1985}+z^{100}+1=0$ and $z^{3}+2 z^{2}+2 z+1=0$, is equal to
(1) 2
(2) 1
(3) 0
(4) 3

Answer (1)
Sol. Given $z^{1985}+z^{100}+1=0$ and

$$
z^{3}+2 z^{2}+2 z+1=0
$$

The roots of $z^{1985}+z^{100}+1=0$ be ω
and ω^{2} and also satisfies $z^{3}+2 z^{2}+2 z+1=0$
$\therefore \omega$ and ω^{2} are common solutions
(where ω is cube root of unity)

$\therefore 2$ solutions

Option (1) is correct.
10. Let $R\left(\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$ be a non-zero 3×3 matrix, where $x \sin \theta=y \sin \theta\left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0$,
$0 \in(0,2 \pi)$. For a square matrix M, let trace (M) denote the sum of all the diagonals entries of M. Then, among the statements:
I. \quad Trace $(R)=0$
II. If trace $(\operatorname{adj}(\operatorname{adj}(R))=0$, then R has exactly one non-zero entry.
(1) Only (II) is true
(2) Only (I) is true
(3) Both (I) and (II) are true
(4) Neither (I) nor (II) is true

Answer (4)
Sol. $x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0$
$\therefore y=\frac{x \sin \theta}{\sin \left(\theta+\frac{2 \pi}{3}\right)}, z=\frac{x \sin \theta}{\sin \left(\theta+\frac{4 \pi}{3}\right)}$
$\therefore x+y+z=\frac{-3 x}{4 \sin \left(\theta+\frac{2 \pi}{3}\right) \sin \left(\theta+\frac{4 \pi}{3}\right)} \neq 0$
\Rightarrow statement 1 is wrong.
$R=\left[\begin{array}{lll}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right]$
$\operatorname{adj} R=\left[\begin{array}{ccc}y z & 0 & 0 \\ 0 & x z & 0 \\ 0 & 0 & x y\end{array}\right]$
$\operatorname{adj}(\operatorname{adj} R)=\left[\begin{array}{ccc}x^{2} y z & 0 & 0 \\ 0 & y^{2} x z & 0 \\ 0 & 0 & z^{2} x y\end{array}\right]$
\therefore Trace $(\operatorname{adj}(\operatorname{adj} R)=x y z(x+y+z) \neq 0$
Statement (2) is wrong
\therefore Option (4) is correct.
11. Bag A contains 3 white, 7 red balls and Bag B contains 3 white, 2 red balls. One bag is selected at random and a ball is drawn from it. The probability of drawing the ball from the bag A, if the ball drawn is white, is
(1) $\frac{1}{3}$
(2) $\frac{1}{4}$
(3) $\frac{1}{9}$
(4) $\frac{3}{10}$

Answer (1)

Sol. Bag A contains 3 white, 7 red balls
Bag B contains 3 white, 2 red balls
Given, drawn ball is white
So, probability that ball has drawn from bag A

$$
\begin{aligned}
& =\frac{\frac{1}{2} \times \frac{3}{10}}{\frac{1}{2} \times \frac{3}{10}+\frac{1}{2} \times \frac{3}{5}} \\
& =\frac{\frac{3}{20}}{\frac{3}{20}+\frac{3}{10}}=\frac{\frac{3}{20}}{\frac{3+6}{20}}=\frac{3}{9}=\frac{1}{3}
\end{aligned}
$$

$2340 \mid 2160$ Classroom + 180 Distance \& Digital

Aakashians Qualified in JEE (Advanced) 2023

4 Year Classroom
AIR $\begin{aligned} & \text { JEE (Adv.) }\end{aligned}$
2020

Tanishka Kabra 4 Year Classroom AIR-16 cRL
JEE (Adv.) JEE (Adv.)
2022
12. Let $L_{1}: \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in \mathbb{R}$, $L_{2}: \vec{r}=(\hat{j}-\hat{k})+\mu(3 \hat{i}+\hat{j}+p \hat{k}), \mu \in \mathbb{R}$, and $L_{3}: \vec{r}=\delta(\ell \hat{i}+m \hat{j}+n \hat{k}), \delta \in \mathbb{R}$ be three lines such that L_{1} is perpendicular to L_{2} and L_{3} is perpendicular to both L_{1} and L_{2}. Then, the point which lies on L_{3} is
(1) $(-1,7,4)$
(2) $(1,-7,4)$
(3) $(1,7,-4)$
(4) $(-1,-7,4)$

Answer (1)

Sol. $L_{1}=\vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k})$
$L_{2}=\vec{r}=(\hat{j}-\hat{k})+\mu(3 \hat{i}+\hat{j}+P \hat{k})$
$L_{3}=\vec{r}=\delta(l \hat{i}-m \hat{j}+n \hat{k})$
$L_{1} \perp L_{2}$
$3-1+2 P=0$
$\Rightarrow \quad P=-1$
$L_{3} \perp L_{1} \Rightarrow I-m+2 n=0$
$L_{2} \perp L_{3} \Rightarrow 3 I+m+n P=0$
$3 I+m-n=0$
So, we need to check point which satisfy both equations
$(-1,7,4)$ satisfies the line L_{3}
13. Consider the system of linear equations
$x+y+z=5, x+2 y+\lambda^{2} z=9, x+3 y+\lambda z=\mu$, where $\lambda, \mu \in \mathbb{R}$. Then, which of the following statement is NOT correct?
(1) System has unique solution if $\lambda \neq 1$ and $\mu \neq 13$
(2) System is inconsistent if $\lambda=1$ and $\mu \neq 13$
(3) System has infinite number of solutions if $\lambda=1$ and $\mu=13$
(4) System is consistent if $\lambda \neq 1$ and $\mu=13$

Answer (1)

Sol. Given equation: $x+y+z=5$
$x+2 y+\lambda^{2} z=9$
$x+3 y+\lambda z=\mu$
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & \lambda^{2} \\ 1 & 3 & \lambda\end{array}\right|$
$=-(2 \lambda+1)(\lambda-1)$
For $\lambda=\frac{-1}{2}$ the equation reduces to
$x+y+z=5$
$4 x+8 y+z=36$
$2 x+6 y-z=2 \mu$
Taking $z=k$ in (i) and (ii) and solving for x and y gives $x=1-\frac{7 k}{4}$ and $y=4+\frac{3 k}{4}$
Putting in (iii) gives $\mu=13$
Hence, for $\lambda=\frac{-1}{2}(\lambda \neq 1) \& \mu \neq 13$
The system of equation has no solution.
Hence statement given in option (1) is not correct
14. Let $f(x)=(x+3)^{2}(x-2)^{3}, x \in[-4,4]$. If M and m are the maximum and minimum values of f, respectively in $[-4,4]$, then the value of $M-m$ is
(1) 108
(2) 608
(3) 600
(4) 392

Answer (2)
Sol. $f(x)=(x+3)^{2}(x-2)^{3} \forall x \in[4,4]$

$$
f^{\prime}(x)=5(x-2)^{2}(x+1)(x+3)
$$

Sign variation of $f^{\prime}(x)$ on $x \in[-4,4]$

By first derivative test
Points of local minimum are
$x=-4$ and $x=-1$
$f(-4)=-216$ and $f(-1)=-108$

Chirag Falor
4 Year Classroom
AIR
AIR
2020

Points of local maximum are
$x=-3$ and $x=4$
$f(-3)=0$ and $f(4)=392$
Hence, $M=392$ and $m=-216$
$M-m=608$
15. If $x^{2}-y^{2}+2 h x y+2 g x+2 f y+c=0$ is the locus of a point, which moves such that it is always equidistant from the lines $x+2 y+7=0$ and $2 x-y+8=0$, then the value of $g+c+h-f$ equals
(1) 29
(2) 8
(3) 14
(4) 6

Answer (3)

Sol. Locus of the point which moves equidistant from given lines $x+2 y+7=0$ and $2 x-y+8=0$
$\left(\frac{x+2 y+7}{\sqrt{1^{2}+2^{2}}}\right)^{2}=\left(\frac{2 x-y+8}{\sqrt{2^{2}+1^{2}}}\right)^{2}$
On simplifying
$x^{2}-y^{2}+\left(-\frac{8}{3}\right) x y+\left(\frac{18}{3}\right) x+\left(-\frac{44}{3}\right) y+5=0$
Given, $x^{2}-y^{2}+2 h x y+2 g x+2 f y+c=0$
Hence, $h=-\frac{4}{3}, g=\frac{9}{3}, f=\frac{-22}{3}, c=5$
$\therefore g+c+h-f=14$
16. Let P be a point on the hyperbola $H: \frac{x^{2}}{9}-\frac{y^{2}}{4}=1$, in the first quadrant such that the area of triangle formed by P and the two foci of H is $2 \sqrt{13}$. Then, the square of the distance of P from the origin is
(1) 22
(2) 20
(3) 26
(4) 18

Answer (1)

Sol.

$e=\sqrt{1+\frac{4}{9}}=\frac{\sqrt{13}}{3}$
$F_{1}=(\sqrt{13}, 0)$
$F_{2}=(-\sqrt{13}, 0)$
Area of $\Delta P F_{1} F_{2}=2 \sqrt{13}$
$\Rightarrow \frac{1}{2} \cdot \beta(2 \sqrt{13})=2 \sqrt{13}$
$\Rightarrow \beta=2$
(α, β) lie on hyperbola

$$
\begin{aligned}
& \Rightarrow \frac{\alpha^{2}}{9}-1=1 \Rightarrow \alpha=\sqrt{18}=3 \sqrt{2} \\
& \Rightarrow(\alpha, \beta) \equiv(3 \sqrt{2}, 2)
\end{aligned}
$$

$(\text { Distance of } P \text { from origin })^{2}=(\sqrt{18+4})^{2}=22$
17. Let a and b be two distinct real numbers. Let $11^{\text {th }}$ term of a GP, whose first term is a and third term is b, is equal to $p^{\text {th }}$ term of another GP. Whose first term is a and fifth term is b. Then p is equal to
(1) 25
(2) 24
(3) 21
(4) 20

Answer (3)
Sol. G.P. first: $T_{1}=a$

$$
T_{3}=b
$$

$\Rightarrow T_{3}=a r^{2}=b$
$\Rightarrow r= \pm \sqrt{\frac{b}{a}}$

Chirag Falor
4 Year Classroom
Ther ${ }_{\text {JIR (Adv.) }}$
2020

Aakash Gupta Tanishq Mandhane

${ }^{\text {AIR }}$
36

2 Year Classroom
Kamyak Channa Dhruv Sanjay Jain
 4 Year Classroom
G. P. Second: $T_{1}^{\prime}=a$

$$
T_{5}^{\prime}=b
$$

$\Rightarrow T_{5}^{\prime}=a r_{1}^{4}=b$
$\Rightarrow r_{1}= \pm\left(\frac{b}{a}\right)^{\frac{1}{4}}$
$\Rightarrow \quad T_{11}=a r^{10}$

$$
T_{p}^{\prime}=a r_{1}^{p-1}
$$

$\Rightarrow T_{11}=T_{p}^{\prime} \Rightarrow r^{10}=r_{1}^{p-1}$
$\Rightarrow \frac{b^{5}}{a^{5}}=\left(\frac{b}{a}\right)^{\frac{p-1}{4}}$
$\Rightarrow \frac{p-1}{4}=5 \quad \Rightarrow p=21$
18. Suppose $2-p, p, 2-\alpha, \alpha$ are the coefficients of four consecutive terms in the expansion of $(1+x)^{n}$. Then the value of $p^{2}-\alpha^{2}+6 \alpha+2 p$ equals
(1) 8
(2) 4
(3) 10
(4) 6

Answer (1)
Sol. Let 4 consecutive terms
$\Rightarrow{ }^{n} C_{r},{ }^{n} C_{r+1},{ }^{n} C_{r+2},{ }^{n} C_{r+3}$
$\left.\begin{array}{rl}2-p={ }^{n} C_{r} \\ p={ }^{n} C_{r+1}\end{array}\right\}$ and $\begin{aligned} 2-\alpha & ={ }^{n} C_{r+2} \\ \alpha & ={ }^{n} C_{r+3}\end{aligned}$
$\Rightarrow{ }^{n} C_{r}+{ }^{n} C_{r+1}=2$
Similarly, ${ }^{n} C_{r+2}+{ }^{n} C_{r+3}=2$
$\Rightarrow{ }^{n+1} C_{r+1}=2$
$\Rightarrow{ }^{n+1} C_{r+3}=2$
$\Rightarrow{ }^{n+1} C_{r+1}={ }^{n+1} C_{r+3} \Rightarrow r+1=r+3$
\Rightarrow absurd
$\Rightarrow(r+1)+(r+3)=n+1$
$\Rightarrow n=2 r+3$
$\Rightarrow{ }^{2 r+4} C_{r+1}=2 \Rightarrow$ no such r exists
Since, $2-p, p, 2-\alpha, \alpha$ are all positive integers
$\Rightarrow p=1, \alpha=1 \Rightarrow 1^{2}-1^{2}+6+2=8$
19. For $\alpha, \beta \in(0, \pi / 2)$, let $3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)$ and a real number k be such that $\tan \alpha=k \tan \beta$. Then, the value of k is equal to
(1) $2 / 3$
(2) -5
(3) 5
(4) $-2 / 3$

Answer (2)
Sol. $3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)$
$\frac{\sin (\alpha+\beta)}{\sin (\alpha-\beta)}=\frac{2}{3}$
$\frac{\sin (\alpha+\beta)+\sin (\alpha-\beta)}{\sin (\alpha+\beta)-\sin (\alpha-\beta)}=\frac{2+3}{2-3}$
$\frac{2 \sin \alpha \cos \beta}{2 \sin \beta \cos \alpha}=-5$
$\Rightarrow \tan \alpha=-5 \tan \beta$
$\Rightarrow k=-5$
20. Let $f: R \rightarrow R$ be defined as $f(x)=a e^{2 x}+b e^{x}+c x$. If $f(0)=-1, \quad f^{\prime}\left(\log _{e} 2\right)=21$ and $\int_{0}^{\log _{e} 4}(f(x)-c x) d x=\frac{39}{2}$, then the value of $|a+b+c|$ equals
(1) 12
(2) 16
(3) 10
(4) 8

Answer (4)
Sol. $f(x)=a e^{2 x}+b e^{x}+c x$
$f(0)=a+b=-1$
$f^{\prime}(x)=2 a e^{2 x}+b e^{x}+c$
$f^{\prime}(\ln 2)=2 a e^{\ln 4}+b e^{\ln 2}+c$
$=8 a+2 b+c=21$
$\Rightarrow \int_{0}^{\ln 4}(f(x)-c x) d x=\int_{0}^{\ln 4}\left(a e^{2 x}+b e^{x}\right) d x$
$=\frac{a e^{2 x}}{2}+\left.b e^{x}\right|_{0} ^{\ln 4}=\left(\frac{a}{2}(16)+b(4)\right)-\left(\frac{a}{2}+b\right)$
$=8 a+4 b-\frac{a}{2}-b=\frac{15 a}{2}+3 b=\frac{39}{2}$
$\Rightarrow 15 a+6 b=39$
Using (1), (2) and (3)
$a=5, b=-6, c=-7 \Rightarrow|a+b+c|=8$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
21. In an examination of Mathematics paper, there are 20 questions of equal marks and the questions paper is divided into three sections: A, B and C. A student is required to attempt total 15 questions taking at least 4 questions from each section. If section A and 8 questions, section B has 6 questions and section C has 6 questions then the total number of ways a student can select 15 questions is \qquad .

Answer (11376)

Sol.

A	B	C	\Rightarrow	No. of question	Total marks
4	5	6	\rightarrow	${ }^{8} C_{4}{ }^{6} \mathrm{C}_{5}{ }^{6} \mathrm{C}_{6}$	$6 \times{ }^{8} \mathrm{C}_{4}$
4	6	5	\rightarrow	${ }^{8} \mathrm{C}_{4}{ }^{6} \mathrm{C}_{6}{ }^{6} \mathrm{C}_{5}$	$6 \times{ }^{8} \mathrm{C}_{4}$
7	4	4	\rightarrow	${ }^{8} C_{7}{ }^{6} \mathrm{C}_{4}{ }^{6} \mathrm{C}_{4}$	$8 \times(15)^{2}$
6	5	4	\rightarrow	${ }^{8} C_{6}{ }^{6} C_{5}{ }^{6} C_{4}$	$28 \times 6 \times 15$
6	4	5	\rightarrow	${ }^{8} C_{6}{ }^{6} C_{4}{ }^{6} C_{5}$	$28 \times 15 \times 6$
5	5	5	\rightarrow	${ }^{8} C_{5}{ }^{6} C_{5}{ }^{6} C_{5}$	${ }^{8} C_{5} \times 36$
5	6	4	\rightarrow	${ }^{8} C_{5}{ }^{6} C_{6}{ }^{6} C_{4}$	${ }^{8} C_{5} \times 15$
5	4	6	\rightarrow	${ }^{8} C_{5}{ }^{6} C_{4}{ }^{6} C_{6}$	${ }^{8} C_{5} \times 15$

Total ways of select $=11376$
22. The number of real solutions of the equation $x\left(x^{2}+3|x|+5|x-1|+6|x-2|=0\right.$ is \qquad
Answer (1)
Sol. $x=0$ is the solution

Case (I)

$x<0$
$x^{2}-3 x-5(x-1)-6(x-2)=0$
$x^{2}-14 x+17=0$
\because All roots are positive \Rightarrow no solution

Case (II)
$0<x<1$
$x^{2}+3 x-5(x-1)-6(x-2)=0$
$x^{2}-8 x+17=0$
$\because D<0 \Rightarrow$ no solution
Case (III)
$1<x<2$
$x^{2}+3 x+5(x-1)-6(x-2)=0$
$x^{2}+2 x+7=0$
\Rightarrow no solution
Case (IV)
$x>2$
$x^{2}+3 x+5(x-1)+6(x-2)=0$
$x^{2}+14 x-19=0$
All roots less than 2
\Rightarrow no solution
Here $x=0$ is only solution.
23. Let S_{n} be the sum to n-terms of an arithmetic progression 3,7 , 11, If $40<\left(\frac{6}{n(n+1)} \sum_{k=1}^{n} s_{k}\right)<42$, then n equals \qquad .

Answer (9)
Sol. $S_{k}=3+7+11+\ldots$ up to k term

$$
\begin{aligned}
& =\frac{k}{2}[6+(k-1) 4]=k(2 k+1) \\
& \sum_{k=1}^{n}\left(2 k^{2}+k\right)=\frac{2 n(n+1)(2 n+1)}{6}+\frac{n(n+1)}{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
& 40<2(2 n+1)+3<42 \\
& 35<4 n<37 \\
& 8.75<n<9.25 \\
& \Rightarrow n=9
\end{aligned}
$$

24. The area of the region enclosed by the parabola $(y-2)^{2}=x-1$, the line $x-2 y+4=0$ and the positive coordinate axes is \qquad .

Answer (5)

Sol. Solving $y-2=\frac{x}{2}$ and $(y-2)^{2}=x-1$
We will get $x=2, y=3$

Area $=\int_{0}^{3}\left(x_{P}-x_{L}\right) d y$
$=\int_{0}^{3}\left((y-2)^{2}+1-2 y+4\right) d y$
$\left.=\int_{0}^{3}(y-3)^{2} d y=\frac{(y-3)^{3}}{3}\right]_{0}^{3}=9$
\therefore Required area $=9-\frac{1}{2} \times 4 \times 2=5$
25. The number of symmetric relations defined on the set $\{1,2,3,4\}$ which are not reflexive is \qquad .

Answer (960)

Sol. A \{1, 2, 3, 4,\}
$n(A)=4$
Number of symmetric relations $=2^{\frac{n^{2}+n}{2}}=2^{10}(\because n=4)$
Number of reflexive and symmetric relations

$$
=2^{\frac{n^{2}-n}{2}}=2^{6}(\because n=4)
$$

$\therefore \quad$ Number of relations which is symmetric but not reflexive $=2^{10}-2^{6}=960$
26. Let $\alpha=\sum_{k=0}^{n}\left(\frac{\left({ }^{n} C_{k}\right)^{2}}{k+1}\right)$ and $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^{n} C_{k}{ }^{n} C_{k+1}}{k+2}\right)$. If 5α $=6 \beta$, then n equals \qquad .
Answer (10)

Sol. $\alpha=\sum_{k=0}^{n} \frac{{ }^{n} C_{k} \cdot{ }^{n} C_{k}}{k+1} \times \frac{n+1}{n+1}$
$=\frac{1}{n+1} \sum_{k=0}^{n}{ }^{n+1} C_{k+1} \cdot{ }^{n} C_{n-k}\left(\frac{n+1}{k+1} \cdot{ }^{n} C_{k}={ }^{n+1} C_{k+1}\right)$
$\alpha=\frac{1}{n+1}^{2 n+1} C_{n+1}$
$\beta=\sum_{k=0}^{n-1} \frac{{ }^{n} C_{k} \cdot{ }^{n} C_{k+1}}{k+2} \times \frac{n+1}{n+1}$
$=\frac{1}{n+1} \sum_{k=0}^{n-1}{ }^{n} C_{n-k}{ }^{n+1} C_{k+2}$
$=\frac{1}{n+1}^{2 n+1} C_{n+2}$
$\Rightarrow \quad \frac{\beta}{\alpha}=\frac{{ }^{2 n+1} C_{n+2}}{{ }^{2 n+1} C_{n+1}}=\frac{2 n+1-(n+2)+1}{n+2}$
$\frac{\beta}{\alpha}=\frac{n}{n+2}=\frac{5}{6}$
$\Rightarrow n=10$
27. Let a line passing through the point $(-1,2,3)$ intersect the lines $L_{1}: \frac{x-1}{3}=\frac{y-2}{2}=\frac{z+1}{-2}$ at $M(\alpha, \beta, \gamma)$ and $L_{2}: \frac{x+2}{-3}=\frac{y-2}{-2}=\frac{z-1}{4}$ at $N(a, b, c)$.
Then, the value of $\frac{(\alpha+\beta+\gamma)^{2}}{(a+b+c)^{2}}$ equals \qquad .
Answer (196)
Sol. $M \equiv(\alpha, \beta, \gamma) \equiv(3 \lambda+1,2 \lambda+2,-2 \lambda-1)$
$N \equiv(a, b, c) \equiv(-3 t-2,-2 t+2,4 t+1)$
A($-1,2,3$)
Direction ratios of line passing through $A(-1,2,3)$ are $3 \lambda+2,2 \lambda,-2 \lambda-4$ or $-3 t-1,-2 t, 4 t-2$

$$
\begin{aligned}
& \Rightarrow \frac{3 \lambda+2}{-3 t-1}=\frac{2 \lambda}{-2 t}=\frac{-2 \lambda-4}{4 t-2} \\
& \Rightarrow \lambda=4, t=2 \\
& \Rightarrow M(13,10,-9), N(-8,-2,9) \\
& \Rightarrow\left(\frac{\alpha+\beta+\gamma}{a+b+c}\right)^{2}=196
\end{aligned}
$$

28. The variance σ^{2} of the data

x_{i}	0	1	5	6	10	12	17
f_{i}	3	2	3	2	6	3	3

is \qquad .

Answer (29)

Sol. $\vec{x}-=\frac{3 \times 0+2 \times 1+3 \times 5+2 \times 6+6 \times 10+3 \times 12+3 \times 17}{3+2+3+2+6+3+3}$

$$
\begin{aligned}
& \quad=8 \\
& \sigma^{2}=\frac{1}{22}\left(3 \times(8-0)^{2}+2 \times(8-1)^{2}+3 \times(8-5)^{2}+2 \times\right. \\
& \left.(8-6)^{2}+6 \times(8-10)^{2}+3 \times(8-12)^{2}+3 \times(8-17)^{2}\right) \\
& =\frac{1}{22}(640)=29.09
\end{aligned}
$$

29. Consider two circles $C_{1}: x^{2}+y^{2}=25$ and $C_{2}:(x-\alpha)^{2}+y^{2}=16$, where $\alpha \in(5,9)$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points C_{1} and C_{2} be $\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$. If the length of common chord of C_{1} and C_{2} is β, then the value of $(\alpha \beta)^{2}$ equals \qquad -.

Answer (1575)

$\cos \theta=\frac{25+16-\alpha^{2}}{40}, \because \sin \theta=\frac{\sqrt{63}}{8}$
$\Rightarrow \quad \cos \theta=\frac{1}{8}$
$\Rightarrow \frac{1}{8}=\frac{41-\alpha^{2}}{40} \Rightarrow \alpha^{2}=36 \Rightarrow \alpha=6$
Equation of common chord is $x=\frac{15}{4}$
$\Rightarrow \quad A M=\frac{15}{4} \Rightarrow(M P)^{2}=25-\left(\frac{15}{4}\right)^{2}$

$$
\begin{aligned}
& \Rightarrow \quad \beta^{2}=4(M P)^{2}=100-\frac{225}{4}=\frac{400-225}{4}=\frac{175}{4} \\
& \Rightarrow \quad \alpha^{2} \beta^{2}=36 \times \frac{175}{4}=1575
\end{aligned}
$$

30. Let $Y=Y(X)$ be a curve lying in the first quadrant such that the area enclosed by the line $Y-y=$ $Y^{\prime}(x)(X-x)$ and the co-ordinate axes, where (x, y) is any point on the curve, is always $\frac{-y^{3}}{2 Y^{\prime}(x)}+1$, $Y^{\prime}(x) \neq 0$. If $Y(1)=1$, then $12 Y(2)$ equals \qquad .
Answer (20)

Sol.

$\Rightarrow \frac{1}{2}(y-x Y(x))\left(x-\frac{y}{Y(x)}\right)=-\frac{y^{2}}{2 Y(x)}+1$
$\left(y-x Y^{\prime}(x)\right)\left(x Y^{\prime}(x)-y\right)=-y^{2}+2 Y^{\prime}(x)$
$y x Y^{\prime}(x)-y^{2}-x^{2}\left(Y^{\prime}(x)\right)+x y Y^{\prime}(x)=-y^{2}+2 Y^{\prime}(x)$
$\left(y-x \frac{d y}{d x}\right)\left(x \frac{d y}{d x}-y\right)=-y^{2}+2 \frac{d y}{d x}$
$-y^{2}-x^{2}\left(\frac{d y}{d x}\right)^{2}+2 x y\left(\frac{d y}{d x}\right)=-y^{2}+2 \frac{d y}{d x}$
$-x^{2} \frac{d y}{d x}+2 x y=2$
$\Rightarrow \frac{d y}{d x}+\left(-\frac{2}{x}\right) y=\left(-\frac{2}{x^{2}}\right)$
I.F. $=\frac{1}{x^{2}}$
\Rightarrow Solution is $\frac{y}{x^{2}}=-\frac{-2 \cdot x^{-3}}{-3}+c \quad \because y(1)=1$
$\Rightarrow c=\frac{1}{3}$
$\frac{y}{x^{2}}=\frac{2}{3 x^{3}}+\frac{1}{3}$, when $x=2, y=4\left(\frac{1}{12}+\frac{1}{3}\right)=\frac{5}{3}$
$\Rightarrow 12 y(2)=20$

Chirag Falor
4 Year Classroom
TAIR
AIR ${ }_{\text {JEE (Adv.) }}$
2020

23 40| 2160 Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

27
 Aditya Neeraje IIT, Bombay 2 Year Classroom

Aakash Gupta Tanishq Mandhane
 Year Classroom
 IIT, Bombay
4 Year Classroom
${ }^{\text {AIR }}$

36

Kamyak Channa Dhruv Sanjay Jain IIT, Bak Chan IIT, Bombay
4 Year Classroom

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. For the photoelectric effect, the maximum kinetic energy (E_{k}) of the photoelectrons is plotted against the frequency (v) of the incident photons as shown in figure. The slope of the graph gives

(1) Charge of electron
(2) Work function of the metal
(3) Ratio of Planck's constant to electric charge
(4) Planck's constant

Answer (4)

Sol. For photoelectric effect
$h v=k+\phi_{0}$
$k=h v-\phi_{0}$
Compare with $y=m x \pm c$
Slope $(m)=h$
32. An alternating volage $V(t)=220 \sin 100 \pi t$ volt is applied to a purely resistive load of 50Ω. The time taken for the current to rise from half of the peak value to the peak value is:
(1) 3.3 ms
(2) 2.2 ms
(3) 5 ms
(4) 7.2 ms

Answer (1)

Sol. $i=I_{0} \sin (100 \pi t)$
Time taken to reach $i=\frac{I_{0}}{2}$ from $I=0$
$\frac{I_{0}}{2}=I_{0} \sin \left(100 \pi t_{1}\right)$
$\Rightarrow t_{1}=\frac{1}{600}$ second
Time taken to reach I_{0} from $i=0$
$t_{2}=\frac{T}{4}=\frac{1}{200}$ second
So, $\Delta T=3.3 \times 10^{-3}$
33. Projectiles A and B are thrown at angles of 45° and 60° with vertical respectively from top of a 400 m high tower. If their ranges and times of flight are same, the ratio of their speeds of projection $v_{A}: v_{B}$ is :
[Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$]
(1) $1: \sqrt{3}$
(2) $1: \sqrt{2}$
(3) $\sqrt{2}: 1$
(4) $1: 2$

Answer (2)

Sol. For same time of flight, vertical component of velocity of projection must be same.

$$
\begin{aligned}
& v_{A} \sin 45=v_{B} \sin 30 \\
& \Rightarrow \frac{v_{A}}{v_{B}}=1: \sqrt{2}
\end{aligned}
$$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 crL JEE (Adv.) 2022
34. If mass is written as $m=k c^{P} G^{-1 / 2} h^{1 / 2}$ then the value of P will be: (Constants have their usual meaning with k a dimensionless constant)
(1) $-1 / 3$
(2) $1 / 2$
(3) 2
(4) $1 / 3$

Answer (2)
Sol. $m=k C^{P} G^{-112} h^{1 / 2}$
$[\mathrm{M}]=\left[\mathrm{LT}^{-1}\right]^{P}\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{C}\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]^{d}$
On solving $P=\frac{1}{2}$
$c=-\frac{1}{2}$
$d=\frac{1}{2}$
35. A particle of charge ' $-q$ ' and mass ' m ' moves in a circle of radius ' r ' around an infinitely long line charge of linear charge density ' $+\lambda$ '. Then time period will be given as :
(Consider k as Coulomb's constant)
(1) $T=\frac{1}{2 \pi r} \sqrt{\frac{m}{2 k \lambda q}}$
(2) $T^{2}=\frac{4 \pi^{2} m}{2 k \lambda q} r^{3}$
(3) $T=2 \pi r \sqrt{\frac{m}{2 k \lambda q}}$
(4) $T=\frac{1}{2 \pi} \sqrt{\frac{2 k \lambda q}{m}}$

Answer (3)

Sol. Centrifugal force = Centripetal force

$$
\begin{aligned}
& \frac{m v^{2}}{r}=\frac{\lambda}{2 \pi \varepsilon_{0} r} q \\
& \Rightarrow \quad v=\sqrt{\frac{\lambda^{q}}{2 \pi m \varepsilon_{0}}} \\
& \therefore \quad T=\frac{2 \pi}{v}=2 \pi r \sqrt{\frac{m}{2 k \lambda q}}
\end{aligned}
$$

36. Match List I with List II

	List I		List II
A.	Gauss's law of magnetostatics	I.	$\oint \vec{E} \cdot \vec{d} a=\frac{1}{\varepsilon_{0}} \int \rho d V$
B.Faraday's law of electro magnetic induction	II.	$\oint \vec{B} \cdot \vec{d} a=0$	
C.	Ampere's law	III.	$\int \vec{E} \cdot \vec{d} \ell=\frac{-d}{d t} \int \vec{B} \cdot \vec{d} a$
D.	Gauss's law of electrostatics	IV.	$\oint \vec{B} \cdot \vec{d} \ell=\mu_{0} I$

Choose the correct answer from the options given below:
(1) A-I, B-III, C-IV, D-II
(2) A-III, B-IV, C-I, D-II
(3) A-IV, B-II, C-III, D-I
(4) A-II, B-III, C-IV, D-I

Answer (4)
Sol. Gauss's law of magnetostatics $\Rightarrow \oint \vec{B} \cdot \vec{d} a=0$
Faraday's law of electromagnetic induction

$$
\Rightarrow \oint \vec{E} \cdot \vec{d} \ell=-\frac{d}{d t} \int \vec{B} \cdot \vec{d} a
$$

Ampere's law $\Rightarrow \oint \vec{B} \cdot \vec{d} \ell=\mu_{0} l$
Gauss's law of electrostatics

$$
\Rightarrow \oint \vec{E} \cdot \vec{d} a=\frac{1}{\varepsilon_{0}} \int \rho d V
$$

37. A beam of unpolarised light of intensity I_{0} is passed through a polaroid A and then through another polaroid B which is oriented so that its principal plane makes an angle of 45° relative to that of A. The intensity of emergent light is:
(1) $I_{0} / 8$
(2) $I_{0} / 4$
(3) $I_{0} / 2$
(4) I_{0}

Answer (2)

Chirag Falor
4 Year Classroom
AIR
AIR (Adv.)
2020
 4 Year Classroom 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom and many more..

Tanishka Kabra 4 Year Classroom

AIR-16 crL JEE (Adv.) 2022

Sol. $l_{1}=\frac{I_{0}}{2}$
$I_{1}=\frac{I_{0}}{2} \cos ^{2}\left(45^{\circ}\right)$
$=\frac{I_{0}}{4}$
38. An electron revolving in $n^{\text {th }}$ Bohr orbit has magnetic moment μ_{n}. If $\mu_{n} \alpha n^{x}$, the value of x is
(1) 1
(2) 3
(3) 0
(4) 2

Answer (1)
Sol. Magnetic moment of electron $=\frac{e h n}{4 \pi m_{e}}$
From given value $x=1$
39. If the total energy transferred to a surface in time t is $6.48 \times 10^{5} \mathrm{~J}$, then the magnitude of the total momentum delivered to this surface for complete absorption will be:
(1) $2.46 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(2) $4.32 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(3) $1.58 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
(4) $2.16 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Answer (4)
Sol. $E=P C$
$\Rightarrow P=\frac{E}{C}$
$=\frac{6.48 \times 10^{5}}{3 \times 10^{8}}$
$=2.16 \times 10^{-3} \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
40. In a nuclear fission reaction of an isotope of mass M, three similar daughter nuclei of same mass are formed. The speed of a daughter nuclei in terms of mass defect ΔM will be:
(1) $c \sqrt{\frac{3 \Delta M}{M}}$
(2) $\sqrt{\frac{2 c \Delta M}{M}}$
(3) $\frac{\Delta M c^{2}}{3}$
(4) $c \sqrt{\frac{2 \Delta M}{M}}$

Answer (4)

Sol. $(M-3 m) c^{2}=3\left(\frac{1}{2} m V^{2}\right)$
$V=\sqrt{\frac{2 \Delta m c^{2}}{3 m}}$
Again $\Delta m=M-3 m$
$m=\frac{M-\Delta m}{3}$
$V=\sqrt{\frac{2 \Delta m c^{2}}{M-\Delta m}}$
$=c \sqrt{\frac{2 \Delta m}{M}}$
41. Escape velocity of a body from earth is $11.2 \mathrm{~km} / \mathrm{s}$. If the radius of a planet be one-third the radius of earth and mass be one-sixth that of earth, the escape velocity from the planet is:
(1) $4.2 \mathrm{~km} / \mathrm{s}$
(2) $8.4 \mathrm{~km} / \mathrm{s}$
(3) $7.9 \mathrm{~km} / \mathrm{s}$
(4) $11.2 \mathrm{~km} / \mathrm{s}$

Answer (3)

Sol, Escape velocity $(V)=\sqrt{\frac{2 G M}{R}}$
$V_{e}=\sqrt{\frac{2 G M_{e}}{R_{e}}}$
$V_{p}=\sqrt{\frac{2 G M_{e} \times 3}{6 R_{e}}}$
$V_{p}=\frac{1}{\sqrt{2}} V_{e}$

$$
=7.9 \mathrm{~km} / \mathrm{s}
$$

42. Choose the correct statement for processes A and B shown in figure.

(1) $P V=k$ for process B and A
(2) $\frac{P^{\gamma-1}}{T^{\gamma}}=k$ for process B and $T=k$ for process A
(3) $\frac{T^{\gamma}}{P^{\gamma-1}}=k$ for process A and $P V=k$ for process B
(4) $P V^{\prime}=k$ for process B and $P V=k$ for process A

Answer (4)

Sol. Slope of curve $B>$ slope of curve A so A is isothermal process while B is adiabatic process.
43. A block of mass m is placed on a surface having vertical cross-section given by $y=\frac{x^{2}}{4}$. If coefficient of friction is 0.5 , the maximum height above the ground at which block can be placed without slipping is:
(1) $\frac{1}{2} \mathrm{~m}$
(2) $\frac{1}{6} \mathrm{~m}$
(3) $\frac{1}{3} \mathrm{~m}$
(4) $\frac{1}{4} m$

Answer (4)

Sol. at equilibrium, $\tan \theta=\mu$

$$
\begin{aligned}
& \Rightarrow \quad \frac{d y}{d x}=\frac{x}{2} \\
& \Rightarrow \quad \frac{1}{2}=\frac{x}{2} \\
& \Rightarrow x=1 \\
& \Rightarrow \quad y=\frac{1}{4} m
\end{aligned}
$$

44.

In the given circuit, the voltage across load resistance $\left(R_{L}\right)$ is
(1) 14.00 V
(2) 9.00 V
(3) 8.50 V
(4) 8.75 V

Answer (4)

Sol. From KVL
$15-(0.3+0.7)=(1.5+2.5) K \times I$
$I=\frac{7}{2} m A$
$V_{1}=\left(\frac{7}{2} m\right)\left(\frac{5}{2} k\right)$
$=8.75 \mathrm{~V}$
45. If three moles of monoatomic gas $\left(\gamma=\frac{5}{3}\right)$ is mixed with two moles of a diatomic gas $\left(\gamma=\frac{7}{5}\right)$, the value of adiabatic exponent γ for the mixture is
(1) 1.35
(2) 1.52
(3) 1.75
(4) 1.40

Answer (2)

Sol. $F_{\text {mix }}=\frac{3 \times 3+2 \times 5}{5}$
$=\frac{19}{5}$
$\therefore \quad \gamma=1+\frac{2}{\left(\frac{19}{5}\right)}=1+\frac{10}{19}$
$\Rightarrow \quad \gamma=\frac{29}{19}$
$\Rightarrow \gamma=1.52$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

$\stackrel{3}{3}$

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar IIT, Madras IIT, Madras Year Classroom

46. A block of mass 1 kg is pushed up a surface inclined to horizontal at an angle of 60° by a force of 10 N parallel to the inclined surface as shown in figure. When the block is pushed up by 10 m along inclined surface, the work done against frictional force is $\left[g=10 \mathrm{~m} / \mathrm{s}^{2}\right]$

(1) 5 J
(2) $5 \sqrt{3} \mathrm{~J}$
(3) $5 \times 10^{3} \mathrm{~J}$
(4) 10 J

Answer (1)

Sol. Maximum friction force $=\mu m g \cos \theta$

$$
=\frac{1}{2} \mathrm{~N}
$$

Work done against friction $=\left(\frac{1}{2}\right) \times 10$

$$
=5 \mathrm{~J}
$$

47. A block of ice at $-10^{\circ} \mathrm{C}$ is slowly heated and converted to steam at $100^{\circ} \mathrm{C}$. Which of the following curves represent the phenomenon qualitatively:
(1)

(2)

JEE (Main)-2024 : Phase-1 (30-01-2024)-Evening
(3)

(4)

Answer (3)

Sol.

48. Three blocks A, B and C are pulled on a horizontal smooth surface by a force of 80 N as shown in figure

The tensions T_{1} and T_{2} in the string are respectively:
(1) $80 \mathrm{~N}, 100 \mathrm{~N}$
(2) $88 \mathrm{~N}, 96 \mathrm{~N}$
(3) $40 \mathrm{~N}, 64 \mathrm{~N}$
(4) $60 \mathrm{~N}, 80 \mathrm{~N}$

Answer (3)
Sol. Acceleration of system $(a)=\frac{80}{10}=8 \mathrm{~m} / \mathrm{s}^{2}$
$\Rightarrow \quad T_{1}=(5 \times 8) \mathrm{N}$
and, $T_{2}-T_{1}=(3 \times 8) \mathrm{N}$

$$
T_{2}=(8 \times 8) \mathrm{N}
$$

Chirag Falor
4 Year Classroom
AIR
AIR (Adv.)
2020

234012160 Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

Aditya Neeraje
IIT, Bombay
2 Year Classroom
 $\begin{array}{cc}\text { IIT, Bombay } & \text { IIT, Bombay } \\ \text { 4 Year Classroom } & \text { 4Year Classroom }\end{array}$

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RRNNK
(femole)
JEE (Adv.)
2022
49. If 50 Vernier divisions are equal to 49 main scale divisions of a traveling microscope and one smallest reading of main scale is 0.5 mm , the Vernier constant of traveling microscope is
(1) 0.01 mm
(2) 0.1 cm
(3) 0.01 cm
(4) 0.1 mm

Answer (1)

Sol. MSD $=0.5 \mathrm{~mm}$

$$
\begin{aligned}
L C & =M S D-V S D \\
& =\frac{M S D}{50} \\
& =0.01 \mathrm{~mm}
\end{aligned}
$$

50. When a potential difference V is applied across a wire of resistance R, it dissipates energy at a rate W. If the wire is cut into two halves and these halves are connected mutually parallel across the same supply, the energy dissipation rate will become:
(1) $\frac{1}{2} W$
(2) $4 W$
(3) $\frac{1}{4} W$
(4) $2 W$

Answer (2)

Sol. In $1^{\text {st }}$ case : $W=\frac{V^{2}}{R}$
In $2^{\text {nd }}$ case : $W^{\prime}=\frac{V^{2}}{\left(\frac{R}{4}\right)}$
$\Rightarrow W^{\prime}=4 W$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
51. Two identical charged spheres are suspended by strings of equal lengths. The strings make an angle of 37° with each other. When suspended in a liquid of density $0.7 \mathrm{~g} / \mathrm{cm}^{3}$, the angle remains same. If density of material of the sphere is $1.4 \mathrm{~g} / \mathrm{cm}^{3}$, the dielectric constant of the liquid is \qquad $\left(\tan 37^{\circ}=\frac{3}{4}\right)$

Answer (2)

Sol. $\frac{F e}{m g}=\frac{\left(\frac{F e}{k}\right)}{m g-\sigma v g}$
$k=\frac{\rho}{\rho-\sigma}$
$=\frac{1.4}{1.4-0.7}$
$k=\frac{1.7}{0.7}$
$k=2$
52. A point source is emitting sound waves of intensity $16 \times 10^{-8} \mathrm{Wm}^{-2}$ at the origin. The difference in intensity (magnitude only) at two points located at a distances of 2 m and 4 m from the origin respectively will be \qquad $\times 10^{-8} \mathrm{Wm}^{-2}$.

Answer (3)

Sol. Question is not correctly represented loosely, It can be solved as below

$$
\begin{aligned}
& I \propto \frac{1}{r^{2}} \\
& \therefore \quad I_{1}=\frac{16 \times 10^{-8}}{(2)^{2}}=4 \times 10^{-8} \\
& \quad I_{2}=\frac{16 \times 10^{-8}}{(4)^{2}}=1 \times 10^{-8} \\
& \therefore \quad \Delta I=I_{1}-I_{2} \\
& \\
& =3 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

JEE (Main)-2024 : Phase-1 (30-01-2024)-Evening
53. A power transmission line feeds input power at 2.3 kV to a step-down transformer with its primary winding having 3000 turns. The output power is delivered at 230 V by the transformer. The current in the primary of the transformer is 5 A and its efficiency is 90%. The winding of transformer is made of copper. The output current of transformer is \qquad A.

Answer (45)

Sol. $V_{i}=2.3 \mathrm{kV}$
$N_{i}=3000$

$$
I_{i}=5 \mathrm{~A} V_{0}=230 \mathrm{~V}
$$

$P_{0}={ }_{10} V_{0}$
$I_{0}=\frac{P_{0}}{V_{0}}=45 \mathrm{~A}$
54. In an experiment to measure the focal length (f) of a convex lens, the magnitude of object distance (x) and the image distance (y) are measured with reference to the focal point of the lens. The y - x plot is shown in figure.

The focal length of the lens is \qquad cm.

Answer (20)

Sol. $u=-20$
$v=20$
$\frac{1}{f}=\frac{1}{v}-\frac{1}{u}$
$f=20 \mathrm{~cm}$
55. The current of 5 A flows in a square loop of sides 1 m is placed in air. The magnetic field at the centre of the loop is $X \sqrt{2} \times 10^{-7} T$. The value of X is
\qquad -.

Answer (40)

Sol. Magnetic field at centre $=4\left[\frac{\mu_{0} /}{4 \pi d}(\sin 45+\sin 45)\right]$

$$
\begin{aligned}
d & =\frac{1}{2} \mathrm{~m} \\
B_{c} & =4 \times 10^{-7} \times 5 \times 2 \times \frac{2}{\sqrt{2}} \\
& =40 \sqrt{2} \times 10^{-7} \mathrm{~T}
\end{aligned}
$$

56. Two discs of moment of inertia $l_{1}=4 \mathrm{~kg} \mathrm{~m}^{2}$ and $l_{2}=2 \mathrm{~kg} \mathrm{~m}^{2}$, about their central axes and normal to their planes, rotating with angular speeds 10 rad/s and $4 \mathrm{rad} / \mathrm{s}$ respectively are brought into contact face to face with their axes of rotation coincident.
The loss in kinetic energy of the system in the process is \qquad J.

Answer (24)

Sol. From angular momentum conservation

$$
\begin{aligned}
& 40+8=6 \omega \\
& \omega=8 \mathrm{rad} / \mathrm{s} \text { (common velocity) } \\
& \begin{aligned}
\text { Loss in K.E. } & =\frac{1}{2}[4 \times 100+2 \times 16-6 \times 64] \\
& =24 \mathrm{~J}
\end{aligned}
\end{aligned}
$$

Chirag Falor
4 Year Classroom
AIR
EE (Adv.)
2020
$2340{ }^{22600}$ Classroom +1 Bo Distances 8 igtal
Aakashians Qualified in JEE (Advanced) 2023
 8 Ac

IIT, Boma Neeraje 2 Year Classroom

Aakash Gupta Tanishq Mandhane
 1 Year Classroom
 4 Year Classroom
${ }_{3}^{17}$

Kamyak Chan IIT, Bombay IIT, Bombay
4 Year Classroom $\begin{array}{lc}\text { IIT, Bombay } & \text { IIT, Bombay } \\ \text { II Clas } & \text { Year Classroom }\end{array} 4$ Year Classroom 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 cRL
AIR-16 CRL
2022
57. Two resistance of 100Ω and 200Ω are connected in series with a battery of 4 V and negligible internal resistance. A voltmeter is used to measure voltage across 100Ω resistance, which gives reading as 1 V . The resistance of voltmeter must be \qquad Ω.

Answer (200)

Sol. Voltage across $200 \Omega=3 \mathrm{~V}$

Current in loop $=\frac{3}{200}$

For voltmeter $=\left(\frac{100 R}{100+R}\right) \times \frac{3}{200}=1$
$R=200 \Omega$
58. A vector has magnitude same as that of $\vec{A}=3 \hat{i}+4 \hat{j}$ and is parallel to $\vec{B}=4 \hat{i}+3 \hat{j}$. The x and y components of this vector in first quadrant are x and 3 respectively where $x=$ \qquad .

Answer (4)
Sol. The vector $(\vec{C})=5\left(\frac{4 \hat{i}+3 \hat{j}}{5}\right)$

$$
=4 \hat{i}+3 \hat{j}
$$

x-component $=4$
59. A simple pendulum is placed at a place where its distance from the earth's surface is equal to the radius of the earth. If the length of the string is 4 m , then the time period of small oscillations will be
\qquad s. $\left(\right.$ Take $\left.g=\pi^{2} \mathrm{~ms}^{-2}\right)$

Answer (8)

Sol. $T=2 \pi \sqrt{\frac{l}{g}}$
$T^{\prime}=\frac{T}{\left(\frac{1}{4}\right)}$
$T=4 T$
$=8 \mathrm{sec}$
60. A big drop is formed by coalescing 1000 small identical drops of water. If E_{1} be the total surface energy of 1000 small drops of water and E_{2} be the surface energy of single big drop of water, then $E_{1}: E_{2}$ is $x: 1$ where $x=$ \qquad .

Answer (10)

Sol. Radius of small drop $=r$

Radius of big drop $=R$
$R=10 r$
$E_{1}=4 \pi r^{2} \times 1000$
$E_{2}=4 \pi(10 r)^{2}$
$\frac{E_{1}}{E_{2}}=10$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Aakash Gupta Tanishq Mandhane

$\stackrel{\text { AIR }}{36}$

Shivanshu Kumar IIT, Madras 4 Year Classroom and many more

Tanishka Kabra 4 Year Classroom

AIR-16cRL
JEE (Adv.)
2022

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Choose the correct statements about the hydrides of group 15 elements.
A. The stability of the hydrides decreases in the order $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$
B. The reducing ability of the hydride increases in the order $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$
C. Among the hydrides, NH_{3} is strong reducing agent while BiH_{3} is mild reducing agent.
D. The basicity of the hydrides increases in the order $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$

Choose the most appropriate from the option given below
(1) B and C only
(2) A and B only
(3) A and D only
(4) C and D only

Answer (2)
Sol. BiH_{3} is a stronger reducing agent than NH_{3}.
Basicity of hydrides decreases down the group.
62. Given below are two statements :

Statement-I : Since Fluorine is more electronegative than nitrogen, the net dipole moment of NF_{3} is greater than NH_{3}.

Statement-II : In NH_{3}, the orbital dipole due to lone pair and the dipole moment of NH bonds are in opposite direction, but in NF_{3} the orbital dipole due to lone pair and dipole moments of $\mathrm{N}-\mathrm{F}$ bonds are in same direction.

In the light of the above statements, choose the most appropriate from the options given below :
(1) Both Statement I and Statement II are true
(2) Both Statement I and Statement II are false
(3) Statement I is false but Statement II is true
(4) Statement I is true but Statement II is false

Answer (2)

Sol. In NF_{3} the orbital dipole due to lone pair and dipole moments of $\mathrm{N}-\mathrm{F}$ bonds are in opposite direction. In NH_{3}, they are the same direction.

Thus, in NH_{3} the dipole moments add up which leads to higher dipole moment than NF_{3}.
63. m-chlorobenzaldehyde, on treatment with 50% KOH solution yields
(1)

(2)

(3)

(4)

Chirag Falor
4 Year Classroom
T AIR
2020
$25 / 40 \mid 2160$ Classroom + 180 Distance \mathcal{L} Digital
Aakashians Qualified in JEE (Advanced) 2023

 AIR
28

Tanishka Kabra 4 Year Classroom

Answer (1)

Sol.

Cannizzaro reaction.
64. Reduction potential of ions are given below :

$$
\begin{array}{ccc}
\mathrm{ClO}_{4}^{-} & \mathrm{IO}_{4}^{-} & \mathrm{BrO}_{4}^{-} \\
\mathrm{E}^{\circ}=1.19 \mathrm{~V} & \mathrm{E}^{\circ}=1.65 \mathrm{~V} & \mathrm{E}^{\circ}=1.74 \mathrm{~V} \\
\hline
\end{array}
$$

The correction order of their oxidising power is
(1) $\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
(2) $\mathrm{BrO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
(3) $\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}$
(4) $\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}$

Answer (2)

Sol. Higher the reduction potential higher is the oxidizing power.
65. Products A and B formed in the following set of reactions are

(1)

(2)

$B=$

(3)

(4)

$B=$

Answer (2)

Sol.

66. Given below are two statements:

Statement I : High concentration of strong nucleophilic reagent with secondary alkyl halides which do not have bulky substituents will follow $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
Statement II : A secondary alkyl halide when treated with a larger excess of ethanol follows $\mathrm{S}_{\mathrm{N}} 1$ mechanism.

In the light of the above statements, choose the most appropriate from the options given below :
(1) Statement I true but Statement II is false
(2) Both Statement I and Statement II are true
(3) Statement I is false but Statement II is false
(4) Statement I is false but Statement II is true

Answer (2)

Sol. High concentration of strong nucleophile and lack of bulky substituents favors $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
Ethanol is a weak nucleophile so $\mathrm{S}_{\mathrm{N}} 1$ mechanism should be preferred
67. The correct stability order of carbocations is
(1)

(2) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}>\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}>\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$
(3) $\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}>\left(\mathrm{CH}_{3}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}>\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{\mathrm{C}}$
(4) $\left(\mathrm{CH}_{3}\right)_{3} \stackrel{+}{\mathrm{C}}>\left(\mathrm{CH}_{3}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}>\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$

Answer (4)

Sol. Stability order of carbocations
tertiary > secondary > primary > methyl
More is alkyl substituents in a carbocation more is hyperconjugation and inductive effect, thus more is the stability.
68. The solution from the following with highest depression in freezing point/lowest freezing point is
(1) 180 g of acetic acid dissolved in benzene
(2) 180 g of acetic acid dissolved in water
(3) 180 g of benzoic acid dissolved in benzene
(4) 180 g of glucose dissolved in water

Answer (2)
Sol. Assuming same quantity of solvent, 180 g of acetic acid will have highest moles among given solutes.

Further, in water acetic acid will dissociate leading to increase in number of solute particles.
69. The coordination geometry around the manganese in decacarbonyldimanganese(0) is
(1) Square pyramidal
(2) Square planar
(3) Octahedral
(4) Trigonal bipyramidal

Answer (3)

Sol.

Each Mn has 6 atoms surrounding it in an octahedral geometry
70. Given below are two statements:

Statement-I : Along the period, the chemical reactivity of the elements gradually increases from group 1 to group 18 .
Statement-II : The nature of oxides formed by group 1 elements is basic while that of group 17 elements is acidic.

In the light of the above statements, choose the most appropriate from the options given below :
(1) Both statement I and Statement II are true
(2) Both statement I and Statement II are false
(3) Statement I is false but statement II is true
(4) Statement I is true but statement II is false

Answer (3)

Sol. Chemical reactivity decreases in a period from left to right. Group-1 elements being metals form basic oxides, while group 17 elements being non-metals form acidic oxides.
71. A and B formed in the following reaction are :
$\mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{A}+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}$,
$\mathrm{A}+2 \mathrm{HCl}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~B}+3 \mathrm{H}_{2} \mathrm{O}$
(1) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~B}=\mathrm{CrO}_{3}$
(2) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~B}=\mathrm{CrO}_{5}$
(3) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}, \mathrm{~B}=\mathrm{CrO}_{4}$
(4) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{CrO}_{4}, \mathrm{~B}=\mathrm{CrO}_{5}$

Answer (4)

Sol. A is $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
B is CrO_{5}
72. If a substance ' A ' dissolves in solution of a mixture of ' B ' and ' C ' with their respective number of moles in n_{A}, n_{B} and nc, Mole fraction C in the solution is :
(1) $\frac{n_{B}}{n_{A}+n_{B}}$
(2) $\frac{n_{C}}{n_{A}-n_{B}-n_{C}}$
(3) $\frac{n_{C}}{n_{A}+n_{B}+n_{c}}$
(4) $\frac{n_{C}}{n_{A} \times n_{B} \times n_{c}}$

Answer (3)
Sol. Mole fraction $=\frac{\text { moles of a component }}{\text { total moles of all components }}$

$$
=\frac{n_{c}}{n_{A}+n_{B}+n_{c}}
$$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020
$25 / 402160$ Classroom + 180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

 28

73. Alkaline oxidative fusion of MnO_{2} gives " A " which on electrolytic oxidation in alkaline solution produces B. A and B respectively are
(1) MnO_{4}^{2-} and $\mathrm{Mn}_{2} \mathrm{O}_{7}$ (2) $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and MnO_{4}^{-}
(3) $\mathrm{Mn}_{2} \mathrm{O}_{3}$ and MnO_{4}^{2-}
(4) MnO_{4}^{2-} and MnO_{4}^{-}

Answer (4)

Sol. A is MnO_{4}^{2-}
B in MnO_{4}^{-}
74. The molecule/ion with square pyramidal shape is
(1) PCl_{5}
(2) PF_{5}
(3) $[\mathrm{Ni}(\mathrm{CN}) 4]^{2-}$
(4) BrF_{5}

Answer (4)

Sol. BrF_{5} has 1 lone pair and 5 bond pairs.

It has square pyramidal shape.
75. Salicylaldehyde is synthesized from phenol, when reacted with
(1) $\mathrm{CO}_{2}, \mathrm{NaOH}$
(2)

(3) $\mathrm{CCl}_{4}, \mathrm{NaOH}$
(4) $\mathrm{HCCl}_{3}, \mathrm{NaOH}$

Answer (4)

Sol. Phenol reacts with $\mathrm{CHCl}_{3}, \mathrm{NaOH}$ to give salicylaldehyde. This is Reimer-Tiemann reaction.
76. The products A and B formed in the following reaction scheme are respectively

(1)

(2)

(3)

(4)

Answer (1)

Sol. A is

B is $\mathrm{HO}-\mathrm{O}=\mathrm{N}-\mathrm{O}$
77. IUPAC name of following compound is:

(1) 2-Aminopentanenitrile
(2) 2-Aminobutanenitrile
(3) 3-Aminopropanenitrile
(4) 3-Aminobutanenitrile

Answer (4)

Sol.

3-Aminobutanenitrile

Chirag Falor
4 Year Classroom
AIR AIR (Adv.)
2020
$2340 \mid 2160$ Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

$$
\begin{aligned}
& \text { Aditya Neeraje } \\
& \text { IIT, Bombay }
\end{aligned}
$$

 36

Kamyak Channa Dhruv Sanjay Jain IIT, Bombay AIR
42

Shivanshu Kumar IIT, Madras 4 Year Classroom

78. The orange colour of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and purple colour of KMnO_{4} is due to
(1) $\mathrm{d} \rightarrow \mathrm{d}$ transitions in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and charge transfer transitions in KMnO_{4}
(2) $d \rightarrow d$ transitions in KMnO_{4} and charge transfer transitions in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(3) Charge transfer transition in both
(4) $d \rightarrow d$ transitions in both

Answer (3)

Sol. Colour in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and KMnO_{4}, both d° complexes is due to charge transfer transitions.
79. Which among the following purification methods is based on the principle of "Solubility" in two different solvents?
(1) Distillation
(2) Differential Extraction
(3) Column Chromatography
(4) Sublimation

Answer (2)

Sol. Differential extraction is based on the principle of solubility in two different solvents.
80. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

Assertion \mathbf{A} : $\mathrm{H}_{2} \mathrm{Te}$ is more acidic than $\mathrm{H}_{2} \mathrm{~S}$.
Reason R : Bond dissociation enthalpy of $\mathrm{H}_{2} \mathrm{Te}$ is lower than $\mathrm{H}_{2} \mathrm{~S}$.

In the light of the above statements, choose the most appropriate from the options given below :
(1) A is false but R is true
(2) Both A and R are true but R is NOT the correct explanation of A
(3) A is true but R is false
(4) Both A and R are true and R is the correct explanation of A

Answer (4)

Sol. Bond enthalpy of $\mathrm{H}_{2} \mathrm{Te}$ is lower than $\mathrm{H}_{2} \mathrm{~S}$, thus $\mathrm{H}_{2} \mathrm{Te}$ releases H^{+}more easily. So, it is a stronger acid.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
81. The total number of correct statements, regarding the nucleic acid is \qquad .
A. RNA is regarded as the reserve of genetic information.
B. DNA molecule self-duplicates during cell division.
C. DNA synthesizes proteins in the cell.
D. The message for the synthesis of particular proteins is present in DNA.
E. Identical DNA strands are transferred to daughter cells.

Answer (3)

Sol. DNA is regarded as reserve of genetic information. Proteins are synthesised by various RNA molecules in the cell.

Statements B, D, E are correct
82. Total number of species from the following which can undergo disproportionation reaction is \qquad -
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{ClO}_{3}^{-}, \mathrm{P}_{4}, \mathrm{Cl}_{2}, \mathrm{Ag}, \mathrm{Cu}^{+1}, \mathrm{~F}_{2}, \mathrm{NO}_{2}, \mathrm{~K}^{+}$

Answer (6)

Sol. $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{ClO}_{3}^{-}, \mathrm{P}_{4}, \mathrm{Cl}_{2}, \mathrm{Cu}^{+1}, \mathrm{NO}_{2}$ have atoms in intermediate oxidation states.
83. Number of complexes which show optical isomerism among the following is \qquad -.
cis- $\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$, cis- $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$, cis$\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$, trans-[Pt(en)$\left.{ }_{2} \mathrm{Cl}_{2}\right]^{2+}$, trans$\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-}$

Answer (4)

Sol. cis- $\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$, cis- $\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$, cis-[$\left.\mathrm{Co}\left(\mathrm{en}_{2}\right) \mathrm{Cl}_{2}\right]^{+}$ show optical isomerism
$2340 \mid 2160$ Classroom + 180 Distance \& Digital
Aakashians Qualified in JEE (Advanced) 2023

84. NO_{2} required for a reaction is produced by decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} as by equation
$2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
The initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $3 \mathrm{~mol} \mathrm{~L}^{-1}$ and it is $2.75 \mathrm{~mol} \mathrm{~L}^{-1}$ after 30 minutes.

The rate of formation of NO_{2} is $x \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ $\min ^{-1}$, value of x is \qquad . (nearest integer)

Answer (17)
Sol. $\frac{-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{3-2.75}{30}=\frac{0.25}{30}$

$$
\begin{aligned}
\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}} & =2 \times\left[\frac{-\Delta\left[\mathrm{N}_{2} \mathrm{O}_{5}\right.}{\Delta \mathrm{t}}\right] \\
& =2 \times \frac{0.25}{30} \\
& =0.017 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1} \\
& =17 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}
\end{aligned}
$$

85. Number of geometrical isomers possible for the given structure is/are \qquad .

Answer (4)
Sol. Possible geometries Left DB

Middle DB

E	-	E
Z	-	Z
E	Z	Z
Z	E	Z

Total 4 possibilities
86. Number of spectral lines obtained in He^{+}spectra, when an electron makes transition from fifth excited state to first excited state will be

Answer (10)
Sol. Number of spectral lines $=\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}+1\right)}{2}$
Where, $\mathrm{n}_{2}=6, \mathrm{n}_{1}=2$
\Rightarrow Number of spectral lines $=\frac{(6-2)(6-2+1)}{2}$

$$
=\frac{4 \times 5}{2}=10
$$

87. Number of metal ions characterized by flame test among the following is \qquad .
$\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Fe}^{2+}$
Answer (4)
Sol. Ca^{2+} - Brick red
Sr^{2+} - Crimson red
Ba^{2+} - Grassy green
Cu^{2+} - Blue green
88. Two reactions are given below :
$2 \mathrm{Fe}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}, \Delta \mathrm{H}^{\circ}=-822 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\circ}=-110 \mathrm{~kJ} / \mathrm{mol}$
Then enthalpy change for following reaction
$3 \mathrm{C}_{(\mathrm{s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})}$ is \qquad $\mathrm{kJ} / \mathrm{mol}$.

Answer (492)

Sol. Net enthalpy change

$$
\begin{aligned}
= & -(\text { (Enthalpy change of first reaction }) \\
& +3(\text { Enthalpy change of second reaction }) \\
= & 822-330 \\
= & 492
\end{aligned}
$$

89. 2-chlorobutane $+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$ (isomers)

Total number of optically active isomers shown by
$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$, obtained in the above reaction is \qquad .

Answer (6)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Sol.

When Cl attaches to
Carbon A $\rightarrow 2$ optically active isomers are formed
Carbon B \rightarrow No optically active isomer
Carbon $\mathrm{C} \rightarrow 2$ optically active isomers
Carbon $\mathrm{D} \rightarrow 2$ optically active isomers
90. The pH of an aqueous solution containing 1 M benzoic acid ($\mathrm{pK} \mathrm{a}_{\mathrm{a}}=4.20$) and 1 M sodium benzoate is 4.5 . The volume of benzoic acid solution in 300 mL of this buffer solution s \qquad mL. (given : $\log 2=0.3)$

Answer (100)

Sol. $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \left[\frac{(300-\mathrm{V})}{\mathrm{V}}\right]$

$$
\begin{aligned}
& \Rightarrow 4.5=4.2+\log \frac{(300-V)}{\mathrm{V}} \\
& \Rightarrow \frac{300-\mathrm{V}}{\mathrm{~V}}=2 \Rightarrow \mathrm{~V}=100 \mathrm{~mL}
\end{aligned}
$$

Chirag Falor 4 Year Classroom AIR JEE (Adv.) 2020

Aakash Gupta Tanishq Mandhane

$\stackrel{\text { AIR }}{2}$

IIT, Bombay

 Year ClassroomAIR
3

K
Kamyak Channa Dhruv Sanjay Jain IIT, Bombay
4 Year Classroom

AIR 42

Shivanshu Kuma IIT, Madras 4 Year Classroom and many more

Tanishka Kabra 4 Year Classroom
INDIA
AIR-16 CRL JEE (Adv.) 2022

