Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2024 (Online) Phase-1

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:
(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is Chemistry. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section - A ($\mathbf{0 1} \mathbf{- 2 0}$) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section-B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4}$ marks for correct answer and -1 mark for wrong answer.

Chirag Falor 4 Year Classroom
T AIR JIRE (Adv.) 2020

2340
2160 Classroom +180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

Kamyak Channa IIT, Bombay
4 Year Classroom

Dhruv Sanjay Jain IIT, Bombay 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. If $f(x)=\left|\begin{array}{ccc}2 \cos ^{4} x & 2 \sin ^{4} x & 3+\sin ^{2} 2 x \\ 3+2 \cos ^{4} x & 2 \sin ^{4} x & \sin ^{2} 2 x \\ 2 \cos ^{4} x & 3+2 \sin ^{4} x & \sin ^{2} 2 x\end{array}\right|$, then $\frac{1}{5} f^{\prime}(0)=$ is equal to:
(1) 1
(2) 2
(3) 6
(4) 0

Answer (4)
Sol.

$$
\begin{aligned}
& f(x)=\left|\begin{array}{ccc}
2 \cos ^{4} x & 2 \sin ^{4} x & 3+\sin ^{2} 2 x \\
3+2 \cos ^{4} x & 2 \sin ^{4} x & \sin ^{2} 2 x \\
2 \cos ^{4} x & 3+2 \sin ^{4} x & \sin ^{2} 2 x
\end{array}\right| \\
& f^{\prime}(x)=\left|\begin{array}{ccc}
8 \cos ^{3} x(-\sin x) & 2 \sin ^{4} x & 3+\sin ^{2} 2 x \\
8 \cos ^{3} x(-\sin x) & 2 \sin ^{4} x & \sin ^{2} 2 x \\
8 \cos ^{3} x(-\sin x) & 3+2 \sin ^{4} x & \sin ^{2} 2 x
\end{array}\right| \\
& +\left|\begin{array}{ccc}
2 \cos ^{4} x & 8 \sin ^{3} x \cos x & 3+\sin ^{2} 2 x \\
3+2 \cos ^{4} x & 8 \sin ^{3} x \cos x & \sin ^{2} 2 x \\
2 \cos ^{4} x & 8 \sin ^{3} x \cos x & \sin ^{2} 2 x
\end{array}\right| \\
& +\left|\begin{array}{ccc}
2 \cos ^{4} x & 2 \sin ^{4} x & 4 \sin 2 x \cos 2 x \\
3+2 \cos ^{4} x & 2 \sin ^{4} x & 4 \sin 2 x \cos 2 x \\
2 \cos ^{4} x & 3+2 \sin ^{4} x & 4 \sin 2 x \cos 2 x
\end{array}\right|
\end{aligned}
$$

$f^{\prime}(0)=\left|\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right|+\left|\begin{array}{lll}2 & 0 & 0 \\ 5 & 0 & 0 \\ 2 & 0 & 0\end{array}\right|+\left|\begin{array}{lll}2 & 0 & 0 \\ 5 & 0 & 0 \\ 2 & 0 & 0\end{array}\right|$
$f(0)=0$
$\therefore \frac{1}{5} f^{\prime}(0)=0$
2. Let $f:\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow \mathbb{R}$ be a differentiable function such that $f(0)=\frac{1}{2}$. If the $\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} f(t) d t}{e^{x^{2}}-1}=\alpha$, then $8 \alpha^{2}$ is equal to :
(1) 1
(2) 16
(3) 4
(4) 2

Answer (4)
Sol. $\lim _{x \rightarrow 0} \frac{x \int_{0}^{x} f(t) d t}{e^{x^{2}}-1}=\alpha$ and $f(0)=\frac{1}{2}$

$$
\begin{aligned}
& \lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(t) d t+x f(x)}{e^{x^{2}}(2 x)} \\
& =\lim _{x \rightarrow 0} \frac{\int_{0}^{x} f(t) d t}{e^{x^{2}}(2 x)}+\lim _{x \rightarrow 0} \frac{f(x)}{e^{x^{2}}(2)}
\end{aligned}
$$

$$
=\lim _{x \rightarrow 0} \frac{f(x)}{2\left(e^{x^{2}}+x e^{x^{2}}(2 x)\right)}+\frac{1}{4}
$$

$$
=\frac{1}{2}
$$

$\therefore \quad \alpha=\frac{1}{2}$
$\therefore \quad 8 \alpha^{2}=8 \times \frac{1}{4}=2$

3. If $2 \sin ^{3} x+\sin 2 x \cos x+4 \sin x-4=0$ has exactly 3 solutions in the interval $\left[0, \frac{n \pi}{2}\right], n \in N$, then the roots of the equation $x^{2}+n x+(n-3)=0$ belong to:
(1) $(-\infty, 0)$
(2) \mathbf{Z}
(3) $\left(-\frac{\sqrt{17}}{2}, \frac{\sqrt{17}}{2}\right)$
(4) $(0, \infty)$

Answer (1)

Sol. $2 \sin ^{3} x+\sin 2 x \cos x+4 \sin x-4=0$
$2 \sin ^{3} x+2 \sin x \cos ^{2} x+4 \sin x-4=0$
$\Rightarrow \sin ^{3} x+\sin x\left(1-\sin ^{2} x\right)+2 \sin x-2=0$
$\Rightarrow \sin ^{3} x+\sin x-\sin ^{3} x+2 \sin x-2=0$
$\Rightarrow 3 \sin x-2=0$
$\Rightarrow \quad \sin x=\frac{2}{3}$
\because It has exactly three solution in the interval $\left[0, \frac{n \pi}{2}\right], n \in \mathbb{N}$
$\Rightarrow n=9$
$\Rightarrow x^{2}+9 x+6=0$
$\Rightarrow \quad x=\frac{-9 \pm \sqrt{81-24}}{2}$
$\Rightarrow \quad x=\frac{-9 \pm \sqrt{57}}{2}$
\Rightarrow Roots belongs in the interval $(-\infty, 0)$
4. If the domain of the function $f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+\left\{\log _{e}\{3-x\}\right\}^{-1}$ is $[-\alpha, \beta)-$
$\{\gamma\}$, then $\alpha+\beta+\gamma$ is equal to
(1) 8
(2) 12
(3) 9
(4) 11

Answer (4)

Sol. $f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+\left\{\log _{e}(3-x)\right\}^{-1}$
$-1 \leq \frac{2-|x|}{4} \leq 1$
$\Rightarrow-4 \leq 2-|x| \leq 4$
$\Rightarrow-4 \leq|x|-2 \leq 4$
$\Rightarrow-2 \leq|x| \leq 6$
$|x| \leq 6$
$\Rightarrow \quad x \in[-6,6]$
also, $3-x \neq 1$

$$
\begin{equation*}
x \neq 2 \tag{2}
\end{equation*}
$$

and $3-x>0$
$\Rightarrow x<3$
From (1), (2) and (3)
$\Rightarrow \quad x \in[-6,3)-\{2\}$
$\Rightarrow \alpha=6, \beta=3, \gamma=2$
$\alpha+\beta+\gamma=6+3+2=11$
So, option (4) is correct
5. Let M denote the median of the following frequency distribution

Class	$0-4$	$4-8$	$8-12$	$12-16$	$16-20$
Frequency	3	9	10	8	6

Then 20M is equal to:
(1) 52
(2) 104
(3) 208
(4) 416

Answer (3)
Sol.

x_{i}	f_{i}	C.f
$0-4$	3	3
$4-8$	9	12
$8-12$	10	22
$12-16$	8	30
$16-20$	6	36

$N=\sum f_{i}=36$
$\left(\frac{N}{2}\right)=\frac{36}{2}=18$
So, we have median lies in the class 8-12
$\therefore \quad h=8, f=10, h=4, C . f=12$
Here, we apply formula

$$
\begin{aligned}
& M=l_{1}+\frac{\frac{N}{2}-C . f}{f} \times h \\
& =8+\frac{18-12}{10} \times 4 \\
& =8+\frac{12}{5}=\frac{52}{5} \\
& \begin{aligned}
\therefore \quad 20 M & =4 \times 52 \\
& =208
\end{aligned}
\end{aligned}
$$

6. If the circles $(x+1)^{2}+(y+2)^{2}=r^{2}$ and $x^{2}+y^{2}-4 x$ $-4 y+4=0$ intersect at exactly two distinct points, then
(1) $\frac{1}{2}<r<7$
(2) $3<r<7$
(3) $5<r<9$
(4) $0<r<7$

Answer (2)

Sol. \because Circles intersect at two distinct points,
$\Rightarrow\left|r_{1}-r_{2}\right|<c_{1} c_{2}<r_{1}+r_{2}$
$\Rightarrow|r-2|<\sqrt{9+16}<r+2$
$\Rightarrow|r-2|<5$ and $r+2>5$
$\therefore \quad-5<r-2<5$ and $r>3$
$\Rightarrow-3<r<7$ and $r>3$
$\therefore 3<r<7$
7. Two integers x and y are chosen with replacement from the set $\{0,1,2,3, \ldots, 10\}$. Then the probability that $|x-y|>5$, is:
(1) $\frac{62}{121}$
(2) $\frac{60}{121}$
(3) $\frac{30}{121}$
(4) $\frac{31}{121}$

Answer (3)

Sol. If $x=0, y=6,7,8,9,10$
If $x=1, y=7,8,9,10$
If $x=2, y=8,9,10$
If $x=3, y=9,10$
If $x=4, y=10$
If $x=5, y=$ no possible value
Total possible ways $=(5+4+3+2+1) \times 2$

$$
=30
$$

Required probability $=\frac{30}{11 \times 11}=\frac{30}{121}$
8. If the length of the minor axis of an ellipse is equal to half of the distance between the foci, then the eccentricity of the ellipse is:
(1) $\frac{1}{\sqrt{3}}$
(2) $\frac{2}{\sqrt{5}}$
(3) $\frac{\sqrt{3}}{2}$
(4) $\frac{\sqrt{5}}{3}$

Answer (2)

Sol. $\because a e=2 b$
$\therefore \frac{4 b^{2}}{a^{2}}=e^{2}$
or $4\left(1-e^{2}\right)=e^{2}$
$\therefore 4=5 e^{2}$
$\Rightarrow e=\frac{2}{\sqrt{5}}$

Chirag Falor 4 Year Classroom

2020

$2340{ }^{2160}$ Classroom + Ho Distances 8 igtal

 Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

${ }^{\text {AIR }}$

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain
9. Let $A(2,3,5)$ and $C(-3,4,-2)$ be opposite vertices of a parallelogram $A B C D$. If the diagonal $\overrightarrow{B D}=\hat{i}+2 \hat{j}+3 \hat{k}$, then the area of the parallelogram is equal to:
(1) $\frac{1}{2} \sqrt{306}$
(2) $\frac{1}{2} \sqrt{474}$
(3) $\frac{1}{2} \sqrt{586}$
(4) $\frac{1}{2} \sqrt{410}$

Answer (2)

Sol. Given opposite vertices of parallelogram.
$A(2,3,5)$ and $C(-3,4,-2)$
$\therefore \quad \overrightarrow{C A}\left(d_{1}\right)=5 \hat{i}-\hat{j}+7 \hat{k}$
Given $\overrightarrow{B D}\left(d_{2}\right)=\hat{i}+2 \hat{j}+3 \hat{k}$
\therefore As area of parallelogram

$$
=\frac{1}{2}\left|\vec{d}_{1} \times \vec{d}_{2}\right|
$$

$$
\text { Now, } \begin{aligned}
\vec{d}_{1} \times \vec{d}_{2} & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
5 & -1 & 7 \\
1 & 2 & 3
\end{array}\right| \\
& =\hat{i}(-3-14)-\hat{j}(15-7)+\hat{k}(10+1) \\
& =-17 \hat{i}-8 \hat{j}+11 \hat{k}
\end{aligned}
$$

$$
\left|\vec{d}_{1} \times \vec{d}_{2}\right|=\sqrt{(-17)^{2}+(-8)^{2}+(11)^{2}}
$$

$$
=\sqrt{289+64+121}
$$

$$
=\sqrt{474}
$$

$\therefore \quad \frac{1}{2}\left|\vec{d}_{1} \times \vec{d}_{2}\right|=\frac{1}{2} \sqrt{474}$
10. The value of $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n^{3}}{\left(n^{2}+k^{2}\right)\left(n^{2}+3 k^{2}\right)}$ is:
(1) $\frac{\pi}{8(2 \sqrt{3}+3)}$
(2) $\frac{(2 \sqrt{3}+3) \pi}{24}$
(3) $\frac{13 \pi}{8(4 \sqrt{3}+3)}$
(4) $\frac{13(2 \sqrt{3}-3) \pi}{8}$

Answer (3)

Sol. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{n^{3}}{n^{4}\left(1+\frac{k^{2}}{n^{2}}\right)\left(1+\frac{3 k^{2}}{n^{2}}\right)}$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{\left(1+\frac{k^{2}}{n^{2}}\right)\left(1+\frac{3 k^{2}}{n^{2}}\right)}
$$

$$
=\int_{0}^{1} \frac{d x}{3\left(1+x^{2}\right)\left(\frac{1}{3}+x^{2}\right)}
$$

$$
=\frac{1}{3} \times \frac{3}{2} \int_{0}^{1} \frac{\left(x^{2}-1\right)-\left(x^{2}+\frac{1}{3}\right)}{\left(1+x^{2}\right)\left(\frac{1}{3}+x^{2}\right)}
$$

$$
=\frac{1}{2} \int_{0}^{1}\left[\frac{1}{x^{2}+\left(\frac{1}{\sqrt{3}}\right)^{2}}-\frac{1}{1+x^{2}}\right] d x
$$

$$
=\frac{1}{2}\left[\sqrt{3} \tan ^{-1}(\sqrt{3} x)\right]_{0}^{1}-\frac{1}{2}\left(\tan ^{-1} x\right)_{0}^{1}
$$

$$
=\frac{\sqrt{3}}{2}\left(\frac{\pi}{3}\right)-\frac{1}{2}\left(\frac{\pi}{4}\right)
$$

$$
=\frac{\pi}{2 \sqrt{3}}-\frac{\pi}{8}
$$

$$
=\frac{\pi}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{4}\right)
$$

Aakash Gupta Tanishq Mandhane

AIR
31

36

Kamyak Channa Dhruv Sanjay Jain

uv Sanjay Jain IIT, Bombay

$=\frac{\pi}{2}\left(\frac{4-\sqrt{3}}{4 \sqrt{3}}\right)\left(\frac{4+\sqrt{3}}{4+\sqrt{3}}\right)$
$=\frac{\pi}{2}\left(\frac{16-3}{4 \sqrt{3}(4+\sqrt{3})}\right)$
$=\frac{13 \pi}{8(4 \sqrt{3}+3)}$
Option (3) is correct
11. Let S_{n} denote the sum of first n terms of an arithmetic progression. If $S_{20}=790$ and $S_{10}=145$, then $S_{14}-S_{5}$ is :
(1) 410
(2) 390
(3) 405
(4) 395

Answer (4)

Sol. Given, $S_{20}=790$ and $S_{10}=145$
$S_{20}=790=10[2 a+(19) d]$
$\Rightarrow 79=2 a+19 d$
and $S_{10}=145=5[2 a+9 d]$
$\Rightarrow 29=2 a+9 d$
Subtract equation (2) from equation (1)
$\Rightarrow 50=10 d$
$d=5$
Put it in equation (2)
$29=2 a+45$
$=-16=2 a$
$\Rightarrow a=-8$
$S_{15}=\frac{15}{2}[2(-8)+(14) 5]$
$=\frac{15}{2}[-16+70]$
$=27.15$
$=405$
$S_{5}=\frac{5}{2}[2(-8)+4 \times 5]$
$=\frac{5}{2}[-16+20]$
$=10$
$S_{15}-S_{5}=395$
12. Consider the system of linear equation $x+y+z=$ $4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^{2} z=\mu^{2}+15$, where $\lambda, \mu \in \mathbb{R}$. Which one of the following statements is NOT correct?
(1) The system has infinite number of solutions if $\lambda=\frac{1}{2}$ and $\mu=15$
(2) The system is consistent if $\lambda \neq \frac{1}{2}$
(3) The system is inconsistent if $\lambda=\frac{1}{2}$ and $\mu \neq 1$
(4) The system has unique solution if $\lambda \neq \frac{1}{2}$ and $\mu \neq 1,15$

Answer (3)

Sol. Given system of equation is

$$
\begin{aligned}
& x+y+z=4 \mu \\
& x+2 y+2 \lambda z=10 \mu \\
& x+3 y+4 \lambda^{2} z=\mu^{2}+15 \\
& \Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 2 \lambda \\
1 & 3 & 4 \lambda^{2}
\end{array}\right|=(2 \lambda-1)^{2}
\end{aligned}
$$

If $\lambda \neq \frac{1}{2}$ the system is consistent and has a unique solution.

If $\lambda=\frac{1}{2}$ the system reduces to
$x+y+z=4 \mu$
$x+2 y+z=10 \mu$
$x+3 y+z=\mu^{2}+15$

From (i) and (ii) $y=6 \mu$ and $x+z=-2 \mu$.
Putting in (iii) gives $-2 \mu+18 \mu=\mu^{2}+15$.
$\Rightarrow(\mu-1)(\mu-15)=0$.
Hence for $\lambda=\frac{1}{2}$ and $u=1$ or 15 we have consistent system with infinite number of solution.
13. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a non constant twice differentiable function such that $g^{\prime}\left(\frac{1}{2}\right)=g^{\prime}\left(\frac{3}{2}\right)$. If a real valued function f is defined as $f(x)=\frac{1}{2}[g(x)+g(2-x)]$, then
(1) $f^{\prime}(x)=0$ for exactly one x in $(0,1)$
(2) $f^{\prime}\left(\frac{3}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)=1$
(3) $f^{\prime}(x)=0$ for atleast two x in $(0,2)$
(4) $f^{\prime}(x)=0$ for no x in $(0,1)$

Answer (3)

Sol. $f(x)=\frac{1}{2}[g(x)+g(2-x)]$

$$
f^{\prime}(x)=\frac{1}{2}\left[g^{\prime}(x)-g^{\prime}(2-x)\right]
$$

Put $x=x=\frac{1}{2}$
$f^{\prime}\left(\frac{1}{2}\right)=\frac{1}{2}\left[g^{\prime}(1 / 2)-g^{\prime}(3 / 2)\right]$
= 0 [Given]
$f^{\prime}(3 / 2)=1 / 2\left[g^{\prime}(3 / 2)-g^{\prime}(1 / 2)\right]$
$=0$
$f^{\prime}(1)=1 / 2\left[g^{\prime}(1)-g^{\prime}(1)\right]$
$=0$
So curve $f(x)$ will be like

So $f^{\prime \prime}(x)=0$, atleast for 2 values of x in $(0,2)$
14. Let $y=y(x)$ be the solution of the differential equation $\sec x d y+\{2(1-x) \tan x+x(2-x)\} d x=0$ such that $y(0)=2$. Then $y(2)$ is equal to :
(1) $2\{\sin (2)+1\}$
(2) 1
(3) $2\{1-\sin (2)\}$
(4) 2

Answer (4)

Sol. Given differential equation can be written as
$d y=(2(x-1) \sin x+x(x-2) \cos x) d x$.
Integrating both sides.
$\Rightarrow \quad y=\int\left(2(x-1) \sin x+\left(x^{2}-2 x\right) \cdot \cos x\right) d x$
$y(x)=2(-(x-1) \cos x+\sin x)+\left(x^{2}-2 x\right) \sin x+$
$2(x-1) \cos x-\sin x+c$
$y(x)=\left(x^{2}-2 x\right) \sin x+c$
$y(0)=2 \Rightarrow c=2$
Hence, $y(x)=\left(x^{2}-2 x\right) \sin x+2$
$y(2)=2$
15. A line passing through the point $A(9,0)$ makes angle of 30° with the positive direction of x-axis. If this line is rotated about A through an angle of 15° in the clockwise direction, then its equation in the new position is :
(1) $\frac{y}{\sqrt{3}-2}+x=9$
(2) $\frac{x}{\sqrt{3}-2}+y=9$
(3) $\frac{y}{\sqrt{3}+2}+x=9$
(4) $\frac{x}{\sqrt{3}+2}+y=9$

Answer (1)
Sol. Inclination of line in new position $=15^{\circ}$.

$$
\Rightarrow \text { Slope }=\tan 15^{\circ}=2-\sqrt{3} .
$$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

$2540 \mid 2160$ Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

Required equation
$y-0=(2-\sqrt{3})(x-9)$.
$\Rightarrow \quad x+\frac{y}{\sqrt{3}-2}=9$
16. If $z=x+i y, x y \neq 0$, satisfies the equation $z^{2}+i \bar{z}=0$, then $\left|z^{2}\right|$ is equal to :
(1) 4
(2) 9
(3) 1
(4) $\frac{1}{4}$

Answer (3)

Sol. $z=x+i y, x \neq 0, y \neq 0 \quad \Rightarrow|z| \neq 0$

$$
\begin{aligned}
& z^{2}+i \bar{z}=0 \\
& \Rightarrow z^{2}=-\overline{i z} \\
& \Rightarrow\left|z^{2}\right|=|-i \bar{z}|=|-i||\bar{z}| \\
& \Rightarrow|z|^{2}=|z| \Rightarrow|z|(|z|-1)=0 \\
& \Rightarrow|z|=1
\end{aligned}
$$

17. Let $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$ and $\vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$ be two vectors such that $|\vec{a}|=1, \vec{a} \cdot \vec{b}=2$ and $|\vec{b}|=4$. If $\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}$, then the angle between \vec{b} and \vec{c} is equal to :
(1) $\cos ^{-1}\left(\frac{2}{3}\right)$
(2) $\cos ^{-1}\left(\frac{2}{\sqrt{3}}\right)$
(3) $\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
(4) $\cos ^{-1}\left(-\frac{1}{\sqrt{3}}\right)$

Answer (3)

Sol. $|a|^{2}|b|^{2}=|a . b|^{2}+|a \times \bar{b}|^{2}$

$$
\begin{aligned}
& \Rightarrow|\vec{a} \times \vec{b}|^{2}=16-4=12 \\
& \vec{c}=2 \vec{a} \times \vec{b}-3 \vec{b} \\
& \vec{b} . \vec{c}=2[a b b]-3|b|^{2} \\
& =0-3(16)=-48
\end{aligned}
$$

$\vec{c} \cdot \vec{c}=(2 \vec{a} \times \vec{b}-3 \vec{b}) \cdot(2 \vec{a} \times \vec{b}-3 \vec{b})$
$=\left(4(\vec{a} \times \vec{b})(\vec{a} \times \vec{b})+9|\vec{b}|^{2}-6[a b b]\right)$
$|c|^{2}=\left(4|\vec{a} \times \vec{b}|^{2}+9 \times 16\right)$
$=(48+144)=192$
Let angle between \vec{b} and \vec{c} is θ.
$\Rightarrow \vec{b} \cdot \dot{c}=|\vec{b} \| \dot{c}| \cos \theta=-48$
$\Rightarrow(4) \sqrt{192} \cos \theta=-48$
$\Rightarrow \cos \theta=\frac{-48}{4 \times \sqrt{192}}=-\sqrt{\frac{48 \times 48}{16 \times 192}}$
$=-\sqrt{\frac{3}{4}}=\frac{-\sqrt{3}}{2}$
$\theta=\cos ^{-1}\left(\frac{-\sqrt{3}}{2}\right)$
18. The area (in square units) of the region bounded by the parabola $y^{2}=4(x-2)$ and the line $y=2 x-8$, is
(1) 7
(2) 9
(3) 6
(4) 8

Answer (2)

Sol.

Area along y-axis
$\int_{-2}^{4}\left[\left(\frac{y+8}{2}\right)-\left(\frac{y^{2}+8}{4}\right)\right] d y$
$=\frac{y^{2}}{4}+4 y-\frac{y^{3}}{12}-\left.2 y\right|_{-2} ^{4}$

$2340{ }^{2160}{ }^{26}$ Classrom + Ho 1 Distance 0 igtal

Aakashians Qualified in JEE (Advanced) 2023

27

 Aditya Neeraje
 IIT, Bombay 23

31

36

Kamyak Channa Dhruv Sanjay Jain

Aakash Gupta Tanishq Mandhane
1 Year Classroom $\quad 4$ Year Classroom

Shivanshu Kuma IIT, Madras 4 Year Classroom nd many mor

$\Rightarrow\left(4+16-\frac{16}{3}-8\right)-\left(1-8+\frac{8}{12}+4\right)$
$\Rightarrow\left(12-\frac{16}{3}\right)-\left(\frac{8}{12}-3\right)=15-\left(\frac{64+8}{12}\right)$
$=15-6=9$ sq. unit
19. The maximum area of a triangle whose one vertex is at $(0,0)$ and the other two vertices lie on the curve $y=-2 x^{2}+54$ at points (x, y) and $(-x, y)$ where $y>$ 0 , is :
(1) 122
(2) 92
(3) 88
(4) 108

Answer (4)
Sol. Area of triangle
$=\frac{1}{2}\left|\begin{array}{ccc}0 & 0 & 1 \\ x & y & 1 \\ -x & y & 1\end{array}\right|$
$=\frac{1}{2}|2 x y|=|x y| \quad y>0$
$\Rightarrow-2 x^{2}+54>0$
$\Rightarrow x^{2}-27<0$
$\Rightarrow x \in(-3 \sqrt{3}, 3 \sqrt{3})$
Area $=\left|x\left(-2 x^{2}+54\right)\right|, \quad x \in(-3 \sqrt{3}, 3 \sqrt{3})$
$=\left|-2 x^{3}+54 x\right|$
$\frac{d A}{d x}=-6 x^{2}+54$
$\Rightarrow \frac{d A}{d x}$ is zero at $x=3$ or -3
$\Rightarrow \frac{d^{2} A}{d x^{2}}=-12 x$
at $x=3 \frac{d^{2} A}{d x^{2}}<0$
\Rightarrow Maxima at $x=3$
\Rightarrow Area $=|3(-2 \times 9+54)|=|36 \times 3|=108$
20. Let (α, β, γ) be the foot of perpendicular from the point $(1,2,3)$ on the line $\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$.
Then $19(\alpha+\beta+\chi)$ is equal to:
(1) 101
(2) 100
(3) 102
(4) 99

Answer (1)

Sol.

$\Rightarrow \alpha=5 k-3$
$\beta=2 k+1$
$\gamma=3 k-4$
$\alpha+\beta+\gamma=10 k-6$
$A P \perp$ to the line
$\Rightarrow(5 \hat{i}+2 \hat{j}+3 \hat{k}) \cdot((\alpha-1) i+(\beta-2) j+(\gamma-3) \hat{k})=0$
$\Rightarrow 5(\alpha-1)+2(\beta-2)+3(\gamma-3)=0$
$\Rightarrow 5 \alpha+2 \beta+3 \gamma-5-4-9=0$
$5(5 k-3)+2(2 k+1)+3(3 k-4)=18$
$\Rightarrow k(25+4+9)-15+2-12-18=0$
$\Rightarrow 38 k=43$
$\alpha+\beta+\gamma=\left(10 \times \frac{43}{38}-6\right)=\frac{5 \times 43}{19}-6$
$19(\alpha+\beta+\gamma)=5 \times 43-19 \times 6=215-114=101$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
JEE (Adv)
2022
21. A group of 40 students appeared in an examination of 3 subjects - Mathematics, Physics and Chemistry. It was found that all students passed in atleast one of the subjects, 20 students passed in Mathematics, 25 students passed in Physics, 16 students passed in Chemistry, atmost 11 students passed in both Mathematics and Physics, atmost 15 students passed in both Physics and Chemistry, atmost 15 students passed in both Mathematics and Chemistry. The maximum number of students passed in all the three subjects is \qquad .

Answer (11)

Sol. $n(M)=20$
$n(P)=25$
$n(C)=16$
$n(M \cap P)=11$
$n(P \cap C)=15$
$n(M \cap C)=15$

$n(C \cup P \cup M) \leq n(U)=40$.
$n(C)+n(P)+n(M)-n(C \cap M)-n(P \cap M)-n(C \cap$
$P)+n(C \cap P \cap M) \leq 40$
$20+25+16-11-15-15+x \leq 40$
$x \leq 20$
But $11-x \geq 0$ and $15-x \geq 0$
$\Rightarrow \quad x \geq 11$
22. The value of $9 \int_{0}^{9}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$, where $[t]$ denotes the greatest integer less than or equal to t, is \qquad .

Answer (155)

Sol. $9 \int_{0}^{9}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$
Let $I=\int_{0}^{9}\left[\sqrt{\frac{10 x}{x+1}}\right] d x$
$\frac{10 x}{x+1}=1 \Rightarrow x=\frac{1}{9}$
$\frac{10 x}{x+1}=4 \quad \Rightarrow x=\frac{2}{3}$
$\frac{10 x}{x+1}=9 \quad \Rightarrow x=9$
$I=\int_{0}^{1 / 9} 0 d x+\int_{1 / 9}^{2 / 3} 1 d x+\int_{2 / 3}^{9} 2 d x$
$=0+[x]_{1 / 9}^{2 / 3}+[2 x]_{2 / 3}^{9}$
$I=\frac{2}{3}-\frac{1}{9}+18-\frac{4}{3}$
$\Rightarrow I=\frac{155}{9}$
$\Rightarrow 9 /=155$
23. Number of integral terms in the expansion of $\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824}$ is equal to \qquad -.

Answer (138)

Sol. $\left(7^{\frac{1}{2}}+11^{\frac{1}{6}}\right)^{824}$
Number of integral term

$T_{r+1}={ }^{824} C_{r}\left(7^{\frac{1}{2}}\right)^{824-r}\left(11^{\frac{1}{6}}\right)^{r}$
$\Rightarrow r$ must be multiple of 6
$\Rightarrow r=0,6,12, \ldots .822$
$\Rightarrow 138$ term
24. Let $A=\{1,2,3, \ldots, 7\}$ and let $P(A)$ denote the power set of A. If the number of functions $f: A \rightarrow P(A)$ such that $a \in f(a), \forall a \in A$ is m^{n}, m and $n \in \mathbb{N}$ and m is least, then $m+n$ is equal to
\qquad .

Answer (44)

Sol. $n(P(A))=2^{7}$
$a \in f(a)$
$\Rightarrow f(a)$ will have $\left(2^{6}\right)$ different subsets having a in them as choice
$\Rightarrow\left(2^{6}\right)^{7}=2^{42}$ function
$m^{n}=2^{42}$
$\Rightarrow m+n=44$
25. Let $\alpha=1^{2}+4^{2}+8^{2}+13^{2}+19^{2}+26^{2}+\ldots$. up to 10 terms and $\beta=\sum_{n=1}^{10} n^{4}$. If $4 \alpha-\beta=55 k+40$, them k is equal to \qquad .

Answer (353)

Sol. $\alpha=1^{2}+4^{2}+8^{2}+13^{2}+19^{2}+26^{2}+\ldots$.

$$
\begin{aligned}
& T_{n}=\left(\frac{n^{2}+3 n-2}{2}\right)^{2} \\
& \sum T_{n}=\alpha=\sum_{n=1}^{10}\left(\frac{n^{2}+3 n-2}{2}\right)^{2} \\
& 4 \alpha=\sum_{n=1}^{10}\left(n^{2}+3 n-2\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \beta=\sum_{n=1}^{10} n^{4} \\
& 4 \alpha-\beta=\sum_{n=1}^{10}\left(9 n^{2}+4+6 n^{3}-12 n-4 n^{2}\right) \\
& =\sum_{n=1}^{10}\left(6 n^{3}+5 n^{2}-12 n+4\right) \\
& =6 \sum_{n=1}^{10} n^{3}+5 \sum_{n=1}^{10} n^{2}-12 \sum_{n=1}^{10} n+4 \sum_{n=1}^{10} 1 \\
& =6 \times\left(\frac{10 \times 11}{2}\right)^{2}+5\left(\frac{10 \times 11 \times 21}{6}\right)-12\left(\frac{10 \times 11}{2}\right)+4 \times 10 \\
& =19455=55 k+40 \\
& \Rightarrow k=353
\end{aligned}
$$

26. If d_{1} is the shortest distance between the lines $x+1=2 y=-12 z, x=y+2=6 z-6$ and d_{2} is the shortest distance between the lines
$\frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}$, then the value of $\frac{32 \sqrt{3} d_{1}}{d_{2}}$ is :

Answer (16)

Sol. $\frac{x+1}{-12}=\frac{y}{-6}=\frac{z}{1}, \frac{x}{6}=\frac{y+2}{6}=\frac{z-1}{1}$

$$
\begin{aligned}
& A_{1}(-1,0,0), A_{2}(0,-2,1), \overrightarrow{A_{1}} A_{2}=\hat{i}-2 \hat{j}+\hat{k} \\
& \vec{n}_{1}=(-12 \hat{i}-6 \hat{j}+\hat{k}), \vec{n}_{2}=6 \hat{i}+6 \hat{j}+\hat{k}
\end{aligned}
$$

$$
\vec{n}_{1} \times \vec{n}_{2}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-12 & -6 & 1 \\
6 & 6 & 1
\end{array}\right|=6(-2 \hat{i}+3 \hat{j}-6 \hat{k})
$$

$$
\Rightarrow\left|\vec{n}_{1} \times \vec{n}_{2}\right|=42
$$

$$
d_{1}=\left|\frac{\overrightarrow{A_{1} A_{2}} \cdot\left(\vec{n}_{1} \times \vec{n}_{2}\right)}{\left|\vec{n}_{1} \times \vec{n}_{2}\right|}\right|=\left|\frac{6(-2-6-6)}{7 \times 6}\right|=2
$$

Chirag Falor
4 Year Classroom
T AIR
${ }_{\text {JIRE (Adv.) }}$
2020

Aakashians Qualified in JEE (Advanced) 2023

28

Aakash Gupta Tanishq Mandhane

31

36

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

$\because \quad \frac{x-1}{2}=\frac{y+8}{-7}=\frac{z-4}{5}, \frac{x-1}{2}=\frac{y-2}{1}=\frac{z-6}{-3}$
$A_{3}=(1,-8,4), A_{4}=(1,2,6), \overrightarrow{A_{3} A_{4}}=10 \hat{j}+2 \hat{k}$
$\vec{n}_{3} \times \vec{n}_{4}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -7 & 5 \\ 2 & 1 & -3\end{array}\right|=16 \hat{i}+16 \hat{j}+16 \hat{k}$
$\Rightarrow\left|\vec{n}_{3} \times \vec{n}_{4}\right|=16 \sqrt{3}$
$d_{2}=\left|\frac{\overrightarrow{A_{3} A_{4} \cdot\left(\vec{n}_{3} \times \vec{n}_{4}\right)}}{\left|\vec{n}_{3} \times \vec{n}_{4}\right|}\right|=\frac{16(10+2)}{16 \sqrt{3}}=\frac{12}{\sqrt{3}}$
$\Rightarrow \frac{32 \sqrt{3} d_{1}}{d_{2}}=\frac{32 \sqrt{3} \times 12 \times \sqrt{3}}{12 \times 6}=16$
27. If the function $f(x)=\left\{\begin{array}{ll}\frac{1}{|x|} & ,|x| \geq 2 \\ a x^{2}+2 b, & |x|<2\end{array}\right.$ is differentiable on \boldsymbol{R}, then $48(a+b)$ is equal to
\qquad .

Answer (15)

Sol. $f(x)=\left\{\begin{array}{cc}\frac{1}{|x|}, & |x| \geq 2 \\ a x^{2}+2 b, & |x|<2\end{array}\right.$

$$
f(x)=\left\{\begin{array}{cc}
-\frac{1}{x}, & x \leq-2 \\
a x^{2}+2 b, & -2<x<2 \\
\frac{1}{x}, & x \geq 2
\end{array}\right.
$$

$$
\Rightarrow f^{\prime}(x)=\left\{\begin{array}{cc}
\frac{1}{x^{2}}, & x \leq-2 \\
2 a x, & -2<x<2 \\
-\frac{1}{x^{2}}, & x \geq 2
\end{array}\right.
$$

$f(x)$ is continuous at $x=-2 \Rightarrow \frac{1}{2}=4 a+2 b$
$f(x)$ is continuous at $x=2 \Rightarrow \frac{1}{2}=4 a+2 b$
$f(x)$ is differentiable at $x=-2 \Rightarrow \frac{1}{4}=-4 a$
$f(x)$ is differentiable at $x=2 \Rightarrow 4 a=-\frac{1}{4}$
$\Rightarrow \quad a=-\frac{1}{16}, b=\frac{3}{8}$
$\Rightarrow 48(a+b)=-3+18=15$
28. Let the latus rectum of the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{b^{2}}=1$ subtend an angle of $\frac{\pi}{3}$ at the centre of the hyperbola. If b^{2} is equal to $\frac{l}{m}(1+\sqrt{n})$, where / and m are co-prime numbers, then $R+m^{2}+n^{2}$ is equal to \qquad

Answer (182)

$$
\begin{aligned}
& \Rightarrow \tan \frac{\pi}{6}=\frac{b^{2}}{a^{2} e} \\
& \because \quad \frac{b^{2}}{a^{2}}=\left(e^{2}-1\right) \\
& \quad \frac{1}{\sqrt{3}}=\frac{e^{2}-1}{e} \Rightarrow \sqrt{3} e^{2}-e-\sqrt{3}=0
\end{aligned}
$$

Chirag Falor
4 Year Classroom
AIR
AIR (Adv.)
2020

23 H0 2160 Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

Aditya Neergje
ITT, Bombay

36

Aakash Gupta Tanishq Mandhane
IIT, Bombay IIT, Bombay
31 AIR
28

Kamyak Channa Dhruv Sanjay Jain

$$
\begin{aligned}
& e=\frac{1 \pm \sqrt{1+12}}{2 \sqrt{3}}, \because \mathrm{e}>1 \Rightarrow e=\frac{\sqrt{13}+1}{2 \sqrt{3}} \\
\Rightarrow & b^{2}=9\left(\frac{13+1+2 \sqrt{13}}{12}-1\right)=9\left(\frac{2+2 \sqrt{13}}{12}\right) \\
\Rightarrow & b^{2}=9\left(\frac{1+\sqrt{13}}{6}\right) \\
& b^{2}=\frac{3}{2}(1+\sqrt{13}) \\
\Rightarrow & I=3, m=2, n=13 \\
\Rightarrow & R+m^{2}+n^{2}=182
\end{aligned}
$$

29. Let $y=y(x)$ be the solution of the differential equation $\left(1-x^{2}\right) d y=\left[x y+\left(x^{3}+2\right) \sqrt{3\left(1-x^{2}\right)}\right] \mathrm{d} x$, $-1<x<1, y(0)=0$. If $y\left(\frac{1}{2}\right)=\frac{m}{n}, m$ and n are co-prime numbers, then $m+n$ is equal to
\qquad .

Answer (97)

Sol. $\frac{d y}{d x}+\left(\frac{x}{x^{2}-1}\right) y=\frac{\left(x^{3}+2\right) \sqrt{3}}{\sqrt{1-x^{2}}}$

$$
\text { I.F. }=e^{\int \frac{x}{x^{2}-1}}=e^{\frac{1}{2} \ln \left|x^{2}-1\right|}=\sqrt{1-x^{2}}
$$

Solution of D.E.

$$
\begin{aligned}
& y \cdot \sqrt{1-x^{2}}=\int \sqrt{3}\left(x^{3}+2\right) d x+C \\
& y \cdot \sqrt{1-x^{2}}=\sqrt{3}\left(\frac{x^{4}}{4}+2 x\right)+C \\
& \because \quad y(0)=0 \Rightarrow C=0
\end{aligned}
$$

$y \sqrt{1-x^{2}}=\sqrt{3}\left(\frac{x^{4}}{4}+2 x\right)$
$\Rightarrow y\left(\frac{1}{2}\right)=\frac{\sqrt{3}\left(\frac{1}{64}+1\right)}{\frac{\sqrt{3}}{2}}=\frac{65}{32}$
$\Rightarrow m+n=97$
30. Let $\alpha, \beta \in N$ be roots of the equation $x^{2}-70 x+\lambda=0$.

Where $\frac{\lambda}{2}, \frac{\lambda}{3} \notin \boldsymbol{N}$. If λ assumes the minimum possible value, then $\frac{(\sqrt{\alpha-1}+\sqrt{\beta-1})(\lambda+35)}{|\alpha-\beta|}$ is equal to :

Answer (60)

Sol. $x^{2}-70 x+\lambda=0$
$\alpha+\beta=70, \alpha \beta=\lambda$
$\because \frac{\lambda}{2}, \frac{\lambda}{3} \notin N, \alpha, \beta \in N$
$\Rightarrow \lambda$ is not divisible by 2 or 3
$\Rightarrow \alpha, \beta$ not divisible by 2 or 3

$$
\lambda=\alpha(70-\alpha) \Rightarrow \frac{d \lambda}{d \alpha}=70-2 \alpha
$$

λ is increasing when $\alpha \leq 35$
$\Rightarrow \lambda$ is minimum when $\alpha=5$ or $\alpha=65$
When $\alpha=1, \beta=69$ (divisible by 3) not possible

$$
\alpha \neq 2, \alpha \neq 3, \alpha \neq 4
$$

$\Rightarrow \quad \alpha=5, \beta=65$
$\Rightarrow \frac{(\sqrt{\alpha-1}+\sqrt{\beta-1})(\lambda+35)}{|\alpha-\beta|}=\frac{(2+8) \cdot(5 \times 65+35)}{60}$
$=60$

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. The electrostatic potential due to an electric dipole at a distance ' r ' varies as :
(1) $\frac{1}{r^{3}}$
(2) $\frac{1}{r^{2}}$
(3) r
(4) $\frac{1}{r}$

Answer (2)

Sol. For dipole
$V=\frac{k P}{r^{2}}$
$\Rightarrow \quad V \propto \frac{1}{r^{2}}$
32. The work function of a substance is 3.0 eV . The longest wavelength of light that can cause the emission of photoelectrons from this substance is approximately;
(1) 414 nm
(2) 400 nm
(3) 215 nm
(4) 200 nm

Answer (1)

Sol. $\lambda_{\text {th }}=\frac{h_{c}}{\phi_{0}}=\frac{1240}{3} \mathrm{~nm}$

$$
=414 \mathrm{~nm}
$$

33. Two thermodynamical processes are shown in the figure. The molar heat capacity for process A and B are C_{A} and C_{B}. The molar heat capacity at constant pressure and constant volume are represented by C_{P} and C_{V}, respectively. Choose the correct statement.

(1) $C_{A}>C_{P}>C_{V}$
(2) $C_{B}=\infty, C_{A}=0$
(3) $C_{A}=0$ and $C_{B}=\infty$
(4) $C_{P}>C_{V}>C_{A}=C_{B}$

Answer (None)

Sol. $P V^{-x}=0$
where x is slope
For $A, x=1, C_{A}=C_{V}+\frac{R}{2}$
For $B, x=\gamma, C_{B}=C_{V}+\frac{R}{\gamma+1}$
None of the options are matching.
34. The diffraction pattern of a light of wavelength 400 nm diffracting from a salt of width 0.2 mm is is focused on the focal plane of a convex lens of focal length 100 cm . The width of the $1^{\text {st }}$ secondary
(1) 0.2 mm
(2) 2 mm
(3) 0.02 mm
(4) 2 cm

Answer (2)

Chirag Falor
4 Year Classroom
T AIR
JEE (Adv.)
2020

$\begin{array}{cc}\text { IIT, Bombay } & \text { IIT, Bombay } \\ \text { 4 Year Classroom } & 4 \text { Year Classroom }\end{array}$

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 cRL
ALL
INDIA
RANK
JEE (Adv.) 2022

Sol. Angular width $=\frac{\lambda}{a}$

$$
\begin{aligned}
\therefore \quad \text { Width } & =\frac{\lambda f}{a} \\
& =\frac{400 \times 10^{-9} \times 1}{0.2 \times 10^{-3}} \\
& =2 \mathrm{~mm}
\end{aligned}
$$

35. Primary coil of a transformer is connected to 220 V ac. Primary and secondary turns of the transforms are 100 and 10 respectively. Secondary coil of transformer is connected to two series resistances shown in figure. The output voltage $\left(V_{0}\right)$ is :

(1) 15 V
(2) 22 V
(3) 44 V
(4) 7 V

Answer (4)

Sol. $\frac{E_{2}}{E_{1}}=\frac{N_{2}}{N_{1}}$

$$
\begin{array}{rlrl}
& \therefore & E_{2} & =22 \mathrm{~V} \\
& \therefore \quad V_{0} & =22-\left(\frac{15}{22}\right) 22 \\
& =7 \mathrm{~V}
\end{array}
$$

36. The ratio of the magnitude of the kinetic energy to the potential energy of an electron in the $5^{\text {th }}$ excited state of a hydrogen atom is :
(1) 4
(2) 1
(3) $\frac{1}{4}$
(4) $\frac{1}{2}$

Answer (4)

Sol. $\because K E=\frac{1}{2}(-P E)$
$K E: P E=1:-2$
37. A particle of mass m is projected with a velocity ' u ' making an angle of 30° with the horizontal. The magnitude of angular momentum of the projectile about the point of projection when the particle is at its maximum height h is :
(1) Zero
(2) $\frac{m u^{3}}{\sqrt{2} g}$
(3) $\frac{\sqrt{3}}{16} \frac{m u^{3}}{g}$
(4) $\frac{\sqrt{3}}{2} \frac{m u^{2}}{g}$

Answer (3)

Sol. $L=(m u \cos \theta) H$
$H=\frac{u^{2} \sin ^{2} \theta}{2 g}$
$L=\frac{m u^{3}}{2 g} \sin ^{2} \theta \cos \theta$
$=\frac{\sqrt{3}}{16} \frac{m u^{3}}{g}$
38. A Zener diode of breakdown voltage 10 V is used as a voltage regulator as shown in the figure. The current through the Zener diode is:

(1) 30 mA
(2) 20 mA
(3) 50 mA
(4) 0

Answer (1)

Chirag Falor
4 Year Classroom
T AIR
${ }_{\text {JEE (Adv.) }}^{\text {AIR }}$
2020

Sol. $i_{500}=\frac{10}{500}=20 \mathrm{~mA}$

$$
\begin{aligned}
& i_{200}=\frac{10}{200}=50 \mathrm{~mA} \\
& \therefore \quad i_{z}=30 \mathrm{~mA}
\end{aligned}
$$

39. Match List-I with List-II.

	List-I		List-II
(A)	Coefficient of viscosity	(I)	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
(B)	Surface tension	(II)	$\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(C)	Angular momentum	(III)	$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
(D)	Rotational kinetic energy	(IV)	$\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$

Choose the correct answer from the options given below:
(1) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
(2) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
(3) (A)-(IV), (B)-(III), (C)-(II), (D)-(I)
(4) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Answer (2)

Sol. $[\eta]=\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
$[\mathrm{S}]=\left[\mathrm{MT}^{-2}\right]$
$[\mathrm{L}]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
$[K E]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
40. Two insulated circular loop A and B of radius ' a ' carrying a current of ' ρ in the anti clockwise direction as shown in the figure. The magnitude of the magnetic induction at the centre will be:

(1) $\frac{\sqrt{2} \mu_{0} /}{a}$
(2) $\frac{\mu_{0} /}{2 a}$
(3) $\frac{\mu_{0} l}{\sqrt{2} a}$
(4) $\frac{2 \mu_{0} /}{a}$

Answer (3)

Sol. $B_{1} \& B_{2}$ are perpendicular
$\therefore \quad B_{\text {eq }}=\frac{\sqrt{2} \mu_{0} I}{2 a}=\frac{\mu_{0} I}{\sqrt{2} a}$
41. A series L.R circuit connected with an ac source $E=(25 \sin 1000 t) V$ has a power factor of $\frac{1}{\sqrt{2}}$. If the source of emf is changed to $E=(20 \sin 2000 t)$ V, the new power factor of the circuit will be:
(1) $\frac{1}{\sqrt{7}}$
(2) $\frac{1}{\sqrt{2}}$
(3) $\frac{1}{\sqrt{5}}$
(4) $\frac{1}{\sqrt{3}}$

Answer (3)

Chirag Falor
4 Year Classroom
AIR
AIR (Adv.)
2020

Kamyak Channa IIT, Bombay
4 Year Classroom $\begin{array}{cc}\text { amyak Channa } & \text { Dhruv Sanjay Jain } \\ \text { IIT, Bombay } & \text { IIT, Bombay } \\ \text { 4Year Classroom } & \text { 4Year Classroom }\end{array}$

Shivanshu Kuma IIT, Madras 4 Year Classroom位

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
AIR-16 cRL
JEE (Adv.) JEE (Adv.)
2022

Sol. For $L R$ circuit
$\cos \phi=\frac{R}{\sqrt{\left(x_{L}\right)^{2}+R^{2}}}=\frac{1}{\sqrt{2}}$
$R=x_{L}$
When $w=2 w$
$x_{L}^{\prime}=2 x_{L}$
$\therefore \quad \cos \phi^{\prime}=\frac{R}{\sqrt{4 x_{L}^{2}+R^{2}}}=\frac{1}{\sqrt{5}}$
42. A spherical body of mass 100 g is dropped from a height of 10 m from the ground. After hitting the ground, the body rebounds to a height of 5 m . The impulse of force imparted by the ground to the body is given by: (given, $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
(1) $43.2 \mathrm{~kg} \mathrm{~ms}^{-1}$
(2) $23.9 \mathrm{~kg} \mathrm{~ms}^{-1}$
(3) $2.39 \mathrm{~kg} \mathrm{~ms}^{-1}$
(4) $4.32 \mathrm{~kg} \mathrm{~ms}^{-1}$

Answer (3)
Sol. $V_{1}=\sqrt{2 g h_{1}}$
$V_{2}=\sqrt{2 g h_{2}}$
$\Delta V=\left(V_{1}+V_{2}\right)$
$\therefore \quad I=m \Delta V$
$=0.1 \times \sqrt{2 g}\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)$
$=2.39 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
43. Young's modulus of material of a wire length ' L ' and cross-sectional area A is Y. If the length of the wire is doubled and cross-sectional area is halved then Young's modulus will be:
(1) Y
(2) $2 Y$
(3) $\frac{Y}{4}$
(4) $4 Y$

Answer (1)

Sol. Youngs modulus is a property of material, it is independent of dimension.
44. A particle is placed at the point A of a frictionless track $A B C$ as shown in figure. It is gently pushed towards right. The speed of the particle when it reaches the point B is: (Take $\left.g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(1) $2 \sqrt{10} \mathrm{~m} / \mathrm{s}$
(2) $10 \mathrm{~m} / \mathrm{s}$
(3) $\sqrt{10} \mathrm{~m} / \mathrm{s}$
(4) $20 \mathrm{~m} / \mathrm{s}$

Answer (3)

Sol. By conservation of mechanical energy
$\frac{1}{2} m v^{2}=m g(\Delta h)$
$V=\sqrt{20 \times 0.5}$
$=\sqrt{10} \mathrm{~m} / \mathrm{s}$
45. All surfaces shown in figure are assumed to be frictionless and all the pulleys and the string are light. The acceleration of the block of mass 2 kg is:

(1) g
(2) $\frac{g}{2}$
(3) $\frac{g}{4}$
(4) $\frac{g}{3}$

Answer (4)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

23 MO| 2160 Classroom + 180 Distance \mathcal{A} Digital

Aakashians Qualified in JEE (Advanced) 2023
 ${ }^{23}$

Aakash Gupta Tanishq Mandhane

${ }_{3}{ }^{\text {AIR }}$

36

Kamyak Channa Dhruv Sanjay Jain 29
 IIT, Bombay IYear Classroom 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 cRL JEE (Adv.) 2022

Sol. $4 g-2 T=4\left(\frac{a}{2}\right)$
$\Rightarrow \quad T=(2 g-a)$
Now,
$T-2 g \sin 30^{\circ}=2 a$
$\Rightarrow \quad a=\frac{g}{3}$
46. At which temperature the r.m.s. velocity of a hydrogen molecule equal to that of an oxygen molecule at $47^{\circ} \mathrm{C}$?
(1) 80 K
(2) 20 K
(3) 4 K
(4) -73 K

Answer (2)

Sol. $V_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}}$
$\therefore \frac{T}{2}=\frac{(273+47)}{32}$
$\Rightarrow \quad T=20 \mathrm{~K}$
47. The gravitational potential at a point above the surface of earth is $-5.12 \times 10^{7} \mathrm{~J} / \mathrm{kg}$ and the acceleration due to gravity at that point is $6.4 \mathrm{~m} / \mathrm{s}^{2}$. Assume that the mean radius of earth to be 6400 km . The height of this point above the earth's surface is:
(1) 540 km
(2) 1200 km
(3) 1600 km
(4) 1000 km

Answer (3)

Sol. $V=\frac{-G M}{r}$
and $g=\frac{G M}{r^{2}}$
$\Rightarrow \quad r=\frac{-V}{g}=\frac{5.12 \times 10^{7}}{6.4}=8000 \mathrm{~km}$
$\Rightarrow h=r-6400=1600 \mathrm{~km}$
48. The electric field of an electromagnetic wave in free space is represented at $\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}$. The corresponding magnetic induction vector will be:
(1) $\vec{B}=E_{0} C \cos (\omega t+k z) \hat{j}$
(2) $\vec{B}=E_{0} C \cos (\omega t-k z) \hat{j}$
(3) $\vec{B}=\frac{E_{0}}{C} \cos (\omega t-k z) \hat{j}$
(4) $\vec{B}=\frac{E_{0}}{C} \cos (\omega t+k z) \hat{j}$

Answer (3)

Sol. $\vec{E} \times \vec{B}$ is along $+z$ axis and $B=\frac{E_{0}}{C}$

$$
\vec{B}=\frac{E_{0}}{C} \cos (\omega t-k z) \hat{j}
$$

49. An electric toaster has resistance of 60Ω at room temperature $\left(27^{\circ} \mathrm{C}\right)$. The toaster is connected to a 220 V supply. If the current flowing through it reaches 2.75 A , the temperature attained by toaster is around: (if $\alpha=2 \times 10^{-4} /{ }^{\circ} \mathrm{C}$)
(1) $1667^{\circ} \mathrm{C}$
(2) $694^{\circ} \mathrm{C}$
(3) $1235{ }^{\circ} \mathrm{C}$
(4) $1694{ }^{\circ} \mathrm{C}$

Answer (4)

Chirag Falor
4 Year Classroom
T AIR
JEE (Adv.)
2020

Aakash Gupła Tanishq Mandhane Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar IIT, Madras 4 Year Classroom

Sol. $R=\frac{V}{l}=\frac{220}{2.75}=80 \Omega$
and, $R=R_{0}(1+\propto \Delta T)$
$\Rightarrow 80=60\left(1+2 \times 10^{-4} \Delta T\right)$
$\Rightarrow \Delta T=1667^{\circ} \mathrm{C}$
$\therefore \quad T=27+\Delta T=1694^{\circ} \mathrm{C}$
50. A potential divider circuit is shown in figure. The output voltage V_{0} is:

(1) 2 mV
(2) 0.5 V
(3) 4 V
(4) 12 mV

Answer (2)

Sol. $V_{\text {out }}=\frac{5 \times 100}{4000} \times 4$

$$
=0.5 \mathrm{~V}
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
51. Each of three blocks P, Q and R shown in figure has a mass of 3 kg . Each of the wires A and B has cross-sectional area $0.005 \mathrm{~cm}^{2}$ and Young's modulus $2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$. Neglecting friction, the longitudinal strain on wire B is \qquad $\times 10^{-4}$. (Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Answer (2)
Sol. $a=\frac{3 g}{9}=\frac{g}{3} \mathrm{~m} / \mathrm{s}^{2}$
$T_{A}=m a=g$
$T_{B}-T_{A}=m a$
$T_{B}=2 \mathrm{~g}=20 \mathrm{~N}$

$$
\begin{aligned}
\left(\frac{\Delta L}{L}\right)=\frac{\left(T_{B}\right)}{A Y} & =\frac{20}{0.005 \times 10^{-4} \times 2 \times 10^{11}} \\
& =2 \times 10^{-4}
\end{aligned}
$$

52. The distance between object and its two times magnified real image as produced by a convex lens is 45 cm . The focal length of the lens used is
\qquad cm .

Answer (10)

Sol. $m=-2$
$v=-2 u$
$y-u=45$
$u=-15, v=30$
$\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\frac{1}{f}=\frac{1}{30}-\frac{1}{-15}$
$f=10 \mathrm{~cm}$

53. A capacitor of capacitance C and potential V has energy E. It is connected to another capacitor of capacitance $2 C$ and potential $2 V$. Then the loss of energy is $\frac{x}{3} E$, where x is \qquad -

Answer (2)

Sol. $V_{e q}=\frac{Q_{1}+Q_{2}}{3 C}=\frac{5 V}{3}$

$$
\begin{aligned}
& E=\frac{1}{2} C V^{2} \\
& \begin{aligned}
& E^{\prime}= \frac{1}{2} \times 3 C \times \frac{25}{9} V^{2}=\frac{25}{6} C V^{2} \\
& E_{\text {Loss }}=\frac{1}{2} C V^{2}+4 C V^{2}-\frac{25}{6} C V^{2} \\
&=\frac{1}{3} C V^{2} \\
& \therefore E_{\text {Loss }}=\frac{2 E}{3}
\end{aligned}
\end{aligned}
$$

54. In a closed organ pipe, the frequency of fundamental note is 30 Hz . A certain amount of water is now poured in the organ pipe so that the fundamental frequency is increased to 110 Hz . If the organ pipe has a cross-sectional area of $2 \mathrm{~cm}^{2}$, the amount of water poured in the organ tube is
\qquad g. (Take speed of sound in air is $330 \mathrm{~m} / \mathrm{s}$)

Answer (400)

Sol. $f=\frac{V}{4 l}$
$I_{1}=\frac{V}{4 f_{1}}=\frac{11}{4} \mathrm{~m}$
$I_{2}=\frac{V}{4 f_{2}}=\frac{3}{4} \mathrm{~m}$
$l_{1}-l_{2}=2 \mathrm{~m}$
$m=V \rho=2 \times 2 \times 10^{-4} \times 1000$
$=0.4 \mathrm{~kg}$
55. A electron of hydrogen atom on an excited state is having energy $E_{n}=-0.85 \mathrm{eV}$. The maximum number of allowed transitions to lower energy level is \qquad _.

Answer (6)

Sol. $E_{n}=\frac{-13.6}{n^{2}}=-0.85$
$n=4$
\therefore No. of transitions $=\frac{4 \times 3}{2}=6$
56.

Consider a Disc of mass 5 kg , radius 2 m , rotating with angular velocity of $10 \mathrm{rad} / \mathrm{s}$ about an axis perpendicular to the plane of rotation. An identical disc is kept gently over the rotating disc along the same axis. The energy dissipated so that both the discs continue to rotate together without slipping is
\qquad J.

Answer (250)

Sol. By conservation of angular momentum

$$
\begin{aligned}
& \omega=2 / \omega^{\prime} \\
& \omega^{\prime}=\frac{\omega}{2}
\end{aligned}
$$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

23 4. 2160 Classroom + 180 Distance $\&$ Digital

 Aakashians Qualified in JEE (Advanced) 2023

$E_{\text {loss }}=\frac{1}{2} l \omega^{2}-\frac{1}{2} \times 2 l \times \frac{\omega^{2}}{4}=\frac{l \omega^{2}}{4}$
$I=\frac{M R^{2}}{2}=10 \mathrm{~kg} \mathrm{~m}^{2}$
$\therefore \quad E_{\text {loss }}=\frac{10}{4} \times 100=250 \mathrm{~J}$
57. The horizontal component of earth's magnetic field at a place is $3.5 \times 10^{-5} \mathrm{~T}$. A very long straight conductor carrying current of $\sqrt{2} A$ in the direction from South east to North west is placed. The force per unit length experienced by the conductor is
\qquad $\times 10^{-6} \mathrm{~N} / \mathrm{m}$.

Answer (35)

Sol. $F=B l \ell \sin 45^{\circ}$
$=3.5 \times 10^{-5} \times \sqrt{2} \times 1 \times \frac{1}{\sqrt{2}}$
$=35 \times 10^{-6} \mathrm{~N}$
58. The displacement and the increase in the velocity of a moving particle in the time interval of t to $(t+1)$ s are 125 m and $50 \mathrm{~m} / \mathrm{s}$, respectively. The distance travelled by the particle in $(t+2)^{\text {th }} \mathbf{s}$ is \qquad m.

Answer (175)

Sol. $S_{n}=u+a\left(n-\frac{1}{2}\right)$

$$
S_{t+1}=u+a\left(t+1-\frac{1}{2}\right)
$$

$a=50 \mathrm{~m} / \mathrm{s}^{2}$
$125=u+50\left(t+\frac{1}{2}\right)$
$S_{t+2}=u+a\left(t+2-\frac{1}{2}\right)$
$=u+50\left(t+\frac{3}{2}\right)$
$=100+75=175 \mathrm{~m}$
59. Two cells are connected in opposition as shown. Cell E_{1} is of 8 V emf and 2Ω internal resistance; the cell E_{2} is 2 V emf and 4Ω internal resistance. The terminal potential difference of cell E_{2} is \qquad V.

Answer (6)

Sol. $i=\frac{E_{1}-E_{2}}{r_{1}+r_{2}}=1 \mathrm{~A}$
$\therefore V_{2}=E_{2}+i r_{2}=2+4=6 \mathrm{~V}$
60. A ceiling fan having 3 blades of length 80 cm each is rotating with an angular velocity of 1200 rpm . The magnetic field of earth in that region is 0.5 G and angle of dip is 30°. The emf induced across the blades is $N \pi \times 10^{-5} \mathrm{~V}$. The value of N is \qquad .

Answer (32)

Sol. $B_{v}=B \sin 30^{\circ}=\frac{0.5}{2} \times 10^{-4} \mathrm{~T}$

$$
\begin{aligned}
& E=\frac{\left(B_{V}\right) \omega L^{2}}{2} \\
& =\frac{0.5}{4} \times 10^{-4} \times 40 \pi \times 0.64=32 \pi \times 10^{-5} \mathrm{~V}
\end{aligned}
$$

2340
2160 Classroom +180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

2 Year Classroom

Aakash Gupta Tanishq Mandhane
 $\begin{array}{ll}\text { I Year Classroom } & 4 \text { Year Classroom }\end{array}$

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 crL JEE (Adv.) 2022

CHEMSTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. Example of vinylic halide is
(1)

(2)

(3)

(4)

Answer (2)

Sol.

vinylic halide
 are allylic halide.
62. Given below are two statements.

Statement (I): The gas liberated on warming a salt with dil $\mathrm{H}_{2} \mathrm{SO}_{4}$, turns a piece of paper dipped in lead acetate into black, it is a confirmatory test for sulphide ion.
Statement (II) : In statement-I the colour of paper turns black because of formation of lead sulphite.
In the light of the above statements, choose the most appropriate answer from the options given below
(1) Both Statement I and Statement II are false
(2) Statement I is true but Statement II is false
(3) Both Statement I and Statement II are true
(4) Statement I is false but Statement II is true

Answer (2)

Sol. $\mathrm{H}_{2} \mathrm{~S}$ turns $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ black.

Statement-I is true.
Statement-II is false.

63

This reduction reaction is known as
(1) Etard reduction
(2) Wolff-Kishner reduction
(3) Stephen reduction
(4) Rosenmund reduction

Answer (4)
Sol. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} \xrightarrow{\mathrm{H}_{2} / \mathrm{Pd} / \mathrm{BaSO}_{4}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}$
Rosenmund's reduction convert acid halides to aldehydes.
64. The final product A, formed in the following multistep reaction sequence is

(i) Mg , ether then $\mathrm{CO}_{2}, \mathrm{H}^{+}$
(ii) NH_{3}, Δ
(iii) $\mathrm{Br}_{2}, \mathrm{NaOH}$
(1)

(2)

(3)

(4)

Answer (1)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020
 Aakashians Qualified in JEE (Advanced) 2023

Tanishka Kabra 4 Year Classroom

Sol. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br} \xrightarrow[\mathrm{CO}_{2}, \mathrm{H}^{+}]{\mathrm{Mg} \text {, ether }} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}$

$$
\xrightarrow{\mathrm{NH}_{3}, \Delta} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}
$$

65. In the given reactions, identify the reagent A and reagent B.

(1) $\mathrm{A}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{~B}-\mathrm{CrO}_{3}$
(2) $\mathrm{A}-\mathrm{CrO}_{3}, \mathrm{~B}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(3) $\mathrm{A}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}, \mathrm{~B}-\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
(4) $\mathrm{A}-\mathrm{CrO}_{3}, \mathrm{~B}-\mathrm{CrO}_{3}$

Answer (2)

$\mathrm{A}=\mathrm{CrO}_{3}$
$\mathrm{B}=\mathrm{CrO}_{2} \mathrm{Cl}_{2}$
66. Match List-I with List-II.

	List-I Species		List-II Electronic distribution
(A)	Cr^{+2}	(I)	$3 \mathrm{~d}^{8}$
(B)	Mn^{+}	(II)	$3 \mathrm{~d}^{3} 4 \mathrm{~s}^{1}$
(C)	Ni^{+2}	(III)	$3 \mathrm{~d}^{4}$
(D)	V^{+}	(IV)	$3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$

Choose the correct answer from the options given below
(1) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(2) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(3) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
(4) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)

Answer (2)

Sol. $\mathrm{Cr}^{+2}=3 \mathrm{~d}^{4}$
$\mathrm{Mn}^{+}=3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
$\mathrm{Ni}^{+2}=3 \mathrm{~d}^{8}$
$\mathrm{V}^{+}=3 \mathrm{~d}^{3} 4 \mathrm{~s}^{1}$
67. Diamagnetic Lanthanoid ions are
(1) $\mathrm{Nd}^{3+} \& \mathrm{Ce}^{4+}$
(2) $\mathrm{La}^{3+} \& \mathrm{Ce}^{4+}$
(3) $\mathrm{Nd}^{3+} \& \mathrm{Eu}^{3+}$
(4) $\mathrm{Lu}^{3+} \& \mathrm{Eu}^{3+}$

Answer (2)
Sol. $\mathrm{La}^{+3}=4 f^{0}$
$\mathrm{Ce}^{+4}=4 \mathrm{f}^{0}$
Diamagnetic
68. Sugar which does not give reddish brown precipitate with Fehling's reagent, is
(1) Maltose
(2) Glucose
(3) Lactose
(4) Sucrose

Answer (4)

Sol. Aldehyde (carbonyl) group is not free in sucrose.

69. Match List-I with List-II.

	List-I Molecule		List-II Shape
(A)	BrF_{5}	(I)	T-shape
(B)	$\mathrm{H}_{2} \mathrm{O}$	(II)	See saw
(C)	CIF_{3}	(III)	Bent
(D)	SF_{4}	(IV)	Square pyramidal

Choose the correct answer from the options given below
(1) (A)-(I), (B)-(II), (C)-(IV), (D)-(III)
(2) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)
(3) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
(4) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)

Answer (4)
Sol. BrF5
Electron pair $=\frac{7+5}{2}=6$

 Bent
$\mathrm{ClF}_{3} \quad \mathrm{e}^{-}$pair $=\frac{7+3}{2}=5$

T-shape
$\mathrm{SF}_{4} \quad \mathrm{e}^{-}$pair $=\frac{6+4}{2}=5$

See saw
70. Structure of 4-Methylpent-2-enal is
(1)

(2)

(3)

(4)

Answer (2)

Sol.

4-Methylpent-2-enal
71. Compound A formed in the following reaction reacts with B gives the product C . Find out A and B .
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}+\mathrm{Na} \longrightarrow \mathrm{A} \xrightarrow{\mathrm{B}}$

(1) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{C} \equiv \stackrel{-}{\mathrm{C}} \stackrel{+}{+}, \mathrm{B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$
(2) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{C} \equiv \stackrel{-}{\mathrm{C}} \mathrm{Na}, \mathrm{B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(3) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}, \mathrm{~B}=\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}$
(4) $\mathrm{A}=\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}, \mathrm{~B}=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$

Answer (1)
Sol.

(A)
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}^{-} \mathrm{Na}^{+}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br} \longrightarrow$
(B)
$\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

72. Choose the correct statements from the following:
(A) Ethane-1, 2-diamine is a chelating ligand.
(B) Metallic aluminium is produced by electrolysis of aluminium oxide in presence of cryolite.
(C) Cyanide ion is used as ligand for leaching of silver.
(D) Phosphine act as a ligand in Wilkinson catalyst.
(E) The stability constants of Ca^{2+} and Mg^{2+} are similar with EDTA complexes.

Choose the correct answer from the options given below :
(1) (C), (D),
(2) (A), (B), (C) only
(3) (A), (D), (E) only
(4) (B), (C), (E) only

Answer (2)

Sol. (A) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ is a chelating ligand.
(B) Aluminium is extracted by electrolysis of $\mathrm{Al}_{2} \mathrm{O}_{3}$ in the presence of cryolite.
(C) Cyanide ion form complex with silver

$$
\mathrm{Ag}_{2} \mathrm{~S}+\mathrm{CN}^{-} \longrightarrow\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}
$$

(A), (B) and (C) are true.
73. Given below are two statements.

Statement (I): The orbitals having same energy are called as degenerate orbitals.

Statement (II) : In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals.

In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both Statement I and Statement II are true
(2) Both Statement I and Statement II are false
(3) Statement I is true but Statement II is false
(4) Statement I is false but Statement II is true

Answer (3)

Sol. In hydrogen 3s, 3p and 3d orbitals have same energy.
74. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{Cl}$ is an example of allyl halide.
Reason (R): Allyl halides are the compounds in which the halogen atom is attached to sp^{2} hybridised carbon atom.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both (A) and (R) are true and (R) is the correct explanation of (A)
(2) (A) is false but (R) is true
(3) (A) is true but (R) is false
(4) Both (A) and (R) are true but (R) is not the correct explanation of (A)
Answer (3)
Sol. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Sp}_{2}-\mathrm{Cl}$ is allyl halide.
Halogen is attached to sp^{3} hybridised carbon in allyl halide.
75. Following is a confirmatory test for aromatic primary amines. Identify reagent (A) and (B).

Answer (4)

Chirag Falor
4 Year Classroom
AIR
AIR (Adv.)
2020
$2340 \mid 2160$ Classroom +180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

Tanishka Kabra 4 Year Classroom
\qquad

| A |
| :--- | :--- |
| KEE (Adv $)$ |

JEE (Main)-2024 : Phase-1 (30-01-2024)-Morning

Sol.

Scarlet red dye
76. The Lassaigne's extract is boiled with dil. HNO_{3} before testing for halogens because,
(1) Silver halides are soluble in HNO_{3}
(2) $\mathrm{Ag}_{2} \mathrm{~S}$ is soluble in HNO_{3}
(3) $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN are decomposed by HNO_{3}
(4) AgCN is soluble in HNO_{3}

Answer (3)
Sol. The Lassaigne's extract is boiled with dil. HNO_{3} because it decomposes $\mathrm{Na}_{2} \mathrm{~S}$ and NaCN , if formed
$\mathrm{NaCN}+\mathrm{HNO}_{3} \longrightarrow \mathrm{NaNO}_{3}+\mathrm{HCN} \uparrow$
$\mathrm{Na}_{2} \mathrm{~S}+2 \mathrm{HNO}_{3} \longrightarrow 2 \mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{~S}$
77. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : There is a considerable increase in covalent radius from N to P . However from As to Bi only a small increase in covalent radius is observed.
Reason (R) : Covalent and ionic radii in a particular oxidation state increases down the group.
In the light of the above statements, choose the most appropriate answer from the options given below :
(1) Both (A) and (R) are true and (R) is not the correct explanation of (A)
(2) (A) is true but (R) is false
(3) Both (A) and (R) are true but (R) is the correct explanation of (A)
(4) (A) is false but (R) is true

Answer (1)

Sol. There is considerable increase in covalent radius from N to P . However from As to Bi increment in covalent radii is very small due to presence of d and f orbital electron results in increase in effective nuclear charge.

Covalent and ionic radius at particular oxidation state generally increases down the group, due to increase in shell number.
78. Aluminium chloride in acidified aqueous solution forms an ion having geometry
(1) Octahedral
(2) Tetrahedral
(3) Square planar
(4) Trigonal bipyramidal

Answer (1)

Sol. $\mathrm{AlCl}_{3} \xrightarrow[\text { aq. solution }]{\text { Acilied }}\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
Hybridisation of Al^{+3} in $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ is $s p^{3} d^{2}$ and geometry is octahedral.

79. What happens to freezing point of benzene when small quantity of naphthalene is added to benzene?
(1) First decreases and then increases
(2) Increases
(3) Decreases
(4) Remains unchanged

Answer (3)
Sol. When small quantity of naphthalene is added to benzene freezing point decreases due to decrease in vapour pressure of solution.
234012160 Classroom + 180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

Chirag Falor
4 Year Classroom
AIR
2020
 AIR
28 Aak

 ar Classroom

Tanishka Kabra 4 Year Classroom
\qquad JEE (Adv.) 2022
80. Which of the following molecule/species is most stable?
(1)

(2)

(3)

(4)

Answer (1)
Sol. The compound cyclopropenium ion is most stable, because it is an aromatic compound

\Rightarrow Aromatic

\Rightarrow Anti aromatic

SECTION - B
Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
81. On a thin layer chromatographic plate, an organic compound moved by 3.5 cm , while the solvent moved by 5 cm . The retardation factor of the organic compound is \qquad $\times 10^{-1}$.

Answer (7)

Sol. Retardation factor $=\frac{\text { Distance travelled by solute }}{\text { Distance travelled by solvent }}$

$$
\begin{aligned}
\mathrm{R}_{\mathrm{f}} & =\frac{3.5}{5}=0.7 \\
& =7 \times 10^{-1} \\
\text { Ans } & =7
\end{aligned}
$$

82. $2 \mathrm{MnO}_{4}^{-}+\mathrm{bl}^{-}+\mathrm{cH}_{2} \mathrm{O} \rightarrow \mathrm{xl}_{2}+\mathrm{yMnO}_{2}+\mathrm{zO} \mathrm{H}$

If the above equation is balanced with integer coefficients, the value of z is \qquad .

Answer (8)

Sol. $2 \mathrm{MnO}_{4}^{-}+\mathrm{bl}^{-}+\mathrm{cH}_{2} \mathrm{O} \longrightarrow \mathrm{xI}_{2}+\mathrm{yMnO}_{2}+\mathrm{zOH}^{-}$
Balanced chemical reaction is
$2 \mathrm{MnO}_{4}^{\ominus}+6 \mathrm{I}^{\ominus}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{I}_{2}+2 \mathrm{MnO}_{2}+8 \mathrm{OH}^{\ominus}$
z = 8
83. 0.05 cm thick coating of silver is deposited on a plate of $0.05 \mathrm{~m}^{2}$ area. The number of silver atoms deposited on plate are \qquad $\times 10^{23}$. (At mass $\mathrm{Ag}=108, \mathrm{~d}=7.9 \mathrm{~g} \mathrm{~cm}^{-3}$)

Answer (11)

Sol. Given density of silver coating $=7.9 \mathrm{~g} / \mathrm{cm}^{3}$
Volume of silver coating $=0.05 \times 10^{4} \mathrm{~cm}^{2} \times 0.05 \mathrm{~cm}$

$$
=25 \mathrm{~cm}^{3}
$$

$d=\frac{\text { Mass of silver coating }}{\text { Volume of silver coating }}$
$7.9=\frac{\text { Mass of silver coating }}{25 \mathrm{~cm}^{3}}$
Mass of silver coating $=7.9 \times 25 \mathrm{~g}$

$$
=197.5 \mathrm{~g}
$$

Moles of silver coating $=\frac{197.5}{108}=1.83 \mathrm{~mol}$
Atoms of silver $=1.83 \times 6.022 \times 10^{23}$

$$
=11.02 \times 10^{23}
$$

Ans $=11$

84

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $A \rightarrow B \rightarrow C \rightarrow A$ as shown in the diagram above. The total work done in the process is \qquad J.

Answer (200)

Sol. Work done = Area under curve
Work done $=\frac{1}{2} \times A C \times A B$
$1 \mathrm{dm}^{3}=0.001 \mathrm{~m}^{3}$
$A B=20 \mathrm{dm}^{3}=0.02 \mathrm{~m}^{3}$
$1 \mathrm{kPa}=1000 \mathrm{Nm}^{-2}$
$20 \mathrm{kPa}=20000 \mathrm{Nm}^{-2}$
Work done $=\frac{1}{2} \times 0.02 \times 20000 \mathrm{~J}$

$$
=200 \mathrm{~J}
$$

85. The mass of sodium acetate $\left(\mathrm{CH}_{3} \mathrm{COONa}\right)$ required to prepare 250 mL of 0.35 M aqueous solution is
\qquad g. (Molar mass of $\mathrm{CH}_{3} \mathrm{COONa}$ is 82.02 g mol^{-1})

Answer (7)

Sol. Given volume of solution $=250 \mathrm{~mL}$
Molarity of solution of $\mathrm{CH}_{3} \mathrm{COONa}=0.35 \mathrm{M}$
Molarity $=\frac{\text { Moles of } \mathrm{CH}_{3} \mathrm{COONa}}{\text { Volume of solution (in } \mathrm{mL} \text {) }} \times 1000$
$0.35=\frac{\text { Moles of } \mathrm{CH}_{3} \mathrm{COONa}}{250} \times 1000$
Moles of $\mathrm{CH}_{3} \mathrm{COONa}=\frac{0.35 \times 250}{1000}$

$$
=0.0875 \mathrm{~mol}
$$

Mass of $\mathrm{CH}_{3} \mathrm{COONa}=0.0875 \times 82.02 \mathrm{~g}$

$$
=7.18 \mathrm{~g}
$$

86. If IUPAC name of an element is "Unununnium" then the element belongs to $\mathrm{n}^{\text {th }}$ group of Periodic table. The value of n is \qquad _.

Answer (11)

Sol. IUPAC name given is Unununnium
$u n=1$
un $=1$
un = 1
Atomic number is 111 belongs to group $11^{\text {th }}$.
87. The compound formed by the reaction of ethanal with semicarbazide contains \qquad number of nitrogen atoms.
Answer (3)
Sol.

When ethanal reacts with semicarbazide, semi carbazone is formed via condensation, number of nitrogen atoms present in product is 3 .
88. The total number of molecular orbitals from 2 s and $2 p$ atomic orbitals of a diatomic molecule is \qquad _.

Answer (8)

Sol. $2 s-2 s$ combine to form two molecular orbitals $\sigma_{2 s}$ and $\sigma_{2 s}$
$2 p-2 p$ combine to form 6 molecular orbital
$\sigma_{2 p_{z}}, \sigma_{2 p_{z}}, \pi_{2 p_{x}}, \pi_{2 p_{y}}, \pi_{2 p_{x}}^{*}, \pi_{2 p_{y}}^{*}$
Total molecular orbitals formed are $6+2$

$$
=8
$$

Chirag Falor
4 Year Classroom

- AIR

JEE (Adv.)
2020
$2340{ }^{21600}$ Classroom +180 Distances 0 Digtal Aakashians Qualified in JEE (Advanced) 2023

 AIR

Tanishka Kabra 4 Year Classroom

AIR-16 cRL JEE (Adv.) 2022
89. The rate of First order reaction is $0.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at 10 minutes and $0.03 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at 20 minutes after initiation. Half life of the reaction is \qquad minutes.
(Given $\log 2=0.3010, \log 3=0.4771$)

Answer (24)

Sol. Rate of first order reaction $=0.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at time $=10 \mathrm{~min}$

Rate of first order reaction $=0.03 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$ at time $=20 \mathrm{~min}$
$r_{1}=0.04 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
$\mathrm{r}_{2}=0.03 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$
$\mathrm{t}_{1}=10 \mathrm{~min}$
$\mathrm{t}_{2}=20 \mathrm{~min}$
$k=\frac{2.303}{t_{2}-t_{1}} \log \frac{r_{1}}{r_{2}}$
$\mathrm{k}=\frac{2.303}{10} \log \frac{0.04}{0.03}$
$\mathrm{k}=0.02876 \mathrm{~min}^{-1}$
$\mathrm{t}_{\frac{1}{2}}=\frac{0.693}{\mathrm{k}}=\frac{0.0693}{0.02876}=24.09$
$\approx 24 \mathrm{~min}$
90. The pH at which $\mathrm{Mg}(\mathrm{OH})_{2}\left[\mathrm{~K}_{\mathrm{sp}}=1 \times 10^{-11}\right]$ begins to precipitate from a solution containing 0.10 M Mg^{2+} ions is \qquad .

Answer (9)

Sol. $\mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s}) \rightleftharpoons \mathrm{Mg}^{+2}(\mathrm{aq})+2 \mathrm{OH}^{\rho}(\mathrm{aq})$
At limiting condition, for precipitation to be start K_{sp}
$=Q_{\text {sp }}$
$\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Mg}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$1 \times 10^{-11}=[0.1]\left[\mathrm{OH}^{-}\right]^{2}$
$\left[\mathrm{OH}^{-}\right]=\frac{10^{-11}}{0.1}$
$10^{-10}=\left[\mathrm{OH}^{-}\right]^{2}$
$\left[\mathrm{OH}^{-}\right]=10^{-5} \mathrm{M}$
$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

$$
=5
$$

$\mathrm{pH}=14-5$

$$
=9
$$

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane
 Kamyak Channa Dhruv Sanjay Jain IIT, Bombay Year Classroom

36

Tanishka Kabra 4 Year Classroom
\qquad AIR-16 cRL
INDIA
RANK
JEE (Adv.)
2022

