Answers \& Solutions

Time : 3 hrs.
M.M. : 300

JEE (Main)-2024 (Online) Phase-1

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

(1) The test is of $\mathbf{3}$ hours duration.
(2) This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
(3) This question paper contains Three Parts. Part-A is Mathematics, Part-B is Physics and Part-C is Chemistry. Each part has only two sections: Section-A and Section-B.
(4) Section - A : Attempt all questions.
(5) Section - B : Attempt any 05 questions out of 10 Questions.
(6) Section-A ($\mathbf{0 1} \mathbf{- 2 0}$) contains 20 multiple choice questions which have only one correct answer. Each question carries $\mathbf{+ 4}$ marks for correct answer and $\mathbf{- 1}$ mark for wrong answer.
(7) Section-B(21-30) contains 10 Numerical value based questions. The answer to each question should be rounded off to the nearest integer. Each question carries $\mathbf{+ 4} \mathbf{~ m a r k s}$ for correct answer and -1 mark for wrong answer.

Chirag Falor 4 Year Classroom
T AIR JEE (Adv.) 2020

2340
2160 Classroom +180 Distance $\mathcal{\&}$ Digital
Aakashians Qualified in JEE (Advanced) 2023

Kamyak Channa IIT, Bombay
4 Year Classroom

Dhruv Sanjay Jain IIT, Bombay 4 Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer:

1. The solution curve of the differential equation $y \frac{d x}{d y}=x\left(\log _{e} x-\log _{e} y+1\right), x>0, y>0$ passing through the point $(e, 1)$ is
(1) $\left|\log _{e} \frac{x}{y}\right|=y$
(2) $\left|\log _{e} \frac{y}{x}\right|=x$
(3) $\left|\log _{e} \frac{y}{x}\right|=y^{2}$
(4) $2\left|\log _{e} \frac{x}{y}\right|=y+1$

Answer (1)

Sol. $y \frac{d x}{d y}=x\left(\log _{e} x-\log _{e} y+1\right)$

$$
\frac{d x}{d y}=\frac{x}{y}\left(\log _{e} \frac{x}{y}+1\right)
$$

Let $x=v y$
$\frac{d x}{d y}=v+y \frac{d v}{d y}$
$\Rightarrow \quad v+y \frac{d v}{d y}=v \log _{e} v+v$
$\Rightarrow \quad y \frac{d v}{d y}=v \log _{e} v$
$\Rightarrow \int \frac{d v}{v \log _{e} v}=\int \frac{d y}{y}$
$\Rightarrow \log _{e}\left(\log _{e} v\right)=\log _{e} y+\log _{e} c$
$\Rightarrow \log _{e} v=y c$
$\Rightarrow \log _{e}\left(\frac{x}{y}\right)=y c$

It passes through ($e, 1$)
$\Rightarrow \log _{e} e=c \Rightarrow c=1$
$\Rightarrow \quad y=\log _{e}\left(\frac{x}{y}\right)$
2. For $0<c<b<a$, let $(a+b-2 c) x^{2}+(b+c-2 a) x$ $+(c+a-2 b)=0$ and $\alpha \neq 1$ be one of its root. Then, among the two statements
(I) If $\alpha \in(-1,0)$, then b cannot be the geometric mean of a and c
(II) If $\alpha \in(0,1)$, then b may be the geometric mean of a and c
(1) Only (I) is true
(2) Only (II) is true
(3) Neither (I) nor (II) is true
(4) Both (I) and (II) are ture

Answer (4)

Sol. $f(x)=(a+b-2 c) x^{2}+(b+c-2 a) x+(c+a-2 b)$
Clearly $f(1)=0 \Rightarrow x=1$ in a root.
Coefficient of $x^{2}=a+b-2 c=(a-c)+(b-c)>0$.

For I, if $\alpha \in(-1,0) \Rightarrow f(-1) f(0)<0$
$\Rightarrow 2(2 a-b-c)(c+a-2 b)<0$
$\Rightarrow c+a-2 b<0$ as $2 a-b-c>0$
$\Rightarrow \frac{c+a}{2}<b \Rightarrow$ A.M. of a and c is less than b.
Hence b cannot be G.M of a and c
For II, if $\alpha \in(0,1) \Rightarrow f(0) f\left(1^{-}\right)<0$
$\Rightarrow c+a-2 b>0$ as $f\left(1^{-}\right)<0$
$\Rightarrow \frac{c+a}{2}>b \Rightarrow b$ can be G.M of a and c.

Chirag Falor
4 Year Classroom
AIR
${ }_{\text {JIRE (Adv.) }}$
2020

Kamyak Channa Dhruv Sanjay Jain

3. If $f(x)=\left|\begin{array}{ccc}x^{3} & 2 x^{2}+11+3 x \\ 3 x^{2}+2 & 2 x & x^{3}+6 \\ x^{3}-x & 4 & x^{2}-2\end{array}\right|$ for all $x \in \mathbb{R}$, then $2 f(0)+f(0)$ is equal to
(1) 24
(2) 42
(3) 48
(4) 18

Answer (2)
Sol. $f(x)=\left|\begin{array}{lll}x^{3} & 2 x^{2}+1 & 1+3 x \\ 3 x^{2}+2 & 2 x & x^{3}+6 \\ x^{3}-x & 4 & x^{2}-2\end{array}\right|$
$f^{\prime}(x)=\left|\begin{array}{lll}3 x^{2} & 2 x^{2}+1 & 1+3 x \\ 6 x & 2 x & x^{3}+6 \\ 3 x^{2}-1 & 4 & x^{2}-2\end{array}\right|$

$$
\begin{aligned}
& +\left|\begin{array}{lll}
x^{3} & 4 x & 1+3 x \\
3 x^{2}+2 & 2 & x^{3}+6 \\
x^{3}-x & 0 & x^{2}-2
\end{array}\right| \\
& +\left|\begin{array}{lll}
x^{3} & 2 x^{2}+1 & 3 \\
3 x^{2}+2 & 2 x & 3 x^{2} \\
x^{3}-x & 4 & 2 x
\end{array}\right|
\end{aligned}
$$

$f^{\prime}(0)=\left|\begin{array}{ccc}0 & 1 & 1 \\ 0 & 0 & 6 \\ -1 & 4 & -2\end{array}\right|+\left|\begin{array}{ccc}0 & 0 & 1 \\ 2 & 2 & 6 \\ 0 & 0 & -2\end{array}\right|+\left|\begin{array}{lll}0 & 1 & 3 \\ 2 & 0 & 0 \\ 0 & 4 & 0\end{array}\right|$
$f^{\prime}(0)=6+0+12$
$f^{\prime}(0)=18$
$f(0)=\left|\begin{array}{ccc}0 & 1 & 1 \\ 2 & 0 & 6 \\ 0 & 4 & -2\end{array}\right|$
$f(0)=12$

$$
\begin{aligned}
2 f(0)+f^{\prime}(0) & =24+18 \\
& =42
\end{aligned}
$$

4. $\lim _{x \rightarrow 0} \frac{e^{2|\sin x|}-2|\sin x|-1}{x^{2}}$
(1) Is equal to -1
(2) Is equal to 2
(3) Is equal to 1
(4) Does not exist

Answer (2)

Sol. $\lim _{x \rightarrow 0} \frac{e^{2|\sin x|}-2|\sin x|-1}{x^{2}}$
Since, it is an even function
$\Rightarrow \mathrm{LHL}=\mathrm{RHL}$
$\mathrm{RHL}=\lim _{x \rightarrow 0^{+}} \frac{e^{2 \sin x}-2 \sin x-1}{x^{2}}$
$=\lim _{x \rightarrow 0^{+}} \frac{e^{2 \sin x}(2 \cos x)-2 \cos x}{2 x}$
$=\lim _{x \rightarrow 0^{+}}=\left(\frac{e^{2 \sin x}-1}{2 \sin x}\right)\left(\frac{2 \sin x}{x}\right) \cos x$
$=1 \times 2 \times 1$
$=2$
5. If $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$ and $(f \circ f)(x)=g(x)$, where $g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}$, then (gogog)(4) is equal to
(1) $\frac{19}{20}$
(2) 4
(3) $-\frac{19}{20}$
(4) -4

Answer (2)

Sol. Given $f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$
and $g(x)=(f o f)(x)$
$=\frac{4\left(\frac{4 x+3}{6 x-4}\right)+3}{6\left(\frac{4 x+3}{6 x-4}\right)-4}$
$=\frac{16 x+12+18 x-12}{24 x+18-24 x+16}$
$=\frac{34 x}{34}=x$
$\therefore \quad(g \circ g \circ g)(x)=x$
$\Rightarrow(g \circ g \circ g)(4)=4$

6. For $\alpha, \beta, \gamma \neq 0$, if $\sin ^{-1} \alpha+\sin ^{-1} \beta+\sin ^{-1} \gamma=\pi$ and (α $+\beta+\gamma)(\alpha-\gamma+\beta)=3 \alpha \beta$, then γ equals
(1) $\sqrt{3}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{\sqrt{3}-1}{2 \sqrt{2}}$
(4) $\frac{1}{\sqrt{2}}$

Answer (2)

Sol. Let $\sin ^{-1} \alpha=A, \sin ^{-1} \beta=B$ and $\sin ^{-1} \gamma=C$
$\therefore \quad A+B+C=\pi$
Also, $(\alpha+\beta+\gamma)(\alpha-\gamma+\beta)=3 \alpha \beta$
$\Rightarrow(\alpha+\beta)^{2}-\gamma^{2}=3 \alpha \beta$
$\Rightarrow \alpha^{2}+\beta^{2}-\gamma^{2}=\alpha \beta$
$\Rightarrow \quad \frac{\alpha^{2}+\beta^{2}-\gamma^{2}}{2 \alpha \beta}=\frac{1}{2}$
$\Rightarrow \cos C=\frac{1}{2} \Rightarrow C=60^{\circ}$
$\therefore \quad \sin C=\frac{\sqrt{3}}{2}=\gamma$
7. The area of the region
$\left\{(x, y): y^{2} \leq 4 x, x<4, \frac{x y(x-1)(x-2)}{(x-3)(x-4)}>0 . x \neq 3\right\}$
is
(1) $\frac{8}{3}$
(2) $\frac{32}{3}$
(3) $\frac{16}{3}$
(4) $\frac{64}{3}$

Answer (2)

Sol. Case I:
When $y \geq 0$
Then $\frac{x y(x-1)(x-2)}{(x-3)(x-4)}<0$
$\frac{x(x-1)(x-2)}{(x-3)(x-4)}<0$

$x \in(1,2) \cup(3,4)$
Case II:
$y<0$
$\frac{x y(x-1)(x-2)}{(x-3)(x-4)}<0$
$\frac{x(x-1)(x-2)}{(x-3)(x-4)}>0$

$x \in(0,1) \cup(2,3)$
Required region

So, required area

$$
\begin{aligned}
& =\int_{0}^{4} \sqrt{4 x} d x=\left(2\left(x^{3 / 2}\right) \frac{2}{3}\right)_{0}^{4} \\
& =\frac{4}{3}(4 \times 2-0)=\frac{32}{3}
\end{aligned}
$$

8. Let $\alpha, \beta, \gamma, \delta \in \mathbb{Z}$ and let $A(\alpha, \beta), B(1,0), C(\gamma, \delta)$ and $D(1,2)$ be the vertices of a parallelogram $A B C D$. If $A B=\sqrt{10}$ and the points A and C lie on the line $3 y$ $=2 x+1$, then $2(\alpha+\beta+\gamma+\delta)$ is equal to
(1) 10
(2) 8
(3) 12
(4) 5

Answer (2)

Sol. $A B C D$ is a parallelogram so mid-point of $A C=$ mid-point of $B D$
$\Rightarrow\left(\frac{\alpha+\gamma}{2}, \frac{\beta+\delta}{2}\right)=\left(\frac{1+1}{2}, \frac{0+2}{2}\right)$
$\Rightarrow\left(\frac{\alpha+\gamma}{2}, \frac{\beta+\delta}{2}\right)=(1,1)$
$\Rightarrow \alpha+\gamma=2$ and $\beta+\delta=2$
So, $2(\alpha+\beta+\gamma+\delta)=2(2+2)=8$
9. Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}=\frac{(\tan x)+y}{\sin x(\sec x-\sin x \tan x)}, x \in\left(0, \frac{\pi}{2}\right)$ satisfying the condition $y\left(\frac{\pi}{4}\right)=2$. Then, $y\left(\frac{\pi}{3}\right)$ is
(1) $\sqrt{3}\left(2+\log _{e} 3\right)$
(2) $\sqrt{3}\left(1+2 \log _{e} 3\right)$
(3) $\frac{\sqrt{3}}{2}\left(2+\log _{e} 3\right)$
(4) $\sqrt{3}\left(2+\log _{e} \sqrt{3}\right)$

Answer (4)

Sol. $\frac{d y}{d x}=\frac{\tan x}{\sin x(\sec x-\sin x \tan x)}+\frac{y}{\sin x(\sec x-\sin x \tan x)}$

$$
\frac{d y}{d x}=\frac{1}{\cos x(\sec x-\sin x \tan x)}+\frac{y}{\sin x\left(\sec x-\sin ^{2} x \sec x\right)}
$$

$$
\frac{d y}{d x}=\frac{1}{1-\sin ^{2} x}+\frac{y}{\sin x \sec x\left(1-\sin ^{2} x\right)}
$$

$$
\frac{d y}{d x}=\frac{1}{\cos ^{2} x}+\frac{y}{\sin x \cos x}
$$

$$
\frac{d y}{d x}-y(\sec x \operatorname{cosec} x)=\sec ^{2} x
$$

I.F $=e^{-\int \frac{1}{\sin x \cos x} d x}$
$=e^{-2 \int \operatorname{cosec} 2 x d x}$
$=e^{-\ln \tan x}$
$=\frac{1}{\tan x}=\cot x$
$\therefore \quad y \cdot \cot x=\int \frac{1}{\cos ^{2} x} \cdot \cot x d x$
$y \cot x=\int \frac{1}{\sin x \cos x} d x$
$y \cot x=2 \int \operatorname{cosec} 2 x d x$
$y \cot x=\ln \tan x+c$
$y\left(\frac{\pi}{4}\right)=2$
$\therefore \quad 2 \cot \frac{\pi}{4}=\ln \tan \frac{\pi}{4}+c$
$2=0+c$
$2=c$
$\therefore \quad \cot x=\ln \tan x+2($ from i)
Put $x=\frac{\pi}{3}$
$y \cot \left(\frac{\pi}{3}\right)=\ln \tan \frac{\pi}{3}+2$
$y \frac{1}{\sqrt{3}}=\ln \cdot \sqrt{3}+2$
$y=\sqrt{3}[\ln (\sqrt{3})+2]$
Option (4) is correct
10. Let $g(x)$ be a linear function and
$f(x)=\left\{\begin{array}{c}g(x), \quad x \leq 0 \\ \left(\frac{1+x}{2+x}\right)^{\frac{1}{x}}, \\ , x>0\end{array}\right.$, is continuous at $x=0$. If
$f(1)=f(-1)$, then the value $g(3)$ is
(1) $\log _{e}\left(\frac{4}{9}\right)-1$
(2) $\log _{e}\left(\frac{4}{9 e^{1 / 3}}\right)$
(3) $\frac{1}{3} \log _{e}\left(\frac{4}{9}\right)+1$
(4) $\frac{1}{3} \log _{e}\left(\frac{4}{9 e^{1 / 3}}\right)$

Answer (2)

Chirag Falor
4 Year Classroom
AIR
AIR
JEE (Adv.)
2020

Aakash Gupta Tanishq Mandhane

Kamyak Channa Dhruv Sanjay Jain

Sol. Let $g(x)=a x+b$
$f(x)$ is continuous at $x=0$

$$
\begin{aligned}
\therefore & \operatorname{Lt}_{x \rightarrow 0^{+}}\left(\frac{1+x}{2+x}\right)^{\frac{1}{x}}=\left(\frac{1}{2}\right)^{\infty}=0 \\
& \operatorname{Lt}_{x \rightarrow 0^{-}} g(x)=\operatorname{Lt}_{x \rightarrow 0^{-}}^{\operatorname{Lt}} a x+b=b
\end{aligned}
$$

So, $b=0$
Now, $f(x)=\left(\frac{1+x}{2+x}\right)^{\frac{1}{x}}$
$\ln f(x)=\frac{1}{x}[\ln (1+x)-\ln (2+x)]$
$\frac{1}{f(x)} \cdot f^{\prime}(x)=\frac{x\left[\frac{1}{1+x}-\frac{1}{2+x}\right]-\ln \left(\frac{1+x}{2+x}\right)}{x^{2}}$
$f^{\prime}(1)=f(1)\left[\frac{\left(\frac{1}{2}-\frac{1}{3}\right)-\ln \left(\frac{2}{3}\right)}{1}\right]$
$f^{\prime}(1)=\frac{2}{3}\left[\frac{1}{6}-\ln \frac{2}{3}\right]$
Also $f(-1) a(-1)+b$
$f(-1)=-a$
\therefore from (1) and (2)

$$
\begin{aligned}
& -a=\frac{1}{9}-\frac{2}{3} \ln \frac{2}{3} \\
& a=\frac{2}{3} \ln \left(\frac{2}{3}\right)-\frac{1}{9}
\end{aligned}
$$

$\therefore \quad g(x)=a x$

$$
\begin{aligned}
& g(3)=3\left(\frac{2}{3} \ln \left(\frac{2}{3}\right)-\frac{1}{9}\right) \\
& g(3)=2 \ln \left(\frac{2}{3}\right)-\frac{1}{3} \\
& g(3)=\ln \frac{4}{9}-\frac{1}{3}
\end{aligned}
$$

$$
\begin{aligned}
& g(3)=\ln \frac{4}{9}-\ln e^{1 / 3} \\
& g(3)=\ln \left(\frac{4}{9 \cdot e^{1 / 3}}\right) \\
& g(3)=\log _{e}\left(\frac{4}{9 e^{1 / 3}}\right)
\end{aligned}
$$

Option (2) is correct
11. The distance of the point $Q(0,2,-2)$ form the line passing through the point $P(5,-4,3)$ and perpendicular to the lines $\vec{r}=(-3 \hat{i}+2 k)+\lambda(2 \hat{i}+3 \hat{j}+5 k), \lambda \in \mathbb{R} \quad$ and $\vec{r}=(\hat{i}-2 \hat{j}+k)+\mu(-\hat{i}+3 \hat{j}+2 k), \mu \in \mathbb{R}$ is :
(1) $\sqrt{20}$
(2) $\sqrt{54}$
(3) $\sqrt{86}$
(4) $\sqrt{74}$

Answer (4)

Sol.

$$
\begin{aligned}
& \left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 3 & 5 \\
-1 & 3 & 2
\end{array}\right| \\
& \hat{i}(6-15)-\hat{j}(4+5)+\hat{k}(6+3) \\
& -9 \hat{i}-9 \hat{j}+9 \hat{k}
\end{aligned}
$$

Required line

$$
\begin{aligned}
& \frac{x-5}{1}=\frac{y+4}{1}=\frac{z-3}{-1}=\lambda \\
& \Rightarrow \quad x=\lambda+5, y=\lambda-4, z=-\lambda+3 \\
& Q \mid(0,2,-2) \\
& \hline P(5,-4,3) R(\lambda+5, \lambda-4,-\lambda+3) \\
& \begin{aligned}
Q R \cdot I & =(\lambda+5) 1+(\lambda-6) 1+(3-\lambda+2)(-1)=0 \\
\Rightarrow \quad \lambda & =2 \\
R & =(7,-2,1) \\
Q R & =\sqrt{49+16+9} \\
& =\sqrt{74}
\end{aligned}
\end{aligned}
$$

Chirag Falor 4 Year Classroom

2020

$2340{ }^{2160}$ Classroom + Ho 1 Distance 8 igital

Aakashians Qualified in JEE (Advanced) 2023

27

 Aditya Neeraje
 IIT, Bombay AIR 28

Aakash Gupta Tanishq Mandhane

${ }^{\text {AIR }}$

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain

${ }_{4}$ Year Classroom

Tanishka Kabra 4 Year Classroom
Shivanshu Kumar IIT, Madras 4 Year Classroom
12. If the foci of a hyperbola are same as that of the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$ and the eccentricity of the hyperbola is $\frac{15}{8}$ times the eccentricity of the ellipse, then the smaller focal distance of the point $\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$ on the hyperbola, is equal to
(1) $7 \sqrt{\frac{2}{5}}+\frac{8}{3}$
(2) $14 \sqrt{\frac{2}{5}}-\frac{4}{3}$
(3) $7 \sqrt{\frac{2}{5}}-\frac{8}{3}$
(4) $14 \sqrt{\frac{2}{5}}-\frac{16}{3}$

Answer (3)

Sol. Foci of hyperbola is same as that of ellipse
$\frac{x^{2}}{9}+\frac{y^{2}}{25}=1$
$a_{1}=3$
$b_{1}=5$
foci $=\left(0, \pm b_{1} e_{1}\right)$

$$
e_{1}=\sqrt{1-\frac{a_{1}^{2}}{b_{1}^{2}}}
$$

foci $=\left(0, \pm 5 \cdot \frac{4}{5}\right)$
$e_{1}=\sqrt{1-\frac{9}{25}}=\frac{4}{5}$
foci $=(0, \pm 4)$
Take eccentricity of hyperbola $=e_{2}$
$e_{2}=\frac{15}{8} \times e_{1}=\frac{15}{8} \times \frac{4}{5}=\frac{3}{2}$
foci of hyperbola
$\left(0, \pm b_{2} e_{2}\right)=(0, \pm 4)$
$b_{2} \cdot \frac{3}{2}=4$
$b_{2}=\frac{8}{3}$
$e_{2}=\sqrt{1+\frac{a_{2}^{2}}{b_{2}^{2}}}=\sqrt{1+\frac{9 a_{2}^{2}}{64}}$
$e_{2}=\sqrt{\frac{64+9 a_{2}^{2}}{64}}$
$\frac{9}{4}=\frac{64+9 a_{2}^{2}}{64}$
$144-64=9 a_{2}^{2}$
$\frac{80}{9}=a_{2}^{2}$
Now, smaller focal distance
$\left(\sqrt{2}, \frac{14}{3} \sqrt{\frac{2}{5}}\right)$ and $(0,4)$
$\sqrt{2+\left(\frac{14}{3} \sqrt{\frac{2}{5}}-4\right)^{2}}$
$=\sqrt{\frac{1202}{45}-\frac{28}{3}} \sqrt{\frac{2}{5}}$
Which is $7 \sqrt{\frac{2}{5}}-\frac{8}{3}$
13. Let a be the sum of all coefficients in the expansion of $\left(1-2 x+2 x^{2}\right)^{2023}\left(3-4 x^{2}+2 x^{3}\right)^{2024}$ and $b=\lim _{x \rightarrow 0}\left(\frac{\int_{0}^{x} \frac{\log (1+t)}{t^{2024}+1} d t}{x^{2}}\right)$. If the equations $c x^{2}+d x+$
$e=0$ and $2 b x^{2}+a x+4=0$ have a common root, where $c, d, e \in \mathbb{R}$, then $d: c: e$ equal
(1) $1: 1: 4$
(2) $4: 1: 4$
(3) $2: 1: 4$
(4) $1: 2: 4$

Answer (1)

Chirag Falor
4 Year Classroom
AIR
AIR
JEE (Adv.)
2020
$2340 \mid 2160$ Classroom + 180 Distance $\&$ Digital
Aakashians Qualified in JEE (Advanced) 2023

AIR
2

Aakash Gupta Tanishq Mandhane

2 Year Classroom $\begin{array}{ll}1 \text { Year Classroom } & \text { IIT, Bombay } \\ & 4 \text { Year Classroom }\end{array}$

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar

Sol. Sum of all coefficients in the expansion of ($1-2 x+$ $\left.2 x^{2}\right)^{2023}\left(3-4 x^{2}+2 x^{3}\right)^{2024}$
Put $x=1$
$1^{2023 .} 1^{2024}=1$
$a=1$
$b=\lim _{x \rightarrow 0}\left[\frac{\int_{0}^{x} \frac{\log (1+t)}{t^{2024}+1} d t}{x^{2}}\right]$
Apply L-Hospital here
$\lim _{x \rightarrow 0} \frac{\frac{\log (1+x)}{x^{2024}+1}}{2 x}=\lim _{x \rightarrow 0} \frac{\log (1+x)}{2 x\left(x^{2024}+1\right)}$
Again apply L. Hospital here :
$\lim _{x \rightarrow 0} \frac{\frac{1}{1+x}}{2\left(x^{2024}+1\right)+2 x\left(2024 x^{2023}+1\right)}$
$b=\frac{1}{2}$
$2 b x^{2}+a x+4=x^{2}+x+4=0$
$D<0$
So roots are imaginary.
So they occur in pair.
So both roots have to be common.
It implies both equation are same as $c, d, e \in R$
$c x^{2}+d x+e=0$ is same as
$x^{2}+x+4=0$
$c=1, d=1, e=4$
$d: c: e=1: 1: 4$
14. Let $\vec{a}=3 \hat{i}+\hat{j}-2 k, \vec{b}=4 \hat{i}+\hat{j}+7 k \quad$ and $\vec{c}=\hat{i}-3 \hat{j}+4 k$ be three vectors. If a vectors \vec{p} satisfies $\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{p} \cdot \vec{a}=0$, then $\vec{p} \cdot(\hat{i}-\hat{j}-k)$ is equal to
(1) 36
(2) 24
(3) 28
(4) 32

Answer (4)

Sol. $\vec{a}=(3 \hat{i}+\hat{j}-2 \hat{k})$
$\vec{b}=(4 \hat{i}+\hat{j}+7 \hat{k})$
$\vec{c}=(\hat{i}-3 \hat{j}+4 \hat{k})$
$\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$
$\Rightarrow(\vec{p}-\vec{c}) \times \vec{b}=0$
$\Rightarrow \vec{p}=\vec{c}+\lambda \vec{b}$
$\because \vec{p} \cdot \vec{a}=0 \Rightarrow \vec{c} \cdot \vec{a}+\lambda \vec{b} \cdot \vec{a}=0$
$\Rightarrow \lambda=-\left(\frac{\vec{c} \cdot \vec{a}}{\vec{b} \cdot \vec{a}}\right)=-\frac{(3 \times 1+1 \times(-3)+(-2) \times 4)}{(3 \times 4+1 \times 1+(-2) \times 7)}=-8$
Here $\vec{p}=-31 \hat{i}-11 \hat{j}-52 \hat{k}$
$\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})=32$
15. If one of the diameters of the circle $x^{2}+y^{2}-10 x+4 y+13=0$ is a chord of another circle C, whose center is the point of intersection of the lines $2 x+3 y=12$ and $3 x-2 y=5$, then the radius of the circle C is :
(1) $3 \sqrt{2}$
(2) $\sqrt{20}$
(3) 4
(4) 6

Answer (4)

Sol. Given circle $x^{2}+y^{2}-10 x+4 y+13=0$

Centre (O) $\equiv(5,-2)$

Radius $(r)=\sqrt{25+4-13}$

$$
=4
$$

Point of intersection of $2 x+3 y=12$ and $3 x-2 y$
$=5$ is $(3,2)$
\Rightarrow Centre of $C\left(O^{\prime}\right)=(3,2)$
$d=O O^{\prime}=\sqrt{(5-3)^{2}+(-2-2)^{2}}=\sqrt{20}$
Radius of $C=\sqrt{r^{2}+d^{2}}$

$$
\begin{aligned}
& =\sqrt{16+20} \\
& =6
\end{aligned}
$$

16. If the system of linear equations
$x-2 y+z=-4$
$2 x+\alpha y+3 z=5$
$3 x-y+\beta z=3$
has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to
(1) 64
(2) 58
(3) 60
(4) 54

Answer (2)
Sol. $\Delta_{2}=\left|\begin{array}{ccc}1 & -4 & 1 \\ 2 & 5 & 3 \\ 3 & 3 & \beta\end{array}\right|=0$
$(5 \beta-9)+4(2 \beta-9)-9=0$
$\Rightarrow \beta=\frac{54}{13}$
$\Delta_{3}=\left|\begin{array}{ccc}1 & -2 & -4 \\ 2 & \alpha & 5 \\ 3 & -1 & 3\end{array}\right|=0$
$\Rightarrow(3 \alpha+5)+2(-9)-4(-2-3 \alpha)=0$
$\Rightarrow \alpha=\frac{1}{3}$
$\Rightarrow 12 \alpha+13 \beta=4+54=58$
17. The sum of the series
$\frac{1}{1-3 \cdot 1^{2}+1^{4}}+\frac{2}{1-3 \cdot 2^{2}+2^{4}}+\frac{3}{1-3 \cdot 3^{2}+3^{4}}+\ldots$ up to 10 -terms is
(1) $-\frac{55}{109}$
(2) $-\frac{45}{109}$
(3) $\frac{55}{109}$
(4) $\frac{45}{109}$

Answer (1)

Sol. $T_{r}=\frac{1}{1-3 . r^{2}+r^{4}}=\frac{r}{\left(r^{4}-2 r^{2}+1\right)-r^{2}}$
$=\frac{1}{2}\left[\frac{1}{r^{2}-r-1}-\frac{1}{r^{2}+r-1}\right]$
Sum of 10 terms is

$$
\begin{array}{r}
\sum_{r=1}^{10} T_{r}=\frac{1}{2}[-1-1]+\frac{1}{2}\left[1-\frac{1}{5}\right]+\frac{1}{2}\left[\frac{1}{5}-\frac{1}{11}\right]+\ldots \\
\\
+\frac{1}{2}\left[\frac{1}{89}-\frac{1}{109}\right]
\end{array}
$$

$=\frac{1}{2}\left[-1-\frac{1}{109}\right]=\frac{-55}{109}$
18. Two marbles are drawn in succession from a box containing 10 red, 30 white, 20 blue and 15 orange marbles, with replacement being made after each drawing. Then the probability, that first drawn marble is red and second drawn marble is white, is
(1) $\frac{4}{75}$
(2) $\frac{2}{3}$
(3) $\frac{2}{25}$
(4) $\frac{4}{25}$

Answer (1)
Sol. Total marbles $=10+30+20+15=75$
R : drawing a red marble in $1^{\text {st }}$

$W=$ drawing a white marble in $2^{\text {nd }}$

$$
\begin{aligned}
\Rightarrow P(R \cap W) & =\left(\frac{10}{75}\right)\left(\frac{30}{75}\right) \\
& =\left(\frac{300}{75}\right) \times \frac{1}{75}=\frac{4}{75}
\end{aligned}
$$

19. Let S be the set of positive integral values of a for which $\frac{a x^{2}+2(a+1) x+9 a+4}{x^{2}-8 x+32}<0, \forall x \in \mathbb{R}$. Then, the number of elements is S is :
(1) 0
(2) ∞
(3) 3
(4) 1

Answer (1)

Sol. $x^{2}-8 x+32>0 \forall x \in R$ as discriminant of this quadratic is $64-4 \times 32<0$
$\Rightarrow a x^{2}+2(a+1) x+9 a+4<0 \forall x \in R$
\Rightarrow Only possible when $a<0$ and $D<0$
\Rightarrow Since S is set of positive
values of $\mathrm{a} \Rightarrow S$ is a null set
$\Rightarrow n(S)=0$
20. Three rotten apples are accidently mixed with fifteen good apples. Assuming the random variable x to be the number of rotten apples in a draw of two apples, the variance of x is
(1) $\frac{57}{153}$
(2) $\frac{37}{153}$
(3) $\frac{47}{153}$
(4) $\frac{40}{153}$

Answer (4)

Sol.

X	0	1	2
$P(X)$	$\frac{35}{51}$	$\frac{15}{51}$	$\frac{1}{51}$

$P(X=0)=\frac{{ }^{15} C_{2}}{{ }^{18} C_{2}}=\frac{35}{51}$
$P(X=1)=\frac{{ }^{15} C_{1} \times{ }^{3} C_{1}}{{ }^{18} C_{2}}=\frac{15}{51}$
$P(X=2)=\frac{{ }^{3} C_{2}}{{ }^{18} C_{2}}=\frac{1}{51}$
$\mu_{x}=\sum X P(X)=0 \times \frac{35}{51}+\frac{1 \times 15}{51}+\frac{2 \times 1}{51}=\frac{17}{51}$
$\sigma_{x}^{2}=$ Variance $=\left(\sum X^{2} P(X)\right)-\mu_{x}^{2}$
$=\left(0 \times \frac{35}{51}+\frac{1 \times 15}{51}+\frac{4 \times 1}{51}\right)-\left(\frac{17}{51}\right)^{2}$
$=\frac{19}{51}-\left(\frac{17}{51}\right)^{2}=\frac{19}{51}-\frac{1}{9}=\frac{40}{153}$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
21. Let $S=(-1, \infty)$ and $f: S \rightarrow \mathbb{R}$ be define as

$$
f(x)=\int_{-1}^{x}\left(e^{t}-1\right)^{11}(2 t-1)^{5}(t-2)^{7}(t-3)^{12}(2 t-10)^{61} d t
$$

Let $p=$ sum of squares of the values of x, where $f(x)$ attains local maxima on S, and $q=$ sum of the values of x, where $f(x)$ attains local minima on S. Then, the value of $p^{2}+2 q$ is \qquad

Answer (27)

Sol. $f^{\prime}(x)=\left(e^{x}-1\right)(2 x-1)^{5}(x-2)^{7}(x-3)^{12}(2 x-10)^{61}=0$
Point of extremum $=0, \frac{1}{2}, 2,3,5$

maxima $=\{0,2\}$
minima $=\left\{\frac{1}{2}, 5\right\}$
$p=0+(2)^{2}=4$
$q=\frac{1}{2}+5=\frac{11}{2}$
$p^{2}+2 q=16+\frac{11}{2} \times 2=27$

Chirag Falor
4 Year Classroom
AIR
JIR (Adv.)
2020

$2540 \mid 2160$ Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

 42

Shivanshu Kumar IIT, Madras Year Classroom

22. If α denotes the number of solutions of
$|1-i|^{x}=2^{x}$ and $\beta=\left(\frac{|z|}{\arg (z)}\right)$, where
$z=\frac{\pi}{4}(1+i)^{4}\left[\frac{1-\sqrt{\pi i}}{\sqrt{\pi+i}}+\frac{\sqrt{\pi-i}}{1+\sqrt{\pi i}}\right], i=\sqrt{-1}$, then the distance of the point (α, β) from the line $4 x-3 y=$ 7 is \qquad

Answer (3)

Sol. $z=\frac{\pi}{4}(1+i)^{4}\left[\frac{1+\pi+\pi+1}{i(1+\pi)-\sqrt{\pi}+\sqrt{\pi}}\right]$
$=\frac{\pi}{4}(1+i)^{4} \frac{2}{i}=\frac{\pi}{2} \frac{(1+i)^{4}}{i}=\frac{-\pi}{2} i(1+i)^{4}$
$|z|=\left|\frac{-\pi}{2}\right||i||1+i|^{4}=2 \pi$
$z=\frac{-\pi}{2}(-4 i)=2 \pi i \Rightarrow \arg (z)=\frac{\pi}{2}$
$\Rightarrow \beta=\frac{2 \pi}{\frac{\pi}{2}}=4$
Also $|1-i|^{x}=2^{x}$
$(\sqrt{2})^{x}=2^{x}$
$\Rightarrow x=0$
$\Rightarrow 1$ solution $\Rightarrow \alpha=1$
Now perpendicular distance of $4 x-3 y=7$ from (1,4)
$\left|\frac{4(1)-3(4)-7}{5}\right|=3$
23. The total number of words (with or without meaning) that can be formed out of the letters of the word 'DISTRIBUTION' taken four at a time, is equal

Answer (3734)

Sol. $I \rightarrow 3, T \rightarrow 2, D, S, R, B, U, O, N \rightarrow 1$.
All distinct $={ }^{9} C_{4} \times 4!=3024$
2 Alike +2 different $={ }^{2} C_{1} \times{ }^{8} C_{2} \times \frac{4!}{2!}=672$

2 Alike +2 other Alike $={ }^{2} C_{2} \times \frac{4!}{2!2!}=6$
3 Alike +1 different $={ }^{1} C_{1} \times{ }^{8} C_{1} \times \frac{4!}{3!}=32$
Total words $=3734$
24. Let the foci and length of the latus rectum of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ be $(\pm 5,0)$ and $\sqrt{50}$, respectively. Then, the square of the eccentricity of the hyperbola $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2} b^{2}}=1$ equals

Answer (51)

Sol. $a e=5$
$\frac{2 b^{2}}{a}=\sqrt{50}$
$b^{2}=\frac{5 \sqrt{2}}{2} a$
$b^{2}=a^{2}\left(1-e^{2}\right)$
$\frac{5 \sqrt{2}}{2}=a\left(1-e^{2}\right)$
$\Rightarrow \frac{5}{e}\left(1-e^{2}\right)=\frac{5}{\sqrt{2}}$
$\sqrt{2}\left(5-5 e^{2}\right)=5 e$
$\Rightarrow 5 \sqrt{2} e^{2}+5 e-5 \sqrt{2}=0$
$\sqrt{2} e^{2}+e-\sqrt{2}=0$
$\Rightarrow e=-\sqrt{2}($ rejected $), e=\frac{1}{\sqrt{2}}$
from $a e=5 \Rightarrow a=5 \sqrt{2}$ and $b^{2}=25$
Now eccentricity of $\frac{x^{2}}{b^{2}}-\frac{y^{2}}{a^{2} b^{2}}=1$
$e^{2}=1+\frac{a^{2} b^{2}}{b^{2}}=1+a^{2}=51$
25. Let $A=\{1,2,3,4\}$ and $R=\{(1,2),(2,3),(1,4)\}$ be a relation on A. Let S be the equivalence relation on A such that $R \subset S$ and the number of elements in S is n. Then, the minimum value of n is \qquad

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

234012160 Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

Answer (16)

Sol. $A=\{1,2,3,4\}$
$R=\{(1,2),(2,3),(1,4)\}$
S is equivalence
for $R<S$ and reflexive
$\{(1,1),(2,2),(3,3),(4,4)\}$
for symmetric
$\{(2,1),(4,1),(3,2)\}$
for transitive
$\{(1,3),(3,1),(4,2),(2,4)\}$
Now set $S=\{(1,1),(2,2),(3,3),(4,4),(1,2),(2$, $3),(1,4),(4,3),(3,4),(2,1),(4,1),(3,2),(1,3),(3$, 1), $(4,2),(2,4)\}$ $n(S)=16$
26. Let Q and R be the feet of perpendiculars from the point $P(a, a, a)$ on the lines $x=y, z=1$ and $x=-y$, $z=-1$ respectively. If $\angle Q P R$ is a right angle, then $12 a^{2}$ is equal to \qquad
Answer (12)

Sol.

$P Q \cdot(\hat{i}+\hat{j})=0$
$\Rightarrow(\lambda-a)+(\lambda-a)=0$
$\Rightarrow \lambda=a \Rightarrow Q(a, a, 1)$

$\overrightarrow{P R} \cdot(\hat{i}-\hat{j})=0$
$\Rightarrow(t-a)-(-t-a)=0 \Rightarrow \quad t=0$
$\Rightarrow \quad R(0,0,-1)$
$\because \overrightarrow{P Q} \cdot \overrightarrow{P R}=0$
$((1-a) \hat{k}) \cdot(-a \hat{i}-a \hat{j}-(a+1) \hat{k}=0$
$\Rightarrow a^{2}=1$
$12 a^{2}=12$
27. In the expansion of $(1+x)\left(1-x^{2}\right)$
$\left(1+\frac{3}{x}+\frac{3}{x^{2}}+\frac{1}{x^{3}}\right)^{5}, x \neq 0$, the sum of the coefficients of x^{3} and x^{-13} is equal to \qquad
Answer (118)
Sol. $E(x)=\frac{1}{x^{15}}(1+x)\left(1-x^{2}\right)\left(1+3 x+3 x^{2}+x^{3}\right)^{5}$

$$
\begin{aligned}
& =\frac{1}{x^{15}}(1+x)(1-x)(1+x)(1+x)^{15} \\
& =\frac{1}{x^{15}}(1-x)(1+x)^{17} \\
& =\frac{(1+x)^{17}}{x^{15}}-\frac{(1+x)^{17}}{x^{14}}
\end{aligned}
$$

\Rightarrow Coefficient of x^{3} in $E(x)=0-1=-1$
Coefficient of $x{ }^{-13}$ in $E(x)={ }^{17} C_{2}-{ }^{17} C_{1}$
$=136-17=119$
\Rightarrow Sum $=118$
28. If the integral $525 \int_{0}^{\frac{\pi}{2}} \sin 2 x \cos ^{\frac{11}{2}} x\left(1+\operatorname{Cos}^{\frac{5}{2}}\right)^{\frac{1}{2}} d x$ is equal to $(n \sqrt{2}-64)$, then n is equal to \qquad

Answer (176)

Sol. $I=525 \int_{0}^{\frac{\pi}{2}} \sin 2 x \cos ^{\frac{11}{2}} x\left(1+\cos ^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x$
$=525 \int_{0}^{\frac{\pi}{2}} 2 \sin x \cos x \cos x^{\frac{11}{2}} x\left(1+\cos ^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x$
$=1050 \int_{0}^{\frac{\pi}{2}} \sin x \cdot \cos x^{\frac{13}{2}} x\left(1+\cos ^{\frac{5}{2}} x\right)^{\frac{1}{2}} d x$

Chirag Falor 4 Year Classroom

- AIR

JEE (Adv.)
2020

 Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

AIR
20
 Year Classroom

AIR
27

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain

AIR 42

Shivanshu Kumar IIT, Madras

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
AIR-16 cRL
JEE (Adv.)
2022
$\operatorname{Put}\left(1+\cos ^{\frac{5}{2}} x\right)=t$
$\Rightarrow \frac{5}{2} \cos ^{\frac{3}{2}} x(-\sin x) d x=d t$
$I=1050 \int_{2}^{1}-\frac{2}{5} \cos ^{5} x \cdot \sqrt{t} d t$
$=-420 \int_{2}^{1}(t-1)^{2} \sqrt{t} d t$
$=420 \int_{1}^{2}\left(t^{\frac{5}{2}}-2 t^{\frac{3}{2}}+t^{\frac{1}{2}}\right) d t$
$=420\left[\frac{2}{7} t^{\frac{7}{2}}-2 \times \frac{2}{5} t^{\frac{5}{2}}+\frac{2}{3} t^{\frac{3}{2}}\right]_{1}^{2}$
$=420\left(\sqrt{2}\left(\frac{16}{7}-\frac{16}{5}+\frac{4}{3}\right)-\left(\frac{2}{7}-\frac{4}{5}+\frac{2}{3}\right)\right)$
$=176 \sqrt{2}-64$
$\Rightarrow n=176$
29. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{4 x}{4^{x}+2}$ and

$$
\begin{aligned}
& M=\int_{f(a)}^{f(1-a)} x \sin ^{4}(x(1-x)) d x, \\
& N=\int_{f(a)}^{f(1-a)} \sin ^{4}(x(1-x)) d x ; a \neq \frac{1}{2} . \text { If } \alpha M=\beta N, \\
& \alpha, \beta, \in N, \text { then the least value of } \alpha^{2}+\beta^{2} \text { is equal } \\
& \text { to }
\end{aligned}
$$

Answer (5)
Sol. $f(x)+f(1-x)=\frac{4^{x}}{4^{x}+2}+\frac{4^{1-x}}{4^{1-x}}$
$=\frac{4^{x}}{4^{x}+2}+\frac{4}{4+2 \cdot 4^{x}}$
$=\frac{4^{x}+2}{4^{x}+2}=1$
$\Rightarrow M=\int_{f(a)}^{f(1-a)} x \sin ^{4}(x(1-x)) d x$
$x \rightarrow f(a)+f(1-a)-x=1-x$
$M=\int_{f(a)}^{f(1-a)}(1-x) \sin ^{4}((1-x) x) d x$
$M=N-M \Rightarrow \frac{M}{N}=\frac{1}{2}=\frac{\beta}{\alpha}$
$\Rightarrow\left(\alpha^{2}+\beta^{2}\right)_{\text {least }}=1+4=5$
30. Let \vec{a} and \vec{b} be two vectors such that $|\vec{a}|=1$,
$|\vec{b}|=4$, and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$ and the angle between \vec{b} and \vec{c} is α, then $192 \sin ^{2} \alpha$ is equal to

Answer (48)

Sol. $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$

$$
\begin{aligned}
& |\vec{c}|^{2}=|(2 \vec{a} \times \vec{b})-3 \vec{b}| \\
& =(2|\vec{a} \times \vec{b}|)^{2}+|3 \vec{b}|^{2}-12(\vec{a} \times \vec{b})^{2} \cdot \vec{b} \\
& =4\left(|\vec{a}|^{2}|\vec{b}|^{2}-(\vec{a} \cdot \vec{b})^{2}\right)+9|\vec{b}|^{2} \\
& =4(16-4)+144=192 \\
& \vec{b} \cdot \vec{c}=-3 \vec{b} \cdot \vec{b}=-48 \\
& |\vec{b}| \cdot|\vec{c}| \cos \alpha=-48 \\
& \cos \alpha=\frac{-48}{4 \times \sqrt{192}}=-\frac{12}{\sqrt{192}} \\
& \sin ^{2} \alpha=1-\frac{144}{192} \Rightarrow 192 \sin ^{2} \alpha=48
\end{aligned}
$$

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

31. Four identical particles of mass m are kept at the four corners of a square. If the gravitational force exerted on one of the masses by the other masses is $\left(\frac{2 \sqrt{2}+1}{32}\right) \frac{G m^{2}}{L^{2}}$, the length of the sides of the square is
(1) $2 L$
(2) $3 L$
(3) $4 L$
(4) $\frac{L}{2}$

Answer (3)

Sol. Let a side length
Force on a mass $=\frac{G m^{2}}{a^{2}}\left(\sqrt{2}+\frac{1}{2}\right)$
$\because\left(\frac{2 \sqrt{2}+1}{32}\right) \frac{G m^{2}}{L^{2}}=\frac{G m^{2}}{a^{2}}\left(\sqrt{2}+\frac{1}{2}\right)$
$\Rightarrow \quad a=4 L$
32. Two charges q and $3 q$ are separated by a distance ' r ' in air. At a distance x from charge q, the resultant electric field is zero. The value of x is :
(1) $\frac{r}{3(1+\sqrt{3})}$
(2) $\frac{(1+\sqrt{3})}{r}$
(3) $\frac{r}{(1+\sqrt{3})}$
(4) $r(1+\sqrt{3})$

Answer (3)

Sol. $\frac{k q}{x^{2}}=k \frac{(3 q)}{(r-x)^{2}}$
$\Rightarrow \quad x=\frac{r}{(\sqrt{3}+1)}$
33. In a plane EM wave, the electric field oscillates sinusoidally at a frequency of $5 \times 10^{10} \mathrm{~Hz}$ and an amplitude of $50 \mathrm{Vm}^{-1}$. The total average energy density of the electromagnetic field of the wave is : [Use $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2}$]
(1) $4.425 \times 10^{-8} \mathrm{Jm}^{-3}$
(2) $2.212 \times 10^{-8} \mathrm{Jm}^{-3}$
(3) $1.106 \times 10^{-8} \mathrm{Jm}^{-3}$
(4) $2.212 \times 10^{-10} \mathrm{Jm}^{-3}$

Answer (3)

Sol. $u=\frac{1}{2} \varepsilon_{0} E^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times\left(8.85 \times 10^{-12}\right) \times(50)^{2} \\
& =1.106 \times 10^{-8} \mathrm{Jm}^{-3}
\end{aligned}
$$

34. A small steel ball is dropped into a long cylinder containing glycerine. Which one of the following is the correct representation of the velocity time graph for the transit of the ball?
(1)

(2)

(3)

(4)

Answer (2)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

$2340 \mid 2160$ Classroom + 180 Distance $\&$ Digital

 Aakashians Qualified in JEE (Advanced) 2023

Sol. $a=\left(\frac{m g-v \rho g}{m}\right)-\left(\frac{6 \pi n r}{m}\right) v$
$a=C_{1}-C_{2} v$
$\therefore \int_{0}^{v} \frac{d v}{C_{1}-C_{2}} v=\int_{0}^{t} d t$
$\Rightarrow \quad v=\frac{C_{1}}{C_{2}}\left(1-e^{-C_{2} t}\right)$
\therefore Exponentially growing graph is possible
35. When a metal surface is illuminated by light of wavelength λ, the stopping potential is 8 V . When the same surface is illuminated by light of wavelength 3λ, stopping potential is 2 V . The threshold wavelength for this surface is:
(1) 3λ
(2) 4.5λ
(3) 9λ
(4) 5λ

Answer (3)
Sol. $8 \mathrm{ev}=\frac{h c}{\lambda}-\phi_{0}$
$2 \mathrm{ev}=\frac{h c}{3 \lambda}-\phi_{0}$
From (i) \& (ii)
$\phi=\frac{1}{9} \frac{h c}{\lambda}$
$\therefore \quad \lambda_{0}=9 \lambda$
36. The relation between time ' t ' and distance ' x ' is $t=\alpha x^{2}+\beta x$, where α and β are constants. The relation between acceleration (a) and velocity (v) is :
(1) $a=-3 \alpha v^{2}$
(2) $a=-5 \alpha v^{5}$
(3) $a=-2 \alpha v^{3}$
(4) $a=-4 \alpha v^{4}$

Answer (3)

Sol. $\frac{1}{v}=\frac{d t}{d x}=2 \alpha x+\beta$

$$
\begin{aligned}
& \text { Now, }-\frac{1}{v^{2}} \frac{d v}{d t}=2 x \frac{d x}{d t} \\
& \Rightarrow \quad-\frac{1}{v^{2}} a=2 \alpha v \\
& \Rightarrow a=-2 \alpha v^{3}
\end{aligned}
$$

37. A force is represented by $F=a x^{2}+b t^{\frac{1}{2}}$

Where $x=$ distance and $t=$ time. The dimensions of b^{2} / a are:
(1) $\left[\mathrm{ML}^{3} \mathrm{~T}^{-3}\right]$
(2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]$
(3) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right]$
(4) $\left[\mathrm{MLT}^{-2}\right]$

Answer (1)

Sol. $[a]=\left[\frac{F}{x^{2}}\right],[b]=\left[\frac{F}{\sqrt{t}}\right]$

$$
\therefore\left[\frac{b^{2}}{a}\right]=\left[\frac{F x^{2}}{t}\right]=\left[\mathrm{ML}^{2} \mathrm{~T}^{-3}\right]
$$

38. The parameter that remains the same for molecules of all gases at a given temperature is :
(1) momentum
(2) speed
(3) kinetic energy
(4) mass

Answer (3)

Sol. K.E. is independent of the mass of the molecules.
39. Identify the logic operation performed by the given circuit.

(1) NOR
(2) $O R$
(3) AND
(4) NAND

Answer (2)

Sol. Truth table is

A	B	Y
0	0	0
1	1	1
0	1	1
1	0	1

$\therefore \quad$ OR gate
40. The refractive index of a prism with apex angle A is $\cot \frac{A}{2}$. The angle of minimum deviation is :
(1) $\delta_{m}=180^{\circ}-A$
(2) $\delta_{m}=180^{\circ}-2 A$
(3) $\delta_{m}=180^{\circ}-4 A$
(4) $\delta_{m}=180^{\circ}-3 A$

Answer (2)
Sol. $\because \mu=\frac{\sin \left(\frac{A+\delta_{m}}{2}\right)}{\sin \left(\frac{A}{2}\right)}$
and $\mu=\cot \left(\frac{A}{2}\right)$
$\therefore \quad \delta_{m}=180-2 A$
41. The fundamental frequency of a closed organ pipe is equal to the first overtone frequency of an open organ pipe. If length of the open pipe is 60 cm , the length of the closed pipe will be:
(1) 30 cm
(2) 45 cm
(3) 15 cm
(4) 60 cm

Answer (3)

Sol. $\frac{v}{4 I_{C}}=2\left(\frac{v}{2 I_{0}}\right)$ and $I_{0}=60 \mathrm{~cm}$

$$
I_{C}=15 \mathrm{~cm}
$$

42. A coin is placed on a disc. The coefficient of friction between the coin and the disc is μ. If the distance of the coin from the centre of the disc is r, the maximum angular velocity which can be given to the disc, so that the coin does not slip away, is:
(1) $\sqrt{\frac{\mu g}{r}}$
(2) $\frac{\mu}{\sqrt{r g}}$
(3) $\frac{\mu g}{r}$
(4) $\sqrt{\frac{r}{\mu g}}$

Answer (1)

Sol. $F_{\text {centripetal }} \leq f_{\text {max }}$
$m \omega^{2} r \leq \mu m g$
$\omega \leq \sqrt{\frac{\mu g}{r}}$
43. An artillery piece of mass M_{1} fires a shell of mass M_{2} horizontally. Instantaneously after the firing, the ratio of kinetic energy of the artillery and that of the shell is:
(1) $\frac{M_{2}}{M_{1}}$
(2) $\frac{M_{2}}{\left(M_{1}+M_{2}\right)}$
(3) $\frac{M_{1}}{M_{2}}$
(4) $\frac{M_{1}}{\left(M_{1}+M_{2}\right)}$

Answer (1)

Sol. $\because \quad p_{1}=p_{2}$ and $K \cdot E=\frac{p^{2}}{2 M}$

$$
\therefore \quad \frac{K \cdot E_{1}}{K \cdot E_{2}}=\frac{M_{2}}{M_{1}}
$$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

23402160 Classroom + 180 Distance $\&$ Digital

Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

Year Classroom IIT, Bombay

$\stackrel{\text { AIR }}{36}$

Kamyak Channa Dhruv Sanjay Jain

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom
44. In the given arrangement of a doubly inclined plane two blocks M and m are placed. The blocks are connected by a light string passing over an ideal pulley as shown. The coefficient of friction between the surface of the plane and the blocks is 0.25 . The value of m, for which $M=10 \mathrm{~kg}$ will move down with an acceleration of $2 \mathrm{~m} / \mathrm{s}^{2}$, is: (take $g=10 \mathrm{~m} / \mathrm{s}^{2}$ and $\left.\tan 37^{\circ}=\frac{3}{4}\right)$

(1) 6.5 kg
(2) 9 kg
(3) 4.5 kg
(4) 2.25 kg

Answer (3)

Sol. $a=\frac{\text { Net pulling force }}{\text { Total mass }}$

$$
2=\frac{M g \sin 53^{\circ}-m g \sin 37^{\circ}-\mu m g \cos 53^{\circ}-\mu m g \cos 37^{\circ}}{M+m}
$$

$\therefore \quad m=4.5 \mathrm{~kg}$
45. The given figure represents two isobaric processes for the same mass of an ideal gas, then

(1) $P_{1}>P_{2}$
(2) $P_{1}=P_{2}$
(3) $P_{2} \geq P_{1}$
(4) $P_{2}>P_{1}$

Answer (1)

Sol. at same temperature
$V_{2}>V_{1}$
$\therefore \quad P_{2}<P_{1}$
46. A rigid wire consists of a semicircular portion of radius R and two straight sections. The wire is partially immerged in a perpendicular magnetic field $B=B_{0} \hat{j}$ as shown in figure. The magnetic force on the wire if it has a current i is:

(1) $2 i B R \hat{j}$
(2) $-2 i B R \hat{j}$
(3) $i B R \hat{j}$
(4) $-i B R \hat{j}$

Answer (2)
Sol. $F=i\left(\int \overrightarrow{d l} \times \vec{B}\right)$

$$
\therefore \vec{F}=i(2 R) B_{0}(-\hat{j})
$$

47. A coil is places perpendicular to a magnetic field of 5000 T . When the field is changed to 3000 T in 2 s , an induced emf of 22 V is produced in the coil. If the diameter of the coil is 0.02 m , then the number of turns in the coil is
(1) 35
(2) 70
(3) 7
(4) 140

Answer (2)
Sol. $\varepsilon=\frac{\Delta \phi}{\Delta t}=\frac{N \Delta(B A)}{\Delta t}$
$22=\frac{N(2000)\left(\frac{22}{7} \cdot \frac{0.02^{2}}{4}\right)}{2}$
$\Rightarrow \quad N=70$

48. If the wavelength of the first member of Lyman series of hydrogen is λ. The wavelength of the second member will be
(1) $\frac{5}{27} \lambda$
(2) $\frac{27}{5} \lambda$
(3) $\frac{32}{27} \lambda$
(4) $\frac{27}{32} \lambda$

Answer (4)

Sol. $\frac{1}{\lambda}=R\left(\frac{1}{1^{2}}-\frac{1}{2^{2}}\right)$
Also $\frac{1}{\lambda^{\prime}}=R\left(\frac{1}{1^{2}}-\frac{1}{3^{2}}\right)$
from (i) and (ii)
$\lambda^{\prime}=\frac{27}{32} \lambda$
49. Two conductors have the same resistances at $0^{\circ} \mathrm{C}$ but their temperature coefficients of resistance are α_{1} and α_{2}. The respective temperature coefficients for their series and parallel combinations are:
(1) $\alpha_{1}+\alpha_{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$
(2) $\frac{\alpha_{1}+\alpha_{2}}{2}, \alpha_{1}+\alpha_{2}$
(3) $\frac{\alpha_{1}+\alpha_{2}}{2}, \frac{\alpha_{1}+\alpha_{2}}{2}$
(4) $\alpha_{1}+\alpha_{2}, \frac{\alpha_{1} \alpha_{2}}{\alpha_{1}+\alpha_{2}}$

Answer (3)

Sol. For series

$$
\begin{aligned}
& R_{\text {series }}=2 R_{0}\left[1+\left(\frac{\alpha_{1}+\alpha_{2}}{2}\right) \Delta t\right] \\
& \therefore \quad \alpha_{\text {series }}=\frac{\alpha_{1}+\alpha_{2}}{2}
\end{aligned}
$$

For parallel
$-\frac{d R}{R_{p}^{2}}=\frac{-d R}{R_{1}^{2}}-\frac{d R_{2}}{R_{2}^{2}}$
$\frac{\alpha_{p} R_{p} d T}{R_{p}^{2}}=\frac{\alpha_{1} R_{0} d T}{R_{0}^{2}}+\frac{\alpha_{2} R_{0} d T}{R_{0}^{2}}$
$\Rightarrow \alpha_{p}=\frac{\alpha_{1}+\alpha_{2}}{2}$
50. If the percentage errors in measuring the length and the diameter of a wire are 0.1% each. The percentage error in measuring its resistance will be:
(1) 0.2%
(2) 0.144%
(3) 0.3%
(4) 0.1%

Answer (3)

Sol. $\frac{\Delta R}{R}=\frac{\Delta l}{l}+\frac{2 \Delta D}{D} \quad\left(\because R=\frac{4 \rho l}{\pi D^{2}}\right)$

$$
\Rightarrow \frac{\Delta R}{R} \times 100=0.1+2(0.1)
$$

$$
=0.3 \%
$$

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
51. An electron moves through a uniform magnetic field $\vec{B}=B_{0} \hat{i}+2 B_{0} \hat{j} T$. At a particular instant of time, the velocity of electron is $\vec{u}=3 \hat{i}+5 \hat{j} \mathrm{~m} / \mathrm{s}$. If the magnetic force acting on electron is $\vec{F}=5 e \hat{k} N$, where e is the charge of electron then the value of B_{0} is \qquad T.

Answer (5)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Sol. $\because \vec{F}=e(\vec{V} \times \vec{B})$

$$
\begin{aligned}
& =e(3 \hat{i}+5 \hat{j}) \times\left(B_{0} \hat{i}+3 B_{0} \hat{j}\right) \\
& =e B_{0} \hat{k}
\end{aligned}
$$

$\therefore B_{0}=5 \mathrm{~T}$
52. The mass defect in a particular reaction is 0.4 g . The amount of energy liberated is $n \times 10^{7} \mathrm{kWh}$. Where $n=$ \qquad .
(Speed of light $\left.=3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$

Answer (1)

Sol. $\Delta E=\Delta m c^{2}$

$$
\begin{aligned}
& n \times 10^{7} \times 3.6 \times 10^{6}=0.4 \times 10^{-3} \times 9 \times 10^{16} \\
& \Rightarrow n=1
\end{aligned}
$$

53. The depth below the surface of sea to which a rubber ball be taken so as to decrease its volume by 0.02% is \qquad m.
(Take density of sea water $=10^{3} \mathrm{kgm}^{-3}$, Bulk modulus of rubber $=9 \times 10^{8} \mathrm{Nm}^{-2}$, and $g=10 \mathrm{~ms}^{-2}$)

Answer (18)

Sol. $\because B=\left|\frac{\Delta P}{\Delta V / V}\right|$

$$
\therefore \Delta P=\rho g h=\frac{B \Delta V}{V}
$$

$$
h=\frac{B}{\rho g}\left(\frac{\Delta V}{V}\right)
$$

$$
=\frac{9 \times 10^{8}}{10^{3} \times 10}\left(0.02 \times 10^{-2}\right)
$$

$=18 \mathrm{~m}$
54. A body starts falling freely from height H hits an inclined plane in its path at height h. As a result of this perfectly elastic impact, the direction of the velocity of the body becomes horizontal. The value of $\frac{H}{h}$ for which the body will take the maximum time to reach the ground is \qquad .

Answer (2)

Sol. $\sqrt{\frac{2(H-h)}{g}}+\sqrt{\frac{2 h}{g}}=T$
for $T \rightarrow$ maximum
$\frac{d T}{d h}=0$
$\Rightarrow \frac{1}{2 \sqrt{(H-h)}}(-1)+\frac{1}{2 \sqrt{h}}(1)=0$
$\Rightarrow h=\frac{H}{2}$
$\Rightarrow \frac{H}{h}=2$
55. A particle performs simple harmonic motion with amplitude A. Its speed is increased to three times at an instant when its displacement is $\frac{2 A}{3}$. The new amplitude of motion is $\frac{n A}{3}$. The value of n is
\qquad .

Answer (7)
Sol. $3 \omega \sqrt{A^{2}-\left(\frac{2 A}{3}\right)^{2}}=\omega \sqrt{\left(A^{\prime}\right)^{2}-\left(\frac{2 A}{3}\right)^{2}}$
$\Rightarrow A^{\prime}=\frac{7}{3} A$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

234012160 Classroom + 180 Distance \& Digital

 Aakashians Qualified in JEE (Advanced) 2023 28

Aakash Gupta Tanishq Mandhane

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom JEE (Adv.) 2022
56. A small square loop of wire of side / is placed inside a large square loop of wire of side $L(L=R)$. The loops are coplanar and their centres coincide. The value of the mutual inductance of the system is $\sqrt{x} \times 10^{-7} H$, where $x=$ \qquad .

Answer (128)

Sol. $M=\frac{\phi}{i}$
$=\frac{4\left[\frac{\mu_{0} i}{4 \pi(L / 2)} \sqrt{2}\right] l^{2}}{i}$
$=8 \sqrt{2} \times 10^{-7} \mathrm{H}$
$=\sqrt{128} \times 10^{-7} \mathrm{H}$
57. A solid circular disc of mass 50 kg rolls along a horizontal floor so that its center of mass has speed of $0.4 \mathrm{~m} / \mathrm{s}$. The absolute value of work done on the disc to stop it is \qquad J.

Answer (6)
Sol. $W=\frac{1}{2}\left(\frac{m R^{2}}{2}\right)\left(\frac{v^{2}}{R^{2}}\right)+\frac{1}{2} m v^{2}$
$=\frac{3}{4} m v^{2}$
$=\frac{3}{4}(50)(0.4)^{2}=6 \mathrm{~J}$
58. A parallel plate capacitor with plate separation 5 mm is charged up by a battery. It is found that on introducing a dielectric sheet of thickness 2 mm , while keeping the battery connections intact, the capacitor draws 25% more charge from the battery than before. The dielectric constant of the sheet is
\qquad _.

Answer (2)

Sol. Let $C=\frac{\varepsilon_{0} A}{(5 \mathrm{~mm})}$
$\Rightarrow C^{\prime}=\frac{\varepsilon_{0} A}{3+\frac{2}{k}}$

Now
$C^{\prime} V=\frac{5}{4}(C V)$
$\Rightarrow \frac{\varepsilon_{0} A}{3+\frac{2}{k}}=\frac{\varepsilon_{0} A}{5}\left(\frac{5}{4}\right)$
$\Rightarrow k=2$
59. Two waves of intensity ratio $1: 9$ cross each other at a point. The resultant intensities at that point, when (a) Waves are incoherent is I_{1} (b) Waves are coherent is I_{2} and differ in phase by 60°. If $\frac{l_{1}}{I_{2}}=\frac{10}{x}$ then $x=$ \qquad .

Answer (13)

Sol. $I_{1}=10 C$
$I_{2}=C+9 C+6 C \cos 60^{\circ}$
$=13 C$
$\therefore \frac{I_{1}}{I_{2}}=\frac{10}{13}$
$\Rightarrow x=13$
60. Equivalent resistance of the following network is Ω.

Answer (1)
Sol. Effective circuit will look like

$R_{A B}=1 \Omega$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020
$2340 \mid 2160$ Classroom + 180 Distance \& Digital Aakashians Qualified in JEE (Advanced) 2023

Aakash Gupta Tanishq Mandhane

Kamyak Chan
myak Channa Dhruv Sanjay Jain IIT, Bombay
4 Year Classroom $\begin{array}{lc}4 \text { Year Classroom } & \text { IIT, Bombay } \\ 4 \text { Year Classroom }\end{array}$

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

ALL
INDIA
RANK
JEE (Adv.) 2022

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which ONLY ONE is correct.

Choose the correct answer :

61. 'Adsorption' principle is used for which of the following purification method?
(1) Sublimation
(2) Chromatography
(3) Extraction
(4) Distillation

Answer (2)

Sol. Adsorption chromatography is based upon the differential adsorption of the various components of a mixture on a suitable adsorbent such as silica gel or alumina.
62. The correct sequence of electron gain enthalpy of the elements listed below is
A. Ar
B. Br
C. F
D. S

Choose the most appropriate from the options given below
(1) A $>$ D $>$ C $>$ B
(2) $\mathrm{C}>\mathrm{B}>\mathrm{D}>\mathrm{A}$
(3) A $>$ D $>$ B $>$ C
(4) D $>$ C $>$ B $>$ A

Answer (3)
Sol. Electron gain enthalpy of

$$
\begin{aligned}
& \mathrm{D} \Rightarrow \mathrm{~S}=-200 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{C} \Rightarrow \mathrm{~F}=-333 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{~B} \Rightarrow \mathrm{Br}=-325 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{~A} \Rightarrow \mathrm{Ar}=96 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

A > D > B > C (source NCERT)
63. The compound that is white in colour is
(1) ammonium arsinomolybdate
(2) lead sulphate
(3) ammonium sulphide
(4) lead iodide

Answer (2)

Sol. Lead sulphate is a white solid, which appears white in microcrystalline form.
64. The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals
A. have the same energy
B. have the minimum overlap
C. have same symmetry about the molecular axis
D. have different symmetry about the molecular axis

Choose the most appropriate from the options given below.
(1) B, C, D only
(2) B and D only
(3) A, B, C only
(4) A and C only

Answer (4)

Sol. Linear combination of atomic orbitals to form molecular orbitals takes place when

- They have same energy

Maximum overlap

- Have same symmetry about the molecular axis Hence, only A and C are correct.

65. Consider the oxides of group 14 elements
$\mathrm{SiO}_{2}, \mathrm{GeO}_{2}, \mathrm{SnO}_{2}, \mathrm{PbO}_{2}, \mathrm{CO}$ and GeO . The amphoteric oxides are
(1) $\mathrm{SnO}_{2}, \mathrm{CO}$
(2) $\mathrm{SiO}_{2}, \mathrm{GeO}_{2}$
(3) $\mathrm{GeO}, \mathrm{GeO}_{2}$
(4) $\mathrm{SnO}_{2}, \mathrm{PbO}_{2}$

Answer (4)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020
$2340 \mid 2160$ Classroom + 180 Distance \& Digital Aakashians Qualified in JEE (Advanced) 2023

Tanishka Kabra 4 Year Classroom

Sol. SnO_{2} and $\mathrm{PbO}_{2} \rightarrow$ Amphoteric oxides
$\mathrm{CO} \rightarrow$ Neutral oxide
$\mathrm{GeO}, \mathrm{SiO}_{2}, \mathrm{GeO}_{2} \rightarrow$ Acidic oxides
66. The metals that are employed in the battery industries are
A. Fe
B. Mn
C. Ni
D. Cr
E. Cd

Choose the correct answer from the options given below:
(1) A, B, C and D only
(2) A, B, C, D and E
(3) B, C and E only
(4) B, D and E only

Answer (3)

Sol. Mn, Ni and Cd are metals that are employed in the battery industries.
Commercial dry cell has \rightarrow Zinc anode and $\mathrm{MnO}_{2}+$ carbon black $+\mathrm{NH}_{4} \mathrm{Cl}$ paste cathode.
$\mathrm{Ni}-\mathrm{Cd}$ cell is a rechargeable cell.
$\mathrm{Cd}(\mathrm{s})+\mathrm{Ni}(\mathrm{OH})_{3}(\mathrm{~s}) \rightarrow \mathrm{CdO}(\mathrm{s})+2 \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+$ $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
67. Match List I with List II

LIST I		LIST II	
A.	Glucose/ $\mathrm{NaHCO}_{3} / \Delta$	I.	Gluconic acid
B.	Glucose/HNO	II.	No reaction
C.	Glucose/HI/ Δ	III.	n-hexane
D.	Glucose/Bromine water	IV.	Saccharic acid

Choose the correct answer from the options given below:
(1) A-I, B-IV, C-III, D-II
(2) A-III, B-II, C-I, D-IV
(3) A-IV, B-I, C-III, D-II
(4) A-II, B-IV, C-III, D-I

Answer (4)

Sol. Glucose $\xrightarrow[\Delta]{\mathrm{NaHCO}_{3}}$ No reaction

Glucose $\xrightarrow[\Delta]{\mathrm{HI}} \mathrm{n}$-Hexane

68. The product (C) in the below mentioned reaction is:

(1) Propene
(2) Propan-2-ol
(3) Propan-1-ol
(4) Propyne

Answer (2)
Sol. Propan-2-ol

69. Identify correct statements from below:
A. The chromate ion is square planar.
B. Dichromates are generally prepared from chromates.
C. The green manganate ion is diamagnetic.

D. Dark green coloured $\mathrm{K}_{2} \mathrm{MnO}_{4}$ disproportionates in a neutral or acidic medium to give permanganate.
E. With increasing oxidation number of transition metal, ionic character of the oxides decreases.
Choose the correct answer from the options given below:
(1) B, D, E only
(2) A, D, E only
(3) B, C, D only
(4) A, B, C only

Answer (1)
Sol. (A) Chromate ions are tetrahedral and not square planar.
(B) $\mathrm{FeCr}_{2} \mathrm{O}_{4}+\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{O}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{Fe}_{2} \mathrm{O}_{3}+$ CO_{2}
$\mathrm{Na}_{2} \mathrm{CrO}_{4}+\mathrm{H}^{+} \rightarrow \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{Na}^{+}$
(C) Manganate $\rightarrow \mathrm{MnO}_{4}^{2-} \rightarrow 1$ unpaired e^{-}in Mn^{+6} \rightarrow Paramagnetic
(D)
 (Disproportionation)
(E) $\mathrm{Mn}_{2} \mathrm{O}_{7} \rightarrow$ Covalent; $\mathrm{CrO}_{3}, \mathrm{~V}_{2} \mathrm{O}_{5}$ has low melting point. Oxidation state increases then ionic character decreases.
70. The correct statements from following are:
A. The strength of anionic ligands can be explained by crystal field theory.
B. Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.
C. The hybridisation involved in formation of $[\mathrm{Ni}(\mathrm{CN}) 4]^{2-}$ complex is dsp^{2}
D. The number of possible isomer(s) of cis$\left[\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right]^{2+}$ is one
Choose the correct answer from the options given below :
(1) A, C only
(2) A, D only
(3) B, D only
(4) B, C only

Answer (4)
Sol. (A) Strength of anionic ligands cannot be explained by CFT instead LFT i.e., ligand field theory explains the strength of ligands.
(B) VBT does not give a quantitative interpretation of kinetic stability of coordination compounds.
(C) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-} \rightarrow \mathrm{Ni}^{2+}$ in presence of CN^{-}ligand.

Square planar geometry since $\rightarrow 4 d s p^{2}$ hybridised orbitals created.
(D) cis-[$\left.\mathrm{PtCl}_{2}(\mathrm{en})_{2}\right] \Rightarrow \mathrm{It}$ has two possible isomers

71. For the given reaction, choose the correct expression of K_{c} from the following.
$\mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{SCN}_{(\mathrm{aq})}^{-} \rightleftharpoons(\mathrm{FeSCN})_{(\mathrm{aq})}^{2+}$
(1) $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}{\left[\mathrm{FeSCN}^{2+}\right]}$
(2) $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]^{2}}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}$
(3) $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]^{2}\left[\mathrm{SCN}^{-}\right]^{2}}$
(4) $\mathrm{K}_{\mathrm{C}}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}$

Answer (4)

Chirag Falor
4 Year Classroom
AIR
AIR
JEE (Adv.)
2020
$2540 \mid 2160$ Classroom + 180 Distance \& Digital Aakashians Qualified in JEE (Advanced) 2023

Sol. Given reaction :

$$
\mathrm{Fe}^{3+}(\mathrm{aq} .)+\mathrm{SCN}^{-}(\mathrm{aq} .) \rightleftharpoons\left(\mathrm{FeSCN}^{2+}(\mathrm{aq} .)\right.
$$

$\mathrm{K}_{\mathrm{c}}=\frac{[\text { Product ions }]}{[\text { Reactant ions }]}=\frac{\left[\mathrm{FeSCN}^{2+}\right]}{\left[\mathrm{Fe}^{3+}\right]\left[\mathrm{SCN}^{-}\right]}$
Correct answer is (4)
72. Integrated rate law equation for a first order gas phase reaction is given by
(where P_{i} is initial pressure and P_{t} is total pressure at time t)
(1) $k=\frac{2.303}{t} \times \log \frac{2 P_{i}}{\left(2 P_{i}-P_{t}\right)}$
(2) $k=\frac{2.303}{t} \times \log \frac{P_{i}}{\left(2 P_{i}-P_{t}\right)}$
(3) $k=\frac{2.303}{t} \times \frac{P_{i}}{\left(2 P_{i}-P_{t}\right)}$
(4) $k=\frac{2.303}{t} \times \log \frac{\left(2 P_{i}-P_{t}\right)}{P_{i}}$

Answer (2)

Sol.

$$
\mathrm{A}(\mathrm{~g}) \quad \longrightarrow 2 \mathrm{~B}(\mathrm{~g})
$$

Initial:
Pi
Pressure at time $t: P_{i}-x$ 2x
$P_{t}=P_{i}-x+2 x$
$P_{t}=P_{i}+x$
$\mathrm{x}=\mathrm{P}_{\mathrm{t}}-\mathrm{P}_{\mathrm{i}}$
$k=\frac{2.303}{t} \log \frac{\text { Initial pressure of } A}{\text { Pressure of } A \text { at time } t}$
$k=\frac{2.303}{t} \log \frac{P_{i}}{P_{i}-x} \Rightarrow \frac{2.303}{t} \log \frac{P_{i}}{P_{i}-P_{t}+P_{i}}$
$k=\frac{2.303}{t} \log \frac{P_{i}}{2 P_{i}-P_{t}}$
73. Match List I with List II

LIST I (Technique)		LIST II (Application)	
A.	Distillation	I.	Separation of glycerol from spent-lye
B.	Fractional distillation	II.	Aniline-Water mixture
C.	Steam distillation	III.	Separation of crude fractions
D.	Dilstillation under reduced pressure	IV.	Chloroform- Aniline

Choose the correct answer from the options given below.
(1) A-IV, B-III, C-II, D-I
(2) A-IV, B-I, C-II, D-III
(3) A-I, B-II, C-IV, D-III
(4) A-II, B-III, C-I, D-IV

Answer (1)
Sol. A-IV: Chloroform and aniline can be separated by distillation.

B-III: Separation of crude oil fractions in petroleum industry is done by fractional distillation.

C-II: Aniline water mixture can be separated by steam distillation due to difference in boiling point.

D-I: Separation of glycerol from spent-lye done by distillation under reduced pressure (vacuum distillation).
74. Identify the mixture that shows positive deviations from Raoult's law.
(1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(2) $\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$
(3) $\mathrm{CHCl}_{3}+\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
(4) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}+\mathrm{CS}_{2}$

Answer (4)

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Aakashians Qualified in JEE (Advanced) 2023

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 crL JEE (Adv.) 2022

Sol.

(2)

$\mathrm{CHCl}_{3}+\mathrm{C}_{6} \mathrm{H}_{6}$ Chloroform Benzene

H-Bonding between acetone and aniline is more stronger than acetone-acetone and aniline-aniline.

H-Bonding between π-cloud of Benzene and H -atom of chloroform (Negative deviation)
3)

Shows negative deviation due to H -Bonding Chloroform

Shows positive deviation because solute solvent interaction is weaker than solute-solute and solvent-solvent.
75. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: Alcohols react both as nucleophiles and electrophiles.
Reason R: Alcohol is react with active metals such as sodium, potassium and aluminium to yield corresponding alkoxides and liberate hydrogen.
In the light of the above statements, choose the correct answer from the options given below.
(1) Both A and R are true but R is NOT the correct explanation of A
(2) A is true but R is false
(3) Both A and R are true and R is the correct explanation of A
(4) A is false but R is true

Answer (1)

Sol. Assertion is correct \Rightarrow

Bond between $\mathrm{R}-\mathrm{O} \stackrel{\mathrm{H}}{\mathrm{O}}$ is broken when alcohol act as nucleophile

Alcohols as electrophile \Rightarrow Bond between $\mathrm{H}_{3} \mathrm{C}$ OH is broken where alcohol act as electrophile.

Reason is also correct :

t-Butylalcohol
Aluminium tert-butoxide

Phenol
Sodium phenoxide
76. Given below are two statements: One is labelled as Assertion \mathbf{A} and the other is labelled as Reason R.

Assertion A: pK_{a} value of phenol is 10.0 while that of ethanol is 15.9.

Reason R: Ethanol is stronger acid than phenol.
In the light of the above statements, choose the correct answer from the options given below.
(1) Both A and R are true but R is NOT the correct explanation of A
(2) A is true but R is false
(3) Both A and R are true and R is the correct explanation of A
(4) A is false but R is true

Answer (2)
Sol. pK_{a} of phenol $=10.0$
$\mathrm{pK} \mathrm{a}_{\mathrm{a}}$ of ethanol $=15.9$
Acid which has more pK_{a} is weaker acid.

Ethanol is weaker acid than phenol

Negative charge is destabilised by + I effect of ethyl group.

Negative charge is stabilised by -R effect of benzene ring.

Hence, removal of H^{+}is easier in case of phenol as compared to ethanol.
77. A species having carbon with sextet of electrons and can act as electrophile is called
(1) Pentavalent carbon
(2) Carbon free radical
(3) Carbocation
(4) Carbanion

Answer (3)

Sol. Sextet of electron means 6 electrons in outermost shell.
A species having six electron in outermost shell is electron deficient and hence can act as electrophile (electron loving).
Carbocation is a species which have $6 e^{-s}$ in outermost shell and can act as E^{+}.
78. Given below are two statements:

Statement I: IUPAC name of $\mathrm{HO}-\mathrm{CH}_{2}-\left(\mathrm{CH}_{2}\right)_{3-}$ $\mathrm{CH}_{2}-\mathrm{COCH}_{3}$ is 7 -hydroxyheptan-2-one.

Statement II: 2-oxoheptan-7-ol is the correct IUPAC name for above compound.
In the light of the above statements, choose the most appropriate answer from the options given below.
(1) Both statement I and statement II are incorrect
(2) Statement I is incorrect but statement II is correct
(3) Statement I is correct but statement II is incorrect
(4) Both statement I and statement II are correct

Answer (3)

Sol.

Correct IUPAC name is
7-Hydroxyheptan-2-one
Hence, statement I is correct and statement II is incorrect.
79. Given below are two statements:

Statement I: Noble gases have very high boiling points.

Statement II: Noble gases are monoatomic gases. They are held together by strong dispersion forces. Because of this they are liquefied at very low temperature. Hence, they have very high boiling points.
In the light of the above statements, choose the correct answer from the options given below.
(1) Both statement I and statement II are true
(2) Both statement I and statement II are false
(3) Statement I is false but statement II is true
(4) Statement I is true but statement II is false

Answer (2)
Sol. Noble gases have very low melting and boiling points because noble gases are held together by weak dispersion forces.
Even helium has lowest boiling point (4.2 K) of any known substance.

Therefore, both statement I and II are incorrect.
80. Identify the factor from the following that does not affect electrolytic conductance of a solution.
(1) The nature of solvent used
(2) Concentration of the electrolyte
(3) The nature of the electrolyte added
(4) The nature of the electrode used

Answer (4)

Chirag Falor
4 Year Classroom

- AIR

AIR
2020
$2340{ }^{21600}$ Classrom + Ho Distances Digital
Aakashians Qualified in JEE (Advanced) 2023

 Year Classroom

Tanishka Kabra 4 Year Classroom
\qquad JEE (Adv.) 2022

Sol. Conductivity of electrolytic solution depends upon:
(i) Nature of electrolyte added.
(ii) Size of ions produced and their solvation
(iii) Nature of the solvent and viscosity.
(iv) Concentration of the electrolyte.
(v) Temperature (Increases with increase of temp.).

It does not depend on nature of electrode used.

SECTION - B

Numerical Value Type Questions: This section contains 10 Numerical based questions. Attempt any 5 questions out of 10 . The answer to each question should be rounded-off to the nearest integer.
81. The 'spin only' magnetic moment for $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is
\qquad $\times 10^{-1} \mathrm{BM}$.
(given = atomic number of $\mathrm{Ni}: 28$)

Answer (28)

Sol. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} \Rightarrow$ Nickel in +2 oxidation state Ni^{2+} in presence of $6 \mathrm{NH}_{3}$ ligand (strong field).

Ni^{2+} have two unpaired electrons, and forms $s p^{3} d^{R}$ hybridisation in presence of $6 \mathrm{NH}_{3}$ ligand.

$$
\begin{aligned}
\mu=\sqrt{n(n+2)} & =\sqrt{2(2+2)}=\sqrt{2 \times 4} \\
\mu=\sqrt{8}=2.82 & \approx 2.8 \mathrm{BM} \\
& \approx 28 \times 10^{-1} \mathrm{BM}
\end{aligned}
$$

Hence, answer is $\Rightarrow 28$
82. Number of moles of methane required to produce $22 \mathrm{~g} \mathrm{CO}_{2(\mathrm{~g})}$ after combustion is $\mathrm{x} \times 10^{-2}$ moles. The value of x is \qquad .

Answer (50)

Sol. Reaction of combustion of methane:
$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
1 mol methane produce $1 \mathrm{~mol} \mathrm{CO}_{2}$.
$\therefore 1$ mol methane produce $44 \mathrm{~g} \mathrm{CO}_{2}$.
Hence, $\frac{1}{2} \mathrm{~mol} \mathrm{CH}_{4}$ will produce $22 \mathrm{~g} \mathrm{CO}_{2}$.
\therefore Moles of methane required to produce $22 \mathrm{~g} \mathrm{CO}_{2}$.
$\Rightarrow 0.5 \mathrm{~mol}$
$\Rightarrow 50 \times 10^{-2} \mathrm{~mol}$
Hence, the value of $x=50$
83. Number of alkanes obtained on electrolysis of a mixture of $\mathrm{CH}_{3} \mathrm{COONa}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COONa}$ is \qquad .
Answer (3)

Sol.

$\dot{\mathrm{C}}_{2} \mathrm{H}_{5}$ and $\dot{\mathrm{C}} \mathrm{H}_{3}$ created.
$\mathrm{CH}_{3}+\mathrm{CH}_{3} \longrightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}$ (Ethane)
$\mathrm{CH}_{3}+\dot{\mathrm{C}}_{2} \mathrm{H}_{5} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (Propane)
$\dot{\mathrm{C}}_{2} \mathrm{H}_{5}+\dot{\mathrm{C}}_{2} \mathrm{H}_{5} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$ (Butane)
3 alkanes were obtained on electrolysis of $\mathrm{CH}_{3} \mathrm{COO}-\mathrm{Na}^{+}$and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{COO}-\mathrm{Na}^{+}$mixture.
84. Molar mass of the salt from $\mathrm{NaBr}, \mathrm{NaNO}_{3}, \mathrm{KI}$ and CaF_{2} which does not evolve coloured vapours on heating with concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ is \qquad $\mathrm{g} \mathrm{mol}^{-1}$.
(Molar mass in $\mathrm{g} \mathrm{mol}^{-1}: \mathrm{Na}: 23, \mathrm{~N}: 14, \mathrm{~K}: 39$, O : 16, Br:80, I:127, F:19, Ca : 40)
Answer (78)

Chirag Falor
4 Year Classroom
AIR
2020

Sol. (1) $\mathrm{NaBr}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{Br}_{2}+\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
(2) $\mathrm{NaNO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{NO}_{2}+\mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{SO}_{4}$
(3) $\mathrm{KI}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{I}_{2}+\mathrm{H}_{2} \mathrm{~S}+\mathrm{H}_{2} \mathrm{O}+\mathrm{K}_{2} \mathrm{SO}_{4}$
(4) $\mathrm{CaF}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta} \mathrm{CaSO}_{4}+\mathrm{HF}$
CaF_{2} will not give coloured vapours on heating with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Other will give coloured vapours due to formation of $\mathrm{Br}_{2}, \mathrm{NO}_{2}, \mathrm{l}_{2}$.
$\mathrm{Br}_{2} \rightarrow$ Red-brown colour
$\mathrm{I}_{2} \rightarrow$ Violet colour
$\mathrm{NO}_{2} \rightarrow$ Deep red orange gas.
Molar mass of $\mathrm{CaF}_{2} \Rightarrow 40+19+19=78 \mathrm{~g} / \mathrm{mol}$.
85. The product of the following reaction is P.

The number of hydroxyl groups present in the product P is \qquad .

Answer (1)

Sol.

Number of hydroxyl group = zero.

Phenolic $(-\mathrm{OH})$ group $=1$
86. The ionization energy of sodium in $\mathrm{kJ} \mathrm{mol}^{-1}$, if electromagnetic radiation of wavelength 242 nm is just sufficient to ionize sodium atom is \qquad .

Answer (494)

Sol. $\lambda=242 \mathrm{~nm}=242 \times 10^{-9} \mathrm{~m}$
Energy to just remove 1 electron from 1 mol sodium atom $=$

Energy for removal of $1 \mathrm{e}^{-}$from 1 atom
$\Rightarrow \mathrm{E}=\frac{\mathrm{hc}}{\lambda}=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8}}{242 \times 10^{-9}}$
Energy for removal of $1 \mathrm{e}^{-}$from 1 mol atoms
$\Rightarrow \mathrm{E}=\frac{\mathrm{hc}}{\lambda} \times \mathrm{N}_{\mathrm{A}}$
$E=\frac{6.62 \times 10^{-34} \times 3 \times 10^{8} \times 6.023 \times 10^{23}}{242 \times 10^{-9}}$

$$
\begin{aligned}
\mathrm{E} & =494.28 \mathrm{~kJ} / \mathrm{mol} \\
& \approx 494
\end{aligned}
$$

87. The number of species from the following in which the central atom uses sp^{3} hybrid orbitals in its bonding is \qquad .
$\mathrm{NH}_{3}, \mathrm{SO}_{2}, \mathrm{SiO}_{2}, \mathrm{BeCl}_{2}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{BF}_{3}$

Answer (4)

Sol.

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020
$2340{ }^{2160}$ Classroom +180 Distonce $\&$ Digital Aakashians Qualified in JEE (Advanced) 2023
 AIR
28

Aakash Gupta Tanishq Mandhane

${ }_{3}^{120}$

K

$3{ }^{4} 6$

IIT, Bombay

IIT, Bombay

AIR
20

 IIT, Bombay
4 Year Classroom Year Classroom

Shivanshu Kumar IIT, Madras 4 Year Classroom

Tanishka Kabra 4 Year Classroom

AIR-16 cRL
ALL
INDIA
RANK
JEE (Adv.)
2022
$\mathrm{BeCl}_{2} \rightarrow \mathrm{Cl}-\mathrm{Be}-\mathrm{Cl} \rightarrow s p$
$\mathrm{CO}_{2} \rightarrow \mathrm{C}=\mathrm{C}=\mathrm{O} \rightarrow s p$

88. One Faraday of electricity liberates $\mathrm{x} \times 10^{-1}$ gram atom of copper from copper sulphate. x is \qquad .

Answer (5)

Sol. $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}$
2 Faraday will liberate $=1 \mathrm{~mol} \mathrm{Cu}$
$=1$ gram atom Cu
1 Faraday will liberate $=0.5 \mathrm{~mol} \mathrm{Cu}$
$=0.5$ gram atom Cu
$0.5=5 \times 10^{-1}$
\therefore Ans $\Rightarrow \mathrm{x}=5$
89. Consider the following reaction at 298 K .
$\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightleftharpoons \mathrm{O}_{3(\mathrm{~g})} . \mathrm{K}_{\mathrm{p}}=2.47 \times 10^{-29}$.
$\Delta_{r} G^{\ominus}$ for the reaction is \qquad kJ. (Given $\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
Answer (163)
Sol. $\Delta G^{\circ}=-R T \operatorname{In} K_{p}$
$\Delta G^{\circ}=-8.314 \times 298 \times 2.303 \times \log 2.47 \times 10^{-29}$
$\Delta G^{\circ}=+163199.52 \mathrm{~J}$
$\Delta G^{\circ}=163.2 \mathrm{~J}$
$\Delta G^{\circ} \approx 163 \mathrm{~kJ}$
90.

The total number of hydrogen atoms in product A and product B is \qquad .
Answer (10)

In product $\mathrm{A}=4$ Hydrogen atoms are present In product $\mathrm{B}=6$ Hydrogen atoms are present Total H -atom $=4+6=10$

Chirag Falor
4 Year Classroom
AIR
JEE (Adv.)
2020

Aakash Gupta Tanishq Mandhane

Tanishka Kabra 4 Year Classroom

