

22/01/2025

Evening

Aakash

Medical | IIT-JEE | Foundations

Corporate Office : AESL, 3rd Floor, Incuspace Campus-2, Plot-13, Sector-18, Udyog Vihar, Gurugram, Haryana-122018

Answers & Solutions

Time : 3 hrs.

for

M.M. : 300

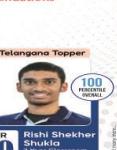
JEE (Main)-2025 Phase-1

[Computer Based Test (CBT) mode]

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 75 questions. Each subject (MPC) has 25 questions. The maximum marks are 300.
- (3) This question paper contains **Three** Parts. **Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is **Mathematics**. Each part has only two sections: **Section-A** and **Section-B**.
- (4) **Section - A** : Attempt all questions.
- (5) **Section - B** : Attempt all questions.
- (6) **Section - A (01 – 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.
- (7) **Section - B (21 – 25)** contains 5 Numerical value based questions. The answer to each question should be rounded off to the **nearest integer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.



Delivering Champions Consistently

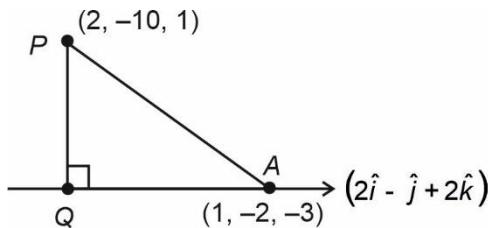
100 PERCENT PLACEMENT

Aakash
Medical | IIT-JEE | Foundations

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.


Choose the correct answer:

1. The perpendicular distance, of the line $\frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+3}{2}$ from the point $P(2, -10, 1)$, is:

(1) $4\sqrt{3}$ (2) $3\sqrt{5}$
 (3) $5\sqrt{2}$ (4) 6

Answer (2)

Sol.

PQ (shortest distance)

QA will be projection of PA on line

$$\overrightarrow{PA} = (-i + 8j - 4k) \Rightarrow |\overrightarrow{PA}| = \sqrt{81} = 9$$

$$\text{Projection} = \frac{|-2 - 8 - 8|}{\sqrt{2^2 + (-1)^2 + 2^2}} = \frac{18}{3} = 6$$

$$PQ^2 = PA^2 - QA^2 = 81 - 36 = 45$$

$$\Rightarrow PQ = \sqrt{45} = 3\sqrt{5}$$

2. Let \vec{a} and \vec{b} be two unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda\vec{a} + 2\vec{b}$ and $3\vec{a} - \lambda\vec{b}$ are perpendicular to each other, then the number of values of λ in $[-1, 3]$ is:

(1) 1 (2) 2
 (3) 3 (4) 0

Answer (4)

$$\text{Sol. } (\lambda\vec{a} + 2\vec{b}) \cdot (3\vec{a} - \lambda\vec{b}) = 0$$

$$\Rightarrow (3\lambda - 2\lambda) + \vec{a} \cdot \vec{b}(-\lambda^2 + 6) = 0$$

$$\text{since } \vec{a} \cdot \vec{b} = (1)(1)\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$$

$$\Rightarrow (-\lambda^2 + 6)\frac{1}{2} + \lambda = 0 \Rightarrow \lambda^2 - 2\lambda - 6 = 0$$

$$(\lambda - 1)^2 = 7$$

$$\lambda = \pm\sqrt{7} + 1 \notin [-1, 3]$$

\Rightarrow no values

3. If $\lim_{x \rightarrow \infty} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) \right)^x = \alpha$, then the value of

$$\frac{\log_e \alpha}{1 + \log_e \alpha}$$
 equals:

(1) e^{-2} (2) e
 (3) e^{-1} (4) e^2

Answer (2)

$$\text{Sol. } \lim_{x \rightarrow \infty} \left(\left(\frac{e}{1-e} \right) \left(\frac{1}{e} - \frac{x}{1+x} \right) \right)^x = (1^\infty \text{ from})$$

$$\lim_{x \rightarrow \infty} \left[1 + \left(\frac{e}{1-e} \right) \left[\frac{1}{e} - \frac{x}{1+x} \right] - 1 \right]^x$$

$$\Rightarrow \alpha = e^{\lim_{x \rightarrow \infty} \left[\left(\frac{e}{1-e} - 1 \right) + \frac{ex}{(e-1)(1+x)} \right] x}$$

$$\Rightarrow e^{\lim_{x \rightarrow \infty} \left[\frac{e}{1-e} + \frac{ex}{(e-1)(1+x)} \right] x}$$

$$\Rightarrow e^{\lim_{x \rightarrow \infty} \left(\frac{e}{e-1} \right) \left[\frac{x}{1+x} - 1 \right] x} = e^{\lim_{x \rightarrow \infty} \frac{-ex}{(e-1)(1+x)}} = e^{\frac{-e}{e-1}}$$

 Delivering Champions Consistently

JEE (Advanced) 2024

Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024

$$\Rightarrow \alpha = e^{\frac{e}{1-e}} \Rightarrow \ln \alpha = \frac{e}{1-e}$$

$$\Rightarrow \frac{\ln \alpha}{1+\ln \alpha} = \frac{\frac{e}{1-e}}{1+\frac{e}{1-e}} = e$$

4. Let α, β, γ and δ be the coefficients of x^7, x^5, x^3 and x respectively in the expansion of

$(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5, x > 1$. If u and v satisfy the equations

$$\alpha u + \beta v = 18,$$

$$\gamma u + \delta v = 20,$$

then $u + v$ equals:

$$(1) \ 3$$

$$(2) \ 4$$

$$(3) \ 5$$

$$(4) \ 8$$

Answer (3)

Sol. $(x + \sqrt{x^3 - 1})^5 + (x - \sqrt{x^3 - 1})^5$

$$= \left[{}^5 C_0 x^5 + {}^5 C_1 x^4 (\sqrt{x^3 - 1}) + \dots + {}^5 C_5 (\sqrt{x^3 - 1})^5 \right] +$$

$$\left[{}^5 C_0 x^5 - {}^5 C_1 x^4 (\sqrt{x^3 - 1}) + \dots + -{}^5 C_5 (\sqrt{x^3 - 1})^5 \right]$$

$$= 2 \left[x^5 + {}^5 C_2 x^3 (x^3 - 1) + {}^5 C_4 (x^3 - 1)^2 \right]$$

$$= 10x^7 + 20x^6 + 2x^5 - 20x^4 - 20x^3 + 10x$$

Now

$$\alpha = 10, \beta = 2, \gamma = -20, \delta = 10$$

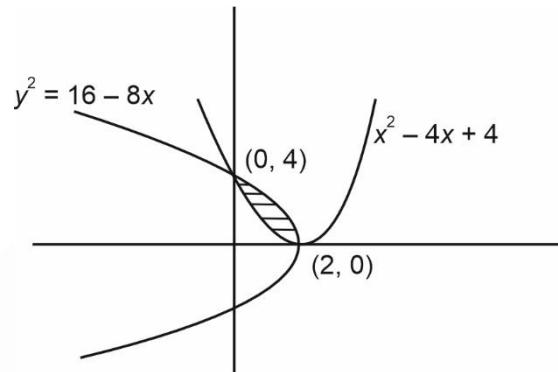
Also,

$$\begin{cases} 10u + 2v = 18 \\ -20u + 10v = 20 \end{cases} \left. \begin{array}{l} u = 1, \\ v = 4 \end{array} \right.$$

$$u + v = 5$$

5. The area of the region enclosed by the curves $y = x^2 - 4x + 4$ and $y^2 = 16 - 8x$ is

$$(1) \frac{8}{3}$$


$$(2) \ 5$$

$$(3) \frac{4}{3}$$

$$(4) \ 8$$

Answer (1)

Sol.

$$\text{Area} = \int_0^2 \left(\sqrt{16 - 8x} - (x^2 - 4x + 4) \right) dx$$

$$= \frac{-(16 - 8x)^{3/2}}{12} - \frac{x^3}{3} + 2x^2 + 4x \Big|_0^2$$

$$= \frac{8}{3}$$

6. Let $A = \{1, 2, 3, 4\}$ and $B = \{1, 4, 9, 16\}$. Then the number of many-one functions $f: A \rightarrow B$ such that $1 \in f(A)$ is equal to

$$(1) \ 163$$

$$(2) \ 127$$

$$(3) \ 151$$

$$(4) \ 139$$

Answer (3)

Sol. $A = \{1, 2, 3, 4\}$

$$B = \{1, 4, 9, 16\}$$

Total number of functions = 4^4

Total number of one-one functions = 4!

Total number of many one functions = $4^4 - 4! = 232$

Delivering Champions Consistently

JEE (Advanced) 2024

Aakash
 Medical IIT-JEE Foundations

JEE (Main) 2024

$$\therefore D = \begin{vmatrix} 1 & 1 & 2 \\ 2 & 3 & a \\ -1 & -3 & b \end{vmatrix} = 2a + b - 6$$

$$D_1 = \begin{vmatrix} 6 & 1 & 2 \\ a+1 & 3 & a \\ 2b & -3 & b \end{vmatrix} = 12a + 5b + ab - 6$$

$$D_2 = \begin{vmatrix} 1 & 6 & 2 \\ 2 & a+1 & a \\ -1 & 2b & b \end{vmatrix} = -4a - 3b - ab + 2$$

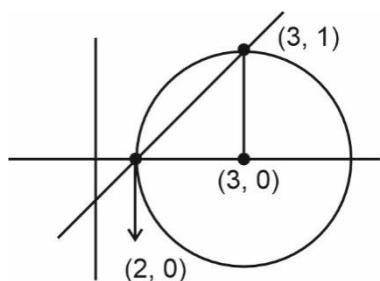
$$\text{and } D_3 = \begin{vmatrix} 1 & 1 & 6 \\ 2 & 3 & a+1 \\ -1 & -3 & 2b \end{vmatrix} = 2a + 2b - 16$$

from above relations

$$a = -2, b = 10$$

$$\therefore 7a + 3b = 16$$

10. Let the curve $z(1+i) + \bar{z}(1-i) = 4$, $z \in C$, divide the region $|z-3| \leq 1$ into two parts of areas α and β . Then $|\alpha - \beta|$ equals:


(1) $1 + \frac{\pi}{4}$ (2) $1 + \frac{\pi}{3}$
 (3) $1 + \frac{\pi}{6}$ (4) $1 + \frac{\pi}{2}$

Answer (4)

Sol. Put $z = x + iy$

$$(x + iy)(1 + i) + (x - iy)(1 - i) = 4$$

$$\Rightarrow x - y = 2$$

$$\text{Area of circle} = \pi$$

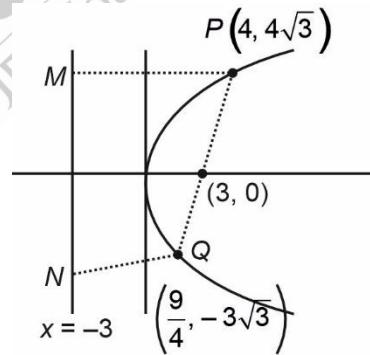
$$\text{Area of smaller region} = \frac{\pi}{4} - \frac{1}{2}$$

$$\text{Area of larger region} = \frac{3\pi}{4} + \frac{1}{2}$$

$$|\alpha - \beta| = 1 + \frac{\pi}{2}$$

11. Let $P(4, 4\sqrt{3})$ be a point on the parabola $y^2 = 4ax$ and PQ be a focal chord of the parabola. If M and N are the foot of perpendiculars drawn from P and Q respectively on the directrix of the parabola, then the area of the quadrilateral $PQMN$ is equal to:

(1) $\frac{263\sqrt{3}}{8}$ (2) $\frac{343\sqrt{3}}{8}$
 (3) $\frac{34\sqrt{3}}{3}$ (4) $17\sqrt{3}$


Answer (2)

Sol. $y^2 = 4ax$

$(4, 4\sqrt{3})$ lies on parabola.

$$\Rightarrow a = 3$$

$$y^2 = 12x \quad y = 4\sqrt{3}x - 12\sqrt{3}$$

$$\begin{aligned} ar(\square PQNM) &= \frac{\left(7 + \frac{21}{4}\right) \cdot 7\sqrt{3}}{2} \\ &= \frac{343\sqrt{3}}{8} \end{aligned}$$

 Delivering Champions Consistently

 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shashikumar 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Agarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 2 Year Classroom
---	--	--	---	--	--

JEE (Main) 2024

 Karnataka Topper 100 PERCENTILE RANK 1 AIR 34	 Telangana Topper 100 PERCENTILE RANK 1 AIR 15	 Telangana Topper 100 PERCENTILE RANK 1 AIR 19
---	---	---

15. If A and B are two events such that $P(A \cap B) = 0.1$, and $P(A|B)$ and $P(B|A)$ are the roots of the equation $12x^2 - 7x + 1 = 0$, then the value of $\frac{P(\bar{A} \cup \bar{B})}{P(\bar{A} \cap \bar{B})}$ is :

(1) $\frac{9}{4}$
 (2) $\frac{5}{3}$
 (3) $\frac{4}{3}$
 (4) $\frac{7}{4}$

Answer (1)

Sol. $P(A \cap B) = 0.1$, $P(A|B)$ and $P(B|A)$ are the roots of the equation $12x^2 - 7x + 1 = 0$

$$\begin{aligned} \Rightarrow P(A|B) P(B|A) &= \frac{1}{12} \\ \Rightarrow \frac{P(A \cap B)}{P(B)} \times \frac{P(A \cap B)}{P(A)} &= \frac{1}{12} \\ \Rightarrow P(A) P(B) &= 12(0.1)^2 \\ &= 0.12 \end{aligned}$$

$$\text{Also, } P(A|B) + P(B|A) = \frac{7}{12}$$

$$\begin{aligned} \Rightarrow P(A \cap B) \left(\frac{1}{P(B)} + \frac{1}{P(A)} \right) &= \frac{7}{12} \\ \Rightarrow P(A) + P(B) &= \frac{7}{12} \times \frac{0.12}{0.1} \\ \Rightarrow P(A) + P(B) &= 0.7 \\ \frac{P(\bar{A} \cup \bar{B})}{P(\bar{A} \cap \bar{B})} &= \frac{P(\bar{A} \cap \bar{B})}{P(A \cup B)} \\ &= \frac{1 - P(A \cap B)}{1 - P(A \cup B)} \\ &= \frac{1 - 0.1}{1 - (0.7 - 0.1)} = \frac{0.9}{0.4} = \frac{9}{4} \end{aligned}$$

16. Let $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > b$ and $H: \frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$. Let the distance between the foci of E and the foci of H be $2\sqrt{3}$. If $a - A = 2$, and the ratio of the eccentricities of E and H is $\frac{1}{3}$, then the sum of the lengths of their latus rectums is equal to :

(1) 8
 (2) 7
 (3) 10
 (4) 9

Answer (1)

Sol. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ foci are $(ae, 0)$ and $(-ae, 0)$

$\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1$ foci are $(Ae', 0)$ and $(-Ae', 0)$

$$\Rightarrow 2ae = 2\sqrt{3} \Rightarrow ae = \sqrt{3}$$

$$\Rightarrow 2Ae' = 2\sqrt{3} \Rightarrow Ae' = \sqrt{3}$$

$$\Rightarrow ae = Ae' \Rightarrow \frac{e}{e'} = \frac{A}{a}$$

$$\Rightarrow \frac{1}{3} = \frac{A}{a}, \quad a = 3A$$

$$\text{Now, } a - A = 2 \Rightarrow a - \frac{a}{3} - 2 = 2$$

$$\Rightarrow a = 3 \text{ and } A = 1$$

$$Ae = \sqrt{3} \Rightarrow e = \frac{1}{\sqrt{3}}, \quad e' = \sqrt{3}$$

$$b^2 = a^2 (1 - e^2)$$

$$b^2 = 6$$

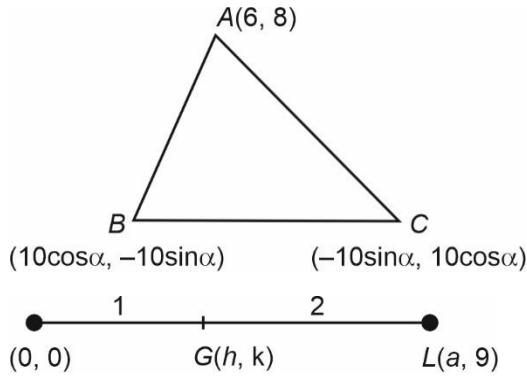
$$\text{and } B^2 = A^2 ((e')^2 - 1) = 2$$

$$\Rightarrow B^2 = 2$$

$$\text{sum of L. R} = \frac{2b^2}{a} + \frac{2B^2}{A} = 8$$

Delivering Champions Consistently

JEE (Advanced) 2024



Aakash
Medical IIT-JEE Foundations

Sol.

$$\frac{a+0}{3} = h \Rightarrow a = 3h$$

$$\frac{9+0}{3} = k \Rightarrow k = 3$$

$$\therefore (h, k) = \left(\frac{6+10\cos\alpha-10\sin\alpha}{3}, \frac{8-10\sin\alpha-10\cos\alpha}{3} \right)$$

$$6 + 10\cos\alpha - 10\sin\alpha = 3h$$

$$10\cos\alpha - 10\sin\alpha = 3h - 6 \quad \dots(1)$$

$$10(\cos\alpha - \sin\alpha) = 1 \quad \dots(2)$$

$$\frac{8-10\sin\alpha+10\cos\alpha}{3} = k$$

$$\Rightarrow 100\sin 2\alpha = 99$$

$$h = \frac{7}{3}$$

$$\Rightarrow a = 7$$

$$\text{Now, } 5a - 3h + 6k + 100\sin 2\alpha = 35 - 7 + 18 + 99 = 145$$

23. Let $A = \{1, 2, 3\}$. The number of relations on A , containing $(1, 2)$ and $(2, 3)$, which are reflexive and transitive but not symmetric, is _____.

Answer (3)

Sol. R is reflexive $\Rightarrow R$ have $(1, 1), (2, 2), (3, 3)$

R is transitive

$$\therefore (1, 2), (2, 3) \in R \quad \therefore (1, 3) \in R$$

$$\therefore R_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3)\}$$

Clearly R_1 is reflexive and transitive but not symmetric.

Similarly,

$$R_2 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3), (3, 2)\}$$

$$R_3 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3), (2, 1)\}$$

Therefore, 3 relations are possible

24. If $\sum_{r=1}^{30} \frac{r^2 \binom{30}{r}^2}{\binom{30}{r-1}} = \alpha \times 2^{29}$, then α is equal to _____.

Answer (465)

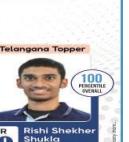
$$\text{Sol. } \sum_{r=1}^{30} \frac{r^2 \binom{30}{r}^2}{\binom{30}{r-1}}$$

$$= \frac{r^2 \cdot 30!}{(30-r)!r!} \cdot \frac{30!}{(30-r)!r!} \times \frac{(r-1)!(31-r)!}{30!}$$

$$= \frac{30!(31-r)}{(r-1)!(30-r)!}$$

$$\Rightarrow \sum_{r=0}^{30} \frac{r^2 \binom{30}{r}^2}{\binom{30}{r-1}} = 30 \sum_{r=0}^{30} (31-r)^{29} C_{r-1}$$

$$= 30 \sum_{r=0}^{30} (31-r)^{29} C_{30-r}$$


$$= 30 \sum_{r=0}^{30} [(30-r)+1]^{29} C_{30-r}$$

$$= 30 \sum_{r=0}^{30} \frac{29}{(30-r)} (30-r) \cdot {}^{28}C_{29-r} + 30 \sum_{r=0}^{30} {}^{29}C_{30-r}$$

$$= 30 \cdot 29 \cdot 2^{28} + 30 \cdot 2^{29}$$

JEE (Advanced) 2024

$$= 30 \cdot 2^{28} (29 + 2) = (31 \times 15) \cdot 2^{29}$$

$$= 465 \cdot 2^{29}$$

$$\therefore \alpha = 465$$

25. Let $y = f(x)$ be the solution of the differential equation

$$\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1-x^2}}, -1 < x < 1 \text{ such that } f(0) =$$

0. If $6 \int_{-1/2}^{1/2} f(x)dx = 2\pi - \alpha$, then α^2 is equal to _____.

Answer (27)

Sol. $\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^6 + 4x}{\sqrt{1-x^2}}, -1 < x < 1$

$$I.F = e^{-\frac{1}{2} \int \frac{2x}{1-x^2} dx}$$

$$I.F = e^{\frac{1}{2} \ln(1-x^2)}$$

$$I.F = \sqrt{1-x^2}$$

$$\text{As } -1 < x < 1, \Rightarrow I.F = \sqrt{1-x^2}$$

$$\therefore y \cdot \sqrt{1-x^2} = \int \frac{x^6 + 4x}{\sqrt{1-x^2}} \cdot \sqrt{1-x^2} dx$$

$$y \cdot \sqrt{1-x^2} = \int (x^6 + 4x) dx$$

$$y \cdot \sqrt{1-x^2} = \frac{x^7}{7} + 2x^2 + C$$

$$\text{Given } f(0) = 0$$

$$C = 0$$

$$\therefore y = \frac{x^7}{7\sqrt{1-x^2}} + \frac{2x^2}{\sqrt{1-x^2}}$$

$$\int_{-1/2}^{1/2} f(x)dx = \frac{1}{7} \int_{-1/2}^{1/2} \frac{x^7}{\sqrt{1-x^2}} dx + 2 \int_{-1/2}^{1/2} \frac{x^2}{\sqrt{1-x^2}} dx$$

$$\int_{-1/2}^{1/2} f(x)dx = 0 + \int_{-1/2}^{1/2} \frac{2x^2}{\sqrt{1-x^2}} dx$$

$$\text{Put } x = \sin\theta$$

$$dx = \cos\theta d\theta$$

$$\text{When } x = \frac{1}{2}, \theta = \frac{\pi}{6}$$

$$x = \frac{-1}{2}, \theta = \frac{-\pi}{6}$$

$$\int_{-\pi/6}^{\pi/6} \frac{2\sin^2\theta \cdot \cos\theta d\theta}{\cos\theta}$$

$$= 2 \int_{-\pi/6}^{\pi/6} \frac{(1-\cos 2\theta)}{2} d\theta$$

$$\int_{-1/2}^{1/2} f(x)dx = \frac{\pi}{3} - \frac{\sqrt{3}}{2}$$

$$6 \int_{-1/2}^{1/2} f(x)dx = 2\pi - 3\sqrt{3}$$

$$\therefore \alpha = 3\sqrt{3}$$

$$\alpha^2 = 27$$

Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

Topper Stories

33. Given below are two statements. One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A) : In Young's double slit experiment, the fringes produced by red light are closer as compared to those produced by blue light.

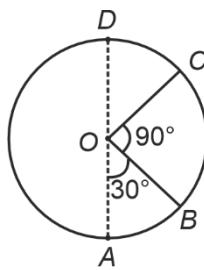
Reason (R) : The fringe width is directly proportional to the wavelength of light.

In the light of the above statements, choose the correct answer from the options given below :

- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)

Answer (1)

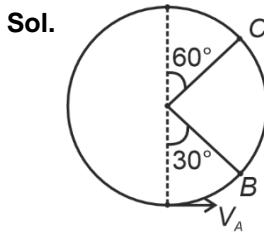
Sol. $\beta = \frac{\lambda D}{d}$


$$\lambda_{\text{red}} < \lambda_{\text{blue}}$$

Assertion is false

Reason is true

34. A body of mass 100 g is moving in circular path of radius 2 m on vertical plane as shown in figure.


The velocity of the body at point A is 10 m/s. The ratio of its kinetic energies at point B and C is

(Take acceleration due to gravity as 10 m/s²)

- (1) $\frac{3+\sqrt{3}}{2}$
- (2) $\frac{2+\sqrt{2}}{3}$
- (3) $\frac{2+\sqrt{3}}{3}$
- (4) $\frac{3-\sqrt{2}}{2}$

Answer (1)

$$V_B = \sqrt{V_A^2 - 2gl \left(1 - \frac{\sqrt{3}}{2}\right)}$$

$$= \sqrt{60 + 20\sqrt{3}}$$

$$V_C = \sqrt{V_A^2 - 2g \left(\frac{3}{2}\right)}$$

$$= \sqrt{100 - 60}$$

$$= \sqrt{40}$$

$$\frac{K_B}{K_C} = \left(\frac{V_B}{V_C}\right)^2 = \frac{3+\sqrt{3}}{2}$$

35. A small rigid spherical ball of mass M is dropped in a long vertical tube containing glycerine. The velocity of the ball becomes constant after some time. If the density of glycerine is half of the density of the ball, then the viscous force acting on the ball will be (consider g as acceleration due to gravity)

- (1) $2 Mg$
- (2) $\frac{3}{2} Mg$
- (3) $\frac{Mg}{2}$
- (4) Mg

Answer (3)

Delivering Champions Consistently

<p>AIR 25 Rishi Shekher Shukla 2 Year Classroom</p>	<p>AIR 67 Krishna Sai Shishir 2 Year Classroom</p>	<p>AIR 78 Abhishek Jain 2 Year Classroom</p>	<p>AIR 93 Hardik Agarwal 2 Year Classroom</p>	<p>AIR 95 Ujjwal Singh 4 Year Classroom</p>	<p>AIR 98 Rachit Aggarwal 4 Year Classroom</p>
JEE (Advanced) 2024					

Aakash
Medical IIT-JEE | Foundations

<p>AIR 34 Sanvi Jain 2 Year Classroom</p>	<p>AIR 15 M Sai Divya Teja Reddy 2 Year Classroom</p>	<p>AIR 19 Rishi Shekher Shukla 2 Year Classroom</p>
JEE (Main) 2024		

Answer (1)

Sol. Einstein's photoelectric equation

$$KE = \frac{hc}{\lambda} = \phi_0$$

$$2 \text{ eV} = \frac{hc}{\lambda} - 1 \text{ eV}$$

$$\frac{hc}{\lambda} = 3 \text{ eV}$$

$$KE' = \frac{hc}{(\lambda/2)} - \phi_0 = 6 \text{ eV} - 1 \text{ eV}$$

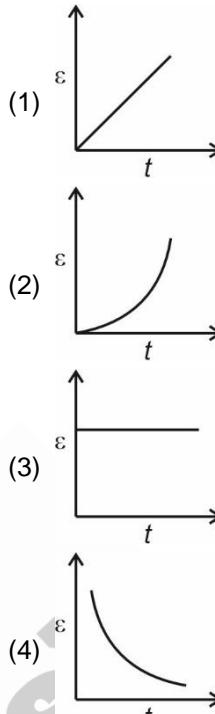
$$= 5 \text{ eV}$$

41. Given are statements for certain thermodynamic variables,

- (A) Internal energy, volume (V) and mass (M) are extensive variables.
- (B) Pressure (P), temperature (T) and density (ρ) are intensive variables.
- (C) Volume (V), temperature (T) and density (ρ) are intensive variables.
- (D) Mass (M), temperature (T) and internal energy are extensive variables.

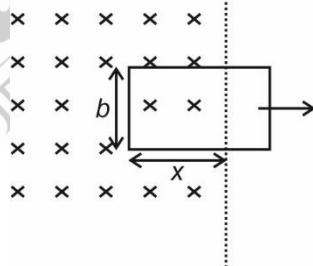
Choose the **correct** answer from the options given below:

(1) (C) and (D) only (2) (A) and (D) only
(3) (B) and (C) only (4) (A) and (B) only


Answer (4)

Sol. Extensive variables depend on size and amount of system.

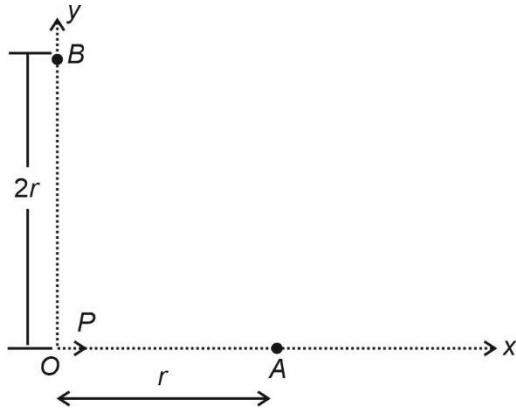
Extensive : Volume, mass, internal energy


Intensive : Pressure, temperature, density

42. A rectangular metallic loop is moving out of a uniform magnetic field region to a field free region with a constant speed. When the loop is partially inside the magnetic field, the plot of magnitude of induced emf (ε) with time (t) is given by

Answer (3)

50


$$E = -\frac{d\phi}{dt}$$

$$\phi = Bbx$$

$$|E| = Bb\nu$$

43. For a short dipole placed at origin O , the dipole moment P is along x -axis, as shown in the figure. If the electric potential and electric field at A are V_0 and E_0 , respectively, then the correct combination of the electric potential and electric field, respectively, at point B on the y -axis is given by

(1) zero and $\frac{E_0}{16}$ (2) zero and $\frac{E_0}{8}$
 (3) $\frac{V_0}{2}$ and $\frac{E_0}{16}$ (4) V_0 and $\frac{E_0}{4}$

Answer (1)

Sol. At point A (axial)

$$|E_0| = \frac{2k_p}{r^3}, V_0 = \frac{k_p}{r^2}$$

At point B (equatorial)

$$|E| = \frac{k_p}{(2r)^3} = \frac{E_0}{16}$$

$$V = 0$$

44. A force $\vec{F} = 2\hat{i} + b\hat{j} + \hat{k}$ is applied on a particle and it undergoes a displacement $\hat{i} - 2\hat{j} - \hat{k}$. What will be the value of b , if work done on the particle is zero?

(1) 0 (2) $\frac{1}{3}$
 (3) $\frac{1}{2}$ (4) 2

Answer (3)

Sol. $w = 0$

$$\therefore \vec{F} \cdot \vec{S} = 0$$

$$(2\hat{i} + b\hat{j} + \hat{k}) \cdot (\hat{i} - 2\hat{j} - \hat{k}) = 0$$

$$2 - 2b - 1 = 0$$

$$b = \frac{1}{2}$$

45. For a diatomic gas, if $\gamma_1 = \left(\frac{C_p}{C_v}\right)$ for rigid molecules and $\gamma_2 = \left(\frac{C_p}{C_v}\right)$ for another diatomic molecules, but also having vibrational modes. Then, which one of the following options is correct? (C_p and C_v are specific heats of the gas at constant pressure and volume)

(1) $\gamma_2 > \gamma_1$ (2) $2\gamma_2 = \gamma_1$
 (3) $\gamma_2 < \gamma_1$ (4) $\gamma_2 = \gamma_1$

Answer (3)

Sol. For rigid diatomic molecules

$$f = 5$$

$$\therefore \gamma_1 = \frac{7}{5} = 1.4$$

For non-rigid diatomic molecules

$$f = 5 + 2 = 7$$

$$\gamma_2 = \frac{9}{7} = 1.28$$

$$\therefore \gamma_1 > \gamma_2$$

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

46. A tube of length 1 m is filled completely with an ideal liquid of mass $2 M$, and closed at both ends. The tube is rotated uniformly in horizontal plane about one of its ends. If the force exerted by the liquid at the other end is F then angular velocity of the tube is $\sqrt{\frac{F}{\alpha M}}$ in SI unit. The value of α is _____.

Answer (1)

Sol. $F = m\omega^2 r_{cm}$

$$r_{cm} = \frac{1}{2} m$$

$$\omega = \sqrt{\frac{2F}{m}}$$

$$m = 2M$$

$$\omega = \sqrt{\frac{F}{M}}$$

$$\alpha = 1$$

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

47. A proton is moving undeflected in a region of crossed electric and magnetic fields at a constant speed of $2 \times 10^5 \text{ ms}^{-1}$. When the electric field is switched off, the proton moves along a circular path of radius 2 cm. The magnitude of electric field is $x \times 10^4 \text{ N/C}$. The value of x is _____. Take the mass of proton = $1.6 \times 10^{-27} \text{ kg}$.

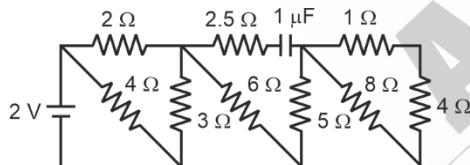
Answer (2)

Sol. $Bvq = Eq$

$$E = Bv$$

$$r = \frac{mv}{Bq}$$

$$B = \frac{mv}{rq}$$


$$E = \left(\frac{mv}{rq} \right) v = \frac{mv^2}{rq}$$

$$= \frac{1.6 \times 10^{-27} \times 4 \times 10^{10}}{2 \times 10^{-2} \times 1.6 \times 10^{-19}}$$

$$= 2 \times 10^4 \text{ N/C}$$

$$x = 2$$

48. The net current flowing in the given circuit is _____ A.

Answer (1)

Sol. $I = \frac{V}{R_{eq}}$

C behaves as open circuit

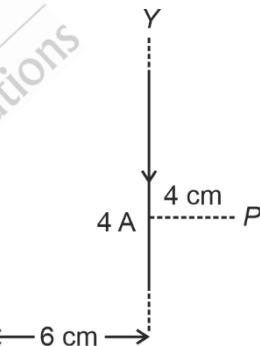
$$R_{eq} = 2 \Omega$$

$$i = \frac{2}{2} = 1 \text{ A}$$

49. A parallel plate capacitor of area $A = 16 \text{ cm}^2$ and separation between the plates 10 cm, is charged by a DC current. Consider a hypothetical plane surface of area $A_0 = 3.2 \text{ cm}^2$ inside the capacitor and parallel to the plates. At an instant, the current through the circuit is 6 A. At the same instant the displacement current through A_0 is _____ mA.

Answer (1200)

Sol. $i_d = i_c$


$$\therefore \text{Total displacement current} = 6 \text{ A}$$

Through A_0

$$i = \left(\frac{A_0}{A} \right) 6$$

$$= \frac{3.2}{16} \times 6 = 1.2 \text{ A} = 1200 \text{ mA}$$

50. Two long parallel wires X and Y, separated by a distance of 6 cm, carry currents of 5 A and 4 A, respectively, in opposite directions as shown in the figure. Magnitude of the resultant magnetic field at point P at a distance of 4 cm from wire Y is $x \times 10^{-5} \text{ T}$. The value of x is _____. Take permeability of free space as $\mu_0 = 4\pi \times 10^{-7} \text{ SI units}$.

Answer (1)

Sol. At P

$$\vec{B} = \vec{B}_1 + \vec{B}_2$$

$$= \frac{\mu_0 i_2}{2\pi r_2} \hat{k} - \frac{\mu_0 i_1}{2\pi r_1} \hat{k}$$

$$= \frac{\mu_0}{2\pi} \left(\frac{4}{4} \times 10^2 - \frac{5}{10} \times 10^2 \right) \hat{k}$$

$$= \frac{2 \times 10^{-7} \times 10^2}{2} = 10^{-5}$$

$$x = 1$$

Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shishir
2 Year Classroom

AIR 78
Abhishek Jain
2 Year Classroom

AIR 93
Hardik Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit Aggarwal
4 Year Classroom

JEE (Advanced) 2024

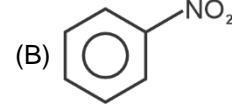
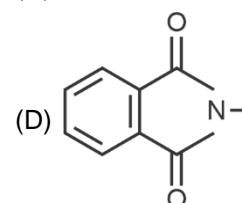
Aakash
Medical|IIT-JEE|Foundations

Karnataka Topper
AIR 34

Telangana Topper
AIR 15

Telangana Topper
AIR 19

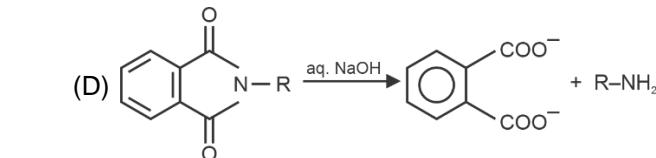
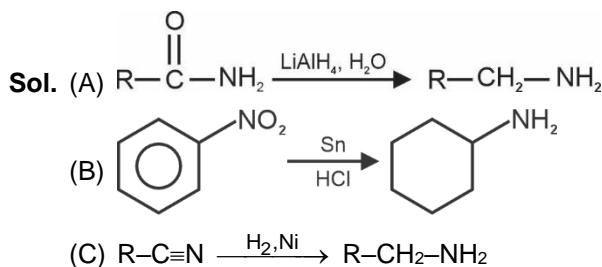
JEE (Main) 2024



CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :



51. Match the compounds (List-I) with the appropriate Catalyst/Reagents (List-II) for their reduction into corresponding amines.

List-I	List-II
(A)	(I) NaOH (aqueous)
(B)	(II) H ₂ /Ni
(C) R-C≡N	(III) LiAlH ₄ , H ₂ O
(D)	(IV) Sn, HCl

Choose the correct answer from the options given below:

- (1) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
- (2) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)
- (3) (A)-(II), (B)-(IV), (C)-(III), (D)-(I)
- (4) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)

Answer (1)

52. Match List-I with List-II

List-I (Partial Derivatives)	List-II (Thermodynamic Quantity)
(A) $\left(\frac{\partial G}{\partial T}\right)_P$	(I) C_P
(B) $\left(\frac{\partial H}{\partial T}\right)_P$	(II) $-S$
(C) $\left(\frac{\partial G}{\partial P}\right)_T$	(III) C_V
(D) $\left(\frac{\partial U}{\partial T}\right)_V$	(IV) V

Choose the **correct** answer from the options given below:

- (1) (A)-(I), (B)-(II), (C)-(IV), (D)-(III)
- (2) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- (3) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)
- (4) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)

Answer (4)

Sol. $\because dH = dq$ (at $P = \text{constant}$)

$$dH = C_P dT$$

$$\left(\frac{\partial H}{\partial T}\right)_P = C_P$$

$dU = dq$ (at $V = \text{constant}$)

$$dU = C_V dT$$

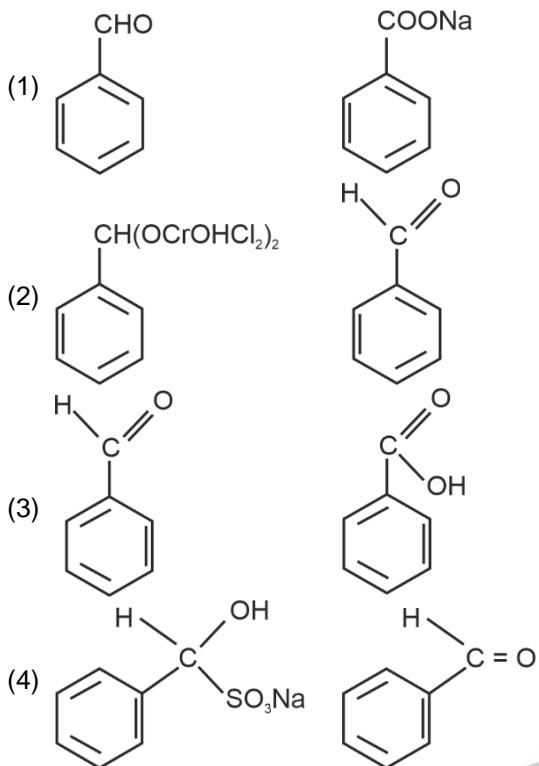
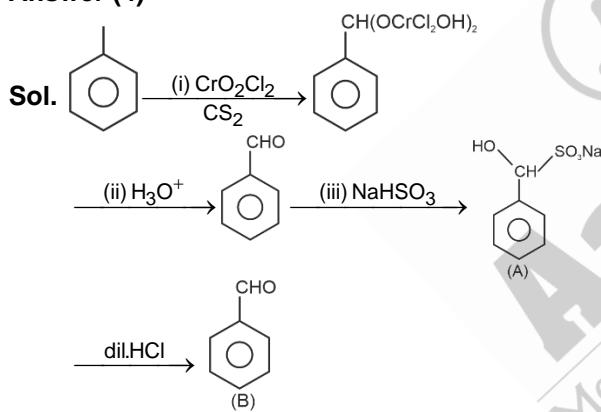
$$\left(\frac{\partial U}{\partial T}\right)_V = C_V$$

$\therefore dG = VdP - SdT$

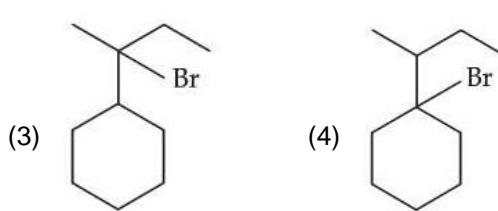
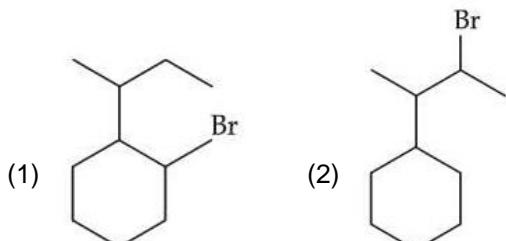
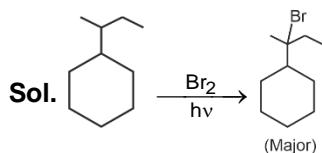

at $P = \text{constant}$, $dP = 0$

 Delivering Champions Consistently

 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shishir 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Agarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 4 Year Classroom
---	--	--	---	---	---



JEE (Advanced) 2024

 Aakash
Medical IIT-JEE Foundations




 Karnataka Topper AIR 24 Sanvi Jain 2 Year Classroom	 Telangana Topper AIR 15 M Sai Divya Teja Reddy 2 Year Classroom	 Telangana Topper AIR 19 Rishi Shekher Shukla 2 Year Classroom
--	--	--

JEE (Main) 2024

Answer (4)

58. When sec-butylcyclohexane reacts with bromine in the presence of sunlight, the major product is:

Answer (3)

59. Given below are two statements:

Statement (I): A spectral line will be observed for a $2p_x \rightarrow 2p_y$ transition.

Statement (II): $2p_x$ and $2p_y$ are degenerate orbitals.

In the light of the above statements, choose the correct answer from the options given below:

(1) Both **Statement I** and **Statement II** are true
 (2) **Statement I** is true but **Statement II** is false
 (3) Both **Statement I** and **Statement II** are false
 (4) **Statement I** is false but **Statement II** is true

Answer (4)

Sol. $2p_x$ and $2p_y$ are degenerated orbitals hence having equal energy and therefore no spectral line will be observed for $2p_x \rightarrow 2p_y$ transition.

60. Identify the homoleptic complex(es) that is/are low spin.

(A) $[\text{Fe}(\text{CN})_5\text{NO}]^{2-}$ (B) $[\text{CoF}_6]^{3-}$
 (C) $[\text{Fe}(\text{CN})_6]^{4-}$ (D) $[\text{Co}(\text{NH}_3)_6]^{3+}$
 (E) $[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$

Choose the correct answer from the options given below:

(1) (C) and (D) only (2) (C) only
 (3) (B) and (E) only (2) (A) and (C) only

Answer (1)

Sol. Except $[\text{Fe}(\text{CN})_5\text{NO}]^{2-}$ all are homoleptic as have only one type of ligand.

High spin complexes are $[\text{CoF}_6]^{3-}$, $[\text{Cr}(\text{H}_2\text{O})_6]^{2+}$

Low spin complexes are $[\text{Fe}(\text{CN})_6]^{4-}$, $[\text{Co}(\text{NH}_3)_6]^{3+}$

Hence (C) and (D) are homoleptic and low spin complexes.

 Delivering Champions Consistently

AIR 25 Rishi Shekher Shukla
2 Year Classroom

AIR 67 Krishna Sai Shishir
2 Year Classroom

JEE (Advanced) 2024
AIR 78 Abhishek Jain
2 Year Classroom

AIR 93 Hardik Agarwal
2 Year Classroom

AIR 95 Ujjwal Singh
4 Year Classroom

AIR 98 Rachit Aggarwal
2 Year Classroom

JEE (Main) 2024
AIR 15 Sanvi Jain
2 Year Classroom

AIR 15 M Sai Divya Teja Reddy
2 Year Classroom

AIR 19 Rishi Shekher Shukla
2 Year Classroom

61. The molar solubility(s) of zirconium phosphate with molecular formula $(\text{Zr}^{4+})_3(\text{PO}_4^{3-})_4$, is given by relation:

$$(1) \left(\frac{K_{\text{sp}}}{8435} \right)^{\frac{1}{7}}$$

$$(2) \left(\frac{K_{\text{sp}}}{6912} \right)^{\frac{1}{7}}$$

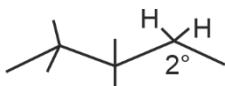
$$(3) \left(\frac{K_{\text{sp}}}{5348} \right)^{\frac{1}{6}}$$

$$(4) \left(\frac{K_{\text{sp}}}{9612} \right)^{\frac{1}{3}}$$

Answer (2)

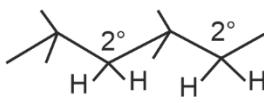
$$K_{\text{sp}} = (3s)^3 \cdot (4s)^4$$

$$K_{\text{sp}} = 6912 s^7$$

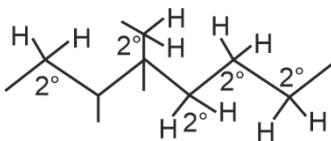

$$s = \left(\frac{K_{\text{sp}}}{6912} \right)^{\frac{1}{7}}$$

62. The alkane from below having two secondary hydrogens is:

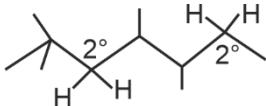
- (1) 2,2,3,3-Tetramethylpentane
- (2) 2,2,4,4-Tetramethylhexane
- (3) 4-Ethyl-3,4-dimethyloctane
- (4) 2,2,4,5-Tetramethylheptane


Answer (1)

Sol. 2,2,3,3-Tetramethylpentane


2 secondary Hydrogen

2,2,4,4-Tetramethylhexane


4 secondary Hydrogen

4-Ethyl-3,4-dimethyloctane

10 secondary Hydrogen

2,2,4,5-Tetramethylheptane

4 secondary Hydrogen

63. The correct order of the following complexes in terms of their crystal field stabilization energies is:

$$(1) [\text{Co}(\text{NH}_3)_4]^{2+} < [\text{Co}(\text{NH}_3)_6]^{2+} < [\text{Co}(\text{en})_3]^{3+} \\ < [\text{Co}(\text{NH}_3)_6]^{3+}$$

$$(2) [\text{Co}(\text{NH}_3)_4]^{2+} < [\text{Co}(\text{NH}_3)_6]^{2+} < [\text{Co}(\text{NH}_3)_6]^{3+} \\ < [\text{Co}(\text{en})_3]^{3+}$$

$$(3) [\text{Co}(\text{en})_3]^{3+} < [\text{Co}(\text{NH}_3)_6]^{3+} < [\text{Co}(\text{NH}_3)_6]^{2+} \\ < [\text{Co}(\text{NH}_3)_4]^{2+}$$

$$(4) [\text{Co}(\text{NH}_3)_6]^{2+} < [\text{Co}(\text{NH}_3)_6]^{3+} < [\text{Co}(\text{NH}_3)_4]^{2+} \\ < [\text{Co}(\text{en})_3]^{3+}$$

Answer (2)

Sol. Crystal field splitting energy (Δ) \propto charge or oxidation state of central metal atom.

Crystal field splitting energy (Δ) \propto Field strength of ligand (and chelation)

$$\text{Crystal field stabilisation energy (CFSE)} = [-0.4 t_{2g} + 0.6 eg] \Delta_0 \text{ (for octahedral)}$$

For,

$$[\text{Co}(\text{en})_3]^{3+} : \text{Co}^{3+} : t_{2g}^6 eg^0 ; \text{CFSE} = -2.4(\Delta_0)_1$$

$$[\text{Co}(\text{NH}_3)_6]^{3+} : \text{Co}^{3+} : t_{2g}^6 eg^0 ; \text{CFSE} = -2.4(\Delta_0)_2$$

$$[\text{Co}(\text{NH}_3)_6]^{2+} : \text{Co}^{2+} : t_{2g}^5 eg^2 ; \text{CFSE} = -0.8(\Delta_0)_3$$

$$[\text{Co}(\text{NH}_3)_4]^{2+} : \text{Co}^{2+} : e^4 t_2^3 ; \text{CFSE} = -1.2\Delta_t$$

$$\left(\text{as} : (\Delta_t) = \frac{4}{9} (\Delta_0)_3 \right)$$

$$\therefore \Delta_t < (\Delta_0)_3 < (\Delta_0)_2 < (\Delta_0)_1$$

Delivering Champions Consistently

JEE (Advanced) 2024

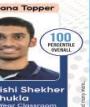
JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024


JEE (Main) 2024

JEE (Main) 2024

JEE (Main) 2024

JEE (Main) 2024

64. Given below are two statements:

Statement (I): Nitrogen, sulphur, halogen and phosphorus present in an organic compound are detected by Lassaigne's Test.

Statement (II): The elements present in the compound are converted from covalent form into ionic form by fusing the compound with Magnesium in Lassaigne's test.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both **Statement I** and **Statement II** are false
- (2) **Statement I** is false but **Statement II** is true
- (3) Both **Statement I** and **Statement II** are true
- (4) **Statement I** is true but **Statement II** is false

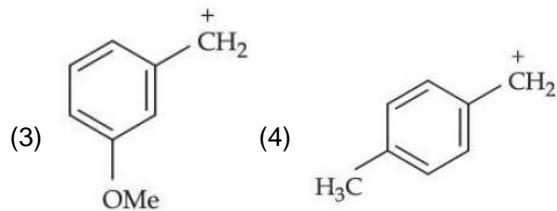
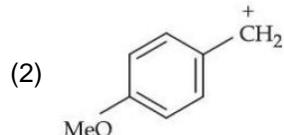
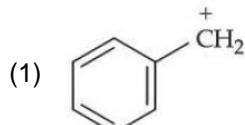
Answer (4)

Sol. For Lassaigne's test, sodium is used and not magnesium to convert covalent to ionic form.

65. Given below are two statements:

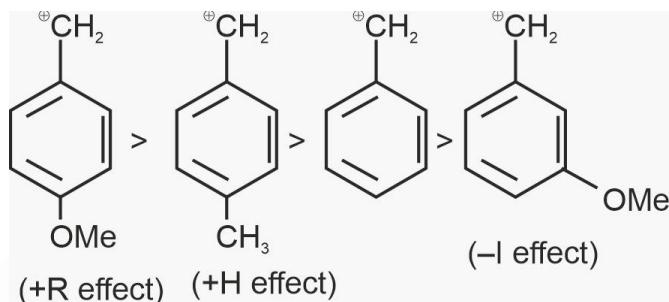
Statement (I): An element in the extreme left of the periodic table forms acidic oxides.

Statement (II): Acid is formed during the reaction between water and oxide of a reactive element present in the extreme right of the periodic table.

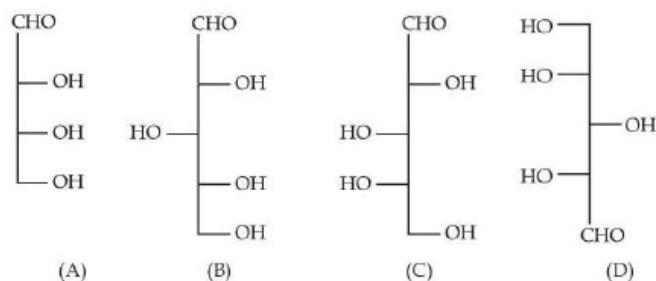



In the light of the above statements, choose the correct answer from the options given below:

- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Statement I is true but Statement II is false

Answer (3)


Sol. Group I elements forms basic oxides. Group 17 elements forms acids with their oxides on reaction with water.

66. The most stable carbocation from the following is:



Answer (2)

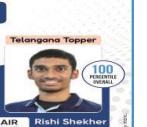
Sol. The order of stability of carbocations given is:

67. Identify the number of structure/s from the following which can be correlated to D-glyceraldehyde

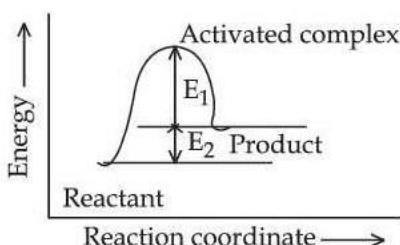
(1) four
(2) three
(3) one
(4) two

Answer (2)

Sol. For D-configuration, when -CHO is at top, -OH at the lowest chiral center should be on right side.


Hence, (A), (B) and (D) can be correlated to D-glyceraldehyde.

Delivering Champions Consistently


JEE (Advanced) 2024

 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shishir 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Agarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 4 Year Classroom
---	--	--	---	---	---

JEE (Main) 2024

 Karnataka Topper AIR 24 Sanvi Jain 2 Year Classroom	 Telangana Topper AIR 15 M Sai Divya Teja Reddy 2 Year Classroom	 Telangana Topper AIR 19 Rishi Shekher Shukla 2 Year Classroom
---	---	---

68. Consider the given figure and choose the correct option

- (1) Activation energy of backward reaction is E_1 and product is more stable than reactant
- (2) Activation energy of forward reaction is $E_1 + E_2$ and product is less stable than reactant
- (3) Activation energy of forward reaction is $E_1 + E_2$ and product is more stable than reactant
- (4) Activation energy of both forward and backward reaction is $E_1 + E_2$ and reactant is more stable than product

Answer (2)

Sol. E_1 : Activation energy for backward reaction.

$E_1 + E_2$: Activation Energy for forward reaction.

Product has more energy than reactant

69. Arrange the following compounds in increasing order of their dipole moment:

HBr, H₂S, NF₃ and CHCl₃

- (1) NF₃ < HBr < H₂S < CHCl₃
- (2) H₂S < HBr < NF₃ < CHCl₃
- (3) HBr < H₂S < NF₃ < CHCl₃
- (4) CHCl₃ < NF₃ < HBr < H₂S

Answer (1)

Sol. $\mu_{\text{HBr}} = 0.78 \text{ D}$

$\mu_{\text{H}_2\text{S}} = 0.95 \text{ D}$

$\mu_{\text{NF}_3} = 0.24 \text{ D}$

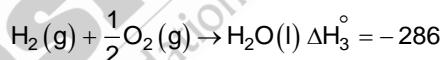
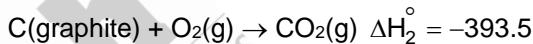
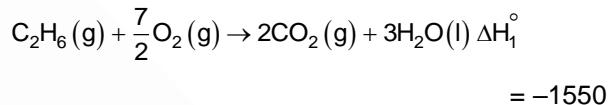
$\mu_{\text{CHCl}_3} = 1.01 \text{ D}$

Hence dipole moment of

NF₃ < HBr < H₂S < CHCl₃

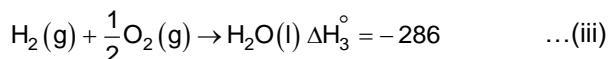
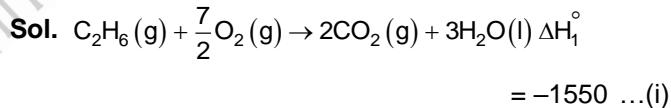
70. The maximum covalency of a non-metallic group 15 element 'E' with weakest E – E bond is

- (1) 6
- (2) 3
- (3) 5
- (4) 4

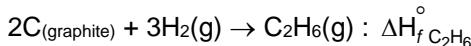



Answer (4)

Sol. E-E bond strength decreases down the group 15. But N-N bond is weakest due to e⁻ repulsion

SECTION - B



Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

71. Consider the following cases of standard enthalpy of reaction (ΔH_r° in kJ mol^{-1})



The magnitude of $\Delta H_f^\circ_{\text{C}_2\text{H}_6(\text{g})}$ is _____ kJ mol⁻¹ (Nearest integer).

Answer (95)

From $2 \times \text{eq}^\circ(\text{ii}) + 3 \times \text{eq}^\circ(\text{iii}) - \text{eq}^\circ(\text{i})$

$$\left(\Delta H_f^\circ \right)_{\text{C}_2\text{H}_6} = 2 \times (-393.5) + 3 \times (-286) - (-1550)$$

$$= -95 \text{ kJ/mol}$$

 Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shishir
2 Year Classroom

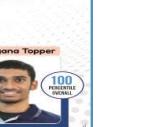
AIR 78
Abhishek Jain
2 Year Classroom

AIR 93
Hardik Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit Aggarwal
4 Year Classroom

JEE (Advanced) 2024


 Aakash
Medical/IIT-JEE|Foundations

AIR 1
Sanvi Jain
2 Year Classroom

AIR 15
M Sai Divya Teja Reddy
2 Year Classroom

AIR 19
Rishi Shekher Shukla
2 Year Classroom

JEE (Main) 2024

72. The compound with molecular formula C_6H_6 , which gives only one monobromo derivative and takes up four moles of hydrogen per mole for complete hydrogenation has _____ π electrons.

Answer (8)

Sol. Since 4 moles of H_2 is being added for complete hydrogenation the degree of unsaturation = 4

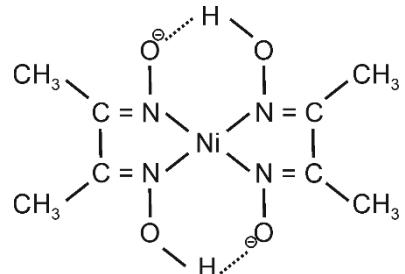
No. of π electrons in C_6H_6 = $4 \times 2 = 8$

73. Niobium (Nb) and ruthenium (Ru) have "x" and "y" number of electrons in their respective $4d$ orbitals. The value of $x + y$ is _____.

Answer (11)

Sol. Ru : [Kr]4d⁷5s¹ ; Nb : [Kr]4d⁴5s¹

$x = 7, y = 4$


$x + y = 11$

74. The complex of Ni^{2+} ion and dimethyl glyoxime contains _____ number of Hydrogen (H) atoms.

Answer (14)

Sol. Ni^{2+} with(dmg) forms $[Ni(dmg)_2]^{2+}$ having 2 H-Bonds as shown:

The no. of H atoms = 14

75. 20 mL of 2 M NaOH solution is added to 400 mL of 0.5 M NaOH solution. The final concentration of the solution is _____ $\times 10^{-2}$ M. (Nearest integer)

Answer (57)

$$\begin{aligned} \text{Sol. } [NaOH]_{\text{final}} &= \frac{20 \times 2 + 400 \times 0.5}{420} = \frac{40 + 200}{420} = \frac{240}{420} \\ &= 0.57 \text{ M} \\ [NaOH]_{\text{final}} &= 57 \times 10^{-2} \text{ M} \end{aligned}$$

 Delivering Champions Consistently

AIR 25 Rishi Shekher Shukla
2 Year Classroom

AIR 67 Krishna Sai Shishir
2 Year Classroom

AIR 78 Abhishek Jain
2 Year Classroom

AIR 93 Hardik Agarwal
2 Year Classroom

AIR 95 Ujjwal Singh
4 Year Classroom

AIR 98 Rachit Aggarwal
2 Year Classroom

AIR 24 Karnataka Topper
2 Year Classroom

AIR 15 Telangana Topper
2 Year Classroom

AIR 19 Telangana Topper
2 Year Classroom

Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024