

23/01/2025

Evening

Aakash

Medical | IIT-JEE | Foundations

Corporate Office : AESL, 3rd Floor, Incuspace Campus-2, Plot-13, Sector-18, Udyog Vihar, Gurugram, Haryana-122018

Answers & Solutions

Time : 3 hrs.

for

M.M. : 300

JEE (Main)-2025 Phase-1

[Computer Based Test (CBT) mode]

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 75 questions. Each subject (MPC) has 25 questions. The maximum marks are 300.
- (3) This question paper contains **Three** Parts. **Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is **Mathematics**. Each part has only two sections: **Section-A** and **Section-B**.
- (4) **Section - A** : Attempt all questions.
- (5) **Section - B** : Attempt all questions.
- (6) **Section - A (01 – 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.
- (7) **Section - B (21 – 25)** contains 5 Numerical value based questions. The answer to each question should be rounded off to the **nearest integer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

Delivering Champions Consistently

100
PERCENT
PASSAGE

Aakash
Medical | IIT-JEE | Foundations

JEE (Main) 2024

100
PERCENT
PASSAGE

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. If the area of the region

$$\{(x, y) : -1 \leq x \leq 1, 0 \leq y \leq a + e^{|x|} - e^{-x}, a > 0\} \text{ is}$$

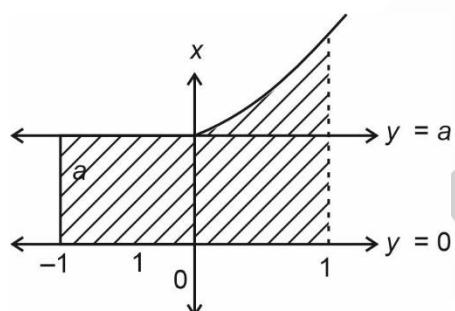
$$\frac{e^2 + 8e + 1}{e}, \text{ then the value of } a \text{ is:}$$

(1) 5

(2) 7

(3) 8

(4) 6


Answer (1)

$$\text{Sol. } y \in [0, a + e^{|x|} - e^{-x}]$$

$$(i) \text{ If } x \geq 0 \Rightarrow y \in \left(0, a + e^x - \frac{1}{e^x}\right)$$

$$\text{if } x < 0 \Rightarrow y \in (0, a + e^{-x} - e^{-x})$$

$$\Rightarrow y \in (0, a)$$

$$\text{Area} = (a) + \int_0^1 (a + e^x - e^{-x}) dx = \frac{e^2 + 8e + 1}{e}$$

$$= a + (ax + e^x + e^{-x}) \Big|_0^1 = e + 8 + \frac{1}{e}$$

$$= a + \left(a + e + \frac{1}{e} - 2\right) = e + \frac{1}{e} + 8$$

$$\Rightarrow 2a - 2 = 8 \Rightarrow a = 5$$

2. If $I = \int_0^{\frac{\pi}{2}} \frac{\sin^3 x}{\sin^2 x + \cos^2 x} dx$, then

$\int_0^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx$ equals:

$$(1) \frac{\pi^2}{12} \quad (2) \frac{\pi^2}{16}$$

$$(3) \frac{\pi^2}{4} \quad (4) \frac{\pi^2}{8}$$

Answer (2)

$$\text{Sol. } I = \int_0^{\frac{\pi}{2}} \frac{(\sin x)^{\frac{3}{2}} dx}{0 (\sin x)^{\frac{3}{2}} x + (\cos x)^{\frac{3}{2}}} = \int_0^{\frac{\pi}{2}} \frac{\sin^2 \left(\frac{\pi}{2} - x\right) dx}{\sin^2 \left(\frac{\pi}{2} - x\right) + \cos^2 \left(\frac{\pi}{2} - x\right)}$$

$$\Rightarrow \text{Adding } 2I = \int_0^{\frac{\pi}{2}} \frac{(\sin x)^{\frac{3}{2}} + (\cos x)^{\frac{3}{2}}}{0 (\sin x)^{\frac{3}{2}} + (\cos x)^{\frac{3}{2}}} dx = \frac{\pi}{2}$$

$$I_0 = \int_0^{\frac{\pi}{2}} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx = \int_0^{\frac{\pi}{2}} \frac{\left(\frac{\pi}{2} - x\right) \sin x \cos x}{(\sin x)^4 + (\cos x)^4} dx$$

$$\text{Adding, } 2I_0 = \int_0^{\frac{\pi}{2}} \frac{\pi}{2} \frac{(\sin x) \cos x}{(\sin^4 x + \cos^4 x)} dx$$

$$\Rightarrow I_0 = \frac{\pi}{4} \int_0^{\frac{\pi}{2}} \frac{\tan x (\sec^2 x) dx}{1 + \tan^4 x}$$

$$\text{put } \tan^2 x = t \Rightarrow 2 \tan x \sec^2 x dx = dt$$

$$\Rightarrow I_0 = \frac{\pi}{4} \int_0^{\infty} \frac{dt}{(1+t^2)^2} = \frac{\pi}{8} (\tan^{-1} t) \Big|_0^{\infty} = \frac{\pi}{8} \left(\frac{\pi}{2} - 0 \right)$$

$$\Rightarrow I_0 = \frac{\pi^2}{16}$$

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

3. Let $x = x(y)$ be the solution of the differential equation

$$y = \left(x - y \frac{dx}{dy} \right) \sin \left(\frac{x}{y} \right), y > 0 \text{ and } x(1) = \frac{\pi}{2}.$$

Then $\cos(x(2))$ is equal to:

(1) $1 - 2(\log_e 2)^2$ (2) $2(\log_e 2) - 1$
 (3) $1 - 2(\log_e 2)$ (4) $2(\log_e 2)^2 - 1$

Answer (4)

Sol. $y = \left(x - y \frac{dx}{dy} \right) \sin \left(\frac{x}{y} \right)$

$$\text{Let } x = ty \Rightarrow \frac{dx}{dy} = y \frac{dt}{dy} + t$$

$$y = \left[yt - y \left(\frac{ydt}{dy} + t \right) \right] \sin t$$

since $y > 0$

$$1 = \left(t - \frac{ydt}{dy} - t \right) \sin t = (\sin t) y \left(\frac{-dt}{dy} \right)$$

$$\Rightarrow \frac{dy}{y} = -\sin t dt$$

$$\text{Integration } \int \frac{dy}{y} = \int -\sin t dt + c$$

$$\ln|y| = \cos t + c \Rightarrow \ln y = \cos \left(\frac{x}{y} \right) + c$$

$$x(1) = \frac{\pi}{2}$$

$$\Rightarrow \ln(1) = \cos \left(\frac{\frac{\pi}{2}}{1} \right) + c \Rightarrow c = 0$$

$$\Rightarrow x(y) = y \cos^{-1}(\ln y)$$

$$x(2) = 2 \cos^{-1}(\ln 2) \Rightarrow \cos(x(2))$$

$$= \cos(2 \cos^{-1}(\ln 2))$$

4. The distance of the line $\frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4}$ from

the point $(1, 4, 0)$ along the line $\frac{x}{1} = \frac{y-2}{2} = \frac{z+3}{3}$ is

(1) $\sqrt{13}$ (2) $\sqrt{15}$
 (3) $\sqrt{14}$ (4) $\sqrt{17}$

Answer (3)

Sol. Line passing through $(1, 4, 0)$ and parallel to

$$\frac{x-1}{1} = \frac{y-4}{2} = \frac{z}{3}$$

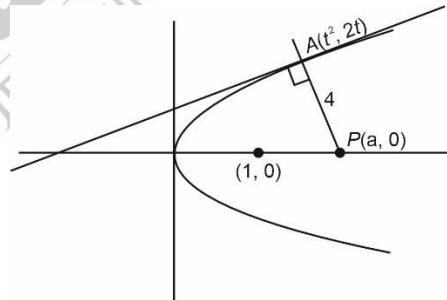
Any point on $L: (\lambda + 1, 2\lambda + 4, 3\lambda)$

$$\text{Any point on } \frac{x-2}{2} = \frac{y-6}{3} = \frac{z-3}{4} \text{ is } (2\mu + 2, 3\mu +$$

$$6, 4\mu + 3)$$

$$\begin{cases} \lambda + 1 = 2\mu + 2 \\ 2\lambda + 4 = 3\mu + 6 \\ 3\lambda = 4\mu + 3 \end{cases} \left. \begin{array}{l} \lambda = 1 \\ \mu = 0 \end{array} \right.$$

Point: $(2, 6, 3)$


$$\text{Distance} = \sqrt{(2-1)^2 + (6-4)^2 + (3-0)^2} \\ = \sqrt{1+4+9} = \sqrt{14}$$

5. Let the shortest distance from $(a, 0)$, $a > 0$, to the parabola $y^2 = 4x$ be 4. Then the equation of the circle passing through the point $(a, 0)$ and the focus of the parabola, and having its centre on the axis of the parabola is

(1) $x^2 + y^2 - 6x + 5 = 0$ (2) $x^2 + y^2 - 10x + 9 = 0$
 (3) $x^2 + y^2 - 4x + 3 = 0$ (4) $x^2 + y^2 - 8x + 7 = 0$

Answer (1)

Sol.

Shortest distance lie along the normal

Slope of normal at A is $(-t)$

$$\Rightarrow (-t) = \frac{2t-0}{t^2-a}$$

$$\Rightarrow t=0 \quad t^2-a=-2$$

$$t^2=a-2$$

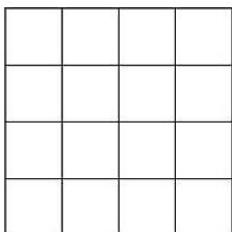
Delivering Champions Consistently

JEE (Advanced) 2024

Aakash
Medical IIT-JEE Foundations

JEE (Main) 2024

$$(t^2 - a)^2 + (2t)^2 = 16$$


$$\Rightarrow t^2 = 3, a = 5$$

Equation of circle passing through (1, 0) and (5, 0) and having centre on the axis will be diametric form

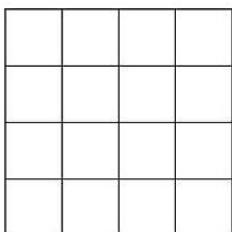
$$(x - 1)(x - 5) + y \cdot y = 0$$

$$x^2 + y^2 - 6x + 5 = 0$$

6. A board has 16 squares as shown in the figure:

Out of these 16 squares, two squares are chosen at random. The probability that they have no side in common is

(1) $\frac{3}{5}$


(2) $\frac{23}{30}$

(3) $\frac{7}{10}$

(4) $\frac{4}{5}$

Answer (4)

Sol.

$$\text{Total} = {}^{16}C_2$$

Required ways = Total - (adjacent square)

$$= {}^{16}C_2 -$$

[3 pair in vertical & horizontal for each row and column]

$$= {}^{16}C_2 - [3 \times 4 + 3 \times 4]$$

$$= 96$$

$$\text{Probability} = \frac{96}{120} = \frac{4}{5}$$

7. Let $A = [a_{ij}]$ be a 3×3 matrix such that

$$A \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, A \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } A \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \text{ then } a_{23}$$

equals

(1) 1

(2) -1

(3) 2

(4) 0

Answer (2)

Sol. Let $A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

$$\therefore \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\therefore b = 0, e = 0, h = 1$$

and $\begin{bmatrix} a & 0 & c \\ d & 0 & f \\ g & 1 & i \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

$$\left. \begin{array}{l} 4a + 3c = 0 \\ 4d + 3f = 1 \\ 4g + 1 + 3i = 0 \end{array} \right\} \quad \dots(1)$$

and $\begin{bmatrix} a & 0 & c \\ d & 0 & f \\ g & 1 & i \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$

$$\left. \begin{array}{l} 2a + 2c = 1 \\ 2d + 2f = 0 \\ 2g + 1 + 2i = 0 \end{array} \right\} \quad \dots(2)$$

From equation (1) and (2) we get

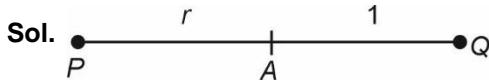
$$d = 1, f = -1$$

$$\therefore a_{23} = -1$$

Y Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024



17. Let the point A divide the line segment joining the points $P(-1, -1, 2)$ and $Q(5, 5, 10)$ internally in the ratio $r : 1 (r > 0)$. If O is the origin and $(\overrightarrow{OQ} \cdot \overrightarrow{OA}) - \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 = 10$, then the value of r is:

(1) $\sqrt{7}$ (2) 7
 (3) 3 (4) 14

Answer (2)

$$A = \left(\frac{5r-1}{r+1}, \frac{5r-1}{r+1}, \frac{10r+2}{r+1} \right)$$

$$(\overrightarrow{OQ} \cdot \overrightarrow{OA}) - \frac{1}{5} |\overrightarrow{OP} \times \overrightarrow{OA}|^2 = 10$$

$$\overrightarrow{OQ} = 5\hat{i} + 5\hat{j} + 10\hat{k}$$

$$\overrightarrow{OA} = \frac{5r-1}{r+1}\hat{i} + \frac{5r-1}{r+1}\hat{j} + \frac{10r+2}{r+1}\hat{k}$$

$$\overrightarrow{OP} = -\hat{i} - \hat{j} + 2\hat{k}$$

$$\overrightarrow{OP} \times \overrightarrow{OA} = \frac{1}{r+1} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 5r-1 & 5r-1 & 10r+2 \\ -1 & -1 & 2 \end{vmatrix}$$

$$= \frac{1}{r+1} (\hat{i}(20r) - \hat{j}(20r))$$

$$= 5\left(\frac{5r-1}{r+1}\right) + 5\left(\frac{5r-1}{r+1}\right) + 10\left(\frac{10r+2}{r+1}\right) - \frac{1}{5} \left(\frac{2 \times 400r^2}{(r+1)^2}\right) = 10$$

$$\frac{150r+10}{r+1} - \frac{1}{5} \left(\frac{2 \times 400r^2}{(r+1)^2}\right) = 10$$

$$(150r+10)(r+1) - 160r^2 = 10(r+1)^2$$

$$(15r+1)(r+1) - 16r^2 = (r+1)^2$$

$$15r^2 + 16r + 1 - 16r^2 = r^2 + 2r + 1$$

$$-2r^2 + 14r = 0$$

$$r = 0, 7$$

18. The system of equations

$$x + y + z = 6,$$

$$x + 2y + 5z = 9,$$

$$x + 5y + \lambda z = \mu$$

has no solution if

(1) $\lambda \neq 17, \mu \neq 18$ (2) $\lambda = 17, \mu = 18$
 (3) $\lambda = 15, \mu \neq 17$ (4) $\lambda = 17, \mu \neq 18$

Answer (4)

Sol.
$$\begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 1 & 2 & 5 & | & 9 \\ 1 & 5 & \lambda & | & \mu \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 4 & | & 3 \\ 0 & 4 & \lambda-1 & | & \mu-6 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 4 & | & 3 \\ 0 & 0 & \lambda-17 & | & \mu-18 \end{bmatrix}$$

$$\lambda = 17 \text{ and } \mu \neq 18$$

19. Let $\int x^3 \sin x dx = g(x) + C$, where C is the constant

$$\text{of integration. If } 8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = \alpha\pi^3 + \beta\pi^2 + \gamma, \alpha, \beta, \gamma \in \mathbb{Z}, \text{ then } \alpha + \beta - \gamma \text{ equals:}$$

(1) 62
 (2) 55
 (3) 48
 (4) 47

Answer (2)

Sol.
$$g(x) + C = \int x^3 \cdot \sin x dx$$

$$= -x^3 \cos x + 3x^2 \sin x$$

$$+ 6x \cos x - 6 \sin x + C$$

$$\text{Hence, } g(x) = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x$$

$$g\left(\frac{\pi}{2}\right) = \frac{3\pi^2}{4} - 6$$

$$\text{Also, } g'(x) = x^3 \sin x \Rightarrow g'\left(\frac{\pi}{2}\right) = \frac{\pi^3}{8}$$

$$8\left(g\left(\frac{\pi}{2}\right) + g'\left(\frac{\pi}{2}\right)\right) = 8\left(\frac{3\pi^2}{4} - 6 + \frac{\pi^3}{8}\right)$$

$$= 6\pi^2 + \pi^3 - 48 = \alpha\pi^3 + \beta\pi^2 + \gamma$$

$$\Rightarrow \alpha = 1, \beta = 6, \gamma = -48$$

$$\text{Hence, } \alpha + \beta - \gamma = 1 + 6 + 48 = 55$$

Delivering Champions Consistently

JEE (Advanced) 2024

Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024

20. Let $X = R \times R$. Define a relation R on X as:

$$(a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$$

Statement I : R is an equivalence relation.

Statement II: For some $(a, b) \in X$, the set $S = \{(x, y) \in X : (x, y) R (a, b)\}$ represents a line parallel to $y = x$.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are false
- (4) Both Statement I and Statement II are true

Answer (1)

Sol. $(a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$

Check reflexive

$$(a_1, b_1) R (a_1, b_1)$$

$$\Rightarrow b_1 = b_1$$

⇒ Reflexive

Check symmetric

$$(a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$$

$$\Rightarrow (a_2, b_2) R (a_1, b_1) \Leftrightarrow b_2 = b_1$$

$$\Rightarrow b_1 = b_2 \Rightarrow \text{symmetric}$$

Check transitive

$$\Rightarrow (a_1, b_1) R (a_2, b_2) \Leftrightarrow b_1 = b_2$$

$$(a_2, b_2) R (a_3, b_3) \Leftrightarrow b_2 = b_3$$

$$\Rightarrow b_1 = b_2 = b_3$$

$$\Rightarrow b_1 = b_3$$

$$\Rightarrow (a_1, b_1) R (a_3, b_3)$$

⇒ R is transitive

⇒ R is equivalence

II :

$$(x, y) R (a, b) \Leftrightarrow y = b \neq y = x$$

⇒ Not true.

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. The roots of the quadratic equation $3x^2 - px + q = 0$ are 10th and 11th terms of an arithmetic progression

with common difference $\frac{3}{2}$. If the sum of the first 11

terms of this arithmetic progression is 88, then $q - 2p$ is equal to _____.

Answer (474)

Sol. $S_{11} = \frac{11}{2}[2a + 10d] = 88$

$$a + 5d = 8$$

$$\Rightarrow a = \frac{1}{2}$$

$$T_{10} + T_{11} = \frac{p}{3} = a + 9d + a + 10d$$

$$\Rightarrow \frac{p}{3} = \frac{59}{2} \Rightarrow p = \frac{177}{2}$$

$$T_{10} \cdot T_{11} = \frac{q}{3}$$

$$(a + 9d)(a + 10d) = \frac{q}{3}$$

$$\left(\frac{1}{2} + 9 \times \frac{3}{2}\right) \left(\frac{1}{2} + 10 \times \frac{3}{2}\right) = \frac{q}{3}$$

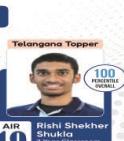
$$\Rightarrow q = 651$$

$$q - 2p = 651 - 177 = 474$$

22. The variance of the numbers 8, 21, 34, 47, ..., 320 is _____.

Answer (8788)

Sol. 8, 21, 34320


$$320 = 8 + (n - 1) 13$$

$$\Rightarrow n = 25$$

 Delivering Champions Consistently

JEE (Advanced) 2024

$$\text{Mean} = \frac{\sum x_i}{n} = \frac{8+21+34+\dots+320}{25} = \frac{\frac{25}{2}[8+320]}{25} = 164$$

$$\text{Variance} = \frac{\sum x_i^2}{n} - [\text{mean}]^2$$

$$= \frac{8^2 + 21^2 + \dots + 320^2}{25} - (164)^2$$

$$= 8788$$

23. The focus of the parabola $y^2 = 4x + 16$ is the centre of the circle C of radius 5. If the values of λ , for which C passes through the point of intersection of the lines $3x - y = 0$ and $x + \lambda y = 4$, are λ_1 and λ_2 , $\lambda_1 < \lambda_2$, then $12\lambda_1 + 29\lambda_2$ is equal to _____.

Answer (15)

Sol. $y^2 = 4(x + 4)$

Equation of circle

$$(x + 3)^2 + y^2 = 25$$

It passes through the point of intersection of two lines $3x - y = 0$ and $x + \lambda y = 4$

$$\left(\frac{4}{3\lambda + 1}, \frac{12}{3\lambda + 1} \right), \text{ we get}$$

$$\lambda = \frac{-7}{6}, 1; 12\lambda_1 + 29\lambda_2 = -14 + 29 = 15$$

24. Let α, β be the roots of the equation $x^2 - ax - b = 0$ with $\text{Im}(\alpha) < \text{Im}(\beta)$. Let $P_n = \alpha^n - \beta^n$. If $P_3 = -5\sqrt{7}i$, $P_4 = -3\sqrt{7}i$, $P_5 = 11\sqrt{7}i$ and $P_6 = 45\sqrt{7}i$, then $|\alpha^4 + \beta^4|$ is equal to _____.

Answer (31)

JEE (Advanced) 2024

AIR 67

Krishna Sai Shashir
2 Year Classroom

AIR 78

Abhishek Jain
2 Year Classroom

AIR 93

Hardik Agarwal
2 Year Classroom

AIR 95

Ujjwal Singh
4 Year Classroom

AIR 98

Rachit Aggarwal
2 Year Classroom

Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024

AIR 34

Sonvi Jain
2 Year Classroom

AIR 15

M Sai Divya Teja Reddy
2 Year Classroom

AIR 19

Rishi Shekher Shukla
2 Year Classroom

AIR 19

Sol. $\alpha + \beta = a, \alpha\beta = -b$

$$P_6 = aP_5 + bP_4$$

$$45\sqrt{7}i = a \times 11\sqrt{7}i + b(-3\sqrt{7})i$$

$$45 = 11a - 3b \quad \dots(i)$$

$$\text{and } P_5 = aP_4 + bP_3$$

$$11\sqrt{7}i = a(-3\sqrt{7}i) + b(-5\sqrt{7}i)$$

$$11 = -3a - 5b \quad \dots(ii)$$

$$a = 3, b = -4$$

$$|\alpha^4 + \beta^4| = \sqrt{(\alpha^4 - \beta^4)^2 + 4\alpha^4\beta^4}$$

$$= \sqrt{-63 + 4.4^4}$$

$$= \sqrt{-63 + 1024}$$

$$= \sqrt{961}$$

$$= 31$$

25. The number of ways, 5 boys and 4 girls can sit in a row so that either all the boys sit together or no two boys sit together, is _____.

Answer (17280)

Sol. Case I, when all boys sit together

$$B_1B_2B_3B_4B_5 G_1G_2G_3G_4$$

$$= 5! 5! = 14400$$

Case II, when no two boys sit together

$$\uparrow G_1 \uparrow G_2 \uparrow G_3 \uparrow G_4 \uparrow$$

$$4! \cdot 5! \Rightarrow 2880$$

$$\therefore \text{Total number of ways} = 14400 + 2880$$

$$= 17280$$

34. A ball having kinetic energy KE, is projected at an angle of 60° from the horizontal. What will be the kinetic energy of ball at the highest point of its flight?

(1) $\frac{(KE)}{2}$

(2) $\frac{(KE)}{4}$

(3) $\frac{(KE)}{16}$

(4) $\frac{(KE)}{8}$

Answer (2)

Sol. Let speed at projection is v_0

at highest point it would be $v_0 \cos \theta$

as $KE \propto v^2$

$$KE_{\text{Highest}} = KE_{\text{Projection}} \cos^2 \theta$$

$$= \frac{1}{4} KE_{\text{Projection}}$$

35. Match List - I with List - II.

	List - I		List - II
(A)	Permeability of free space	(I)	$[M L^2 T^{-2}]$
(B)	Magnetic field	(II)	$[MT^{-2} A^{-1}]$
(C)	Magnetic moment	(III)	$[MLT^{-2} A^{-2}]$
(D)	Torsional constant	(IV)	$[L^2 A]$

Choose the **correct** answer from the options given below

- (1) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
- (2) (A)-(II), (B)-(I), (C)-(III), (D)-(IV)
- (3) (A)-(I), (B)-(IV), (C)-(II), (D)-(III)
- (4) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)

Answer (1)

Sol. (A) $B = \frac{\mu_0 i}{2\pi r}$ & $qvB = F$

$$\mu_0 = \frac{Br}{i} = \frac{Fr}{qvi} = \frac{MLT^{-2} \times L}{A^2 T L T^{-1}} = MLT^{-2} A^{-2} \quad (\text{III})$$

$$(\text{B}) \quad B = \frac{F}{qv} = \frac{MLT^{-2}}{ATLT^{-1}} = MT^{-2} A^{-1} \quad (\text{II})$$

$$(\text{C}) \quad M = iA = AL^2 \quad (\text{IV})$$

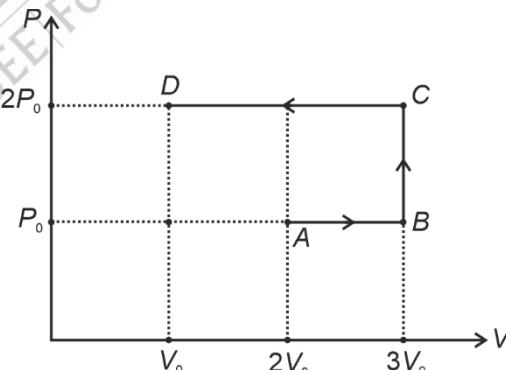
$$(\text{D}) \quad \tau = C\theta \Rightarrow C = ML^2 T^{-2} \quad (\text{I})$$

36. A galvanometer having a coils resistance 30Ω need 20 mA of current for full-scale deflection. If a maximum current of 3 A is to be measured using this galvanometer, the resistance of the shunt to be added to the galvanometer should be $\frac{30}{X} \Omega$, where

X is

(1) 596 (2) 149

(3) 298 (4) 447


Answer (2)

Sol. $(I - I_g) R = I_g G$

$$(3 - 0.02) \times R = 0.02 \times G \Rightarrow R = \frac{30}{149}$$

$\Rightarrow 149 = \text{Required } X$

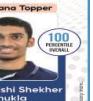
37

Using the given P - V diagram, the work done by an ideal gas along the path $ABCD$ is

- (1) $-3 P_0 V_0$
- (2) $-4 P_0 V_0$
- (3) $4 P_0 V_0$
- (4) $3 P_0 V_0$

Answer (1)

JEE (Advanced) 2024


Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

Sol. From graph between B.E/N & A we can see BE/N is almost constant \Rightarrow correct
Reason \Rightarrow incorrect as nuclear forces are short range forces.

42. Two charges $7 \mu\text{C}$ and $-4 \mu\text{C}$ are placed at $(-7 \text{ cm}, 0, 0)$ and $(7 \text{ cm}, 0, 0)$ respectively. Given, $\epsilon_0 = 8.85 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{ m}^{-2}$, the electrostatic potential energy of the charge configuration is:
(1) -1.5 J (2) -1.2 J
(3) -2.0 J (4) -1.8 J

Answer (4)

Sol. $U = \frac{kq_1 q_2}{r}$

$$= -\frac{9 \times 10^9 \times 7 \times 4 \times 10^{-12}}{14 \times 10^{-2}}$$

$$= -18 \times 10^{-1}$$

$$= -1.8 \text{ J}$$

43. A concave mirror of focal length f in air is dipped in a liquid of refractive index μ . Its focal length in the liquid will be :

(1) $\frac{f}{(\mu-1)}$ (2) $\frac{f}{\mu}$
(3) f (4) μf

Answer (3)

Sol. Focal length of mirror is independent of refractive index.

44. The equation of a transverse wave travelling along a string is

$y(x, t) = 4.0 \sin[20 \times 10^{-3} x + 600t]$ mm, where x is in mm and t is in second. The velocity of the wave is :

(1) -60 m/s (2) $+30 \text{ m/s}$
(3) -30 m/s (4) $+60 \text{ m/s}$

Answer (3)

Sol. $k = 20 \times 10^{-3} \text{ mm}^{-1} = 20 \text{ m}^{-1}$

$$w = 600 \text{ s}^{-1}$$

$$v = \frac{w}{k} = \frac{600}{20} = 30 \text{ m/s}$$

and x & t carry same sign

Therefore $v = -30 \text{ m/s}$

45. The refractive index of the material of a glass prism is $\sqrt{3}$. The angle of minimum deviation is equal to the angle of the prism. What is the angle of the prism?

(1) 48° (2) 50°
(3) 60° (4) 58°

Answer (3)

Sol. $\mu = \frac{\sin(A + \delta_m/2)}{\sin A/2}$ and $\delta_m = A$

$$\sqrt{3} = \frac{\sin A}{\sin A/2} = 2 \cos A/2$$

$$\cos A/2 = \cos 30^\circ$$

$$A = 60^\circ$$

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

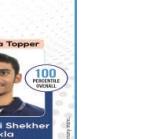
46. A time varying potential difference is applied between the plates of a parallel plate capacitor of capacitance $2.5 \mu\text{F}$. The dielectric constant of the medium between the capacitor plates is 1. It produces an instantaneous displacement current of 0.25 mA in the intervening space between the capacitor plates, the magnitude of the rate of change of the potential difference will be _____ Vs^{-1} .

Answer (100)

Sol. $q = CV$

Differentiating

$$i = \frac{CdV}{dt}$$


$$\Rightarrow \frac{dV}{dt} = \frac{0.25 \times 10^{-3}}{2.5 \times 10^{-6}} = \frac{1000}{10} = 100$$

 Delivering Champions Consistently

JEE (Advanced) 2024

	AIR 25	Rishi Shekher Shukla 2 Year Classroom
	AIR 67	Krishna Sai Shishir 2 Year Classroom
	AIR 78	Abhishek Jain 2 Year Classroom
	AIR 93	Hardik Agarwal 2 Year Classroom
	AIR 95	Ujjwal Singh 4 Year Classroom
	AIR 98	Rachit Aggarwal 4 Year Classroom

JEE (Main) 2024

	Karnataka Topper AIR 34		Telangana Topper AIR 15		Telangana Topper AIR 19

47. An air bubble of radius 1.0 mm is observed at a depth of 20 cm below the free surface of a liquid having surface tension 0.095 J/m² and density 10³ kg/m³. The difference between pressure inside the bubble and atmospheric pressure is _____ N/m².
 (Take $g = 10 \text{ m/s}^2$)

Answer (2190)

$$\begin{aligned}\text{Sol. } \Delta p &= h\rho g + \frac{2s}{r} \\ &= 0.2 \times 10^3 \times 10 + \frac{2 \times 0.095}{10^{-3}} \\ &= 2000 + 190 = 2190 \text{ Pa}\end{aligned}$$

48. In a series LCR circuit, a resistor of 300 Ω , a capacitor of 25 μF and an inductor of 100 mH are used. For maximum current in the circuit, the angular frequency of the ac source is _____ $\times 10^4$ radians s⁻¹.

Answer (2)

$$\begin{aligned}\text{Sol. } \omega = \frac{1}{\sqrt{LC}} \text{ is resonance condition} \\ &= \frac{1}{\sqrt{100 \times 10^{-3} \times 25 \times 10^{-9}}} \\ &= \frac{10^6}{5 \times 10} \\ &= 2 \times 10^4\end{aligned}$$

49. A satellite of mass $\frac{M}{2}$ is revolving around earth in a circular orbit at a height of $\frac{R}{3}$ from earth surface. The angular momentum of the satellite is $M\sqrt{\frac{GMR}{x}}$. The value of x is _____, where M and R are the mass and radius of earth, respectively. (G is the gravitational constant)

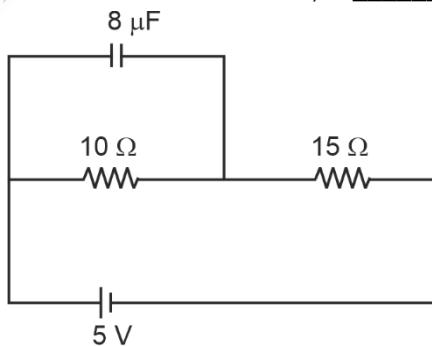
Answer (3)

Sol. $L = mvr$

$$\begin{aligned}L &= m\sqrt{\frac{GM}{R}}R \\ &= m\sqrt{GMR} \\ &= \frac{M}{2}\sqrt{GM\frac{4R}{3}} \\ &= M\sqrt{\frac{GMR}{3}}\end{aligned}$$

$x = 3$ (But for comparable mass, this solution is not applicable)

Alternate solution:


$$m_1 r_1 = m_2 r_2 \Rightarrow r_1 = \frac{8R}{9}$$

$$\frac{GM\frac{M}{2}}{\left(\frac{4R}{3}\right)^2} = \frac{M\omega^2}{2} \frac{8R}{9}$$

$$\omega = \sqrt{\frac{81GM}{128R^3}}$$

$$\begin{aligned}L &= I\omega = \frac{M}{2} \left(\frac{8R}{9}\right)^2 \omega \\ &= M\sqrt{GMR\frac{8}{81}} \\ &\Rightarrow x \approx 10\end{aligned}$$

50. At steady state the charge on the capacitor, as shown in the circuit below, is _____ μC .

Answer (16)

$$\text{Sol. } V_{10 \Omega} = V_C = \frac{5}{25} \times 10 = 2 \text{ V}$$

$$Q = 8 \times 2 = 16 \mu\text{C}$$

 Delivering Champions Consistently

AIR 25 Rishi Shekher Shukla 2 Year Classroom	AIR 67 Krishna Sai Shishir 2 Year Classroom	AIR 78 Abhishek Jain 2 Year Classroom	AIR 93 Hardik Agarwal 2 Year Classroom	AIR 95 Ujjwal Singh 4 Year Classroom	AIR 98 Rachit Aggarwal 4 Year Classroom
--	---	---	--	---	---

JEE (Advanced) 2024

 Aakash
Medical | IIT-JEE | Foundations

Karnataka Topper Sanvi Jain 2 Year Classroom	Telangana Topper M Sai Divya Teja Reddy 2 Year Classroom	Telangana Topper Rishi Shekher Shukla 2 Year Classroom
--	--	--

JEE (Main) 2024

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

51. Consider a binary solution of two volatile liquid components 1 and 2. x_1 and y_1 are the mole fractions of component 1 in liquid and vapour phase, respectively. The slope and intercept of the linear plot of $\frac{1}{x_1}$ vs $\frac{1}{y_1}$ are given respectively as:

$$(1) \frac{P_1^0}{P_2^0}, \frac{P_1^0 - P_2^0}{P_2^0}$$

$$(2) \frac{P_1^0}{P_2^0}, \frac{P_2^0 - P_1^0}{P_2^0}$$

$$(3) \frac{P_2^0}{P_1^0}, \frac{P_2^0 - P_1^0}{P_2^0}$$

$$(4) \frac{P_2^0}{P_1^0}, \frac{P_1^0 - P_2^0}{P_1^0}$$

Answer (2)

Sol. Given mole fraction of liquid 1 in liquid and vapour phase is x_1 and y_1 respectively.

$$P_1 = P_T y_1 \quad (\text{DLPP})$$

$$P_1 = P_1^0 x_1 \quad (\text{Raoult's law})$$

$$P_1 = P_T y_1 = P_1^0 x_1$$

$$\frac{P_T}{x_1} = \frac{P_1^0}{y_1}$$

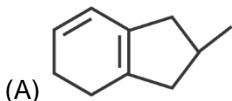
$$\frac{P_2^0 + x_1(P_1^0 + P_2^0)}{x_1} = \frac{P_1^0}{y_1}$$

$$\frac{P_2^0}{x_1} + (P_1^0 + P_2^0) = \frac{P_1^0}{y_1}$$

$$\frac{P_2^0}{x_1} = \frac{P_1^0}{y_1} - (P_1^0 + P_2^0)$$

$$\frac{1}{x_1} = \frac{1}{y_1} \left(\frac{P_1^0}{P_2^0} \right) - \frac{(P_1^0 + P_2^0)}{P_2^0}$$

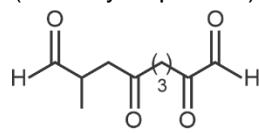
$$\frac{1}{x_1} = \frac{1}{y_2} \left(\frac{P_1^0}{P_2^0} \right) + \frac{(P_2^0 - P_1^0)}{P_2^0}$$

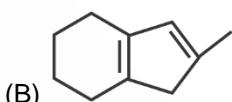

$$y = mx + c$$

$$\text{Slope} = \frac{P_1^0}{P_2^0}; \text{Intercept} = \frac{P_2^0 - P_1^0}{P_2^0}$$

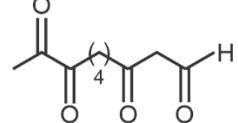
52. Match List-I with List-II

List-I

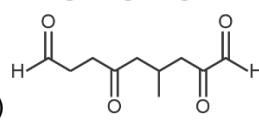

(Isomers of $C_{10}H_{14}$)


(A)

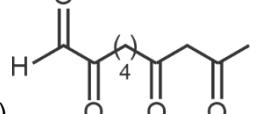
List-II


(Ozonolysis product)

(I)


(B)

(II)


(C)

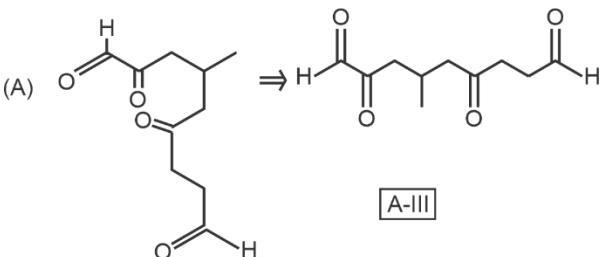
(III)

(D)

(IV)

Choose the correct answer from the options given below:

(1) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)


(2) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)

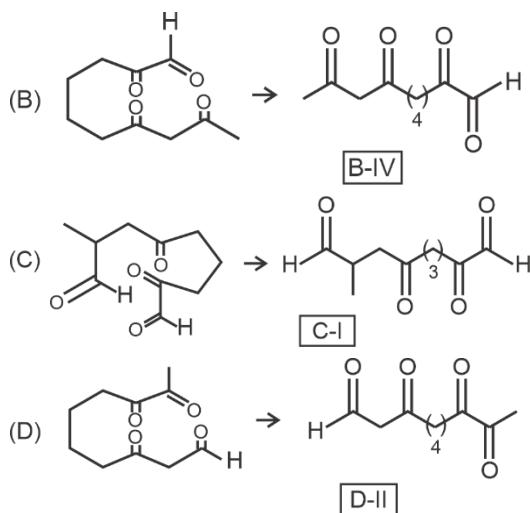
(3) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)

(4) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)

Answer (1)

Sol.

 Delivering Champions Consistently



JEE (Advanced) 2024

JEE (Main) 2024

53. Match List-I with List-II

List-I	List-II
(A) Bronze	(I) Cu, Ni
(B) Brass	(II) Fe, Cr, Ni, C
(C) UK silver coin	(III) Cu, Zn
(D) Stainless steel	(IV) Cu, Sn

Choose the **correct** answer from the options given below:

- (1) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)
- (2) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)
- (3) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
- (4) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

Answer (1)

Sol. • Bronze is an alloy of copper and Tin. (A-IV)

• Brass is an alloy of copper and Zinc. (B-III)

• UK Silver coin is an alloy of copper and Nickel. (C-I)

• Stainless steel is an alloy of Fe, Cr, Ni, C. (D-II)

54. Given below are two statements:

Statement (I): For a given shell, the total number of allowed orbitals is given by n^2 .

Statement (II): For any subshell, the spatial orientation of the orbitals is given by $-/$ to $+/$ values including zero.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both **Statement I** and **Statement II** are true
- (2) **Statement I** is true but **Statement II** is false
- (3) **Statement I** is false but **Statement II** is true
- (4) Both **Statement I** and **Statement II** are false

Answer (1)

Sol. Statement I is true and statement II is also true.

55. The effect of temperature on spontaneity of reactions are represented as:

	ΔH	ΔS	Temperature	Spontaneity
(A)	+	-	any T	Non-spontaneous
(B)	+	+	low T	Spontaneous
(C)	-	-	low T	Non-spontaneous
(D)	-	+	any T	Spontaneous

The incorrect combinations are:

- (1) (A) and (C) only
- (2) (B) and (C) only
- (3) (A) and (D) only
- (4) (B) and (D) only

Answer (2)

Sol. (B) If, $\Delta H = +$, $\Delta S = +$, ΔG is negative at high temperature

Reaction is spontaneous at high temperature

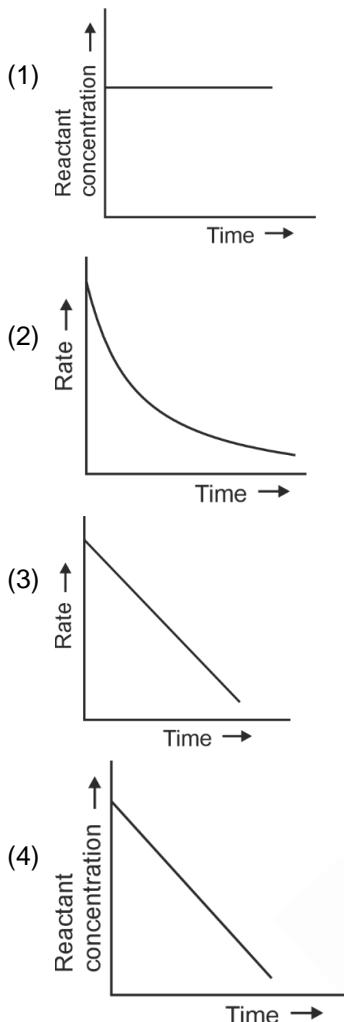
(C) If $\Delta H = -ve$, $\Delta S = -ve$, reaction is non spontaneous at high temperature

$$\Delta G = -ve$$


Reaction is spontaneous at low temperature.

 Delivering Champions Consistently

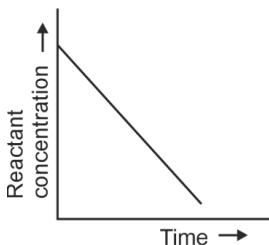
 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shishir 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Agarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 4 Year Classroom
---	--	--	---	---	---


JEE (Advanced) 2024

 Aakash
Medical|IIT-JEE|Foundations

 Karnataka Topper Sanvi Jain 2 Year Classroom	 Telangana Topper M Sai Divya Teja Reddy 2 Year Classroom	 Telangana Topper Rishi Shekher Shukla 2 Year Classroom
---	---	---

JEE (Main) 2024


56. Which of the following graphs most appropriately represents a zero-order reaction?

Answer (4)

Sol. $[A]_t = [A]_0 - kt$

Straight line with negative slope

Graph of reactant concentration versus time for zero order reaction.

57. Given below are two statements:

Statement (I): The boiling points of alcohols and phenols increase with increase in the number of C-atoms.

Statement (II): The boiling points of alcohols and phenols are higher in comparison to other class of compounds such as ethers, haloalkanes.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) Both **Statement I** and **Statement II** are true
- (2) Both **Statement I** and **Statement II** are false
- (3) **Statement I** is true but **Statement II** is false
- (4) **Statement I** is false but **Statement II** is true

Answer (1)

Sol. **Statement I** is correct as boiling point of alcohol phenols increase with increase in the number of C-atoms due to increase in van der Waals forces.

Statement II is correct, since alcohols phenols have intermolecular H-bonding therefore their boiling points are higher in comparison to other class of compounds such as ethers, haloalkanes.

58. Standard electrode potentials for a few half cells are mentioned below:

$$E^0_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \text{ V}, E^0_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \text{ V}$$

$$E^0_{\text{Ag}^{2+}/\text{Ag}} = 0.80 \text{ V}, E^0_{\text{Mg}^{2+}/\text{Mg}} = -2.37 \text{ V}$$

Which one of the following cells gives the most negative value of ΔG° ?

- (1) $\text{Zn} \mid \text{Zn}^{2+}(1\text{M}) \parallel \text{Ag}^+(1\text{M}) \mid \text{Ag}$
- (2) $\text{Ag} \mid \text{Ag}^+(1\text{M}) \parallel \text{Mg}^{2+}(1\text{M}) \mid \text{Mg}$
- (3) $\text{Zn} \mid \text{Zn}^{2+}(1\text{M}) \parallel \text{Mg}^{2+}(1\text{M}) \mid \text{Mg}$
- (4) $\text{Cu} \mid \text{Cu}^{2+}(1\text{M}) \parallel \text{Ag}^+(1\text{M}) \mid \text{Ag}$


Answer (1)

$$E^0_{\text{Cu}^{2+}/\text{Cu}} = 0.34 \text{ V}, E^0_{\text{Zn}^{2+}/\text{Zn}} = -0.76 \text{ V}$$

$$E^0_{\text{Ag}^{2+}/\text{Ag}} = 0.80 \text{ V}, E^0_{\text{Mg}^{2+}/\text{Mg}} = -2.37 \text{ V}$$

Delivering Champions Consistently

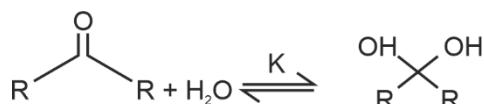
Aakash
Medical|IIT-JEE|Foundations

Most negative ΔG° value among the given cells in options is of (1)

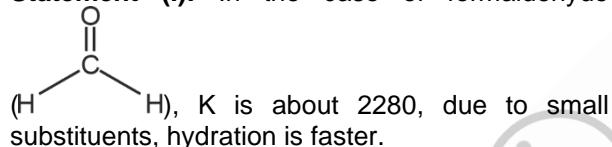
$$E^\circ = 0.8 + 0.76 = 1.56$$

$$\therefore \Delta G^\circ = -2 \times F \times 1.56$$

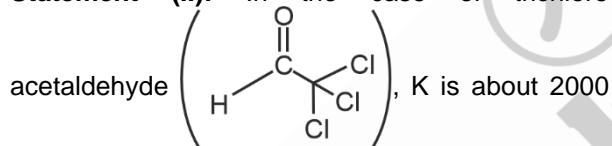
$$\boxed{\Delta G^\circ = -3.12 \text{ F V}}$$


In case of option (2) and (3), $E^\circ = -ve$

$$\therefore \Delta G^\circ = +ve \text{ value,}$$


And ΔG° for option (4) will come out to be -0.92 F V , which is less negative than in option (1).

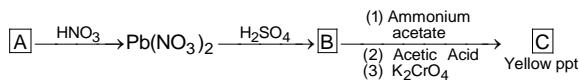
59. Given below are two statements:


Consider the following reaction

Statement (I): In the case of formaldehyde

Statement (II): In the case of trichloro

In the light of the above statements, choose the **correct** answer from the options given below:

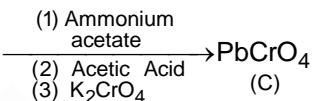
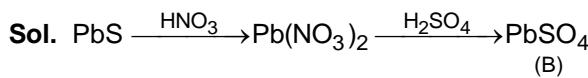

- (1) Both **Statement I** and **Statement II** are true
- (2) **Statement I** is false but **Statement II** is true
- (3) Both **Statement I** and **Statement II** are false
- (4) **Statement I** is true but **Statement II** is false

Answer (1)

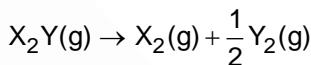
Sol. Both **Statement I** and **Statement II** are true.

$K_{eq} > 1$, because HCHO and chloral are more electrophilic and equilibrium more lies towards products [Refer: cleyden 1st edition PNo-144 - 145]

60. Identify A, B and C in the given below reaction sequence



(1) $\text{PbCl}_2, \text{Pb}(\text{SO}_4)_2, \text{PbCrO}_4$

(2) $\text{PbS}, \text{PbSO}_4, \text{Pb}(\text{CH}_3\text{COO})_2$

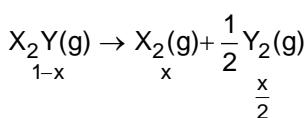

(3) $\text{PbCl}_2, \text{PbSO}_4, \text{PbCrO}_4$

(4) $\text{PbS}, \text{PbSO}_4, \text{PbCrO}_4$

Answer (4)

61. Consider the reaction

The equation representing correct relationship between the degree of dissociation (x) of $\text{X}_2\text{Y}(\text{g})$ with its equilibrium constant K_p is _____.


Assume x to be very very small.

$$(1) x = \sqrt[3]{\frac{2K_p^2}{p}} \quad (2) x = \sqrt[3]{\frac{2K_p}{p}}$$

$$(3) x = \sqrt[3]{\frac{K_p}{2p}} \quad (4) x = \sqrt[3]{\frac{K_p}{p}}$$

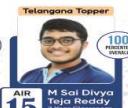
Answer (1)

Sol. 1 mol

$$\therefore P_{x_2y} = \frac{1-x}{1+\frac{x}{2}} \times p$$

$$P_{x_2} = \frac{x}{1+\frac{x}{2}} \times p$$

 Delivering Champions Consistently



JEE (Advanced) 2024

 Aakash
Medical IIT-JEE Foundations

JEE (Main) 2024

$$\begin{aligned}
 P_{y_2} &= \frac{x/2}{1 + \frac{x}{2}} \times p \\
 \therefore K_p &= \frac{\left(\frac{x}{1 + \frac{x}{2}} p \right) \left(\frac{x}{2 \left(1 + \frac{x}{2} \right)} p \right)^{1/2}}{\left(\frac{1 - x}{1 + \frac{x}{2}} \right) \times p} \\
 \therefore K_p &= \left(\frac{x}{1 - x} \right) \left(\frac{x}{2 \left(1 + \frac{x}{2} \right)} \right)^{1/2} \times p^{1/2} \\
 \therefore x &\text{ to be very small} \\
 \therefore K_p &= \frac{x^{3/2}}{2^{(1/2)}} \times p^{1/2} \\
 \therefore x^{3/2} &= \frac{K_p \times 2^{1/2}}{p^{1/2}} \\
 x^3 &= \frac{K_p^2 \times 2}{p} \\
 x &= \left(\frac{K_p^2 \times 2}{p} \right)^{1/3}
 \end{aligned}$$

62. Given below are the atomic numbers of some group 14 elements. The atomic number of the element with lowest melting point is:

Answer (3)

Sol. Atomic no. 82 = Lead (Pb)

Atomic no. 6 = Carbon

Atomic no. 50 = Tin (Sn)

Atomic no. 14 = Silicon

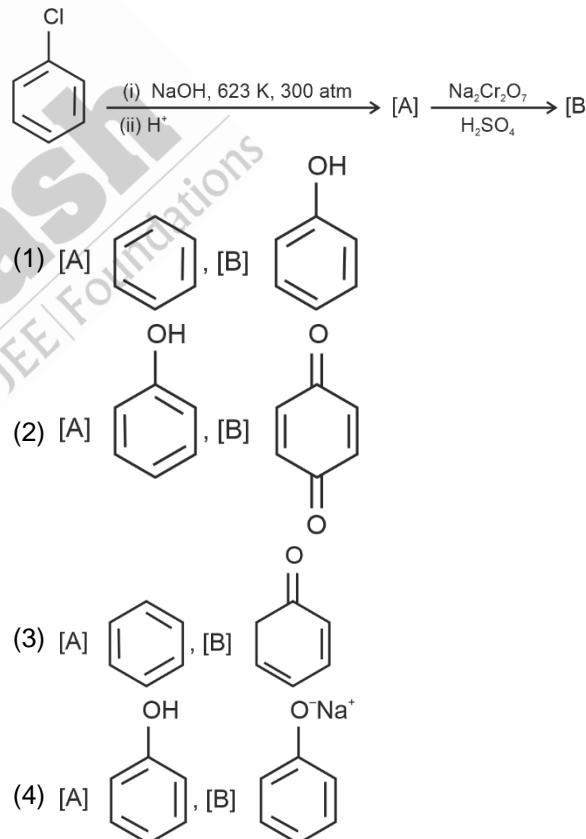
The correct order is $\Rightarrow C > Si > Pb > Sn$

Sn have least melting point

63. pH of water is 7 at 25°C. If water is heated to 80°C., it's pH will :

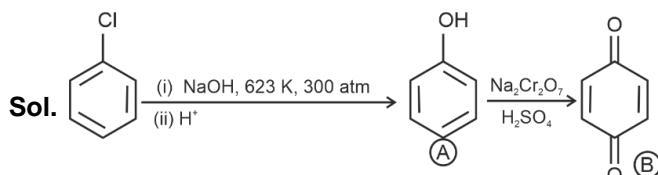
- (1) Increase
- (2) Decrease
- (3) Remains the same
- (4) H^+ concentration increases, OH^- concentration decreases

Answer (2)


Sol. At 25°C, pure water has pH = 7

As temperature increased, water molecules dissociate more into hydrogen ions (H^+) and hydroxide ions (OH^-).

This increased dissociation leads to slightly decrease in pH.


At 80°C, pH \approx 6.93

64. Identify the products [A] and [B], respectively in the following reaction :

Answer (2)

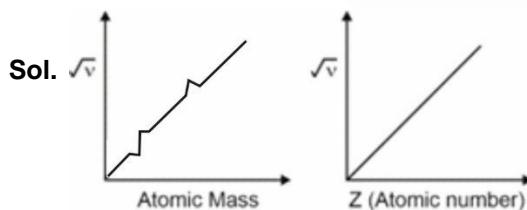
65. The α -Helix and β - Pleated sheet structures of protein are associated with its:

- Secondary structure
- Primary structure
- Quaternary structure
- Tertiary structure

Answer (1)

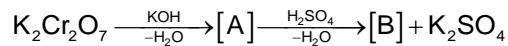
Sol. α -Helix and β -pleated sheets are secondary structures of protein.

66. Given below are two statements about X-ray spectra of elements:


Statement (I) : A plot of \sqrt{v} (v = frequency of X-rays emitted) vs atomic mass is a straight line

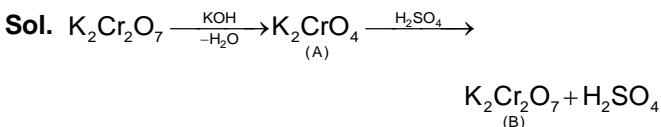
Statement (II): A plot of v (v = frequency of X-rays emitted) vs atomic number is a straight line

In the light of the above statements, choose the correct answer from the options given below:


- Statement I is true but Statement II is false
- Statement I is false but Statement II is true
- Both Statement I and Statement II are false
- Both Statement I and Statement II are true

Answer (3)

[Graphs plotted by Henry Moseley]


67. Consider the following reactions

The products [A] and [B] respectively are:

- $\text{K}_2\text{Cr}(\text{OH})_6$ and Cr_2O_3
- K_2CrO_4 and $\text{K}_2\text{Cr}_2\text{O}_7$
- K_2CrO_4 and Cr_2O_3
- K_2CrO_4 and CrO_3

Answer (2)

68. Identify the coordination complexes in which the central metal ion has d^4 configuration

(A) $[\text{FeO}_4]^{2-}$

(B) $[\text{Mn}(\text{CN})_6]^{3-}$

(C) $[\text{Fe}(\text{CN})_6]^{3-}$

(D) $\text{Cr}_2(\text{O} \text{---} \text{C} \text{---} \text{Me})_4(\text{H}_2\text{O})_2$

(E) $[\text{NiF}_6]^{2-}$

Choose the correct answer from the options given below:

(1) (B) and (D) only

(2) (B), (C) and (D) only

(3) (C) and (E) only

(4) (A), (B) and (E) only

Answer (1)

Sol. (A) $\text{Fe}^{6+} = [\text{Ar}] 3d^2$

(B) $\text{Mn}^{3+} = [\text{Ar}] 3d^4$

(C) $\text{Fe}^{3+} = [\text{Ar}] 3d^5$

(D) $\text{Cr}^{2+} = [\text{Ar}] 3d^4$

(E) $\text{Ni}^{4+} = [\text{Ar}] 3d^6$

69. When a non-volatile solute is added to the solvent, the vapour pressure of the solvent decreases by 10 mm of Hg. The mole fraction of the solute in the solution is 0.2. What would be the mole fraction of the solvent if decrease in vapour pressure is 20 mm of Hg?

(1) 0.6

(2) 0.2

(3) 0.4

(4) 0.8

Answer (1)

Sol. $\because P^o - P \propto x_{\text{solute}}$ and $\therefore 10 \propto 0.2$

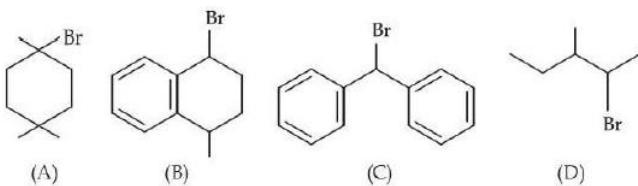
$\therefore 20 \propto 0.4$

$\therefore x_{\text{solvent}} = 1 - x_{\text{solute}}$

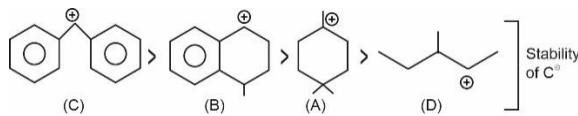
$= 1 - 0.4$

$x_{\text{solvent}} = 0.6$

 Delivering Champions Consistently

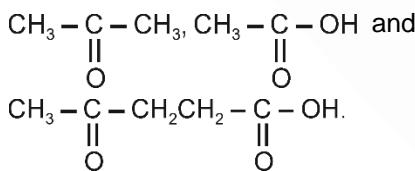

JEE (Advanced) 2024

JEE (Main) 2024

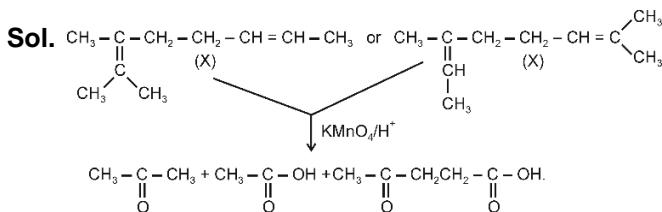

70. The ascending order of relative rate of solvolysis of following compounds is:

- (1) (D) < (B) < (A) < (C)
- (2) (C) < (D) < (B) < (A)
- (3) (C) < (B) < (A) < (D)
- (4) (D) < (A) < (B) < (C)

Answer (4)

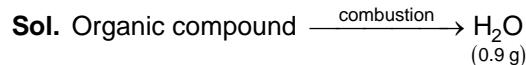

Sol. Solvolysis or S_N1 order \propto stability of carbocation

SECTION - B


Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

71. A compound 'X' absorbs 2 moles of hydrogen and 'X' upon oxidation with $KMnO_4|H^+$ gives

The total number of σ bonds present in the compound 'X' is _____.


Answer (27)

\therefore 27 σ bonds are present in X

72. 0.01 Mole of an organic compound (X) containing 10% hydrogen, on complete combustion produced 0.9 g H_2O . Molar mass of (X) is _____ g mol^{-1} .

Answer (100)

$$\therefore \text{Mole of } H_2O = \frac{0.9}{18} = 0.05 \text{ mol}$$

$$\therefore \text{Mole of H in } H_2O = 0.05 \times 2 = 0.1 \text{ mole}$$

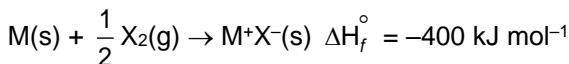
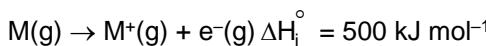
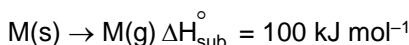
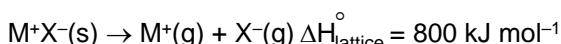
$$= \text{Mole of H in 0.01 mol organic compound}$$

$$\therefore \text{Wt. of H-atom in 0.01 mole of compound}$$

$$= 0.1 \times 1$$

$$= 0.1 \text{ g}$$

$$\therefore \text{Wt. of H atom in 1 mole compound} = \frac{0.1}{0.01}$$





$$= 10 \text{ g}$$

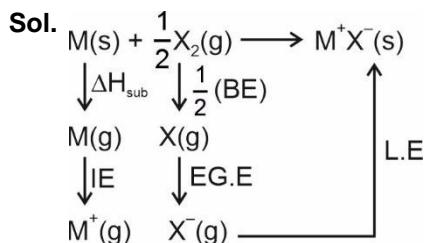
$$\therefore \text{Wt. of H in one mole compound} = \frac{\text{Wt. of H in one mole compound}}{\text{Molar mass of compound}} \times 100$$

$$10 = \frac{10}{M} \times 100$$

$$M = 100 \text{ g/mol}$$

73. The bond dissociation enthalpy of X_2 $\Delta H_{\text{bond}}^\circ$ calculated from the given data is _____ kJ mol^{-1} . (Nearest integer)

[Given M^+X^- is a pure ionic compound and X forms a diatomic molecule X_2 in gaseous state]


Answer (200)

 Delivering Champions Consistently

 AIR 25	Rishi Shekher Shukla 2 Year Classroom
 AIR 67	Krishna Sai Shishir 2 Year Classroom
 AIR 78	Abhishek Jain 2 Year Classroom
 AIR 93	Hardik Agarwal 2 Year Classroom
 AIR 95	Ujjwal Singh 4 Year Classroom
 AIR 98	Rachit Aggarwal 4 Year Classroom

 Aakash
Medical | IIT-JEE | Foundations

 Karnataka Topper	 Telangana Topper
 Sanvi Jain 2 Year Classroom	 M Sai Divya Teja Reddy 2 Year Classroom
 Rishi Shekher Shukla 2 Year Classroom	 Telangana Topper

$$\begin{aligned}
 \therefore \Delta H_f(MX) &= \Delta H_{\text{Sub}}(M) + \text{I.E.}(M) + \frac{1}{2} [\text{B.E.}(X - X)] \\
 &\quad + \text{E.G.E.}(X) + \text{L.E.}(M)
 \end{aligned}$$

$$-400 = 100 + 500 + \frac{1}{2} (\text{B.E.}) + (-300) + (-800)$$

$$\boxed{\text{B.E.} = 200 \text{ kJ/mol}}$$

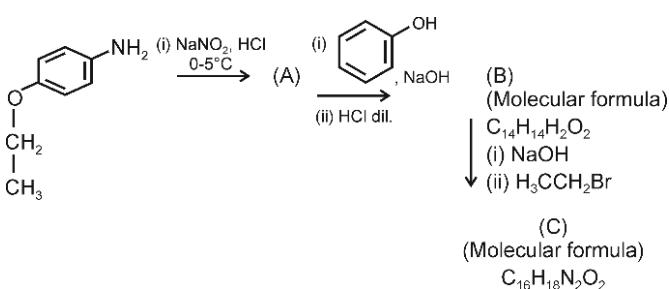
74. When 81.0 g of aluminium is allowed to react with 128.0 g of oxygen gas, the mass of aluminium oxide produced in grams is _____. (Nearest integer)

Given:

Molar mass of Al is 27.0 g mol⁻¹

Molar mass of O is 16.0 g mol⁻¹

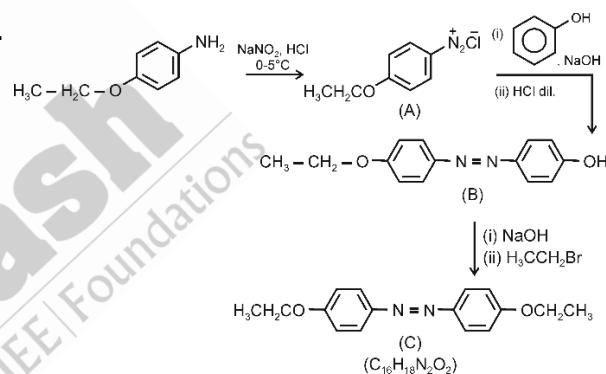
Answer (153)


$$\frac{81}{27} = 3 \text{ mol} \quad \frac{128}{32} = 4 \text{ mol}$$

Al is Limiting reagent

$$\therefore \text{Mole of Al}_2\text{O}_3 \text{ formed} = \frac{1}{2} \times 3 \text{ mol}$$

$$\therefore \text{Wt. of Al}_2\text{O}_3 \text{ formed} = \frac{3}{2} \times 102 = 153 \text{ grams}$$


75. Consider the following sequence of reactions.

The total number of sp³ hybridised carbon atoms in the major product C formed is _____.

Answer (4)

Sol.

Total (4) sp³ hybridised carbon atoms are present.

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

