

24/01/2025

Morning

Aakash

Medical | IIT-JEE | Foundations

Corporate Office : AESL, 3rd Floor, Incuspace Campus-2, Plot-13, Sector-18, Udyog Vihar, Gurugram, Haryana-122018

Answers & Solutions

Time : 3 hrs.

for

M.M. : 300

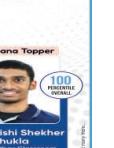
JEE (Main)-2025 Phase-1 [Computer Based Test (CBT) mode]

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 75 questions. Each subject (MPC) has 25 questions. The maximum marks are 300.
- (3) This question paper contains **Three** Parts. **Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is **Mathematics**. Each part has only two sections: **Section-A** and **Section-B**.
- (4) **Section - A** : Attempt all questions.
- (5) **Section - B** : Attempt all questions.
- (6) **Section - A (01 – 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.
- (7) **Section - B (21 – 25)** contains 5 **Numerical value** based questions. The answer to each question should be rounded off to the **nearest integer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

Delivering Champions Consistently

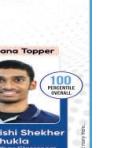

100 PERCENT
PASS RATE

100 PERCENT
PASS RATE

100 PERCENT
PASS RATE

100 PERCENT
PASS RATE

Aakash
Medical | IIT-JEE | Foundations


JEE (Main) 2024

100 PERCENT
PASS RATE

100 PERCENT
PASS RATE



100 PERCENT
PASS RATE

10. A and B alternately throw a pair of dice. A wins if he throws a sum of 5 before B throws a sum of 8, and B wins if he throws a sum of 8 before A throws a sum of 5. The probability, that A wins if A makes the first throw, is

(1) $\frac{8}{19}$ (2) $\frac{9}{19}$
 (3) $\frac{9}{17}$ (4) $\frac{8}{17}$

Answer (2)

Sol. For sum '5' $\rightarrow (1, 4), (2, 3), (3, 2)$

$$(4, 1) \Rightarrow P(A) = \frac{4}{36}$$

For sum '8' $\rightarrow (2, 6), (3, 5), (4, 4)$

$$(5, 3), (6, 2) \Rightarrow P(B) = \frac{5}{36}$$

$$P(\bar{A}) = \frac{32}{36}, P(\bar{B}) = \frac{31}{36}$$

$$P(A \text{ wins}) = P(A) + P(\bar{A})P(\bar{B})P(A) + \\ + P(\bar{A})P(\bar{B})P(\bar{A})P(\bar{B})P(A) + \dots \\ = \frac{P(A)}{1 - P(\bar{A})P(\bar{B})} = \frac{9}{19}$$

11. Let $y = y(x)$ be the solution of the differential equation $(xy - 5x^2\sqrt{1+x^2})dx + (1+x^2)dy = 0$, $y(0) = 0$. Then $y(\sqrt{3})$ is equal to

(1) $\sqrt{\frac{14}{3}}$ (2) $\frac{5\sqrt{3}}{2}$
 (3) $2\sqrt{2}$ (4) $\sqrt{\frac{15}{2}}$

Answer (2)

Sol. $\frac{dy}{dx} + \frac{xy}{1+x^2} = \frac{5x^2}{\sqrt{1+x^2}}$

I.F. $= e^{\int \frac{x}{1+x^2} dx} = \sqrt{1+x^2}$

$$y \cdot \sqrt{1+x^2} = \int \frac{5x^2}{\sqrt{1+x^2}} \cdot \sqrt{1+x^2} dx$$

$$y\sqrt{1+x^2} = \frac{5x^3}{3} + c$$

$$y(0) = 0 \Rightarrow c = 0$$

$$y\sqrt{1+x^2} = \frac{5x^3}{3}$$

$$y(\sqrt{3}) = \frac{5\sqrt{3}}{2}$$

 Delivering Champions Consistently

 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shashikiran 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Agarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 4 Year Classroom
---	--	--	---	--	--

JEE (Advanced) 2024

 Aakash
Medical|IIT-JEE|Foundations

 Karnataka Topper AIR 34 Sanvi Jain 2 Year Classroom	 Telangana Topper AIR 15 M Sai Divya Teja Reddy 2 Year Classroom	 Telangana Topper AIR 19 Rishi Shekher Shukla 2 Year Classroom
---	---	---

JEE (Main) 2024

12. If $I(m, n) = \int_0^1 x^{m-1} (1-x)^{n-1} dx$, $m, n > 0$, then
 $I(9, 14) + I(10, 13)$ is
(1) $I(9, 1)$ (2) $I(1, 13)$
(3) $I(9, 13)$ (4) $I(19, 27)$

Answer (3)

Sol. Beta function

$$\begin{aligned}\beta(P, q) &= \int_0^1 x^{P-1} (1-x)^{q-1} dx \\ &= \frac{(P-1)!(q-1)!}{(P+q-1)!}, P, q \in I\end{aligned}$$

$$I(9, 14) = \frac{8!13!}{22!}$$

$$I(10, 13) = \frac{9!12!}{22!}$$

$$\begin{aligned}I(9, 14) + I(10, 13) &= \frac{8!12!}{21!} \\ &= \frac{(9-1)!(13-1)!}{(9+13-1)!} = I(9, 13)\end{aligned}$$

13. The product of all the rational roots of the equation $(x^2 - 9x + 11)^2 - (x-4)(x-5) = 3$, is equal to
(1) 7 (2) 14
(3) 21 (4) 28

Answer (2)

$$\text{Sol. } (x^2 - 9x + 11)^2 - (x-4)(x-5) = 3$$

$$(x^2 - 9x + 11)^2 - (x^2 - 9x + 20) = 3$$

$$\text{Let } x^2 - 9x + 11 = t$$

$$t^2 - (t+9) = 3$$

$$\Rightarrow t^2 - t - 12 = 0$$

$$\Rightarrow t^2 - 4t + 3t - 12 = 0$$

$$\Rightarrow t(t-4) + 3(t-4) = 0$$

$$\Rightarrow t = 4 \text{ or } -3$$

$$x^2 - 9x + 11 = 4$$

$$x^2 - 9x + 7 = 0$$

Here, we will get irrational roots

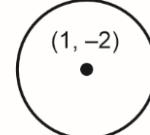
$$x^2 - 9x + 11 = -3$$

$$x^2 - 9x + 14 = 0$$

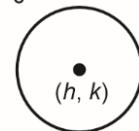
$$x^2 - 7x - 2x + 14 = 0$$

$$\Rightarrow x = 7, 2$$

\Rightarrow Product of all rational roots = 14


14. Let circle C be the image of $x^2 + y^2 - 2x + 4y - 4 = 0$ in the line $2x - 3y + 5 = 0$ and A be the point on C such that OA is parallel to x -axis and A lies on the right-hand side of the centre O of C. If $B(\alpha, \beta)$, with $\beta < 4$, lies on C such that the length of the arc AB is $(1/6)^{\text{th}}$ of the perimeter of C, then $\beta - \sqrt{3}\alpha$ is equal to
(1) 4 (2) 3
(3) $4 - \sqrt{3}$ (4) $3 + \sqrt{3}$

Answer (1)


$$\text{Sol. } x^2 + y^2 - 2x + 4y - 4 = 0$$

$$\text{Centre } \equiv (1, -2)$$

$$\text{Radius} = \sqrt{1+4+4} = 3$$

$$2x - 3y + 5 = 0$$

$$\frac{h-1}{2} = \frac{k+2}{-3} = \frac{-2(2+6+5)}{2^2 + (-3)^2}$$

$$\Rightarrow \frac{h-1}{2} = \frac{k+2}{-3} = -\frac{26}{13}$$

$$\Rightarrow h = -3, k = 4$$

$$\text{Centre of circle C } (-3, 4)$$

$$C : (x+3)^2 + (y-4)^2 = (3)^2$$

Delivering Champions Consistently

JEE (Advanced) 2024

Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024

23. Let A be a 3×3 matrix such that $X^T AX = O$ for all

nonzero 3×1 matrices $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. If $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix}$,

$$A \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ -8 \end{bmatrix}, \text{ and } \det(\text{adj}(2(A + I))) = 2^\alpha 3^\beta 5^\gamma.$$

$\alpha, \beta, \gamma \in \mathbb{N}$, then $\alpha^2 + \beta^2 + \gamma^2$ is _____.

Answer (44)

Sol. $X^T AX = O$

$$(xyz) \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0$$

$$(xyz) \begin{bmatrix} a_1x + a_2y + a_3z \\ b_1x + b_2y + b_3z \\ c_1x + c_2y + c_3z \end{bmatrix} = 0$$

$$x(a_1x + a_2y + a_3z) + y(b_1x + b_2y + b_3z) + z(c_1x + c_2y + c_3z)$$

$$a_1 = 0, b_2 = 0, c_3 = 0$$

$$a_2 + b_1 = 0, a_3 + c_1 = 0, b_3 + c_2 = 0$$

A = skew symmetric matrix

$$A = \begin{bmatrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \end{bmatrix}; A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -5 \end{bmatrix}$$

$$x + y = 1$$

$$-x + z = 4$$

$$y + z = 5$$

$$\begin{bmatrix} 0 & x & y \\ -x & 0 & z \\ -y & -z & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 4 \\ -8 \end{bmatrix}$$

$$2x + y = 0 \quad x = -1$$

$$-x + z = 4 \quad y = 2$$

$$-y - 2z = -8 \quad z = 3$$

$$A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & 0 & 3 \\ -2 & -3 & 0 \end{bmatrix}$$

$$2(A + I) = \begin{bmatrix} 2 & -2 & 4 \\ 2 & 2 & 6 \\ -2 & -6 & 2 \end{bmatrix}$$

$$2(A + I) = 120$$

$$\Rightarrow \det(\text{adj}(2A + I)) = 120^2 = 2^6 \cdot 3^2 \cdot 5^2$$

$$\therefore \alpha = 6, \beta = 2, \gamma = 2$$

$$\text{Hence } \alpha^2 + \beta^2 + \gamma^2 = 6^2 + 2^2 + 2^2 = 44$$

24. Let $S = \{p_1, p_2, \dots, p_{10}\}$ be the set of first ten prime numbers. Let $A = S \cup P$, where P is the set of all possible products of distinct elements of S . Then the number of all ordered pairs (x, y) , $x \in S$, $y \in A$, such that x divides y , is _____.

Answer (5120)

Sol. Let $\frac{y}{x} = \lambda$

$$y = \lambda x$$

$$= 10 \times ({}^9 C_0 + {}^9 C_1 + {}^9 C_2 + {}^9 C_3 + \dots + {}^9 C_9)$$

$$= 10 \times 2^9$$

$$= 10 \times 512 = 5120$$

25. If for some α, β ; $\alpha \leq \beta$, $\alpha + \beta = 8$ and $\sec^2(\tan^{-1}\alpha) + \operatorname{cosec}^2(\cot^{-1}\beta) = 36$, then $\alpha^2 + \beta^2$ is _____.

Answer (14)

Sol. Let $\tan^{-1}\alpha = A \Rightarrow \tan A = \alpha$

$$\cot^{-1}\beta = B \Rightarrow \cot B = \beta$$

$$\sec^2 A + \operatorname{cosec}^2 B = 36$$

$$\Rightarrow 1 + \tan^2 A + 1 + \cot^2 B = 36$$

$$\Rightarrow \alpha^2 + \beta^2 = 34$$

Also $\alpha + \beta = 8$ (Given)

$$\therefore (\alpha + \beta)^2 = 34 + 2\alpha\beta = 64$$

$$\Rightarrow \alpha\beta = 15$$

$\Rightarrow \alpha, \beta$ are roots of equation

$$x^2 - 8x + 15 = 0$$

$$\Rightarrow (x - 3)(x - 5) = 0$$

$$\Rightarrow x = 3, 5$$

$$\therefore \alpha = 3, \beta = 5 \quad (\alpha < \beta)$$

$$\therefore \alpha^2 + \beta^2 = 9 + 25 = 14$$

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

 Aakash
Medical IIT-JEE Foundations

JEE (Main) 2024

JEE (Main) 2024

JEE (Main) 2024

JEE (Main) 2024

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

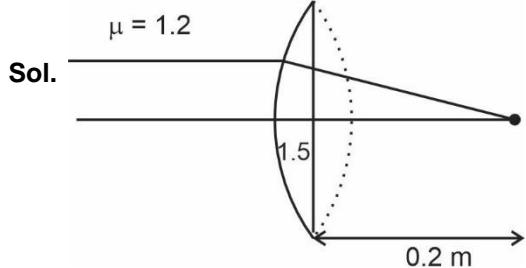
26. Consider a parallel plate capacitor of area A (of each plate) and separation ' d ' between the plates. If E is the electric field and ϵ_0 is the permittivity of free space between the plates, then potential energy stored in the capacitor is

(1) $\frac{1}{4}\epsilon_0 E^2 Ad$ (2) $\frac{1}{2}\epsilon_0 E^2 Ad$
 (3) $\epsilon_0 E^2 Ad$ (4) $\frac{3}{4}\epsilon_0 E^2 Ad$

Answer (2)

Sol. We know energy density

$$\rho_{av} = \frac{1}{2}\epsilon_0 E^2$$


So potential energy = $\rho_{av} \times$ Volume

$$\Rightarrow P.E. = \frac{1}{2}\epsilon_0 E^2 Ad$$

27. A thin plano convex lens made of glass of refractive index 1.5 is immersed in a liquid of refractive index 1.2. When the plane side of the lens is silver coated for complete reflection, the lens immersed in the liquid behaves like a concave mirror of focal length 0.2 m. The radius of curvature of the curved surface of the lens is

(1) 0.20 m (2) 0.15 m
 (3) 0.25 m (4) 0.10 m

Answer (4)

We have shown extrapolated figure for reflecting side as it went undeviated.

$$\frac{1.5 - 1.2}{v_1 - \infty} = \frac{(1.5 - 1.2)}{R}$$

$$\frac{1.2 - 1.5}{0.2 - v_1} = \frac{(1.2 - 1.5)}{-R}$$

$$\frac{1.2}{0.2} = \frac{0.3}{R} + \frac{0.3}{R}$$

$$\Rightarrow 6 = \frac{2 \times 3}{10R} \Rightarrow R = \frac{1}{10} \text{ m} = 0.10 \text{ m}$$

28. For an experimental expression $y = \frac{32.3 \times 1125}{27.4}$,

where all the digits are significant. Then to report the value of y we should write

(1) $y = 1330$
 (2) $y = 1326.2$
 (3) $y = 1326.19$
 (4) $y = 1326.186$

Answer (1)

Sol. $y = \frac{32.3 \times 1125}{27.4} = 1326.18$

So we need to report to three significant digit.

So, $y = 1330$

Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

JEE (Advanced) 2024

AIR 67 Krishna Sai Shishir
2 Year Classroom

AIR 78 Abhishek Jain
2 Year Classroom

AIR 93 Hardik Agarwal
2 Year Classroom

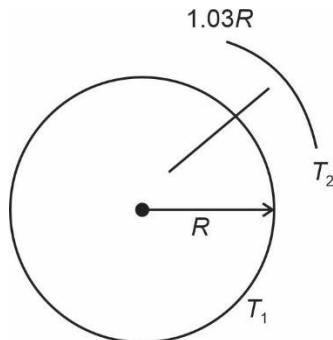
AIR 95 Ujjwal Singh
4 Year Classroom

AIR 98 Rachit Aggarwal
2 Year Classroom

JEE (Main) 2024

AIR 15 Sanvi Jain
2 Year Classroom

AIR 19 M Sai Divya Teja Reddy
2 Year Classroom


AIR 19 Rishi Shekher Shukla
2 Year Classroom

29. A satellite is launched into a circular orbit of radius 'R' around the earth. A second satellite is launched into an orbit of radius $1.03R$. The time period of revolution of the second satellite is larger than the first one approximately by

(1) 9%
 (2) 2.5%
 (3) 3%
 (4) 4.5%

Answer (4)

Sol.

$$T_1 \propto (R)^{3/2}$$

$$\text{and } T_2 \propto (1.03R)^{3/2}$$

$$\Rightarrow T_2 = (1.03R)^{3/2} \cdot T_1 \approx 1.045T_1$$

So T_2 will larger by 4.5% w.r.t. T_1 .

30. The amount of work done to break a big water drop of radius 'R' into 27 small drops of equal radius is 10 J. The work done required to break the same big drop into 64 small drops of equal radius will be

(1) 10 J
 (2) 20 J
 (3) 5 J
 (4) 15 J

Answer (4)

$$\text{Sol. } W_1 = s 4\pi \left(\frac{R}{3}\right)^2 \times 27 - 4\pi R^2 \cdot s$$

$$\Rightarrow W_1 = 4\pi R^2 \cdot s(2) = 10 \text{ Joule}$$

$$\text{Now, } W_2 = s 4\pi R^2 (4 - 1) = 4\pi R^2 s \times 3$$

$$\Rightarrow W_2 = 3 \times \frac{10}{2} = 15 \text{ Joule}$$

31. The Young's double slit interference experiment is performed using light consisting of 480 nm and 600 nm wavelengths to form interference patterns. The least number of the bright fringes of 480 nm light that are required for the first coincidence with the bright fringes formed by 600 nm light is

(1) 6
 (2) 8
 (3) 5
 (4) 4

Answer (3)

Sol. Fringe width of $\lambda_1 = 480$ nm

$$\Delta w_1 = \frac{\lambda_1 D}{d} = 480 \left(\frac{D}{d}\right)$$

Similarly fringe width for $\lambda_2 = 600$ nm

$$\Delta w_2 = \lambda_2 \left(\frac{D}{d}\right) = 600 \left(\frac{D}{d}\right)$$

Clearly we can see that for minimum value

$$5(\Delta w_1) = 4(\Delta w_2)$$

That mean 5th maxima of $\lambda_1 = 480$ nm

Coincides with 4th maxima of $\lambda_2 = 600$ nm

Delivering Champions Consistently

JEE (Advanced) 2024

AIR 25	Rishi Shekher Shukla 2 Year Classroom	AIR 67	Krishna Sai Shishir 2 Year Classroom	AIR 78	Abhishek Jain 2 Year Classroom	AIR 93	Hardik Agarwal 2 Year Classroom	AIR 95	Ujjwal Singh 4 Year Classroom	AIR 98	Rachit Aggarwal 2 Year Classroom
---------------	---	---------------	--	---------------	--	---------------	---	---------------	---	---------------	--

JEE (Main) 2024

Karnataka Topper AIR 34	Telangana Topper AIR 15	Telangana Topper AIR 19
-----------------------------------	-----------------------------------	-----------------------------------

32. An ideal gas goes from an initial state to final state. During the process, the pressure of gas increases linearly with temperature.

- The work done by gas during the process is zero.
- The heat added to gas is different from change in its internal energy.
- The volume of the gas is increased.
- The internal energy of the gas is increased.
- The process is isochoric (constant volume process)

Choose the **correct** answer from the options given below:

(1) A, D, E only (2) E only
 (3) A, C only (4) A, B, C, D only

Answer (1)

Sol. Given for ideal gas.

$$P = \text{constant } T$$

$$\Rightarrow PT^{-1} = \text{constant}$$

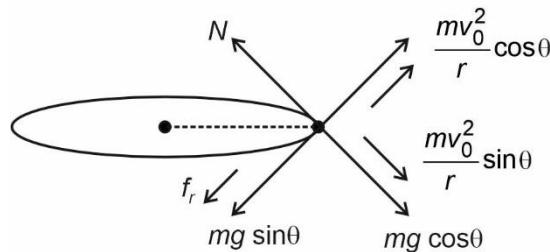
$$\Rightarrow \frac{P}{PV} = \text{constant} = V \text{ is constant}$$

So, isochoric process

Work done by gas will be zero.

A, D, E only correct.

33. A car of mass 'm' moves on a banked road having radius 'r' and banking angle θ . To avoid slipping from banked road, the maximum permissible speed of the car is v_0 . The coefficient of friction μ between the wheels of the car and the banked road is


$$(1) \mu = \frac{v_0^2 + rgtan\theta}{rg - v_0^2 \tan\theta} \quad (2) \mu = \frac{v_0^2 + rgtan\theta}{rg + v_0^2 \tan\theta}$$

$$(3) \mu = \frac{v_0^2 - rgtan\theta}{rg + v_0^2 \tan\theta} \quad (4) \mu = \frac{v_0^2 - rgtan\theta}{rg - v_0^2 \tan\theta}$$

Answer (3)

Sol. Given maximum possible speed = v_0

For this

$$\text{So, } N = mg \cos \theta + \frac{mv_0^2}{r} \sin \theta$$

$$f_r = \mu mg \cos \theta + \frac{\mu mv_0^2}{r} \sin \theta$$

$$\text{And } \frac{mv_0^2}{r} \cos \theta = mg \sin \theta + f_r$$

$$\Rightarrow \frac{mv_0^2}{r} \cos \theta - mg \sin \theta = \mu \left(mg \cos \theta + \frac{mv_0^2}{r} \sin \theta \right)$$

$$\Rightarrow (v_0^2 - gr \tan \theta) = \mu (v_0^2 \tan \theta + gr)$$

$$\Rightarrow \mu = \frac{v_0^2 - gr \tan \theta}{gr + v_0^2 \tan \theta}$$

34. An air bubble of radius 0.1 cm lies at a depth of 20 cm below the free surface of a liquid of density 1000 kg/m³. If the pressure inside the bubble is 2100 N/m² greater than the atmospheric pressure, then the surface tension of the liquid in SI unit is (use $g = 10 \text{ m/s}^2$)

(1) 0.02
 (2) 0.05
 (3) 0.1
 (4) 0.25

Answer (2)

Delivering Champions Consistently

JEE (Advanced) 2024

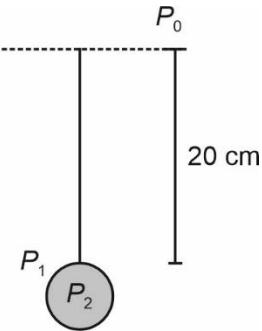
	Rishi Shekher Shukla 2 Year Classroom
AIR 25	

	Krishna Sai Shishir 2 Year Classroom
AIR 67	

	Abhishek Jain 2 Year Classroom
AIR 78	

	Hardik Agarwal 2 Year Classroom
AIR 93	

	Ujjwal Singh 4 Year Classroom
AIR 95	


	Rachit Aggarwal 2 Year Classroom
AIR 98	

JEE (Main) 2024

	Sanvi Jain 2 Year Classroom
AIR 34	

	M Sai Divya Teja Reddy 2 Year Classroom
AIR 15	

	Rishi Shekher Shukla 2 Year Classroom
AIR 19	

Sol.

$$P_1 = P_0 + \rho gh = P_0 + 1000 \times 10 \times \frac{20}{100}$$

$$\Rightarrow P_1 = P_0 + 2000$$

$$\text{So, } P_2 - P_1 = \frac{2S}{R} = \left(\frac{2S}{1 \times 10^{-3}} \right)$$

$$\Rightarrow P_2 = P_0 + 2100 \quad (\text{given})$$

$$\text{So, } P_0 + 2100 - P_0 = 2000 = 2S \times 10^3$$

$$\Rightarrow 100 = 2S \times 10^3$$

$$\Rightarrow S = \left(\frac{1}{20} \right) = 0.05$$

35. A parallel plate capacitor was made with two rectangular plates, each with a length of $l = 3 \text{ cm}$ and breadth of $b = 1 \text{ cm}$. The distance between the plates is $3 \mu\text{m}$. Out of the following, which are the ways to increase the capacitance by a factor of 10?

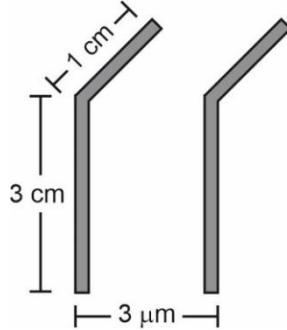
- A. $l = 30 \text{ cm}, b = 1 \text{ cm}, d = 1 \mu\text{m}$
- B. $l = 3 \text{ cm}, b = 1 \text{ cm}, d = 30 \mu\text{m}$
- C. $l = 6 \text{ cm}, b = 5 \text{ cm}, d = 3 \mu\text{m}$
- D. $l = 1 \text{ cm}, b = 1 \text{ cm}, d = 10 \mu\text{m}$
- E. $l = 5 \text{ cm}, b = 2 \text{ cm}, d = 1 \mu\text{m}$

Choose the correct answer from the options given below:

- (1) C and E only
- (2) C only
- (3) B and D only
- (4) A only

Answer (1)

 Delivering Champions Consistently


AIR 25 Rishi Shekher Shukla 2 Year Classroom	AIR 67 Krishna Sai Shishir 2 Year Classroom	AIR 78 Abhishek Jain 2 Year Classroom	AIR 93 Hardik Agarwal 2 Year Classroom	AIR 95 Ujjwal Singh 4 Year Classroom	AIR 98 Rachit Aggarwal 4 Year Classroom
--	---	---	--	---	---

JEE (Advanced) 2024

 Aakash
Medical | IIT-JEE | Foundations

Karnataka Topper 100 PERCENTILE RANK Sanvi Jain 2 Year Classroom	Telangana Topper 100 PERCENTILE RANK M Sai Divya Teja Reddy 2 Year Classroom	Telangana Topper 100 PERCENTILE RANK Rishi Shekher Shukla 2 Year Classroom
--	--	--

JEE (Main) 2024

Sol.

$$\text{We know } C = \frac{A\epsilon_0}{d}$$

$$= \frac{b\ell\epsilon_0}{d}$$

So to increase the capacitance by 10 factor $\left(\frac{A}{d} \right)$ has to increase by 10 factor.

$$\text{For option (A)} \quad C' = \frac{(30\ell)b\epsilon_0}{\left(\frac{d}{3} \right)} = 30C$$

$$\text{For option (B)} \quad C' = \frac{\ell b\epsilon_0}{10d} = \frac{C}{10}$$

$$\text{For option (C)} \quad C' = \frac{(2\ell)5b\epsilon_0}{d} = 10C$$

$$\text{For option (D)} \quad C' = \frac{\left(\frac{\ell}{3} \right)b\epsilon_0}{\left(\frac{10d}{3} \right)} = \frac{C}{10}$$

$$\text{For option (E)} \quad C' = \frac{\left(\frac{\ell}{3} \right)5(2b)\epsilon_0}{\left(\frac{d}{3} \right)} = 10C$$

Clearly (C) and (E) are the situation for 10C

36. A uniform solid cylinder of mass 'm' and radius 'r' rolls along an inclined rough plane of inclination 45° . If it starts to roll from rest from the top of the plane then the linear acceleration of the cylinder's axis will be

$$(1) \frac{1}{3\sqrt{2}} g \quad (2) \frac{\sqrt{2}g}{3}$$

$$(3) \sqrt{2} g \quad (4) \frac{1}{\sqrt{2}} g$$

Answer (2)

Sol. Flux through complete surface

$$\phi_1 = \frac{q}{\epsilon_0 \times 6}$$

So flux through shaded region is

$$\phi_2 = \phi_1 \frac{5}{8} = \frac{q}{6\epsilon_0} \times \frac{5}{8} = \frac{5q}{48\epsilon_0}$$

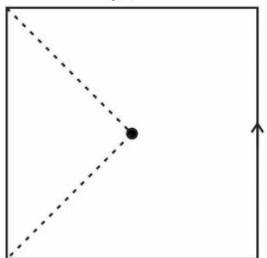
So, $p = 48$

47. The least count of a screw gauge is 0.01 mm. If the pitch is increased by 75% and number of divisions on the circular scale is reduced by 50%, the new least count will be _____ $\times 10^{-3}$ mm.

Answer (35)

Sol. Least count = $0.01 = \left(\frac{L}{N} \right)$

Now $\frac{1.75L}{N/2} = \text{New least count}$


$$\Rightarrow 3.5 \times \frac{L}{N} = 3.5 \times 0.01 \text{ mm}$$

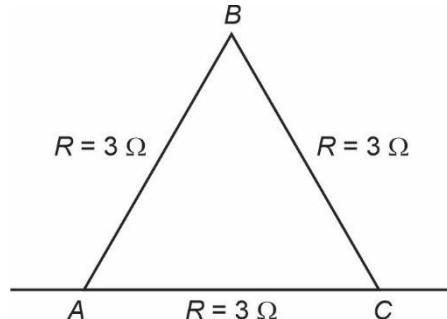
$$= 35 \times 10^{-3} \text{ mm}$$

48. A current of 5 A exists in a square loop of side $\frac{1}{\sqrt{2}}$ m. Then the magnitude of the magnetic field B at the centre of the square loop will be $p \times 10^{-6}$ T. Where, value of p is _____.
 [Take $\mu_0 = 4\pi \times 10^{-7} \text{ T m A}^{-1}$].

Answer (8)

Sol. $\leftarrow \frac{1}{\sqrt{2}} \text{ m} \rightarrow$

$$B = \frac{\mu_0 I \times 2}{4\pi \ell} \times 2 \cos 45^\circ \times 4$$


$$\Rightarrow B = \frac{4\pi \times 10^{-7} \times \sqrt{2}}{4\pi \times 1} \times 4 \times 4 \times \frac{1}{\sqrt{2}} \times 5$$

$$\Rightarrow B = 8 \times 10^{-6} \text{ T}$$

49. A wire of resistance 9 Ω is bent to form an equilateral triangle. Then the equivalent resistance across any two vertices will be _____ ohm.

Answer (2)

Sol.

Equivalent resistance across AC is

$$R_1 = 2R \parallel R = \frac{2R \times R}{3R} = \frac{2R}{3}$$

$$\Rightarrow R_1 = 2 \Omega$$

50. The temperature of 1 mole of an ideal monoatomic gas is increased by 50°C at constant pressure. The total heat added the change in internal energy are E_1 and E_2 , respectively. If $\frac{E_1}{E_2} = \frac{x}{9}$ then the value of x is _____.

Answer (15)

Sol. $\Delta T = 50^\circ\text{C} = 50 \text{ K}$

$$N = 1 \text{ mole ideal gas}$$

$$\Delta P = 0$$

$$\Delta Q_P = NC_P \Delta T = E_1 = N \cdot \frac{5}{2} R \Delta T$$

$$\Delta Q_V = NC_V \Delta T = E_2 = N \cdot \frac{3}{2} R \Delta T$$

$$\frac{E_1}{E_2} = \frac{x}{9} = \frac{C_P}{C_V}$$

$$\text{For monoatomic gas} = \frac{C_P}{C_V} = \frac{5}{3}$$

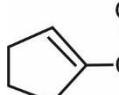
$$\Rightarrow \frac{x}{9} = \frac{5}{3}$$

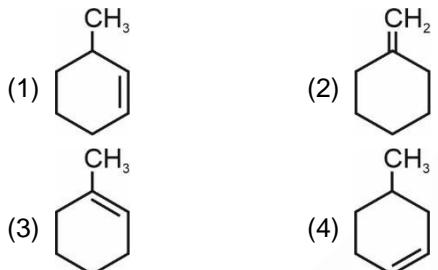
$$\Rightarrow x = 15$$

 Delivering Champions Consistently

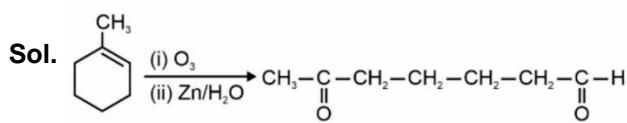
JEE (Advanced) 2024

JEE (Main) 2024

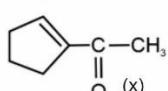

CHEMISTRY

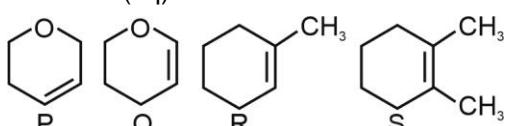

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

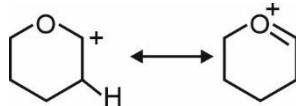

Choose the correct answer :

51. Aman has been asked to synthesise the molecule


 (x). He thought of preparing the molecule using an aldol condensation reaction. He found a few cyclic alkenes in his laboratory. He thought of performing ozonolysis reaction on alkene to produce a dicarbonyl compound followed by aldol reaction to prepare "x". Predict the suitable alkene that can lead to the formation of "x".


Answer (3)

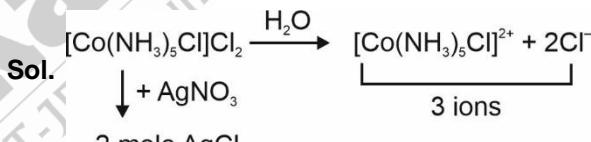
OH^-/Δ Aldol condensation


52. Following are the four molecules "P", "Q", "R" and "S". Which one among the four molecules will react with H-Br(aq) at the fastest rate?

(1) P (2) R
 (3) Q (4) S

Answer (3)

Sol. The reaction with H-Br will be fastest for the species forming most stable carbocation



Due to resonance, it will have most stable carbocation.

53. One mole of the octahedral complex compound $\text{Co}(\text{NH}_3)_5\text{Cl}_3$ gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with excess of AgNO_3 solution to yield two moles of AgCl(s) . The structure of the complex is

(1) $[\text{Co}(\text{NH}_3)_4\text{Cl}].\text{Cl}_2\text{.NH}_3$
 (2) $[\text{Co}(\text{NH}_3)_4\text{Cl}_2].\text{Cl}.\text{NH}_3$
 (3) $[\text{Co}(\text{NH}_3)_3\text{Cl}_3].2\text{NH}_3$
 (4) $[\text{Co}(\text{NH}_3)_5\text{Cl}]\text{Cl}_2$

Answer (4)

54. The carbohydrate "Ribose" present in DNA, is
 A. A pentose sugar
 B. present in pyranose form
 C. in "D" configuration
 D. a reducing sugar, when free
 E. in α - anomeric form

Choose the correct answer from the options given below

(1) A, B and E only (2) B, D and E only
 (3) A, C and D only (4) A, D and E only

Answer (3)

 Delivering Champions Consistently

JEE (Advanced) 2024

AIR 25 Rishi Shekher Shukla 2 Year Classroom	AIR 67 Krishna Sai Shishir 2 Year Classroom	AIR 78 Abhishek Jain 2 Year Classroom	AIR 93 Hardik Agarwal 2 Year Classroom	AIR 95 Ujjwal Singh 4 Year Classroom

 JEE (Main) 2024

100 PERCENTILE RANK	100 PERCENTILE RANK	100 PERCENTILE RANK

Sol. Ribose present in DNA is β -(D)-deoxyribose

It is a pentose sugar present in furanose form having D configuration.

It is a reducing sugar having β -anomeric form

A, C & D are correct

55. Which of the following statement is true with respect to H_2O , NH_3 and CH_4 ?

- The central atoms of all the molecules are sp^3 hybridized.
- The $\text{H} - \text{O} - \text{H}$, $\text{H} - \text{N} - \text{H}$ and $\text{H} - \text{C} - \text{H}$ angles in the above molecules are 104.5° , 107.5° and 109.5° , respectively.
- The increasing order of dipole moment is $\text{CH}_4 < \text{NH}_3 < \text{H}_2\text{O}$.
- Both H_2O and NH_3 are Lewis acids and CH_4 is a Lewis base.
- A solution of NH_3 in H_2O is basic. In this solution NH_3 and H_2O act as Lowry-Bronsted acid and base respectively

Choose the correct answer from the options given below

- A, B and C only
- A, B, C and E only
- C, D and E only
- A, D and E only

Answer (1)

Sol. H_2O NH_3 CH_4

Hybridization	sp^3	sp^3	sp^3
Bond angle	104.5°	107.5°	109.5°
Dipole moment	1.85	1.47	0

Both H_2O & NH_3 are Lewis bases. NH_3 acts as base in H_2O , NH_3 & H_2O act as Lowry – Bronsted base & acid respectively.

A, B & C are correct

56. Which of the following statements are NOT true about the periodic table?

- The properties of elements are function of atomic weights.
- The properties of elements are function of atomic numbers.

- Elements having similar outer electronic configuration are arranged in same period.
- An element's location reflects the quantum numbers of the last filled orbital.
- The number of elements in a period is same as the number of atomic orbitals available in energy level that is being filled.

Choose the correct answer from the options given below.

- D and E only
- B, C and E only
- A and E only
- A, C and E only

Answer (4)

Sol. Properties of elements are function of atomic numbers.

Elements having similar outer electronic configuration are arranged in same group.

Number of elements in a period is double of number of atomic orbitals available in energy level that is being filled.

So, (A), (C) and (E) are incorrect.

57. The large difference between the melting and boiling points of oxygen and sulphur may be explained on the basis of

- Atomicity
- Electronegativity
- Atomic size
- Electron gain enthalpy

Answer (1)

Sol. The large difference in the melting and boiling points of oxygen and sulphur is due to atomicity as oxygen exists as O_2 and sulphur exists as S_8 .

58. For a reaction, $\text{N}_2\text{O}_5(\text{g}) \rightarrow 2\text{NO}_2(\text{g}) + \frac{1}{2}\text{O}_2(\text{g})$ in a constant volume container, no products were present initially. The final pressure of the system when 50% of reaction gets completed is

- 5 times of initial pressure
- 5/2 times of initial pressure
- 7/4 times of initial pressure
- 7/2 times of initial pressure

Answer (3)

Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shishir
2 Year Classroom

AIR 78
Abhishek Jain
2 Year Classroom

AIR 93
Hardik Agarwal
2 Year Classroom

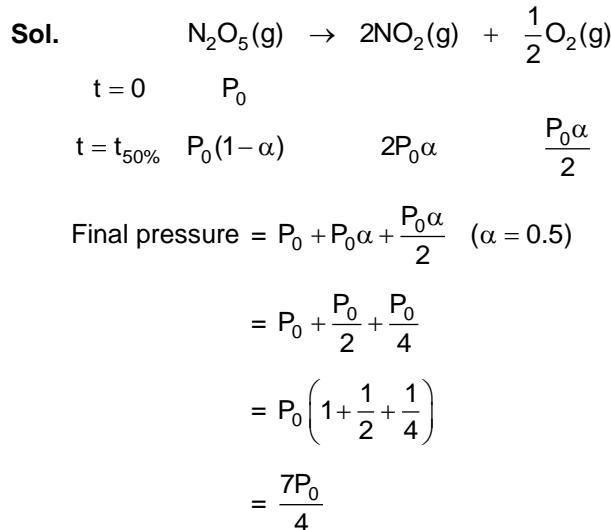
AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit Aggarwal
4 Year Classroom

JEE (Advanced) 2024

Medical | IIT-JEE | Foundations

AIR 1
Sanvi Jain
2 Year Classroom



AIR 15
M Sai Divya Teja Reddy
2 Year Classroom

AIR 19
Rishi Shekher Shukla
2 Year Classroom

JEE (Main) 2024

59. Given below are two statements I and II.

Statement I : Dumas method is used for estimation of "Nitrogen" in an organic compound.

Statement II : Dumas method involves the formation of ammonium sulphate by heating the organic compound with conc. H_2SO_4 .

In the light of the above statements, choose the **correct** answer from the options given below.

- (1) Both Statement I and Statement II are true
- (2) Statement I is false but Statement II is true
- (3) Statement I is true but Statement II is false
- (4) Both Statement I and Statement II are false

Answer (3)

Sol. Dumas method is used to estimate nitrogen which involves heating of compound with copper oxide.

60. Let us consider an endothermic reaction which is non-spontaneous at the freezing point of water. However, the reaction is spontaneous at boiling point of water. Choose the correct option.

- (1) Both ΔH and ΔS are (-ve)
- (2) Both ΔH and ΔS are (+ve)
- (3) ΔH is (+ve) but ΔS is (-ve)
- (4) ΔH is (-ve) but ΔS is (+ve)

Answer (2)

Sol. On increasing temperature, the given endothermic reaction becomes spontaneous.

$$\Delta G = \Delta H - T\Delta S$$

For spontaneity,

$$\Delta G < 0$$

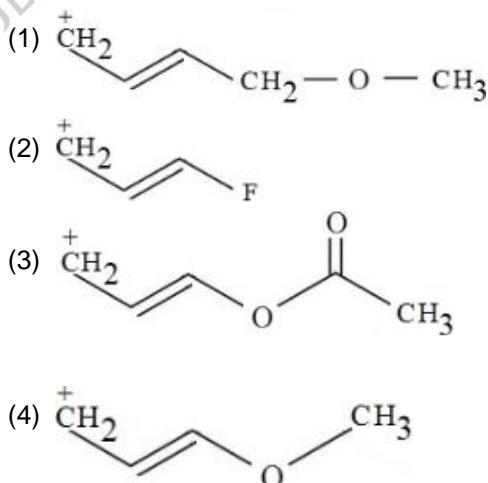
Given,

$$\Delta H > 0$$

So, ΔS should be +ve.

61. Which of the following linear combination of atomic orbitals will lead to formation of molecular orbitals in homonuclear diatomic molecules [internuclear axis in z-direction] ?

- A. $2p_z$ and $2p_x$
- B. $2s$ and $2p_x$
- C. $3d_{xy}$ and $3d_{x^2-y^2}$
- D. $2s$ and $2p_z$
- E. $2p_z$ and $3d_{x^2-y^2}$

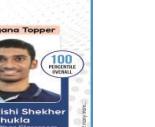

Choose the correct answer from the options given below:

- (1) A and B Only
- (2) D Only
- (3) E Only
- (4) C and D Only

Answer (2)

Sol. $2s$ and $2p_z$ will lead to formation of molecular orbital as they have very small difference in energies.

62. Which one of the carbocations from the following is most stable?


Answer (4)

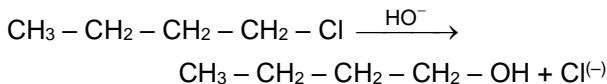
 Delivering Champions Consistently

 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shishir 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Agarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 4 Year Classroom
---	--	--	---	--	--

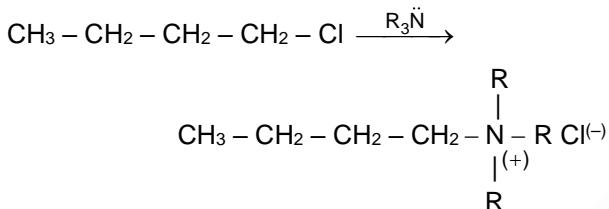
JEE (Advanced) 2024

 Aakash
Medical | IIT-JEE | Foundations

 Karnataka Topper AIR 24 Sanvi Jain 2 Year Classroom	 Telangana Topper AIR 15 M Sai Divya Teja Reddy 2 Year Classroom	 Telangana Topper AIR 19 Rishi Shekher Shukla 2 Year Classroom
---	---	---


JEE (Main) 2024

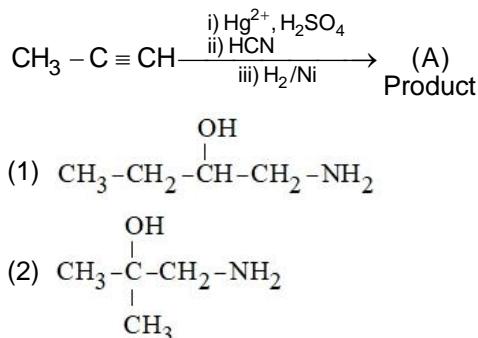
Sol. CH_2^{\oplus} CH_3 will be most stable due to extended conjugation


(3) will be less stable due to $-M$ of $-C=O$

63. Given below are two statements:

Statement I: The conversion proceeds well in the less polar medium.

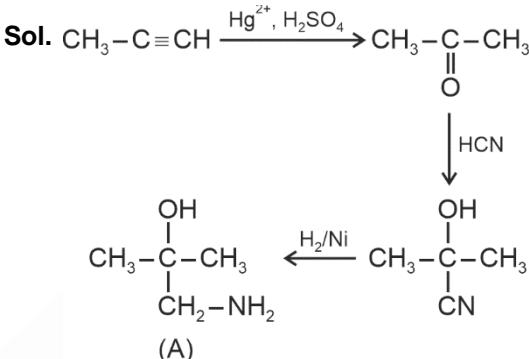
Statement II: The conversion proceeds well in the more polar medium.


In the light of the above statements, choose the **correct** answer from the options given below

- (1) Statement I is true but Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

Answer (3)

Sol. Both the reactions will proceed via SN_2 mechanism but OH^- will proceed in less polar medium while $R_3\ddot{N}$ will occur well in more polar medium. Both statements are true.

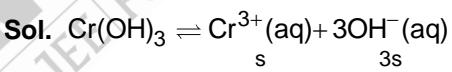

64. The product (A) formed in the following reaction sequence is

(3) $\text{CH}_3\text{-CH}_2\text{-CH}(\text{NH}_2)\text{-CH}_2\text{-OH}$

(4) $\text{CH}_3\text{-C}(\text{NH}_2)(\text{CH}_3)\text{-CH}_2\text{-OH}$

Answer (2)

65. K_{sp} for $\text{Cr}(\text{OH})_3$ is 1.6×10^{-30} . What is the molar solubility of this salt in water?


(1) $\sqrt[5]{1.8 \times 10^{-30}}$

(2) $\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}}$

(3) $\frac{1.8 \times 10^{-30}}{27}$

(4) $\sqrt[2]{1.6 \times 10^{-30}}$

Answer (2)

$$K_{sp} = s(3s)^3$$

$$1.6 \times 10^{-30} = 27s^4$$

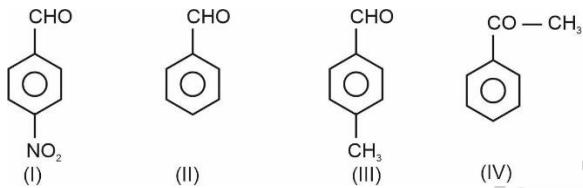

$$\sqrt[4]{\frac{1.6 \times 10^{-30}}{27}} = s$$

66. Which of the following ions is the strongest oxidizing agent?

(Atomic Number of Ce = 58, Eu = 63, Tb = 65, Lu = 71)

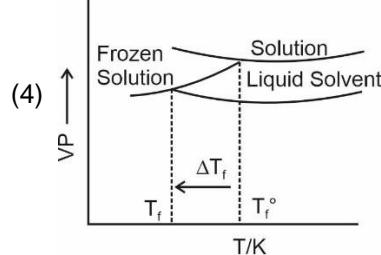
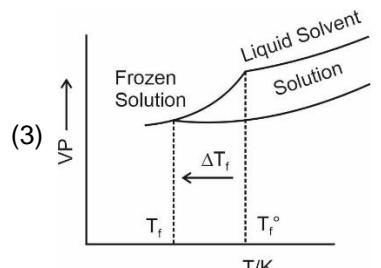
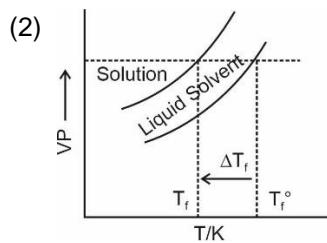
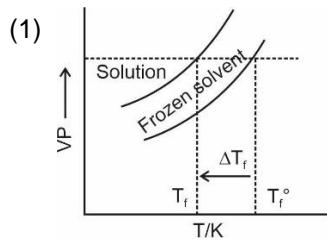
Answer (3)

Sol. Tb^{4+} is strongest oxidising agent as it will reduce to Tb^{3+} (common O.S. of Ln)

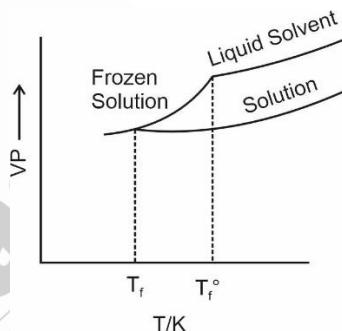


67. Which of the following arrangements with respect to their reactivity in nucleophilic addition reaction is correct?

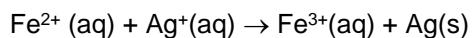
- p-nitrobenzaldehyde < benzaldehyde < p-tolualdehyde < acetophenone
- acetophenone < p-tolualdehyde < benzaldehyde < p-nitrobenzaldehyde
- benzaldehyde < acetophenone < p-nitrobenzaldehyde < p-tolualdehyde
- acetophenone < benzaldehyde < p-tolualdehyde < p-nitrobenzaldehyde





Answer (2)

Sol. Reactivity \propto +ve charge on electrophilic carbon

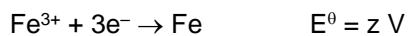

Correct order I > II > III > IV

68. Consider the given plots of vapour pressure (VP) vs temperature (T/K). Which amongst the following options is correct graphical representation showing ΔT_f , depression in the freezing point of a solvent in as solution?



Answer (3)

Sol. Correct variation




69. For the given cell

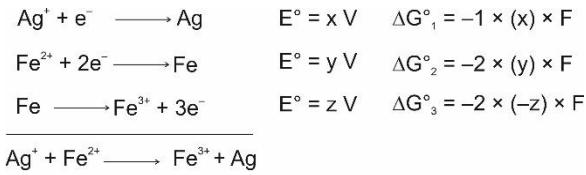
The standard cell potential of the above reaction is

Given:

$$(1) x + y - z \quad (2) x + 2y$$

$$(3) x + 2y - 3z \quad (4) y - 2x$$

Answer (3)



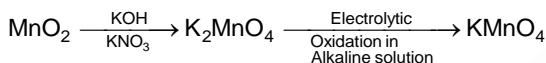
JEE (Advanced) 2024

AIR 25	Rishi Shekher Shukla 2 Year Classroom	AIR 67	Krishna Sai Shishir 2 Year Classroom	AIR 78	Abhishek Jain 2 Year Classroom	AIR 93	Hardik Agarwal 2 Year Classroom	AIR 95	Ujjwal Singh 4 Year Classroom	AIR 98	Rachit Aggarwal 2 Year Classroom
---------------	---	---------------	--	---------------	--	---------------	---	---------------	---	---------------	--

JEE (Main) 2024

Karnataka Topper AIR 34	Telangana Topper AIR 15	Telangana Topper AIR 19

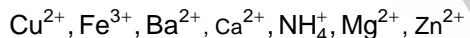
Sol.


$$\Delta G^\circ = \Delta G^\circ_1 + \Delta G^\circ_2 + \Delta G^\circ_3$$

$$-1 \times E^\circ \times F = -1(x)F - 2(y)F + 3(z)F$$

$$E^\circ = x + 2y - 3z$$

70. Preparation of potassium permanganate from MnO_2 involves two step process in which the 1st step is a reaction with KOH and KNO_3 to produce


(1) K_2MnO_4 (2) $\text{K}_4(\text{Mn(OH)}_6)$
 (3) KMnO_4 (4) K_3MnO_4

Answer (1)
Sol. Preparation of KMnO_4

SECTION - B

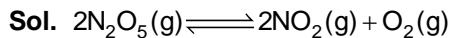
Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

71. Among the following cations, the number of cations which will give characteristic precipitate in their identification tests with $\text{K}_4[\text{Fe}(\text{CN})_6]$ is _____.
 $\text{Cu}^{2+}, \text{Fe}^{3+}, \text{Ba}^{2+}, \text{Ca}^{2+}, \text{NH}_4^+, \text{Mg}^{2+}, \text{Zn}^{2+}$

Answer (3)

Sol. $\text{Cu}^{2+}, \text{Ca}^{2+}$ & Zn^{2+} will form precipitate with $\text{K}_4[\text{Fe}(\text{CN})_6]$. Fe^{3+} forms coloured solution

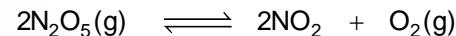
72. 37.8 g N_2O_5 was taken in a 1 L reaction vessel and allowed to undergo the following reaction at 500 K


$$2\text{N}_2\text{O}_5(\text{g}) \rightleftharpoons 2\text{N}_2\text{O}_4(\text{g}) + \text{O}_2(\text{g})$$

The total pressure at equilibrium was found to be 18.65 bar.

Then, $K_p = \text{_____} \times 10^{-2}$ [nearest integer]

Assume N_2O_5 to behave ideally under these conditions.


$$\text{Given : } R = 0.082 \text{ bar L mol}^{-1} \text{ K}^{-1}$$

Answer (962)

$$P_i = \frac{n_i R \times T}{V_i}$$

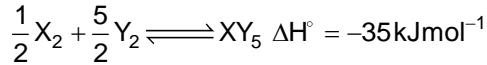
$$= \frac{\frac{37.8}{108} \times 0.082 \times 500}{1}$$

$$= 14.35 \text{ atm}$$

$$t = 0 \quad 14.35$$

$$t = t_{\text{eq}} \quad 14.35 - 2P \quad 2P \quad P$$

$$P_f = 14.35 + P = 18.65$$


$$P = 4.3 \text{ atm}$$

$$K_p = \frac{(8.6)^2 \times (4.3)}{(5.75)^2}$$

$$= 9.62 \text{ bar}$$

$$= 962 \times 10^{-2} \text{ bar}$$

73. Standard entropies of X_2 , Y_2 and XY_5 are 70, 50 and 110 J K⁻¹ mol⁻¹ respectively. The temperature in Kelvin at which the reaction

will be at equilibrium is _____. (Nearest integer)

Answer (700)

Delivering Champions Consistently

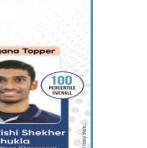
AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shishir
2 Year Classroom

AIR 78
Abhishek Jain
2 Year Classroom

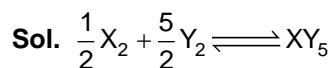
AIR 93
Hardik Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom



AIR 98
Rachit Aggarwal
4 Year Classroom

Aakash
Medical | IIT-JEE | Foundations


AIR 34
Sanvi Jain
2 Year Classroom

AIR 15
M Sai Divya Teja Reddy
2 Year Classroom

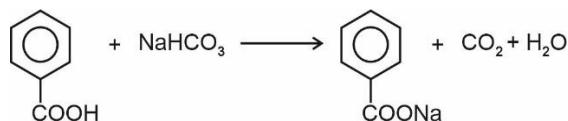
AIR 19
Rishi Shekher Shukla
2 Year Classroom

For equilibrium

$$\Delta G = \Delta H^\circ - T\Delta S^\circ$$

$$0 = -35 \times 10^3 - T \left(110 - \left(\frac{5}{2} \times 50 \right) - \frac{1}{2} \times 70 \right)$$

$$35 \times 10^3 = 50 \times T$$

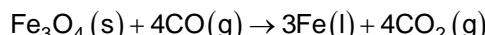

$$700\text{K} = T$$

74. X g of benzoic acid on reaction with aq. NaHCO_3 released CO_2 that occupied 11.2 L volume at STP.

$$X \text{ is } \text{_____ g.}$$

Answer (61)

Sol.


1 mole benzoic acid will release 1 mole CO_2

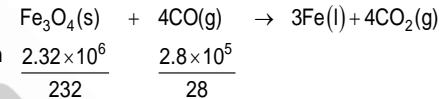
11.2 L CO_2 at STP is $\frac{1}{2}$ mole CO_2 which will be

released by reaction with $\frac{1}{2}$ mole benzoic acid

$$\text{Mass of benzoic acid} = \frac{1}{2} \times 122 \\ = 61 \text{ gm}$$

75. Consider the following reaction occurring in the blast furnace :

'x' kg of iron is produced when 2.32×10^3 kg Fe_3O_4 and 2.8×10^2 kg CO are brought together in the furnace. The value of 'x' is _____. (Nearest integer)


[Given :

$$\text{molar mass of } \text{Fe}_3\text{O}_4 = 232 \text{ g mol}^{-1}$$

$$\text{molar mass of CO} = 28 \text{ g mol}^{-1}$$

$$\text{molar mass of Fe} = 56 \text{ g mol}^{-1}$$

Answer (420)

$$\text{Sol. moles taken} \quad \frac{2.32 \times 10^6}{232} \quad \frac{2.8 \times 10^5}{28}$$

CO is Limiting reagent

$$\text{Iron produced (in kg)} = \frac{3}{4} \times \frac{2.8}{28} \times 10^5 \times 56 \times 10^{-3} \\ = 420 \text{ kg}$$

 Delivering Champions Consistently

AIR 25 Rishi Shekher Shukla
2 Year Classroom

AIR 67 Krishna Sai Shishir
2 Year Classroom

AIR 78 Abhishek Jain
2 Year Classroom

AIR 93 Hardik Agarwal
2 Year Classroom

AIR 95 Ujjwal Singh
4 Year Classroom

AIR 98 Rachit Aggarwal
2 Year Classroom

AIR 34 Sanvi Jain
2 Year Classroom

AIR 15 M Sai Divya Teja Reddy
2 Year Classroom

AIR 19 Rishi Shekher Shukla
2 Year Classroom

 Aakash
Medical | IIT-JEE | Foundations

JEE (Main) 2024

JEE (Main) 2024