

28/01/2025

Evening

Aakash

Medical | IIT-JEE | Foundations

Corporate Office : AESL, 3rd Floor, Incuspace Campus-2, Plot-13, Sector-18, Udyog Vihar, Gurugram, Haryana-122018

Answers & Solutions

Time : 3 hrs.

for

M.M. : 300

JEE (Main)-2025 Phase-1

[Computer Based Test (CBT) mode]

(Mathematics, Physics and Chemistry)

IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 75 questions. Each subject (MPC) has 25 questions. The maximum marks are 300.
- (3) This question paper contains **Three** Parts. **Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is **Mathematics**. Each part has only two sections: **Section-A** and **Section-B**.
- (4) **Section - A** : Attempt all questions.
- (5) **Section - B** : Attempt all questions.
- (6) **Section - A (01 – 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.
- (7) **Section - B (21 – 25)** contains 5 Numerical value based questions. The answer to each question should be rounded off to the **nearest integer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

Delivering Champions Consistently

100 PERCENT PLACEMENT

Aakash
Medical | IIT-JEE | Foundations

100 PERCENT PLACEMENT

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. If $\sum_{r=1}^{13} \left\{ \frac{1}{\sin\left(\frac{\pi}{4} + (r-1)\frac{\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{r\pi}{6}\right)} \right\} = a\sqrt{3} + b$, $a, b \in \mathbb{Z}$, then $a^2 + b^2$ is equal to:

- (1) 2
- (2) 8
- (3) 10
- (4) 4

Answer (2)

Sol. $S = \sum_{r=1}^{13} \frac{\sin\left(\frac{\pi}{4} + \frac{r\pi}{6}\right) - \left(\frac{\pi}{4} + \left(\frac{r-1}{4}\right)\frac{\pi}{6}\right)}{\sin\left(\frac{\pi}{4} + \frac{r\pi}{6}\right) \sin\left(\frac{\pi}{4} + \left(\frac{(r-1)\pi}{6}\right)\right)} \times \frac{1}{\sin\left(\frac{\pi}{6}\right)}$

$$\Rightarrow S = 2 \sum_{r=1}^{13} \frac{\cos\left(\frac{\pi}{4} + \frac{(r-1)\pi}{6}\right)}{\sin\left(\frac{\pi}{4} + \frac{(r-1)\pi}{6}\right)} - \frac{\cos\left(\frac{\pi}{4} + \frac{r\pi}{6}\right)}{\sin\left(\frac{\pi}{4} + \frac{r\pi}{6}\right)}$$

$$\Rightarrow S = 2 \sum_{r=1}^{13} \cot\left(\frac{\pi}{4} + \frac{(r-1)\pi}{6}\right) - \cot\left(\frac{\pi}{4} + \frac{r\pi}{6}\right)$$

$$= 2 \left(\cot\left(\frac{\pi}{4} + \frac{0\pi}{6}\right) - \cot\left(\frac{\pi}{4} + \frac{\pi}{6}\right) \right)$$

$$+ \cot\left(\frac{\pi}{4} + \frac{\pi}{6}\right) - \cot\left(\frac{\pi}{4} + \frac{2\pi}{6}\right) \dots$$

$$+ \cot\left(\frac{\pi}{4} + \frac{12\pi}{6}\right) - \cot\left(\frac{\pi}{4} + \frac{13\pi}{6}\right)$$

$$= 2 \left(\cot\left(\frac{\pi}{4}\right) - \cot\left(\frac{\pi}{4} + \frac{13\pi}{6}\right) \right) = 2\sqrt{3} - 2$$

2. Bag B_1 contains 6 white and 4 blue balls, Bag B_2 contains 4 white and 6 blue balls, and Bag B_3 contains 5 white and 5 blue balls. One of the bags is selected at random and a ball is drawn from it. If the ball is white, then the probability, that the ball is drawn from Bag B_2 , is

- (1) $\frac{2}{5}$
- (2) $\frac{1}{3}$
- (3) $\frac{2}{3}$
- (4) $\frac{4}{15}$

Answer (4)

Sol. $P\left(\frac{B_2}{w}\right) = \frac{P(B_2) \cdot P\left(\frac{w}{B_2}\right)}{P(w)}$

$$P(B_i) = \frac{1}{3}, \quad i = 1, 2, 3$$

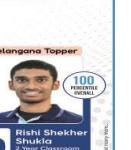
$$P\left(\frac{w}{B_1}\right) = \frac{6}{10}, \quad P\left(\frac{w}{B_2}\right) = \frac{4}{10}, \quad P\left(\frac{w}{B_3}\right) = \frac{5}{10}$$

$$P(w) = \sum_{i=1}^3 P(B_i) P\left(\frac{w}{B_i}\right) = \frac{1}{3} \left(\frac{6}{10} + \frac{4}{10} + \frac{5}{10} \right) = \frac{5}{10} = \frac{1}{2}$$

$$P\left(\frac{B_2}{w}\right) = \frac{\frac{1}{3} \cdot \frac{4}{10}}{\frac{1}{2}} = \frac{8}{30} = \frac{4}{15}$$

3. Let S be the set of all the words that can be formed by arranging all the letters of the word GARDEN. From the set S , one word is selected at random. The probability that the selected word will **NOT** have vowels in alphabetical order is:

- (1) $\frac{1}{2}$
- (2) $\frac{1}{3}$
- (3) $\frac{1}{4}$
- (4) $\frac{2}{3}$


Answer (1)

Delivering Champions Consistently

JEE (Advanced) 2024

Sol. V : vowel in alphabet order

$$P(\bar{V}) = 1 - P(V)$$

$$= 1 - \frac{\binom{6!}{2!}}{6!} = 1 - \frac{1}{2} = \frac{1}{2}$$

4. Let the coefficients of three consecutive terms

T_r, T_{r+1} and T_{r+2} in the binomial expansion of $(a+b)^{12}$ be in a G.P. and let p be the number of all possible values of r . Let q be the sum of all rational terms in the binomial expansion $(\sqrt[4]{3} + \sqrt[3]{4})^{12}$. Then $p + q$ is equal to:

(1) 287

(2) 295

(3) 299

(4) 283

Answer (4)

Sol. Coefficient of

$$T_r, T_{r+1}, T_{r+2} \rightarrow GP$$

$$\Rightarrow ({}^{12}C_r)^2 = {}^{12}C_{r-1} \cdot {}^{12}C_{r+1}$$

but no three consecutive binomial coefficient are in GP

$$\Rightarrow P = 0$$

$$\text{Now for } (3^{1/4} + 4^{1/3})^{12}, T_{r+1} = {}^{12}C_r (4)^{K/3} (3)^{\frac{12-K}{4}}$$

for rational terms $K = 0, 12$

sum of rational terms

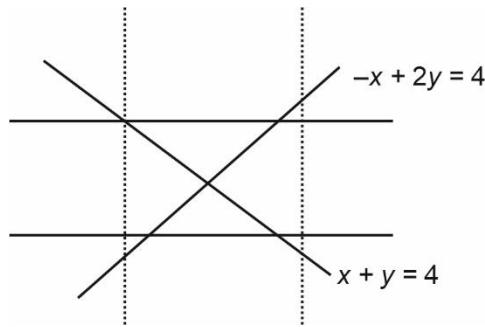
$$= {}^{12}C_0 4^0 \cdot 3^3 + {}^{12}C_{12} \cdot 4^4 \cdot 3^0$$

$$= 27 + 256 = 283 = q$$

$$\therefore p + q = 283$$

5. Two equal sides of an isosceles triangle are along $-x + 2y = 4$ and $x + y = 4$. If m is the slope of its third side, then the sum, of all possible distinct values of m , is:

(1) $-2\sqrt{10}$


(2) 6

(3) 12

(4) -6

Answer (2)

Sol.

Slope of the third side = slope of the perpendicular bisector of given lines

$$h: \frac{-x+2y-4}{\sqrt{5}} = \pm \frac{x+y-4}{\sqrt{2}}$$

$$h_1: \sqrt{2}(-x+2y-4) = \sqrt{5}(x+y-4)$$

$$h_2: \sqrt{2}(-x+2y-4) = -\sqrt{5}(x+y-4)$$

$$M_{L_1} : -\left[\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - 2\sqrt{2}} \right]$$

$$M_{L_2} : -\left[\frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + 2\sqrt{2}} \right]$$

$$M_{L_1} + M_{L_2} = -\left[\frac{\sqrt{5} + \sqrt{2}}{\sqrt{5} - 2\sqrt{2}} + \frac{\sqrt{5} - \sqrt{2}}{\sqrt{5} + 2\sqrt{2}} \right]$$

$$= -\left[\frac{(\sqrt{5} + \sqrt{2})(\sqrt{5} + 2\sqrt{2}) + (\sqrt{5} - \sqrt{2})(\sqrt{5} - 2\sqrt{2})}{-3} \right]$$

$$= 6$$

$$6. \text{ Let } A = \begin{bmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{bmatrix} \text{ and } P = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}, \theta > 0.$$

If $B = PAP^T$, $C = P^T B^{10} P$ and the sum of the diagonal elements of C is $\frac{m}{n}$, where $\text{gcd}(m, n) = 1$, then $m + n$ is:

(1) 127

(2) 65

(3) 2049

(4) 258

Answer (2)

AIR 25
Rishi Shekher
Shukla
2 Year Classroom

AIR 67
Krishna Sai
Shashik
2 Year Classroom

JEE (Advanced) 2024

AIR 78
Abhishek
Jain
2 Year Classroom

AIR 93
Hardik
Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit
Aggarwal
2 Year Classroom

AIR 34
Sonvi
Jain
2 Year Classroom

AIR 15
M Sai Divya
Teja Reddy
2 Year Classroom

JEE (Main) 2024
Karnataka Topper
Telangana Topper
Telangana Topper

AIR 19
Rishi Shekher
Shukla
2 Year Classroom

Sol. $A = \begin{pmatrix} \frac{1}{\sqrt{2}} & -2 \\ 0 & 1 \end{pmatrix}$

$$P = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

$$PPT = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$C = P^T B B^9 P$$

$$= P^T PA P^T B^9 P$$

$$= A P^T PA P^T B^8 P$$

$$= A^2 P^T B^8 P$$

⋮

$$= A^{10}$$

Sum of diagonal elements of $A^{10} = \left(\frac{1}{\sqrt{2}}\right)^{10} + 1$

$$= \frac{1}{32} + 1 = \frac{33}{32} = \frac{m}{n}$$

So, $m + n = 32 + 33 = 65$

7. If $\alpha + i\beta$ and $\gamma + i\delta$ are the roots of $x^2 - (3 - 2i)x - (2i - 2) = 0$, $i = \sqrt{-1}$, then $\alpha\gamma + \beta\delta$ is equal to:

(1) 6

(2) -2

(3) 2

(4) -6

Answer (3)

Sol. $x^2 - (3 - 2i)x - (2i - 2) = 0$

$$p + q = 3 - 2i = 1 + (2 - 2i)$$

$$pq = 2 - 2i = 1(2 - 2i)$$

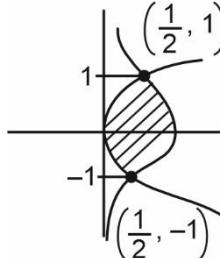
$$\Rightarrow p = 1 + 0i, q = 2 - 2i$$

$$\text{Comparing } \alpha\gamma = 2 \Rightarrow \alpha\gamma + \beta\delta = 2$$

$$\beta\delta = 0(-2)$$

8. The area of the region bounded by the curves $x(1 + y^2) = 1$ and $y^2 = 2x$ is:

(1) $\frac{\pi}{2} - \frac{1}{3}$


(2) $\frac{1}{2}\left(\frac{\pi}{2} - \frac{1}{3}\right)$

(3) $2\left(\frac{\pi}{2} - \frac{1}{3}\right)$

(4) $\frac{\pi}{4} - \frac{1}{3}$

Answer (1)

Sol.

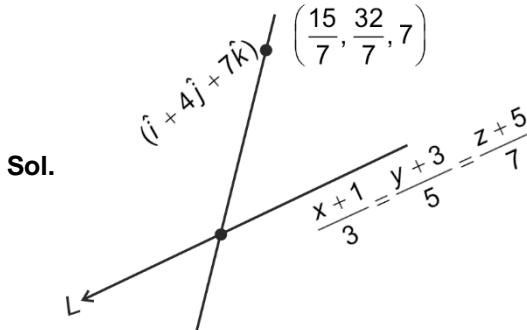
$$x = \frac{1}{1+y^2}, x = \frac{y^2}{2}$$

$$\text{Solving, } \frac{1}{1+y^2} = \frac{y^2}{2} \Rightarrow y = \pm 1$$

$$\text{Area} = \int_{-1}^1 \left(\frac{1}{1+y^2} - \frac{y^2}{2} \right) dy = \tan^{-1} y \left. \frac{-y^3}{6} \right|_{-1}^1 = \frac{\pi}{2} - \frac{1}{3}$$

9. The square of the distance of the point $\left(\frac{15}{7}, \frac{32}{7}, 7\right)$

from the line $\frac{x+1}{3} = \frac{y+3}{5} = \frac{z+5}{7}$ in the direction of vector $\hat{i} + 4\hat{j} + 7\hat{k}$ is


(1) 66

(2) 54

(3) 41

(4) 44

Answer (1)

Sol.

Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

$$f(0) = -6$$

$$\Rightarrow C = -6$$

$$\Rightarrow f(1) = 4(\log_e 2 - 2)$$

13. If A and B are the points of intersection of the circle $x^2 + y^2 - 8x = 0$ and the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ and a

$$+ y^2 - 8x = 0 \text{ and the hyperbola } \frac{x^2}{9} - \frac{y^2}{4} = 1 \text{ and a}$$

point P moves on the line $2x - 3y + 4 = 0$, then the centroid of $\triangle PAB$ lies on the line:

$$(1) 4x - 9y = 12$$

$$(2) 6x - 9y = 20$$

$$(3) 9x - 9y = 32$$

$$(4) x + 9y = 36$$

Answer (2)

$$\text{Sol. } C : x^2 + y^2 - 8x = 0$$

$$H : \frac{x^2}{9} - \frac{y^2}{4} = 1$$

$$\text{By solving } \frac{x^2}{9} - \left(\frac{8x - x^2}{4} \right) = 1$$

$$4x^2 - 72x + 9x^2 = 36$$

$$\Rightarrow 13x^2 - 72x - 36 = 0$$

$$\Rightarrow 13x^2 - 78x + 6x - 36 = 0$$

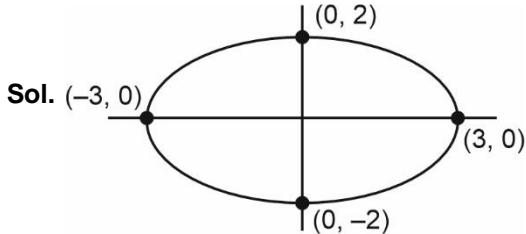
$$\Rightarrow 13x(x-6) + 6(x-6) = 0$$

$$\Rightarrow x = 6 \text{ or } \boxed{-\frac{13}{6}} \times \text{neglected}$$

$$\Rightarrow y^2 = 8(6) - (6)^2$$

$$\Rightarrow y = \pm\sqrt{12}$$

So, points A and B are $(6, \sqrt{12})$, $(6, -\sqrt{12})$


$$P(h, \frac{2h+4}{3})$$

$$\text{Centroid of } \triangle PAB \text{ is } \left(\frac{12+h}{3}, \frac{2h+4}{9} \right)$$

By options this centroid lies on the line $6x - 9y = 20$

14. If the midpoint of a chord of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ is $(\sqrt{2}, \frac{4}{3})$, and the length of the chord is $\frac{2\sqrt{\alpha}}{3}$, then α is
 (1) 26 (2) 22 (3) 20 (4) 18

Answer (2)

Sol.

$$E : \frac{x^2}{9} + \frac{y^2}{4} = 1$$

$$T = S_1$$

$$\Rightarrow \frac{\sqrt{2}x}{9} + \frac{1}{4} \left(\frac{4}{3}y \right) - 1 = \frac{2}{9} + \frac{16}{9(4)} - 1$$

$$\frac{\sqrt{2}x}{9} + \frac{y}{3} = \frac{2}{9} + \frac{4}{9}$$

$$\frac{\sqrt{2}x}{9} + \frac{y}{3} = \frac{2}{3} \Rightarrow \boxed{\sqrt{2}x + 3y = 6}$$

Now point of intersection of chord and ellipse is

$$\frac{(6-3y)^2}{18} + \frac{y^2}{4} = 1$$

$$\frac{(2-y)^2}{2} + \frac{y^2}{4} = 1$$

$$2(4+y^2 - 4y) + y^2 = 4$$

$$\Rightarrow 3y^2 - 8y + 4 = 0$$

$$\Rightarrow y = 2, \frac{2}{3}$$

$$\text{So, points are } (0, 2) \text{ are } \left(2\sqrt{2}, \frac{2}{3} \right)$$

$$\text{Length of chord} = \sqrt{(2\sqrt{2})^2 + \left(\frac{2}{3} - 2 \right)^2}$$

Delivering Champions Consistently

JEE (Advanced) 2024

Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024

$$= \sqrt{8 + \frac{16}{9}} \\ = \frac{\sqrt{88}}{3} = \frac{2\sqrt{22}}{3}$$

On comparing $\alpha = 22$

15. Let $[x]$ denote the greatest integer less than or equal to x . Then the domain of $f(x) = \sec^{-1}(2[x] + 1)$ is:

(1) $(-\infty, -1] \cup [1, \infty)$ (2) $(-\infty, -1] \cup [0, \infty)$
 (3) $(-\infty, \infty)$ (4) $(-\infty, \infty) - \{0\}$

Answer (3)

Sol. $f(x) = \sec^{-1}(2[x] + 1)$

$$\Rightarrow 2[x] + 1 \geq 1 \quad \text{or} \quad 2[x] + 1 \leq -1 \\ \Rightarrow 2[x] \geq 0 \quad \text{or} \quad 2[x] \leq -2 \\ \Rightarrow [x] \geq 0 \quad \text{or} \quad [x] \leq -1 \\ \Rightarrow x \geq 0 \quad \text{or} \quad x \leq 0$$

Domain of $f(x)$ is $(-\infty, \infty)$

16. Let $f: [0, 3] \rightarrow A$ be defined by $f(x) = 2x^3 - 15x^2 + 36x + 7$ and $g: [0, \infty) \rightarrow B$ be defined by $g(x) = \frac{x^{2025}}{x^{2025} + 1}$. If both the functions are onto and $S = \{x \in \mathbb{Z} : x \in A \text{ or } x \in B\}$, then $n(S)$ is equal to :

(1) 36 (2) 30
 (3) 29 (4) 31

Answer (2)

Sol. $f(x) = 2x^3 - 15x^2 + 36x + 7$

$$f'(x) = 6x^3 - 30x + 36 = 0$$

$$\Rightarrow x^2 - 5x + 6 = 0$$

$$\therefore x = 1, 5$$

$$f(0) = 7, f(2) = 35, f(3) = 34$$

$$A = [7, 35]$$

$$g(x) = \frac{x^{2025}}{1 + x^{2025}}$$

$$B = [0, 1]$$

$$\therefore S = [0, 7, 8, 9, \dots, 35]$$

Number of elements = 30

17. Let A, B, C be three points in xy -plane, whose position vector are given by $\sqrt{3}\hat{i} + \hat{j}$, $\hat{i} + \sqrt{3}\hat{j}$ and $a\hat{i} + (1-a)\hat{j}$ respectively with respect to the origin O . If the distance of the point C from the line bisecting the angle between the vectors \overrightarrow{OA} and \overrightarrow{OB} is $\frac{9}{\sqrt{2}}$, then the sum of all the possible values of a is :

(1) 2 (2) 0
 (3) 1 (4) $\frac{9}{2}$

Answer (3)

Sol. Equation of line in the internal bisector of \overrightarrow{OA} and \overrightarrow{OB} is $(\sqrt{3} + 1)\hat{i} + (\sqrt{3} + 1)\hat{j}$

\Rightarrow line will be $y = x \Rightarrow x - y = 0$

$$D = \left| \frac{a - (1-a)}{\sqrt{a^2 + (1-a)^2}} \right| = \frac{9}{\sqrt{2}}$$

$$(2a-1)^2 = \frac{81}{2} (a^2 + (1-a)^2)$$

$$\Rightarrow 2(4a^2 - 4a + 1) = 81a^2 + 81a^2 - 162a - 81$$

$$\Rightarrow 162a^2 - 162a + 81 - 8a^2 + 8a - 2 = 0$$

$$\Rightarrow 154a^2 - 154a + 79 = 0$$

$$\text{Sum of values} = -\frac{(-154)}{154} = 1$$

18. Let f be real valued continuous function defined on the positive real axis such that $g(x) = \int_0^x tf(t)dt$. If $g(x^3) = x^6 + x^7$, then value of $\sum_{r=1}^{15} f(r^3)$ is :

(1) 270 (2) 310
 (3) 340 (4) 320

Answer (2)

Sol. $g(x) = x^2 + x^{7/3}$

 Delivering Champions Consistently

JEE (Advanced) 2024

2024

$$g(x) = 2x + \frac{7}{3}x^{4/3}$$

$$f(x) = \frac{g'(x)}{x}$$

$$f(x) = 2 + \frac{7}{3}x^{1/3}$$

$$f(r^3) = 2 + \frac{7}{3}r$$

$$\sum_{r=1}^{15} \left(2 + \frac{7}{3}r \right) = 2(15) + \frac{7}{3} \left(\frac{15(16)}{2} \right) \\ = 310$$

19. For positive integers n , if $4a_n = (n^2 + 5n + 6)$ and

$$s_n = \sum_{k=1}^n \left(\frac{1}{a_k} \right), \text{ then the value of } 507 S_{2025} \text{ is:}$$

(1) 135
 (2) 1350
 (3) 675
 (4) 540

Answer (3)

$$\text{Sol. } S_n = \sum_{k=1}^n \frac{4}{K^2 + 5k + 6}$$

$$= \sum_{k=1}^n \frac{4}{(K+2)(K+3)} = 4 \sum_{K=1}^n \left(\frac{1}{K+2} - \frac{1}{K+3} \right)$$

$$= 4 \left[\frac{1}{3} - \frac{1}{4} \right]$$

$$= 4 \left[\frac{1}{4} - \frac{1}{5} \right]$$

$$= 4 \left[\frac{1}{n+2} - \frac{1}{n+3} \right]$$

$$S_n = 4 \left[\frac{1}{3} - \frac{1}{n+3} \right]$$

$$S_{2025} = 4 \left[\frac{1}{3} - \frac{1}{2028} \right]$$

$$S_{2025} = 4 \left[\frac{675}{2028} \right]$$

$$507 S_{2025} = 675$$

20. Let $f: R - \{0\} \rightarrow (-\infty, 1)$ be a polynomial of degree 2, satisfying $f(x)f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$. If $f(K) = -2K$, then the sum of squares of all possible values of K is :
 (1) 6
 (2) 7
 (3) 9
 (4) 1

Answer (1)

Sol. Let $f(x) = ax^2 + bx + c$

Putting in given function at equation and comparing coefficients given

$$c = 1, a = \pm 1$$

$$\text{Hence } f(x) = 1 - x^2$$

$$f(k) = -2k \Rightarrow k^2 - 2k - 1 = 0 \begin{array}{l} \alpha \\ \beta \end{array}$$

$$\Rightarrow \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \\ = 4 - 2(-1) = 6$$

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. The interior angles of a polygon with n sides, are in an A.P, with common difference 6° . If the largest interior angle of the polygon is 219° , then n is equal to _____.

Answer (20)

$$\text{Sol. } \frac{n}{2}[2a + (n-1)6] = (n-2)180^\circ$$

AIR 25
Rishi Shekher Shukla
 2 Year Classroom

JEE (Advanced) 2024

AIR 67
Krishna Sai Shashir
 2 Year Classroom

AIR 78
Abhishek Jain
 2 Year Classroom

AIR 93
Hardik Agarwal
 2 Year Classroom

AIR 95
Ujjwal Singh
 4 Year Classroom

AIR 98
Rachit Aggarwal
 2 Year Classroom

AIR 100
Karnataka Topper
 100 Percentile Score

AIR 100
Telangana Topper
 100 Percentile Score

AIR 15
Sonvi Jain
 2 Year Classroom

AIR 19
M Sai Divya Teja Reddy
 2 Year Classroom

AIR 19
Rishi Shekher Shukla
 2 Year Classroom

Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024

and $an + 3n^2 - 3n = 3n(n-2)180^\circ \dots \text{(i)}$

$\therefore \text{ Given } a + (n-1)6^\circ = 219^\circ$

$\Rightarrow a = 225^\circ - 6n^\circ$

Putting value of a in (i)

We get $(225 - 6n^2) + 3n^2 - 3n = 180n - 360^\circ$

$\Rightarrow 2n^2 - 42n - 360 = 0$

$\Rightarrow n^2 - 14n - 120 = 0$

$\Rightarrow (n-20)(n+6) = 0$

$\Rightarrow n = 20, -6$ (Rejected)

$\therefore n = 20$

22. If $f(x) = \lim_{n \rightarrow \infty} \sum_{r=0}^n \left(\frac{\tan(x/2^{r+1}) + \tan^3(x/2^{r+1})}{1 - \tan^2(x/2^{r+1})} \right)$.

Then $\lim_{x \rightarrow 0} \frac{e^x - e^{f(x)}}{(x - f(x))}$ is equal to _____.

Answer (01)

Sol. $f(x) = \lim_{x \rightarrow \infty} \left(\frac{\tan(x/2^{r+1}) + \tan^3(x/2^{r+1})}{1 - \tan^2(x/2^{r+1})} \right)$

$$= \lim_{x \rightarrow \infty} \frac{\tan\left(\frac{x}{2^{r+1}}\right)}{\cos\left(\frac{x}{2^r}\right)}$$

$$= \lim_{x \rightarrow \infty} \frac{\sin\left(\frac{x}{2^{r+1}}\right)}{\cos\left(\frac{x}{2^{r+1}}\right) \cos\left(\frac{x}{2^r}\right)}$$

$$= \lim_{x \rightarrow \infty} \frac{\sin\left(\frac{x}{2^r} - \frac{x}{2^{r+1}}\right)}{\cos\left(\frac{x}{2^{r+1}}\right) \cos\left(\frac{x}{2^r}\right)}$$

$$= \lim_{x \rightarrow \infty} \tan\left(\frac{x}{2^r}\right) - \tan\left(\frac{x}{2^{r+1}}\right)$$

From condition given question

$$\therefore \lim_{n \rightarrow \infty} \sum_{r=0}^n \left[\tan\left(\frac{x}{2^r}\right) - \tan\left(\frac{x}{2^{r+1}}\right) \right] = \tan x$$

$$\therefore \lim_{x \rightarrow 0} \left(\frac{e^x - e^{\tan x}}{x - \tan x} \right)$$

$$\Rightarrow \lim_{x \rightarrow 0} e^{\tan x} \left(\frac{e^{x-\tan x} - 1}{x - \tan x} \right)$$

$$\Rightarrow \lim_{x \rightarrow 0} e^{\tan x} \lim_{x \rightarrow 0} \left(\frac{e^{x-\tan x} - 1}{x - \tan x} \right)$$

$$\Rightarrow 1 \cdot 1 \left(\because \lim_{x \rightarrow 0} \frac{e^{x-1}}{x} = 1 \right) \\ = 1$$

23. If $y = y(x)$ is the solution of the differential equation,

$$\sqrt{4-x^2} \frac{dy}{dx} = \left(\left(\sin^{-1}\left(\frac{x}{2}\right) \right)^2 - y \right) \sin^{-1}\left(\frac{x}{2}\right), -2 \leq x \leq 2, y(2)$$

$$= \frac{\pi^2 - 8}{4}, \text{ then } y^2(0) \text{ is equal to } \text{_____}.$$

Answer (4)

Sol. $\frac{dy}{dx} + \frac{\left(\sin^{-1}\frac{x}{2} \right)}{\sqrt{4-x^2}} y = \frac{\left(\sin^{-1}\frac{x}{2} \right)^3}{\sqrt{4-x^2}}$

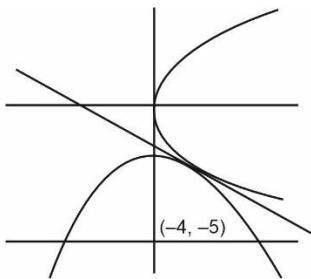
$$y e^{\int \frac{\left(\sin^{-1}\frac{x}{2} \right)^2}{4-x^2} dx} = \int \frac{\left(\sin^{-1}\frac{x}{2} \right)^3}{4-x^2} e^{\int \frac{\left(\sin^{-1}\frac{x}{2} \right)^2}{4-x^2} dx} dx$$

$$y = \left(\sin^{-1}\frac{x}{2} \right)^2 - 2 + c \cdot e^{\int \frac{\left(\sin^{-1}\frac{x}{2} \right)^2}{4-x^2} dx}$$

Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024


$$y(2) = \frac{\pi^2}{4} - 2 \Rightarrow c = 0$$

$$y(0) = -2$$

24. Let A and B be the points of intersection of the line $y + 5 = 0$ and the mirror image of the parabola $y^2 = 4x$ with respect to the line $x + y + 4 = 0$. If d denotes the distance between A and B , and a denotes the area of ΔSAB , where S is the focus of the parabola $y^2 = 4x$, then the value of $(a + d)$ is _____.

Answer (14)

Sol.

To find image of $P(t^2, 2t)$

$$\frac{x - t^2}{1} = \frac{y - 2t}{1} = \frac{-2(t^2 + 2t + 4)}{1^2 + 1^2} = -(t+1)^2 - 3$$

$$x = t^2 - (t+1)^2 - 3 = -2t - 4$$

$$y = 2t - (t+1)^2 - 3 = -t^2 - 4$$

$$t = \frac{-x - 4}{2}$$

$$\Rightarrow y + 4 = -\left(\frac{-x - 4}{2}\right)^2$$

$$\Rightarrow (y + 4) = -\frac{(x + 4)^2}{4}$$

$$\Rightarrow x^2 = -4y$$

$$\Rightarrow \text{Focus } (-4, -5)$$

Also, $y = -5$ intersect

$$\therefore (-4)(-1) = (x + 4)^2$$

$$4 = (x + 4)^2$$

$$x + 4 = \pm 2$$

$$x = -2, -6$$

$$\Rightarrow d = 4$$

$$a = \frac{1}{2} \begin{vmatrix} 1 & 0 & 1 \\ -2 & -5 & 1 \\ -6 & -5 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [1(-5 + 5) + 1(10 - 30)]$$

$$= \frac{1}{2}(20)$$

$$a = 10$$

$$\therefore a + d = 14$$

25. The number of natural numbers, between 212 and 999, such that sum of their digits is 15, is _____.

Answer (64)

Sol. Let the number be

$$2ab, a + b = 13$$

$$\Rightarrow a, b \in \{0, 9\}$$

$$\Rightarrow 6 \text{ numbers } \{(9, 4), (8, 5) \dots (4, 9)\}$$

Similarly, for $3ab$, $a + b = 12 \Rightarrow 7$ numbers

For $4ab$, $a + b = 11 \Rightarrow$ Numbers

For $5ab$, $a + b = 10 \Rightarrow 9$ numbers

For $6ab$, $a + b = 9 \Rightarrow 10$ numbers

For $7ab$, $a + b = 8 \Rightarrow 9$ numbers

For $8ab$, $a + b = 7 \Rightarrow 8$ numbers

For $9ab$, $a + b = 6 \Rightarrow 7$ numbers

\therefore Total ways = 64.

Y Delivering Champions Consistently

AIR 25 Rishi Shekher Shukla 2 Year Classroom

JEE (Advanced) 2024

AIR 67 Krishna Sai Shashir 2 Year Classroom

AIR 78 Abhishek Jain 2 Year Classroom

AIR 93 Hardik Aggarwal 2 Year Classroom

AIR 95 Ujjwal Singh 4 Year Classroom

AIR 98 Rachit Aggarwal 2 Year Classroom

JEE (Main) 2024

AIR 15 M Sai Divya Teja Reddy 2 Year Classroom

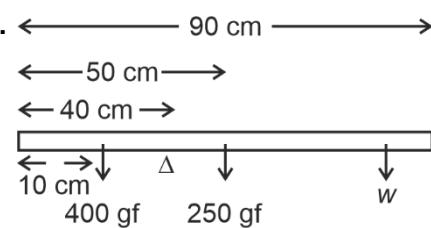
AIR 19 Rishi Shekher Shukla 2 Year Classroom

Aakash
Medical|IIT-JEE|Foundations

100 PERCENT ELIGIBILITY

100 PERCENT PLACEMENT

100 PERCENT PLACEMENT


100 PERCENT PLACEMENT

28. A uniform rod of mass 250 g having length 100 cm is balanced on a sharp edge at 40 cm mark. A mass of 400 g is suspended at 10 cm mark. To maintain the balance of the rod, the mass to be suspended at 90 cm mark, is

- (1) 290 g
- (2) 300 g
- (3) 200 g
- (4) 190 g

Answer (4)

Sol.

$$(400 \text{ gf}) (30 \text{ cm}) = (250 \text{ gf})(10 \text{ cm}) + (w \text{ gf})(50 \text{ cm})$$

(balancing torques)

$$w = 190$$

29. Match **List-I** with **List-II**.

	List-I		List-II
(A)	Angular Impulse	(I)	$[M^0 L^2 T^{-2}]$
(B)	Latent Heat	(II)	$[M L^2 T^{-3} A^{-1}]$
(C)	Electrical resistivity	(III)	$[M L^2 T^{-1}]$
(D)	Electromotive force	(IV)	$[M L^3 T^{-3} A^{-2}]$

Choose the **correct** answer from the options given below.

- (1) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
- (2) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (3) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
- (4) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)

Answer (1)

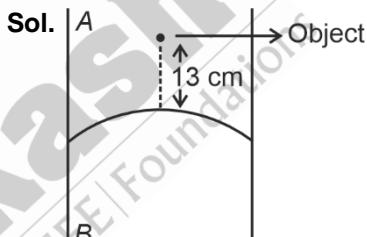
Sol. $[\text{Angular Impulse}] = M L^2 T^{-1}$

$[\text{Latent Heat}] = M^0 L^2 T^{-2}$

$[\text{Electrical resistivity}] = M L^3 T^{-3} A^{-2}$

$[\text{Electromotive force}] = M L^2 T^{-3} A^{-1}$

30. In a long glass tube, mixture of two liquids *A* and *B* with refractive indices 1.3 and 1.4 respectively, forms a convex refractive meniscus towards *A*. If an object placed at 13 cm from the vertex of the meniscus in *A* forms an image with a magnification of '-2' then the radius of curvature of meniscus is


$$(1) 1 \text{ cm}$$

$$(2) \frac{4}{3} \text{ cm}$$

$$(3) \frac{2}{3} \text{ cm}$$

$$(4) \frac{1}{3} \text{ cm}$$

Answer (3)

$$\mu_A = 1.3 \quad \mu_B = 1.4$$

$$u = -13 \text{ cm}$$

$$m = \frac{v}{u} = -2$$

$$\frac{v}{\mu_B} = \frac{u}{\mu_A}$$

$$\Rightarrow v = -2u \left(\frac{\mu_B}{\mu_A} \right)$$

$$= -2(-13 \text{ cm}) \left(\frac{1.4}{1.3} \right)$$

$$= +28 \text{ cm}$$

 Delivering Champions Consistently

JEE (Advanced) 2024

 Aakash
Medical IIT-JEE Foundations

JEE (Main) 2024

Also,

$$\frac{\mu_B - \mu_A}{v} = \frac{\mu_B - \mu_A}{R}$$

$$\frac{1.4}{28} - \frac{1.3}{-13} = \frac{0.1}{R}$$

$$\Rightarrow R = \frac{2}{3} \text{ cm}$$

31. Given below are two statements. One is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A): Knowing initial position x_0 and initial momentum p_0 is enough to determine the position and momentum at any time t for a simple harmonic with a given angular frequency ω .

Reason (R): The amplitude and phase can be expressed in terms of x_0 and p_0 .

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (2) (A) is false but (R) is true
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) (A) is true but (R) is false

Answer (3)

Sol. If we express position $x(t) = A \sin(\omega t + \phi)$

$$\text{then } x_0 = A \sin \phi$$

$$v_0 = A \omega \cos \phi$$

$$\Rightarrow \tan \phi = \frac{\omega x_0}{v_0}$$

$$A = \sqrt{x_0^2 + \frac{v_0^2}{\omega^2}}$$

Hence both position and linear momentum of a particle can be expressed as a function of time if we know initial momentum and position

32. Earth has mass 8 times and radius 2 times that of a planet. If the escape velocity from the earth is 11.2 km/s, the escape velocity in km/s from the planet will be:

- (1) 8.4
- (2) 2.8
- (3) 11.2
- (4) 5.6

Answer (4)

Sol. $v_{\text{escape}} = \sqrt{\frac{2GM}{R}}$; $M_{\text{earth}} = 8M_{\text{planet}}$; $R_{\text{earth}} = 2R_{\text{planet}}$

$$\frac{v_{\text{planet}}}{v_{\text{earth}}} = \sqrt{\frac{M_{\text{planet}}}{M_{\text{earth}}} \times \frac{R_{\text{earth}}}{R_{\text{planet}}}}$$

$$v_{\text{planet}} = (11.2 \text{ km/s}) \sqrt{\frac{1}{8} \times 2}$$

$$= 5.6 \text{ km/s}$$

33. A uniform magnetic field of 0.4 T acts perpendicular to a circular copper disc 20 cm in radius. The disc is having a uniform angular velocity of $10\pi \text{ rad s}^{-1}$ about an axis through its centre and perpendicular to the disc. What is the potential difference developed between the axis of the disc and the rim? ($\pi = 3.14$)

- (1) 0.0628 V
- (2) 0.5024 V
- (3) 0.1256 V
- (4) 0.2512 V

Answer (4)

Sol. $E = \frac{1}{2} B \omega R^2$

$$= \frac{1}{2} (0.4) (10\pi) (0.2)^2 \text{ volt}$$

$$= 0.2512 \text{ V}$$

Delivering Champions Consistently

JEE (Advanced) 2024

AIR 25	Rishi Shekher Shukla 2 Year Classroom
---------------	--

AIR 67	Krishna Sai Shishir 2 Year Classroom
---------------	---

AIR 78	Abhishek Jain 2 Year Classroom
---------------	-----------------------------------

AIR 93	Hardik Agarwal 2 Year Classroom
---------------	------------------------------------

AIR 95	Ujjwal Singh 4 Year Classroom
---------------	----------------------------------

AIR 98	Rachit Aggarwal 2 Year Classroom
---------------	-------------------------------------

AIR 15	Karnataka Topper 100 PERCENTILE RANK
---------------	---

AIR 19	Telangana Topper 100 PERCENTILE RANK
---------------	---

AIR 19	Telangana Topper 100 PERCENTILE RANK
---------------	---

34. Which of the following phenomena can not be explained by wave theory of light?

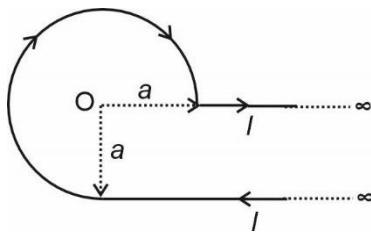
- Refraction of light
- Reflection of light
- Diffraction of light
- Compton effect

Answer (4)

Sol. Compton effect refers to scattering of a photon by free electrons. This phenomenon provides an evidence for particle nature of light.

35. The ratio of vapour densities of two gases at the same temperature is $\frac{4}{25}$, then the ratio of r.m.s. velocities will be:

- $\frac{25}{4}$
- $\frac{4}{25}$
- $\frac{2}{5}$
- $\frac{5}{2}$


Answer (4)

Sol. (Vapor density) $= \left(\frac{\text{Molar mass}}{2} \right)$, i.e., $vd = \frac{M}{2}$

$$v_{\text{rms}} = \sqrt{\frac{3RT}{M}}$$

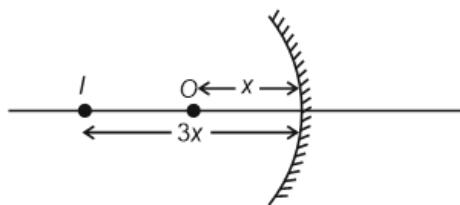
$$\frac{v_2}{v_1} = \sqrt{\frac{M_1}{M_2}} = \sqrt{\frac{25}{4}} = \frac{5}{2}$$

36.

An infinite wire has a circular bend of radius a , and carrying a current I as shown in figure. The magnitude of magnetic field at the origin O of the arc is given by:

- $\frac{\mu_0}{4\pi a} \left[\frac{3\pi}{2} + 1 \right]$
- $\frac{\mu_0}{2\pi a} \left[\frac{\pi}{2} + 2 \right]$
- $\frac{\mu_0}{4\pi a} \left[\frac{3\pi}{2} + 2 \right]$
- $\frac{\mu_0}{4\pi a} \left[\frac{\pi}{2} + 1 \right]$

Answer (1)


$$\begin{aligned} \text{Sol. } B_{\text{net}} &= \frac{\mu_0 I}{4\pi a} + \frac{3 \mu_0 I}{8 a} \\ &= \frac{\mu_0 I}{4\pi a} \left(1 + \frac{3\pi}{2} \right) \end{aligned}$$

37. A concave mirror produces an image of an object such that the distance between the object and image is 20 cm. If the magnification of the image is ' -3 ', then the magnitude of the radius of curvature of the mirror is:

- 30 cm
- 7.5 cm
- 3.75 cm
- 15 cm

Answer (4)

Sol.

$$m = -3 = -\frac{v}{u}$$

$$u = -x$$

$$v = -3x$$

$$\Rightarrow 2x = 20 \text{ cm}$$

Delivering Champions Consistently

<p>AIR 25 Rishi Shekher Shukla 2 Year Classroom</p>	<p>AIR 67 Krishna Sai Shishir 2 Year Classroom</p>	<p>AIR 78 Abhishek Jain 2 Year Classroom</p>	<p>AIR 93 Hardik Agarwal 2 Year Classroom</p>	<p>AIR 95 Ujjwal Singh 4 Year Classroom</p>	<p>AIR 98 Rachit Aggarwal 4 Year Classroom</p>
JEE (Advanced) 2024					

Aakash
Medical | IIT-JEE | Foundations

<p>Karnataka Topper 100 PERCENTILE RANK AIR 24</p>	<p>Telangana Topper 100 PERCENTILE RANK AIR 15</p>	<p>Telangana Topper 100 PERCENTILE RANK AIR 19</p>
JEE (Main) 2024		

41. The magnetic field of an E.M. wave is given by

$$\vec{B} = \left(\frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j} \right) 30 \sin \left[\omega \left(t - \frac{z}{c} \right) \right] \text{ (S.I. Units).}$$

The corresponding electric field in S.I. units is

$$(1) \vec{E} = \left(\frac{3}{4} \hat{i} + \frac{1}{4} \hat{j} \right) 30 c \cos \left[\omega \left(t - \frac{z}{c} \right) \right]$$

$$(2) \vec{E} = \left(\frac{1}{2} \hat{i} + \frac{\sqrt{3}}{2} \hat{j} \right) 30 c \sin \left[\omega \left(t + \frac{z}{c} \right) \right]$$

$$(3) \vec{E} = \left(\frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j} \right) 30 c \sin \left[\omega \left(t - \frac{z}{c} \right) \right]$$

$$(4) \vec{E} = \left(\frac{\sqrt{3}}{2} \hat{i} - \frac{1}{2} \hat{j} \right) 30 c \sin \left[\omega \left(t + \frac{z}{c} \right) \right]$$

Answer (3)

Sol. $\hat{c} = \hat{k}$

$$\hat{B} = \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j}$$

$$\hat{E} = \hat{B} \times \hat{c} = \frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j}$$

$$|\vec{E}| = |\vec{B}|c = 30c$$

$$\Rightarrow \vec{E} = \left(\frac{1}{2} \hat{i} - \frac{\sqrt{3}}{2} \hat{j} \right) 30 c \sin \omega \left(t - \frac{z}{c} \right)$$

42. A parallel plate capacitor of capacitance $1 \mu\text{F}$ is charged to a potential difference of 20 V . The distance between plates is $1 \mu\text{m}$. The energy density between plates of capacitor is.

- (1) $1.8 \times 10^5 \text{ J/m}^3$
- (2) $1.8 \times 10^3 \text{ J/m}^3$
- (3) $2 \times 10^{-4} \text{ J/m}^3$
- (4) $2 \times 10^2 \text{ J/m}^3$

Answer (2)

Sol. Energy density = $\frac{1}{2} \epsilon_0 E^2$

$$= \frac{1}{2} \epsilon_0 \left(\frac{V}{d} \right)^2$$

$$= \frac{1}{2} (8.85 \times 10^{-12}) \left(\frac{20}{10^{-6}} \right)^2 \text{ J/m}^3$$

$$\simeq 1.8 \times 10^3 \text{ J/m}^3$$

43. The kinetic energy of translation of the molecules in

50 g of CO_2 gas at 17°C is

$$(1) 3582.7 \text{ J}$$

$$(2) 3986.3 \text{ J}$$

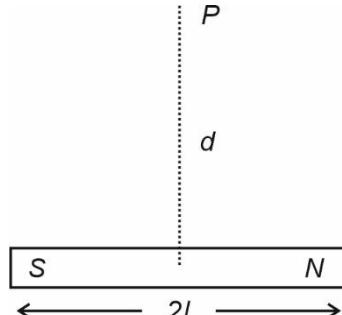
$$(3) 4102.8 \text{ J}$$

$$(4) 4205.5 \text{ J}$$

Answer (3)

Sol. Kinetic energy of translation = $\frac{3}{2} nRT$

$$n = \frac{50 \text{ g}}{44 \text{ g}} = \frac{25}{22} \text{ mol}$$


$$T = 17^\circ\text{C} = 290 \text{ K}$$

\Rightarrow Kinetic energy of translation

$$= \frac{3}{2} \left(\frac{25}{22} \right) (8.3)(290) \text{ J}$$

$$= 4102.8 \text{ J}$$

44.

Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

Aakash
Medical | IIT-JEE | Foundations

47. The volume contraction of a solid copper cube of edge length 10 cm, when subjected to a hydraulic pressure of 7×10^6 Pa, would be _____ mm³.
(Given bulk modulus of copper = 1.4×10^{11} Nm⁻²)

Answer (50)

Sol. $B = -\frac{VP}{\Delta V}$

$$\Rightarrow \Delta V = -V \frac{\Delta P}{B}$$

$$= -(10 \text{ cm})^3 \times \frac{7 \times 10^6 \text{ Pa}}{1.4 \times 10^{11} \text{ N/m}^2} = 50 \text{ mm}^3$$

48. A thin transparent film with refractive index 1.4, is held on circular ring of radius 1.8 cm. The fluid in the film evaporates such that transmission through the film at wavelength 560 nm goes to a minimum every 12 seconds. Assuming that the film is flat on its two sides, the rate of evaporation is _____ $\pi \times 10^{-13}$ m³/s.

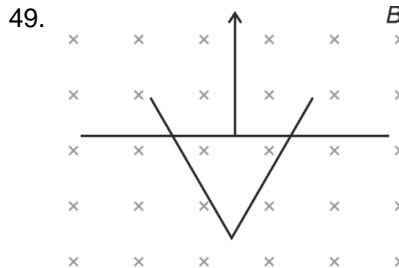
Answer (54)

Sol. For a thin film interference, a fringe for transmission is formed.

When

$$2\mu x = n\lambda$$

$$\Rightarrow \frac{dx}{dt} = \left(\frac{dn}{dt} \right) \frac{\lambda}{2\mu}$$


$$= \left(\frac{1}{12} \right) \frac{560 \times 10^{-9}}{2 \times 1.4} = \frac{5}{3} \times 10^{-8} \text{ m/s}$$

V = Volume of film = $\pi R^2 x$

$$\frac{dV}{dt} = \pi R^2 \frac{dx}{dt}$$

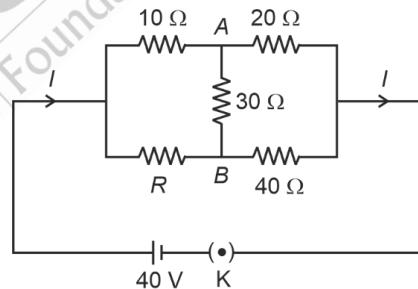
$$= \pi (1.8 \times 10^{-2})^2 \frac{5}{3} \times 10^{-8} \text{ m}^3/\text{s}$$

$$= 54\pi \times 10^{-13} \text{ m}^3/\text{s}$$

A conducting bar moves on two conducting rails as shown in the figure. A constant magnetic field B exists into the page. The bar starts to move from the vertex at time $t = 0$ with a constant velocity. If the induced EMF is $E \propto t^n$, then value of n is _____.

Answer (1)

Sol. As the bar moves without change in orientation, the length of bar will be proportional to its distance from the vertex.


$$\text{i.e. } l = c(vt)$$

$$\text{induced emf } E = Blv$$

$$= cBv^2t$$

$$\Rightarrow n = 1$$

50. The value of current I in the electrical circuit as given below, when potential at A is equal to the potential at B , will be _____ A.

Answer (2)

Sol. Since $V_A = V_B$, the given combination is a wheatstone bridge

$$\text{i.e. } \frac{R}{10 \Omega} = \frac{40 \Omega}{20 \Omega} \Rightarrow R = 20 \Omega$$

$$R_{\text{eff}} = \frac{(10 \Omega + 20 \Omega)(40 \Omega + 20 \Omega)}{(10 \Omega + 20 \Omega) + (40 \Omega + 20 \Omega)} = 20 \Omega$$

$$\Rightarrow I = \frac{V}{R_{\text{eff}}} = \frac{40V}{20 \Omega} = 2 \text{ A}$$

Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

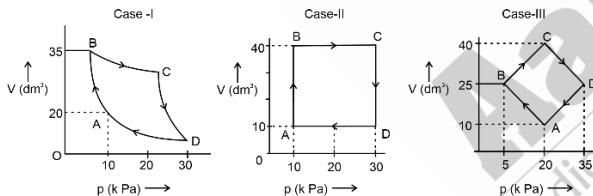
Choose the correct answer :

51. Identify the inorganic sulphides that are yellow in colour:

(A) $(\text{NH}_4)_2\text{S}$ (B) PbS
 (C) CuS (D) As_2S_3
 (E) As_2S_5

Choose the correct answer from the options given below:

(1) (A), (D) and (E) only
 (2) (A) and (B) only
 (3) (A) and (C) only
 (4) (D) and (E) only


Answer (1)

Sol. $(\text{NH}_4)_2\text{S}$: colourless to yellow

PbS and CuS : Black

As_2S_3 and As_2S_5 : Yellow

52.

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path A→B→C→D→A as shown in the three cases above.

Choose the correct option regarding ΔU :

(1) $\Delta U(\text{Case-I}) = \Delta U(\text{Case-II}) = \Delta U(\text{Case-III})$
 (2) $\Delta U(\text{Case-III}) > \Delta U(\text{Case-II}) > \Delta U(\text{Case-I})$
 (3) $\Delta U(\text{Case-I}) > \Delta U(\text{Case-III}) > \Delta U(\text{Case-II})$
 (4) $\Delta U(\text{Case-I}) > \Delta U(\text{Case-II}) > \Delta U(\text{Case-III})$

Answer (1)

Sol. As all the three cases are cyclic processes, change in state functions will be zero.

Hence, $\Delta U = 0$ for all.

53. Concentrated nitric acid is labelled as 75% by mass. The volume in mL of the solution which contains 30 g of nitric acid is _____.

Given: Density of nitric acid solution is 1.25 g/mL.

(1) 55 (2) 32
 (3) 45 (4) 40

Answer (2)

Sol. 75% by mass means :

$\therefore 75 \text{ g HNO}_3$ in 100 g solution.

$\therefore 30 \text{ g HNO}_3$ in $\frac{100}{75} \times 30 \text{ g}$ solution.

$$m_{\text{solution}} = \frac{100 \times 30}{75} \text{ g}$$

$$\therefore V_{\text{sol}} = \frac{m_{\text{sol}}}{d_{\text{sol}}} = \frac{100 \times 30}{75 \times 1.25} = 32 \text{ mL}$$

54. Identify correct conversion during acidic hydrolysis from the following:

(A) starch gives galactose.
 (B) cane sugar gives equal amount of glucose and fructose.
 (C) milk sugar gives glucose and galactose.
 (D) amylopectin gives glucose and fructose.
 (E) amylose gives only glucose.

Choose the **correct** answer from the option given below

(1) (B), (C) and (D) only (2) (A), (B) and (C) only
 (3) (C), (D) and (E) only (4) (B), (C) and (E) only

Answer (4)

Sol. Starch gives glucose on hydrolysis. Amylose and amylopectin are components of starch.

Hence, (B), (C) and (E) are correct.

Delivering Champions Consistently

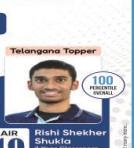
AIR 25
Rishi Shekher
Shukla
2 Year Classroom

AIR 67
Krishna Sai
Shishir
2 Year Classroom

AIR 78
Abhishek
Jain
2 Year Classroom

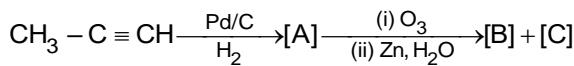
AIR 93
Hardik
Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom


AIR 98
Rachit
Aggarwal
4 Year Classroom

AIR 34
Sanvi
Jain
2 Year Classroom

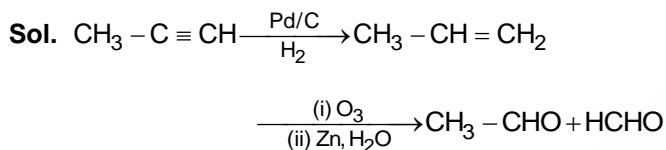
AIR 15
M Sai Divya
Teja Reddy
2 Year Classroom


AIR 19
Rishi Shekher
Shukla
2 Year Classroom

Aakash
Medical IIT-JEE | Foundations

JEE (Main) 2024

55. Identify product [A], [B] and [C] in the following reaction sequence.


(1) [A] : $\text{CH}_3\text{CH}_2\text{CH}_3$, [B] : CH_3CHO , [C] : HCHO

(2) [A] : $\text{CH}_2 = \text{CH}_2$, [B] : $\text{H}_3\text{C} = \text{C} = \text{CH}_3$, [C] : HCHO

(3) [A] : $\text{CH}_3 - \text{CH} = \text{CH}_2$, [B] : CH_3CHO , [C] : HCHO

(4) [A] : $\text{CH}_3 - \text{CH} = \text{CH}_2$, [B] : CH_3CHO , [C] : $\text{CH}_3\text{CH}_2\text{OH}$

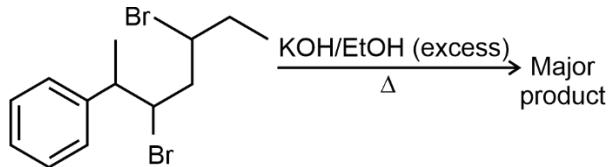
Answer (3)

56. Given below are two statements:

Statement (I): According to the Law of Octaves, the elements were arranged in the increasing order of their atomic number.

Statement (II): Meyer observed a periodically repeated pattern upon plotting physical properties of certain elements against their respective atomic numbers.

In the light of the above statements, choose the **correct** answer from the options given below:

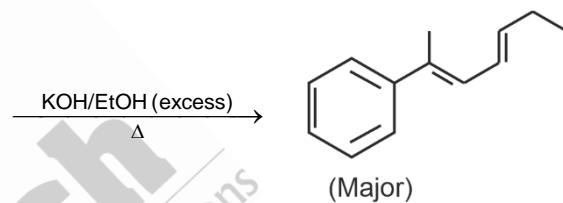
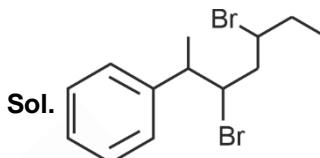

- Both Statement I and Statement II are true
- Statement I is false but Statement II is true
- Statement I is true but Statement II is false
- Both Statement I and Statement II are false

Answer (4)

Sol. In Law of Octaves, atomic mass is used for arrangement.

Mayer observed the pattern against atomic mass.

57. The major product of the following reaction is :



(1) 2-Phenylhepta-2,4-diene

(2) 6-Phenylhepta-3,5-diene

(3) 6-Phenylhepta-2,4-diene

(4) 2-Phenylhepta-2,5-diene

Answer (1)

58. Which of the following is/are not correct with respect to energy of atomic orbitals of hydrogen atom?

- $1s < 2p < 3d < 4s$
- $1s < 2s = 2p < 3s = 3p$
- $1s < 2s < 2p < 3s < 3p$
- $1s < 2s < 4s < 3d$

Choose the **correct** answer from the options given below:

- (B) and (D) only
- (A) and (C) only
- (C) and (D) only
- (A) and (B) only

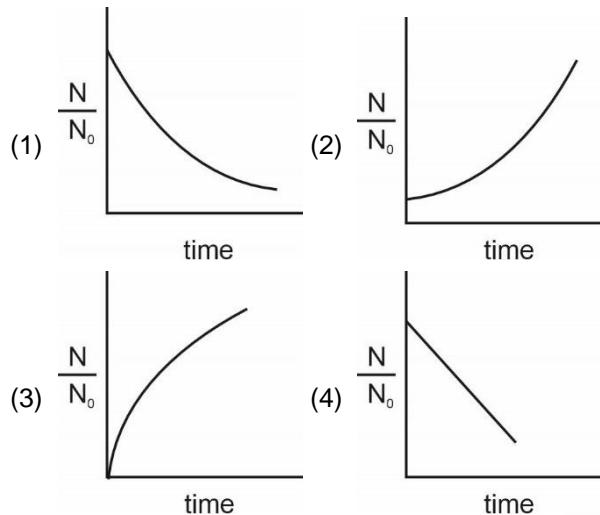
Answer (3)

Sol. For H-atom:

Energy of $1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f$.

Hence (C) and (D) are incorrect.

 Delivering Champions Consistently


 AIR 25	 AIR 67	 AIR 78	 AIR 93	 AIR 95	 AIR 98
JEE (Advanced) 2024					

 Aakash
 Medical IIT-JEE Foundations

 Karnataka Topper	 Telangana Topper	 Telangana Topper
JEE (Main) 2024		

59. For bacterial growth in a cell culture, growth law is very similar to the law of radioactive decay. Which of the following graphs is most suitable to represent bacterial colony growth?

Where N – Number of Bacteria at any time, N_0 – Initial number of Bacteria.

Answer (2)

Sol. For Bacterial growth following 1st order:

$\frac{N}{N_0}$ will increase with time exponentially.

60. Arrange the following in increasing order of solubility product: $\text{Ca}(\text{OH})_2$, AgBr , PbS , HgS

- (1) $\text{HgS} < \text{PbS} < \text{AgBr} < \text{Ca}(\text{OH})_2$
- (2) $\text{PbS} < \text{HgS} < \text{Ca}(\text{OH})_2 < \text{AgBr}$
- (3) $\text{Ca}(\text{OH})_2 < \text{AgBr} < \text{HgS} < \text{PbS}$
- (4) $\text{HgS} < \text{AgBr} < \text{PbS} < \text{Ca}(\text{OH})_2$

Answer (1)

Sol. Solubility of $\text{HgS} < \text{PbS} < \text{AgBr} < \text{Ca}(\text{OH})_2$.

61. Match List – I with List – II.

	List – I (Complex)		List – I (Hybridisation of central metal ion)
(A)	$[\text{CoF}_6]^{3-}$	(I)	$d^2\text{sp}^3$
(B)	$[\text{NiCl}_4]^{2-}$	(II)	sp^3

(C)	$[\text{Co}(\text{NH}_3)_6]^{3+}$	(III)	sp^3d^2
(D)	$[\text{Ni}(\text{CN})_4]^{2-}$	(IV)	$d\text{sp}^2$

Choose the correct answer from the options given below:

- (1) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- (2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (3) (A)-(I), (B)-(IV), (C)-(III), (D)-(II)
- (4) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)

Answer (2)

Sol. $[\text{CoF}_6]^{3-}$: Co^{3+} with WFL – sp^3d^2

$[\text{NiCl}_4]^{2-}$: Ni^{2+} with WFL – sp^3

$[\text{Co}(\text{NH}_3)_6]^{3+}$: Co^{3+} with SFL – $d^2\text{sp}^3$

$[\text{Ni}(\text{CN})_4]^{2-}$: Ni^{2+} with SFL – $d\text{sp}^2$

62. Assume a living cell with 0.9%(w/w) of glucose solution (aqueous). This cell is immersed in another solution having equal mole fraction of glucose and water.

(Consider the data upto first decimal place only)

The cell will :

- (1) Shrink since solution is 0.45% (w/w) as a result of association of glucose molecules (due to hydrogen bonding)
- (2) Show no change in volume since solution is 0.9% w/w
- (3) Shrink since solution is 0.5% (w/w)
- (4) Swell up since solution is 1% (w/w)

Answer (No option is correct)

Sol. Living cell has 0.9 g glucose in 100 g solution.

Which is dipped in a solution with $X_{\text{H}_2\text{O}} = \frac{1}{2}$.

Weight of solution = $\frac{1}{2} \times 180 + \frac{1}{2} \times 18 = 99$ g.

So, the solution has 90 g glucose in 99 g solution or % w/w = 90.9%

 Delivering Champions Consistently

 AIR 25	Rishi Shekher Shukla 2 Year Classroom
 AIR 67	Krishna Sai Shishir 2 Year Classroom
 AIR 78	Abhishek Jain 2 Year Classroom
 AIR 93	Hardik Agarwal 2 Year Classroom
 AIR 95	Ujjwal Singh 4 Year Classroom
 AIR 98	Rachit Aggarwal 4 Year Classroom

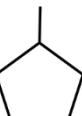
JEE (Advanced) 2024

 Aakash
Medical | IIT-JEE | Foundations

 Karnataka Topper	 Telangana Topper	 Telangana Topper
Sanvi Jain 2 Year Classroom	M Sai Divya Teja Reddy 2 Year Classroom	Rishi Shekher Shukla 2 Year Classroom
AIR 24	AIR 15	AIR 19

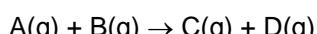
JEE (Main) 2024

63. Given below are two statements:


Statement (I) : and are isomeric compounds.

Statement (II) : NH₂ and are functional group isomers.

In the light of the above statements, choose the **correct** answer from the options given below:


- (1) **Statement I** is false but **Statement II** is true
- (2) **Statement I** is true but **Statement II** is false
- (3) Both **Statement I** and **Statement II** are false
- (4) Both **Statement I** and **Statement II** are true

Answer (4)

Sol. and are ring chain isomers.

Primary and secondary amines are functional group isomers.

64. Consider an elementary reaction

If the volume of reaction mixture is suddenly reduced to $\frac{1}{3}$ of its initial volume, the reaction rate

will become 'x' times of the original reaction rate. The value of x is :

(1) $\frac{1}{9}$	(2) 9
(3) 3	(4) $\frac{1}{3}$

Answer (2)

Sol. Since, the reaction is elementary

$$\text{Rate} = k[A]^1[B]^1$$

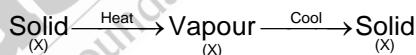
When V is reduced to $\frac{1}{3}$ V, concentration will be tripled.

$$\text{Hence, rate} = 9 \times (\text{rate})_{\text{initial}}$$

$$x = 9$$

65. Identify correct statements:

- (A) Primary amines do not give diazonium salts when treated with NaNO₂ in acidic condition.
- (B) Aliphatic and aromatic primary amines on heating with CHCl₃ and ethanolic KOH form carbylamines.
- (C) Secondary and tertiary amines also give carbylamine test.
- (D) Benzenesulfonyl chloride is known as Hinsberg's reagent.
- (E) Tertiary amines reacts with benzenesulfonyl chloride very easily.


Choose the **correct** answer from the options given below:

(1) (D) and (E) only	(2) (A) and (B) only
(3) (B) and (D) only	(4) (B) and (C) only

Answer (3)

Sol. - Primary aromatic amines gives diazonium salt when treated with NaNO₂ in acidic medium.
 - Only primary amines give carbylamine test.
 - Tertiary amines do not react with benzenesulfonyl chloride.

66. The purification method based on the following physical transformation is:

(1) Crystallization	(2) Sublimation
(3) Extraction	(4) Distillation

Answer (2)

Sol. Phase transfer from solid to vapour directly is known as sublimation.

67. The amphoteric oxide among V₂O₃, V₂O₄ and V₂O₅, upon reaction with alkali leads to formation of an oxide anion. The oxidation state of V in the oxide anion is :

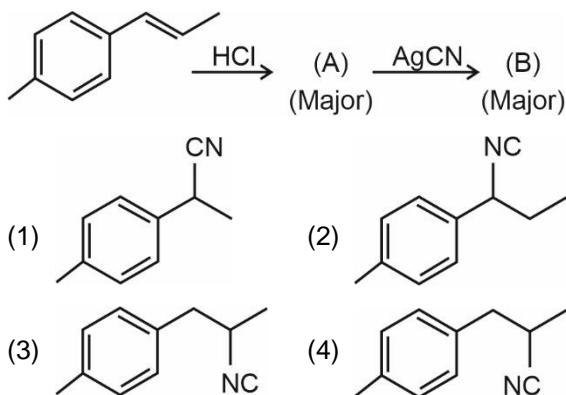
(1) +7	(2) +3
(3) +4	(4) +5

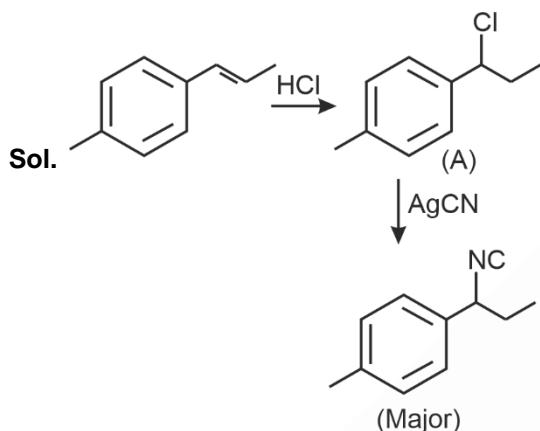
Answer (4)

Sol. V₂O₅ is amphoteric oxide.

V₂O₅ gives VO₄³⁻ on reaction with alkali oxidation state of V in VO₄³⁻ = +5

JEE (Advanced) 2024


AIR 25	Rishi Shekher Shukla 2 Year Classroom	AIR 67	Krishna Sai Shishir 2 Year Classroom	AIR 78	Abhishek Jain 2 Year Classroom	AIR 93	Hardik Agarwal 2 Year Classroom	AIR 95	Ujjwal Singh 4 Year Classroom	AIR 98	Rachit Aggarwal 2 Year Classroom
---------------	---	---------------	--	---------------	--	---------------	---	---------------	---	---------------	--

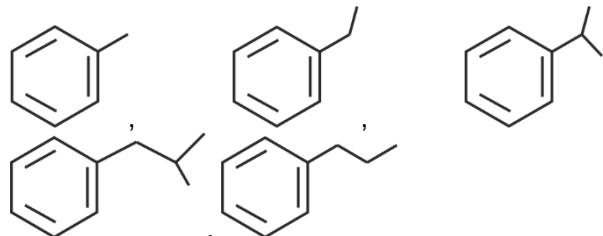

JEE (Main) 2024

Karnataka Topper AIR 1	Telangana Topper AIR 15	Telangana Topper AIR 19
100 PERCENTILE REACH	100 PERCENTILE REACH	100 PERCENTILE REACH
Sanvi Jain 2 Year Classroom	M Sai Divya Teja Reddy 2 Year Classroom	Rishi Shekher Shukla 2 Year Classroom


68. The product B formed in the following reaction sequence is :

Answer (2)

69. The total number of compounds from below when treated with hot KMnO_4 giving benzoic acid is :



(1) 4
 (2) 3
 (3) 6
 (4) 5

Answer (4)

Sol. The compounds having benzylic hydrogen will give benzoic acid on treatment with hot KMnO_4 .

Which are following:

70. Match List-I with List-II.

	List-I (Saccharides)		List-II (Glycosidic-linkages found)
(A)	Sucrose	(I)	$\alpha 1-4$
(B)	Maltose	(II)	$\alpha 1-4$ and $\alpha 1-6$
(C)	Lactose	(III)	$\alpha 1-\beta 2$
(D)	Amylopectin	(IV)	$\beta 1-4$

Choose the **correct** answer from the options given below:

(1) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
 (2) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)
 (3) (A)-(I), (B)-(II), (C)-(III), (D)-(IV)
 (4) (A)-(II), (B)-(IV), (C)-(III), (D)-(I)

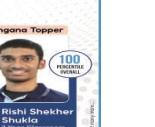
Answer (2)

Sol.

(A) Sucrose : $\alpha - \text{C}_1 - \beta - \text{C}_2$
 (B) Maltose : $\alpha - \text{C}_1 - \text{C}_4$
 (C) Lactose : $\beta - \text{C}_1 - \text{C}_4$
 (D) Amylopectin : $\alpha - \text{C}_1 - \text{C}_4$ and $\alpha - \text{C}_1 - \text{C}_6$

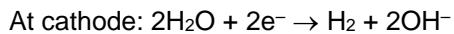
SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.


71. Electrolysis of 600 mL aqueous solution of NaCl for 5 min changes the pH of the solution to 12. The current in Amperes used for the given electrolysis is _____. (Nearest integer).

 Delivering Champions Consistently

JEE (Advanced) 2024


 AIR 25 Rishi Shekher Shukla 2 Year Classroom	 AIR 67 Krishna Sai Shishir 2 Year Classroom	 AIR 78 Abhishek Jain 2 Year Classroom	 AIR 93 Hardik Agarwal 2 Year Classroom	 AIR 95 Ujjwal Singh 4 Year Classroom	 AIR 98 Rachit Aggarwal 4 Year Classroom
---	--	--	---	--	--

JEE (Main) 2024

 Karnataka Topper AIR 24 Sanvi Jain 2 Year Classroom	 Telangana Topper AIR 15 M Sai Divya Teja Reddy 2 Year Classroom	 Telangana Topper AIR 19 Rishi Shekher Shukla 2 Year Classroom
---	---	---

Answer (2)

Sol. For electrolysis of $\text{NaCl}_{(\text{aq})}$:

So, 2 moles of OH^- is produced by 2 F charge.

$$\text{As pH} = 12 \Rightarrow [\text{OH}^-] = 10^{-2}$$

$$n_{\text{OH}^-} = \frac{10^{-2} \times 600}{1000} \text{ moles} = 6 \times 10^{-3} \text{ mol.}$$

6×10^{-3} moles of OH^- will be produced by 6×10^{-3} F charge

$$\text{So, } i \times 5 \times 60 = 6 \times 10^{-3} \times 96500$$

$$i = \frac{6 \times 96500}{5 \times 60 \times 1000} = 1.93 \approx 2 \text{ A}$$

72. Total number of molecules/species from following which will be paramagnetic is _____.

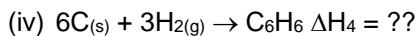
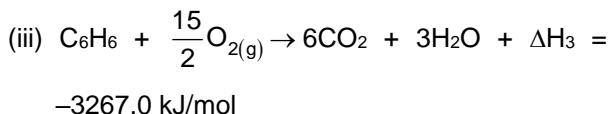
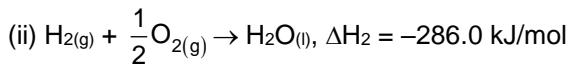
Answer (6)

Sol. Molecules/species having unpaired e^\ominus are paramagnetic which are O_2 , O_2^+ , O_2^- , NO , NO_2 , $\text{K}_2[\text{NiCl}_4]$

73. Consider the following data :

Heat of formation of $\text{CO}_2(\text{g}) = -393.5 \text{ kJ mol}^{-1}$

Heat of formation of $\text{H}_2\text{O}(\text{l}) = -286.0 \text{ kJ mol}^{-1}$

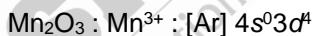



Heat of combustion of benzene = $-3267.0 \text{ kJ mol}^{-1}$

The heat of formation of benzene is _____ kJ mol^{-1}

(Nearest integer)

Answer (48)

Sol. (i) $\text{C}_{(\text{s})} + \text{O}_{2(\text{g})} \rightarrow \text{CO}_{2(\text{g})}, \Delta\text{H}_1 = -393.5 \text{ kJ/mol}$


We can get the required eqⁿ by (i) $\times 6 + (\text{ii}) \times 3 - (\text{iii})$

$$\text{So, } \Delta\text{H}_4 = 6 \times (-393.5) + 3 \times (-286.0) - (-3267.0) = 48 \text{ kJ/mol}$$

74. The spin only magnetic moment (μ) value (B.M.) of the compound with strongest oxidising power among Mn_2O_3 , TiO and VO is _____ B.M. (Nearest integer).

Answer (5)

Sol. Mn_2O_3 is strongest oxidising agent among the given.

$$\mu = \sqrt{4(4+2)} = \sqrt{24} = 4.89 \\ \approx 5$$

75. A group 15 element forms $d\pi - d\pi$ bond with transition metals. It also forms hydride, which is a strongest base among the hydrides of other group members that form $d\pi - d\pi$ bond. The atomic number of the element is _____.

Answer (15)

Sol. Phosphorus of group 15 element forms hydride PH_3 which is strongest base among the hydrides of other group members that form $d\pi - d\pi$ bond.

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

