

29/01/2025

Morning

Aakash

Medical | IIT-JEE | Foundations

Corporate Office : AESL, 3rd Floor, Incuspace Campus-2, Plot-13, Sector-18, Udyog Vihar, Gurugram, Haryana-122018

Answers & Solutions

Time : 3 hrs.

for

M.M. : 300

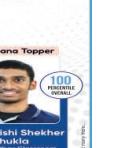
JEE (Main)-2025 Phase-1 [Computer Based Test (CBT) mode]

(Mathematics, Physics and Chemistry)

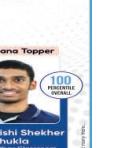
IMPORTANT INSTRUCTIONS:

- (1) The test is of **3 hours** duration.
- (2) This test paper consists of 75 questions. Each subject (MPC) has 25 questions. The maximum marks are 300.
- (3) This question paper contains **Three** Parts. **Part-A** is Physics, **Part-B** is Chemistry and **Part-C** is **Mathematics**. Each part has only two sections: **Section-A** and **Section-B**.
- (4) **Section - A** : Attempt all questions.
- (5) **Section - B** : Attempt all questions.
- (6) **Section - A (01 – 20)** contains 20 multiple choice questions which have **only one correct answer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.
- (7) **Section - B (21 – 25)** contains 5 **Numerical value** based questions. The answer to each question should be rounded off to the **nearest integer**. Each question carries **+4 marks** for correct answer and **-1 mark** for wrong answer.

Delivering Champions Consistently


100 PERCENT
PASS RATE

100 PERCENT
PASS RATE



100 PERCENT
PASS RATE

100 PERCENT
PASS RATE

Aakash
Medical | IIT-JEE | Foundations

MATHEMATICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. Define a relation R on the interval $\left[0, \frac{\pi}{2}\right]$ by $x R y$

if and only if $\sec^2 x - \tan^2 y = 1$. Then R is:

- (1) both reflexive and transitive but not symmetric
- (2) an equivalence relation
- (3) reflexive but neither symmetric nor transitive
- (4) both reflexive and symmetric but not transitive

Answer (2)

Sol. $x R y : \sec^2 x - \tan^2 y = 1$

Check reflexive:

$$x R x = \sec^2 x - \tan^2 x = 1$$

$$\forall x \in \left[0, \frac{\pi}{2}\right]$$

Check symmetric

$$x R y \Rightarrow y R x$$

$$\sec^2 x - \tan^2 y = 1$$

$$= \sec^2 y - \tan^2 x = (1 + \tan^2 y) - (\sec^2 x - 1)$$

$$= 2 - (\sec^2 x - \tan^2 y)$$

$$= 2 - 1 = 1$$

$$\Rightarrow y R x$$

Check transitive

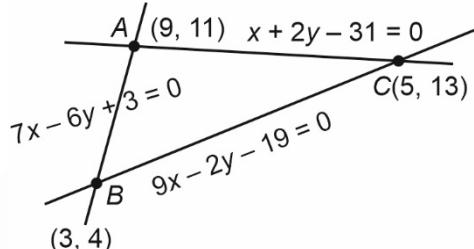
$$x R y \text{ and } y R z$$

$$\Rightarrow \sec^2 x - \tan^2 y = 1$$

$$\sec^2 y - \tan^2 z = 1$$

$$\text{Add } \Rightarrow \sec^2 x - \tan^2 z + (\sec^2 y - \tan^2 y) = 2$$

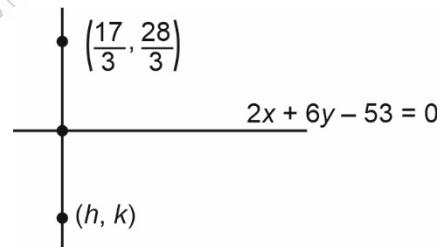
$$\Rightarrow \sec^2 x - \tan^2 z + 1 = 2 \Rightarrow x R z$$


$\Rightarrow R$ is an equivalence relation.

2. Let ABC be a triangle formed by the lines $7x - 6y + 3 = 0$, $x + 2y - 31 = 0$ and $9x - 2y - 19 = 0$. Let the point (h, k) be the image of the centroid of $\triangle ABC$ in the line $3x + 6y - 53 = 0$. Then $h^2 + k^2 + hk$ is equal to:

- (1) 40
- (2) 36
- (3) 47
- (4) 37

Answer (4)


Sol.

Points of intersections are $(9, 11)$, $(3, 4)$, $(5, 13)$

$$\text{Centroid of } \triangle ABC = \left(\frac{17}{3}, \frac{28}{3}\right)$$

Since during image of $\triangle ABC$ about line will reflect the whole triangle including centroid, reflected centroid will be image of $\left(\frac{17}{3}, \frac{28}{3}\right)$ about $2x + 6y - 53 = 0$

$$\frac{x - \frac{17}{3}}{2} = \frac{y - \frac{28}{3}}{6} = \frac{-2\left(2\left(\frac{17}{3}\right) + 6\left(\frac{28}{3}\right) - 53\right)}{2^2 + 6^2}$$

$$\Rightarrow h = 3, k = 4$$

$$\Rightarrow h^2 + k^2 + hk = (h + k)^2 - hk$$

$$= 49 - 12 = 37$$

 Delivering Champions Consistently

JEE (Advanced) 2024

 Aakash
Medical|IIT-JEE|Foundations

JEE (Main) 2024

18. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$ and $\vec{b} = 2\hat{i} + 7\hat{j} + 3\hat{k}$. Let $L_1 : \vec{r} = (-\hat{i} + 2\hat{j} + \hat{k}) + \lambda\vec{a}, \lambda \in \mathbb{R}$ and $L_2 : \vec{r} = (\hat{j} + \hat{k}) + \mu\vec{b}, \mu \in \mathbb{R}$ be two lines. If the line L_3 passes through the point of intersection of L_1 and L_2 and is parallel to $\vec{a} + \vec{b}$, then L_3 passes through the point

(1) (8, 26, 12) (2) (2, 8, 5)
 (3) (5, 17, 4) (4) (-1, -1, 1)

Answer (1)
Sol. $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$

$$\vec{b} = 2\hat{i} + 7\hat{j} + 3\hat{k}$$

$$L_1 : \vec{r} = (-\hat{i} + 2\hat{j} + \hat{k}) + \lambda\vec{a}, \lambda \in \mathbb{R}$$

$$\text{and } L_2 : \vec{r} = (\hat{j} + \hat{k}) + \mu\vec{b}, \mu \in \mathbb{R}$$

$$\vec{a} + \vec{b} = 3\hat{i} + 9\hat{j} + 4\hat{k}$$

$$L_1 : \vec{r} = (\lambda - 1)\hat{i} + 2(\lambda + 1)\hat{j} + (\lambda + 1)\hat{k}$$

$$L_2 : \vec{r} = 2\mu\hat{i} + (7\mu + 1)\hat{j} + (1 + 3\mu)\hat{k}$$

 For point of intersection of L_1 & L_2

$$\lambda - 1 = 2\mu \text{ and } 2(\lambda + 1) = 7\mu + 1$$

$$\Rightarrow \lambda = 3 \text{ and } \mu = 1$$

$$L_3 : \vec{r} = 2\hat{i} + 8\hat{j} + 4\hat{k} + \alpha(3\hat{i} + 9\hat{j} + 4\hat{k})$$

 For $\alpha = 2$

$$\vec{r} = 8\hat{i} + 26\hat{j} + 12\hat{k}$$

19. Two parabolas have the same focus (4, 3) and their directrices are the x -axis and the y -axis, respectively. If these parabolas intersect at the points A and B , then $(AB)^2$ is equal to :

(1) 392 (2) 192
 (3) 384 (4) 96

Answer (2)
Sol. The parabolas are

$$(x - 4)^2 + (y - 3)^2 = x^2 \quad \dots \text{(i)}$$

$$\text{and } (x - 4)^2 + (y - 3)^2 = y^2 \quad \dots \text{(ii)}$$

 If point of intersection are $A(x_1, y_1)$ and $B(x_2, y_2)$

By solving (i) and (ii), we get

$$x_1 + x_2 = 14 \text{ and } x_1 x_2 = 25$$

$$(AB)^2 = 2((x_1 + x_2)^2 - 4 x_1 x_2) = 192$$

20. Let the line $x + y = 1$ meet the circle $x^2 + y^2 = 4$ at the points A and B . If the line perpendicular to AB and passing through the mid-point of the chord AB intersects the circle at C and D , then the area of the quadrilateral $ADBC$ is equal to:

$$(1) 2\sqrt{14}$$

$$(2) 3\sqrt{7}$$

$$(3) 5\sqrt{7}$$

$$(4) \sqrt{14}$$

Answer (1)
Sol. Solving $x = y$ & $x^2 + y^2 = 4$ gives

$$C(\sqrt{2}, \sqrt{2}) \text{ and } D(-\sqrt{2}, -\sqrt{2})$$

 Solving $x + y = 1$ & $x^2 + y^2 = 4$ gives

$$A\left(\frac{1+\sqrt{7}}{2}, \frac{1-\sqrt{7}}{2}\right) \text{ & } B\left(\frac{1-\sqrt{7}}{2}, \frac{1+\sqrt{7}}{2}\right)$$

$$\text{Required area} = 2 \times \frac{1}{2} \begin{vmatrix} \sqrt{2} & \sqrt{2} & 1 \\ 1-\sqrt{7} & 1+\sqrt{7} & 1 \\ 2 & 2 & 1 \\ -\sqrt{2} & -\sqrt{2} & 1 \end{vmatrix}$$

$$= 2\sqrt{14} \text{ sq. units}$$

 Delivering Champions Consistently

 AIR 25 Rishi Shekher Shukla <small>2 Year Classroom</small>	 AIR 67 Krishna Sai Shashikiran <small>2 Year Classroom</small>	 AIR 78 Abhishek Jain <small>2 Year Classroom</small>	 AIR 93 Hardik Agarwal <small>2 Year Classroom</small>	 AIR 95 Ujjwal Singh <small>4 Year Classroom</small>	 AIR 98 Rachit Aggarwal <small>4 Year Classroom</small>
--	---	---	--	---	---

 Aakash
Medical IIT-JEE Foundations

JEE (Main) 2024	JEE (Advanced) 2024
 Karnataka Topper <small>100 PERCENTILE SCORER</small> 1 AIR 34	 Telangana Topper <small>100 PERCENTILE SCORER</small> 1 AIR 15
 Telangana Topper <small>100 PERCENTILE SCORER</small> 1 AIR 19	 Rishi Shekher Shukla <small>2 Year Classroom</small>

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

21. Let $[t]$ be the greatest integer less than or equal to t . Then the least value of $p \in N$ for which

$$\lim_{x \rightarrow 0^+} \left(x \left(\left[\frac{1}{x} \right] + \left[\frac{2}{x} \right] + \dots + \left[\frac{p}{x} \right] \right) - x^2 \left(\left[\frac{1}{x^2} \right] + \left[\frac{2^2}{x^2} \right] + \dots + \left[\frac{9^2}{x^2} \right] \right) \right) \geq 1$$

is equal to ____.

Answer (24)

Sol. $\lim_{x \rightarrow 0^+} \left(x \left(\left[\frac{1}{x} \right] + \left[\frac{2}{x} \right] + \dots + \left[\frac{p}{x} \right] \right) - x^2 \left(\left[\frac{1}{x^2} \right] + \left[\frac{2^2}{x^2} \right] + \dots + \left[\frac{9^2}{x^2} \right] \right) \right) \geq 1$

$$\Rightarrow (1 + 2 + 3 + \dots + p) - (1^2 + 2^2 + \dots + 9^2) \geq 1$$

$$\Rightarrow \frac{p(p+1)}{2} - \frac{9(10)(19)}{6} \geq 1$$

$$\Rightarrow p(p+1) \geq 572$$

Least natural values of p is 24

22. Let $f : (0, \infty) \rightarrow \mathbb{R}$ be a twice differentiable function.

If for some $a \neq 0$, $\int_0^1 f(\lambda x) d\lambda = af(x)$, $f(1) = 1$ and

$f(16) = \frac{1}{8}$, then $16 - f' \left(\frac{1}{16} \right)$ is equal to ____.

Answer (112)

Sol. Given, $\int_0^1 f(\lambda x) d\lambda = af(x) \dots (1)$

Let $\lambda x = u$

$$d\lambda = \frac{1}{x} du$$

$$\therefore \text{From (1)} \frac{1}{x} \int_0^x f(u) du = af(x)$$

$$\Rightarrow \int_0^x f(u) du = axf(x)$$

Differentiate both sides

$$f(x) = a(xf'(x) + f(x))$$

$$\Rightarrow f(x) = axf'(x) + af(x)$$

$$\Rightarrow (1-a)f(x) = axf'(x)$$

$$\Rightarrow \frac{f'(x)}{f(x)} = \frac{(1-a)}{a} \cdot \frac{1}{x}$$

Integrate both side w.r.t. (x)

$$\Rightarrow \int \frac{f'(x)}{f(x)} dx = \frac{(1-a)}{a} \int \frac{1}{x} dx$$

$$\Rightarrow \ln f(x) = \left(\frac{1-a}{a} \right) \ln x + c$$

Now at $x = 1$ $f(1) = 1$

$$\Rightarrow c = 0$$

$$\text{Also given } f(16) = \frac{1}{8}$$

$$\therefore \frac{1}{8} = (16)^{\frac{1-a}{a}}$$

$$\Rightarrow 2^{-3} = 2^{\frac{4-4a}{a}}$$

$$\Rightarrow -3 = \frac{4-4a}{a}$$

$$\Rightarrow -3a = 4 - 4a$$

$$\Rightarrow a = 4$$

$$\therefore f(x) = x^{-3/4}$$

$$f(x) = \frac{-3}{4} x^{-\frac{7}{4}}$$

$$\text{Put } x = \frac{1}{16}$$

$$f' \left(\frac{1}{16} \right) = \frac{-3}{4} \left(\frac{1}{16} \right)^{-7/4} = \frac{-3}{4} \cdot 2^{-4x \left(\frac{-7}{4} \right)} = -96$$

$$\therefore 16 - f' \left(\frac{1}{16} \right) = 16 - (-96) = 112$$

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Main) 2024

23. Let $S = \{x : \cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1}(2x+1)\}$.

Then $\sum_{x \in S} (2x-1)^2$ is equal to _____.

Answer (5)

Sol. $\cos^{-1} x = \pi + \sin^{-1} x + \sin^{-1}(2x+1)$.

$$\frac{\pi}{2} - \sin^{-1} x = \pi + \sin^{-1} x + \sin^{-1}(2x+1)$$

$$-\frac{\pi}{2} - 2\sin^{-1} x = \sin^{-1}(2x+1)$$

$$\sin\left(-\frac{\pi}{2} - 2\sin^{-1} x\right) = \sin(\sin^{-1}(2x+1))$$

$$-\cos(2\sin^{-1} x) = (2x+1)$$

$$-(1-2x^2) = 2x+1$$

$$-1+2x^2 = 2x+1$$

$$2x^2 - 2x - 2 = 0$$

$$x = \frac{2 \pm \sqrt{4+16}}{4}$$

$$x = \frac{2 \pm 2\sqrt{5}}{4} = \frac{1 \pm \sqrt{5}}{2} \left\{ x = \frac{1+\sqrt{5}}{2} \text{ rejected} \right\}$$

$$\text{So, } \sum_{x \in S} (2x-1)^2 = 5$$

24. The number of 6-letter words, with or without meaning, that can be formed using the letters of the word MATHS such that any letter that appears in the word must appear at least twice is

Answer (1405)

Sol. ${}^5C_3 \times \frac{6!}{2!2!2!} + {}^5C_2 \left(\frac{6!}{2!4!} \times 2 + \frac{6!}{3!3!} \right) + {}^5C_1 \cdot 1$

$$= 10 \times 90 + 10(15 \times 2 + 20) + 5$$

$$= 900 + 500 + 5$$

$$= 1405$$

25. Let $S = \{m \in \mathbf{Z} : A^{m^2} + A^m = 3I - A^{-6}\}$, where $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$. Then $n(S)$ is equal to _____.

Answer (2)

Sol. $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \end{bmatrix}$

Now finding characteristic equation

$$\begin{vmatrix} 2-\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = 0$$

$$\Rightarrow (2-\lambda)(-\lambda) - (-1)(1) = -2\lambda + \lambda^2 + 1 = 0$$

$$\Rightarrow \lambda^2 - 2\lambda + 1 = 0$$

$$\Rightarrow (\lambda - 1)^2 = 0$$

$$\Rightarrow \lambda = 1$$

Since A satisfies $(A - I)^2 = 0$

$\therefore A = I + N$ where

$$N = A - I$$

$$N = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$$

$$N^2 = 0$$

$$A^m = (I + N)^m = I + mN$$

$$A^m \cdot A^m = (I + mN)(I + mN) = I + 2mN + m^2N^2$$

Since $N^2 = 0$

$$\Rightarrow A^{m^2} = I + 2mN$$

Now putting in given condition

$$I + m^2N + I + mN = 3I - A^{-6} \quad \dots(i)$$

$$A^{-1} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{-6} = (A^{-1})^6 = I + (-6)N$$

\therefore Putting in (i)

$$(m^2 + m)N = I - (I - 6N)$$

$$(m^2 + m)N = 6N$$

Since $N \neq 0$

$$\Rightarrow m^2 + m = 6$$

$$\Rightarrow m^2 + m - 6 = 0$$

$$\Rightarrow (m-2)(m+3) = 0$$

$$\Rightarrow m = 2, -3$$

\therefore Number of elements in S is 2

 Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shashikiran
2 Year Classroom

AIR 78
Abhishek Jain
2 Year Classroom

AIR 93
Hardik Agarwal
2 Year Classroom

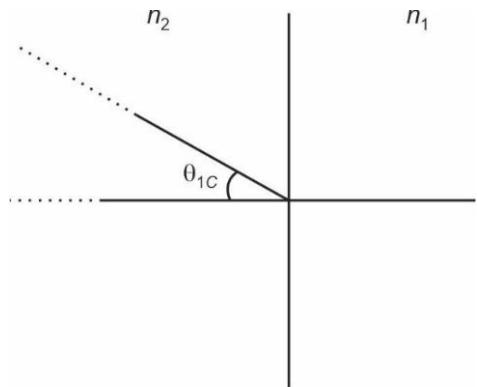
AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit Aggarwal
2 Year Classroom

JEE (Advanced) 2024

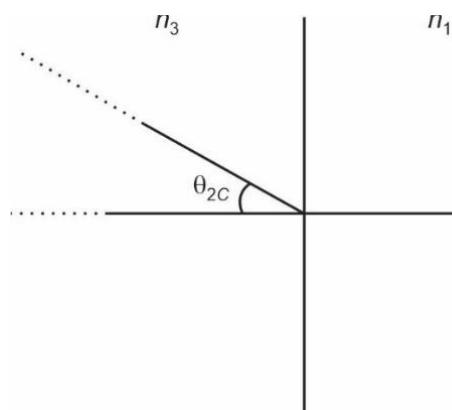
Kornatka Topper
100 PERCENTILE
AIR 34

Telangana Topper
100 PERCENTILE
AIR 15



Telangana Topper
100 PERCENTILE
AIR 19

JEE (Main) 2024



Sol.

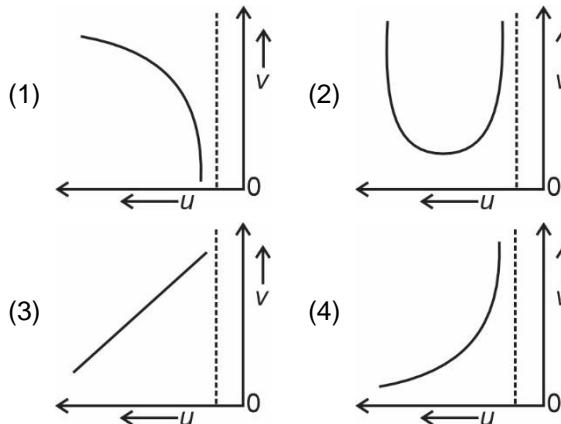
$$n_2 \sin(\theta_{1C}) = n_1$$

$$\sin(\theta_{1C}) = \frac{n_1}{n_2}$$

$$n_3 \sin(\theta_{2C}) = n_1$$

$$\Rightarrow \sin(\theta_{2C}) = \frac{n_1}{n_3}$$

$$\text{Also, } n_3 = \frac{5n_2}{2} \Rightarrow \sin(\theta_{2C}) = \frac{2n_1}{5n_2}$$


$$\Rightarrow \frac{n_1}{n_2} = \frac{5}{2} \cdot \sin(\theta_{2C}) \Rightarrow \sin(\theta_{2C}) - \sin(\theta_{1C}) = \frac{1}{2}$$

$$\text{Given, } \frac{2n_1}{5n_2} - \frac{n_1}{n_2} = \frac{1}{2} \Rightarrow \frac{n_1}{n_2} \left(\frac{-3}{5} \right) = \frac{1}{2}$$

Coming out to be (-ve)

* None of the answer is matching

30. Let u and v be the distances of the object and the image from a lens of focal length f . The correct graphical representation of u and v for a convex lens when $|u| > f$, is

Answer (4)

$$\text{Sol. Lens formula } \frac{1}{v} - \frac{1}{u} = \frac{1}{f}$$

$$\frac{1}{v} = \frac{1}{f} + \frac{1}{u}$$

Since $|\mu| > f$

So, RHS is positive.

31. The pair of physical quantities not having same dimensions is :

- (1) Angular momentum and Planck's constant
- (2) Torque and energy
- (3) Surface tension and impulse
- (4) Pressure and Young's modulus

Answer (3)

Sol. [Angular momentum] = ML^2T^{-1}

[Planck's Constant] = ML^2T^{-1}

[Torque] = ML^2T^{-2}

[Energy] = ML^2T^{-2}

[Surface tension] = MT^{-2}

[Impulse] = MLT^{-1}

[Pressure] = $ML^{-1}T^{-2}$

[Young's modulus] = $ML^{-1}T^{-2}$

JEE (Advanced) 2024

JEE (Main) 2024

32. The expression given below shows the variation of velocity (v) with time (t), $v = At^2 + \frac{Bt}{C+t}$. The dimension of ABC is :

(1) $[M^0 L^1 T^{-2}]$ (2) $[M^0 L^1 T^{-3}]$
 (3) $[M^0 L^2 T^{-3}]$ (4) $[M^0 L^2 T^{-2}]$

Answer (3)

Sol. $v = At^2 + \frac{Bt}{C+t}$

$$[v] = [A] \quad \ell = \left[\frac{Bt}{C+t} \right]$$

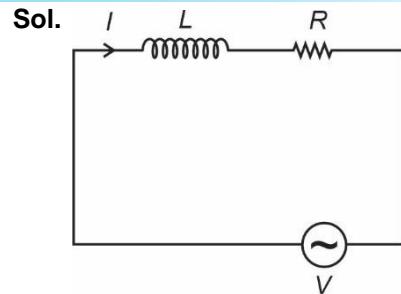
$$[A] = LT^{-3}$$

$$[C] = T$$

$$[B] = LT^{-1}$$

$$[ABC] = L^2 T^{-3}$$

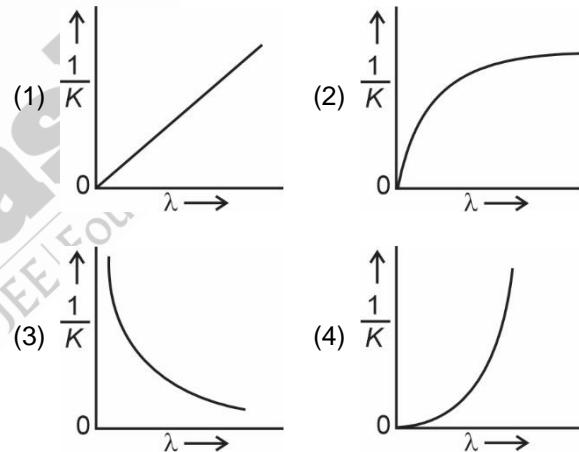
33. Given below are two statements: one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.


Assertion (A) : Choke coil is simply a coil having a large inductance but a small resistance. Choke coils are used with fluorescent mercury-tube fittings. If household electric power is directly connected to a mercury tube, the tube will be damaged.

Reason (R) : By using the choke coil, the voltage across the tube is reduced by a factor $\left(R / \sqrt{R^2 + \omega^2 L^2} \right)$, where ω is frequency of the supply across resistor R and inductor L . If the choke coil were not used, the voltage across the resistor would be the same as the applied voltage.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

(1) Both (A) and (R) are true but (R) is not the correct explanation of (A)
 (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
 (3) (A) is false but (R) is true
 (4) (A) is true but (R) is false


Answer (1)

$$I = \frac{V}{\sqrt{R^2 + \omega^2 L^2}}$$

$$V_R = \frac{R}{\sqrt{R^2 + \omega^2 L^2}} V$$

34. If λ and K are de Broglie wavelength and kinetic energy, respectively, of a particle with constant mass. The correct graphical representation for the particle will be

Answer (4)

Sol. $\lambda = \frac{h}{\sqrt{2mK}}$

$$\lambda^2 = \frac{h^2}{2mK}$$

$$\frac{1}{K} = \left(\frac{2m}{h^2} \right) \lambda^2$$

Delivering Champions Consistently

JEE (Advanced) 2024

AIR 25	Rishi Shekher Shukla 2 Year Classroom
AIR 67	Krishna Sai Shishir 2 Year Classroom
AIR 78	Abhishek Jain 2 Year Classroom
AIR 93	Hardik Agarwal 2 Year Classroom
AIR 95	Ujjwal Singh 4 Year Classroom
AIR 98	Rachit Aggarwal 2 Year Classroom

JEE (Main) 2024

Karnataka Topper AIR 34	Telangana Topper AIR 15	Telangana Topper AIR 19
Sanvi Jain 2 Year Classroom	M Sai Divya Teja Reddy 2 Year Classroom	Rishi Shekher Shukla 2 Year Classroom

Aakash
Medical | IIT-JEE | Foundations

35. Consider I_1 and I_2 are the currents flowing simultaneously in two nearby coils 1 & 2, respectively. If L_1 = self inductance of coil 1, M_{12} = mutual inductance of coil 1 with respect to coil 2, then the value of induced emf in coil 1 will be

(1) $\varepsilon_1 = -L_1 \frac{dI_1}{dt} - M_{12} \frac{dI_2}{dt}$

(2) $\varepsilon_1 = -L_1 \frac{dI_2}{dt} - M_{12} \frac{dI_1}{dt}$

(3) $\varepsilon_1 = -L_1 \frac{dI_1}{dt} + M_{12} \frac{dI_2}{dt}$

(4) $\varepsilon_1 = -L_1 \frac{dI_1}{dt} - M_{12} \frac{dI_1}{dt}$

Answer (1)

Sol. Magnitude of induced emf due to self inductance

$$= \frac{LdI_1}{dt}$$

Magnitude of induced emf due to mutual inductance

$$= \frac{MdI_2}{dt}$$

36. Given below are two statements : one is labelled as

Assertion (A) and the other is labelled as **Reason (R)**.

Assertion (A) : Electromagnetic waves carry energy but not momentum.

Reason (R) : Mass of a photon is zero.

In the light of the above statements, choose the **most appropriate answer** from the options given below :

(1) Both (A) and (R) are true but (R) is not the correct explanation of (A)
 (2) (A) is false but (R) is true
 (3) (A) is true but (R) is false
 (4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Answer (2)

Sol. EM wave carry both energy and momentum. Rest mass of photon is zero.

37. An electric dipole of mass m , charge q , and length l is placed in a uniform electric field $\vec{E} = E_0 \hat{i}$. When the dipole is rotated slightly from its equilibrium position and released, the time period of its oscillations will be :

(1) $2\pi \sqrt{\frac{ml}{2qE_0}}$

(2) $\frac{1}{2\pi} \sqrt{\frac{ml}{2qE_0}}$

(3) $2\pi \sqrt{\frac{ml}{qE_0}}$

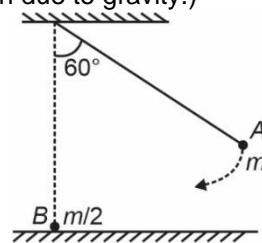
(4) $\frac{1}{2\pi} \sqrt{\frac{2ml}{qE_0}}$

Answer (1)

Sol. $\longrightarrow E_0$

$$\tau = PE_0 \sin\theta$$

If θ is small


$$\tau = -(PE_0)\theta$$

$$I = m \left(\frac{l}{2} \right)^2 \cdot 2 = \frac{ml^2}{2}$$

$$T = 2\pi \sqrt{\frac{ml^2}{2-PE_0}} = 2\pi \sqrt{\frac{ml^2}{2-qIE_0}}$$

$$T = 2\pi \sqrt{\frac{ml}{2qE_0}}$$

38. As shown below, bob A of a pendulum having massless string of length ' R ' is released from 60° to the vertical. It hits another bob B of half the mass that is at rest on a frictionless table in the center. Assuming elastic collision, the magnitude of the velocity of bob A after the collision will be (take g as acceleration due to gravity.)

(1) $\frac{1}{3} \sqrt{Rg}$

(2) \sqrt{Rg}

(3) $\frac{4}{3} \sqrt{Rg}$

(4) $\frac{2}{3} \sqrt{Rg}$

Answer (1)

Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sail
2 Year Classroom

AIR 78
Abhishek
2 Year Classroom

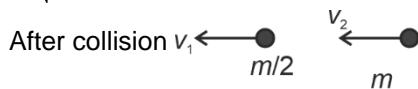
AIR 93
Hardik
2 Year Classroom

AIR 95
Ujjwal Singh
2 Year Classroom

AIR 98
Rachit Agarwal
2 Year Classroom

JEE (Advanced) 2024

JEE (Main) 2024


Karnataka Topper
Sanvi Jain
2 Year Classroom

Telangana Topper
M Sai Divya Reddy
2 Year Classroom

Telangana Topper
Rishi Shekher Shukla
2 Year Classroom

Sol. Velocity of A before collision = $\sqrt{2gh}$

$$= \sqrt{2g \times \frac{R}{2}} = \sqrt{Rg}$$

COM

$$mu = \frac{m}{2}v_1 + mv_2$$

$$2u = v_1 + 2v_2 \quad \dots(i)$$

$$e = 1, u = v_1 - v_2 \quad \dots(ii)$$

$$u = 3v_2$$

$$v_2 = \frac{u}{3} = \frac{1}{3}\sqrt{Rg}$$

39. Match **List-I** with **List-II**.

	List-I		List-II
(A)	Electric field inside (distance $r > 0$ from center) of a uniformly charged spherical shell with surface charge density σ , and radius R .	(I)	σ / ϵ_0
(B)	Electric field at distance $r > 0$ from a uniformly charged infinite plane sheet with surface charge density σ .	(II)	$\sigma / 2\epsilon_0$
(C)	Electric field outside (distance $r > 0$ from center) of a uniformly charged spherical shell with surface charge density σ , and radius R .	(III)	0
(D)	Electric field between 2 oppositely charged infinite plane parallel sheets with uniform surface charge density σ .	(IV)	$\frac{\sigma}{\epsilon_0 r^2}$

Choose the **correct** answer from the options given below:

- (1) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
- (2) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
- (3) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
- (4) (A)-(IV), (B)-(I), (C)-(III), (D)-(II)

Answer (*)

Sol. Inside uniformly charged spherical

shell, $E = 0$

$\therefore A \rightarrow III$

For uniformly charged infinite plate

$$E = \frac{\sigma}{2\epsilon_0}$$

$B \rightarrow II$

Outside of spherical shell

$$E = \frac{Q}{4\pi\epsilon_0 r^2} = \frac{\sigma R^2}{\epsilon_0 r^2}$$

None of the option is matching for C.

$$\text{Between two plates } E = \frac{\sigma}{\epsilon_0}$$

$D \rightarrow I$

None of the option is correct

40. The fractional compression $\left(\frac{\Delta V}{V}\right)$ of water at the depth of 2.5 km below the sea level is ____ %. Given, the Bulk modulus of water = $2 \times 10^9 \text{ Nm}^{-2}$, density of water = 10^3 kg m^{-3} , acceleration due to gravity = $g = 10 \text{ ms}^{-2}$.

- (1) 1.25
- (2) 1.5
- (3) 1.0
- (4) 1.75

Answer (1)

$$\text{Sol. } B = \frac{\Delta P}{-\left(\frac{\Delta V}{V}\right)}$$

$$-\left(\frac{\Delta V}{V}\right) = \frac{\Delta P}{B} = \frac{\rho gh}{B}$$

$$= \frac{10^3 \times 10 \times 2.5 \times 10^3}{2 \times 10^9} = 1.25\%$$

Delivering Champions Consistently

AIR 25
Rishi Shekher Shukla
2 Year Classroom

AIR 67
Krishna Sai Shishir
2 Year Classroom

AIR 78
Abhishek Jain
2 Year Classroom

AIR 93
Hardik Agarwal
2 Year Classroom

AIR 95
Ujjwal Singh
4 Year Classroom

AIR 98
Rachit Aggarwal
4 Year Classroom

AIR 34
Sanvi Jain
2 Year Classroom

AIR 15
M Sai Divya Teja Reddy
2 Year Classroom

AIR 19
Rishi Shekher Shukla
2 Year Classroom

Aakash
Medical IIT-JEE Foundations

JEE (Main) 2024

41. Given below are two statements : one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A) : Emission of electrons in photoelectric effect can be suppressed by applying a sufficiently negative electron potential to the photoemissive substance.

Reason (R) : A negative electric potential, which stops the emission of electrons from the surface of a photoemissive substance, varies linearly with frequency of incident radiation.

In the light of the above statements, choose the **most appropriate answer** from the options given below :

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true but (R) is **not** the correct explanation of (A)

Answer (4)

Sol. Negative potential will slow the electrons and if it is sufficient, it will make the photocurrent zero.

$$eVs = hf - \phi_0$$

42. Given below are two statements : one is labelled as **Assertion (A)** and the other is labelled as **Reason (R)**.

Assertion (A) : Time period of a simple pendulum is longer at the top of a mountain than that at the base of the mountain.

Reason (R) : Time period of a simple pendulum decreases with increasing value of acceleration due to gravity and vice-versa.

In the light of the above statements, choose the **most appropriate answer** from the options given below :

- (1) (A) is false but (R) is true
- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Answer (4)

Sol. $T = 2\pi\sqrt{\frac{l}{g}}$

At top of mountain $g \downarrow$, $\therefore T \uparrow$

43. A coil of area A and N turns is rotating with angular velocity ω in a uniform magnetic field \vec{B} about an axis perpendicular to \vec{B} . Magnetic flux ϕ and induced emf ε across it, at an instant when \vec{B} is parallel to the plane of coil, are :

- (1) $\phi = 0, \varepsilon = 0$
- (2) $\phi = AB, \varepsilon = 0$
- (3) $\phi = AB, \varepsilon = NAB\omega$
- (4) $\phi = 0, \varepsilon = NAB\omega$

Answer (3)

Sol. $\phi = NBA \cos\theta$

$$\varepsilon = -\frac{d\phi}{dt} = -NBA \frac{d\cos\theta}{dt}$$

$$\theta = \omega t$$

$$\varepsilon = -NBA\omega \sin\omega t$$

if B is parallel to plane of coil

$$\theta = 90^\circ$$

$$\phi = 0, E = BA\omega N$$

44. A body of mass 'm' connected to a massless and unstretchable string goes in verticle circle of radius 'R' under gravity g . The other end of the string is fixed at the center of circle. If velocity at top of circular path is $n\sqrt{gR}$, where, $n \geq 1$, then ratio of kinetic energy of the body at bottom to that at top of the circle is

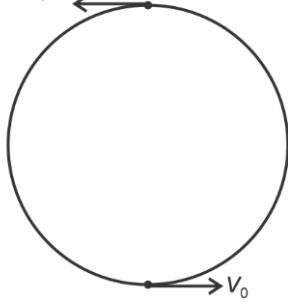
(1) $\frac{n^2 + 4}{n^2}$	(2) $\frac{n}{n+4}$
(3) $\frac{n+4}{n}$	(4) $\frac{n^2}{n^2 + 4}$

Answer (1)

Delivering Champions Consistently

<p>AIR 25 Rishi Shekher Shukla 2 Year Classroom</p>	<p>AIR 67 Krishna Sail 2 Year Classroom</p>	<p>AIR 78 Abhishek 2 Year Classroom</p>	<p>AIR 93 Hardik 2 Year Classroom</p>	<p>AIR 95 Ujjwal Singh 2 Year Classroom</p>	<p>AIR 98 Rachit 2 Year Classroom</p>
--	--	--	--	--	---

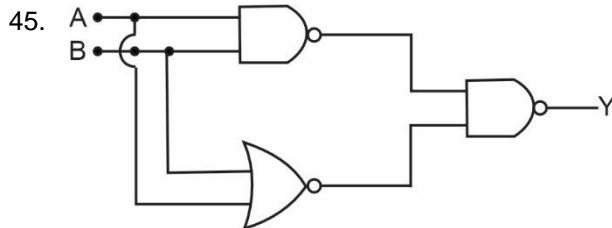
JEE (Advanced) 2024



JEE (Main) 2024

<p>AIR 1 Sanvi Jain 2 Year Classroom</p>	<p>AIR 15 M Sai Divya Reddy 2 Year Classroom</p>	<p>AIR 19 Rishi Shekher Shukla 2 Year Classroom</p>
---	---	--

Karnataka Topper
100 PERCENT
MERIT
Telangana Topper
100 PERCENT
MERIT
Telangana Topper
100 PERCENT
MERIT


Sol. $v = n\sqrt{gR}$

$$v_0 = \sqrt{v^2 + 2g(2R)}$$

$$v_0 = \sqrt{n^2 g R + 4gR}$$

$$\therefore \frac{k_{\text{bottom}}}{k_{\text{top}}} = \frac{v_0^2}{v^2} = \frac{n^2 + 4}{n^2}$$

For the circuit shown above, equivalent GATE is :

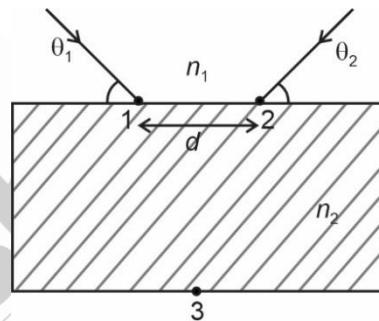
- (1) AND gate
- (2) OR gate
- (3) NOT gate
- (4) NAND gate

Answer (2)

Sol. $Y = \overline{AB}(\overline{A+B})$

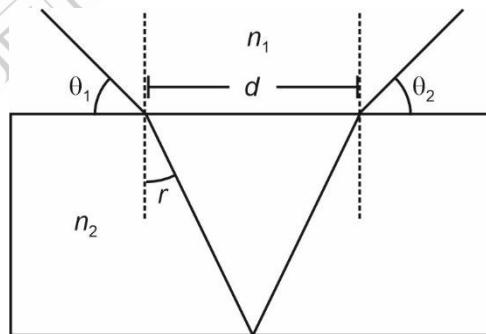
$$= AB + A + B$$

$$= A(B+1) + B$$


$$= A + B$$

or GATE

SECTION - B


Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

46. Two light beams fall on a transparent material block at point 1 and 2 with angle θ_1 and θ_2 , respectively, as shown in figure. After refraction, the beams intersect at point 3 which is exactly on the interface at other end of the block. Given : the distance between 1 and 2, $d = 4\sqrt{3}$ cm and $\theta_1 = \theta_2 = \cos^{-1}\left(\frac{n_2}{2n_1}\right)$, where refractive index of the block $n_2 >$ refractive index of the outside medium n_1 , then the thickness of the block is _____ cm.

Answer (6)

Sol.

$$n_1 \sin(90 - \theta_1) = n_2 \sin r$$

$$n_1 \times \frac{n_2}{2n_1} = n_2 \sin r$$

$$\sin r = \frac{1}{2}$$

Delivering Champions Consistently

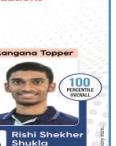
JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024


JEE (Advanced) 2024

JEE (Main) 2024

JEE (Main) 2024

JEE (Main) 2024

$$r = 30^\circ$$

$$\tan r = \left(\frac{d/2}{t} \right)$$

$$t = \frac{d}{2 \tan r} = \frac{d \sqrt{3}}{2} = \frac{(4\sqrt{3})\sqrt{3}}{2}$$

$$= 6 \text{ cm}$$

47. A container of fixed volume contains a gas at 27° C . To double the pressure of the gas, the temperature of gas should be raised to _____ $^\circ \text{C}$.

Answer (327)

Sol. $V = \text{constant}$

$$\frac{P_1}{T_1} = \frac{P_2}{T_2}$$

$$P_2 = 2P_1$$

$$T_2 = 2T_1$$

$$= 2 \times 300 = 600 \text{ K}$$

$$\therefore = 327^\circ \text{C}$$

48. The maximum speed of a boat in still water is 27 km/h . Now this boat is moving downstream in a river flowing at 9 km/h . A man in the boat throws a ball vertically upwards with speed of 10 m/s . Range of the ball as observed by an observer at rest on the river bank, is _____ cm. (Take $g = 10 \text{ m/s}^2$)

Answer (2000)

Sol. $v_y = 10 \text{ m/s}$

$$v_x = v_{\text{river}} + v_{\text{boat}} = 27 + 9 \\ = 36 \text{ km/h} = 10 \text{ m/s}$$

$$R = \left(\frac{2v_y}{g} \right) v_x = \frac{2 \times 10 \times 10}{10} = 20 \text{ m} \\ = 2000 \text{ cm}$$

49. In a hydraulic lift, the surface area of the input piston is 6 cm^2 and that of the output piston is 1500 cm^2 . If 100 N force is applied to the input piston to raise the output piston by 20 cm , then the work done is _____ kJ.

Answer (5)

Sol. According to Pascal's law

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

$$F_2 = \left(\frac{A_2}{A_1} \right) F_1 = \frac{1500}{6} \times 100 \text{ N}$$

$$W = F_2 d_2 = \frac{1500}{6} \times 100 \times \frac{20}{100}$$

$$= 5 \text{ kJ}$$

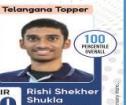
50. The coordinates of a particle with respect to origin in a given reference frame is $(1, 1, 1)$ meters. If a force of $\vec{F} = \hat{i} - \hat{j} + \hat{k}$ acts on the particle, then the magnitude of torque (with respect to origin) in z -direction is _____.

Answer (2)

Sol. $\tau = \vec{r} \times \vec{F}$

$$\tau = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix}$$

Along \hat{k}


$$\tau_2 = -2 \hat{k}$$

 Delivering Champions Consistently

 AIR 25 Rishi Shekher Shukla <small>2 Year Classroom</small>	 AIR 67 Krishna Sail <small>2 Year Classroom</small>	 AIR 78 Abhishek <small>2 Year Classroom</small>	 AIR 93 Hardik <small>2 Year Classroom</small>	 AIR 95 Ujjwal Singh <small>2 Year Classroom</small>	 AIR 98 Rachit <small>2 Year Classroom</small>
--	--	--	--	--	---

JEE (Advanced) 2024

 Aakash
Medical | IIT-JEE | Foundations

 Karnataka Topper Sanvi Jain <small>2 Year Classroom</small>	 Telangana Topper M Sai Divya Reddy <small>2 Year Classroom</small>	 Telangana Topper Rishi Shekher Shukla <small>2 Year Classroom</small>
--	---	--

JEE (Main) 2024

CHEMISTRY

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer :

51. For a $Mg|Mg^{2+}(aq) \parallel Ag^+(aq) | Ag$ the correct Nernst equation is :

$$(1) E_{cell} = E_{cell}^{\circ} + \frac{RT}{2F} \ln \frac{[Ag^+]^2}{[Mg^{2+}]}$$

$$(2) E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} \ln \frac{[Ag^+]^2}{[Mg^{2+}]}$$

$$(3) E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} \ln \frac{[Ag^+]}{[Mg^{2+}]}$$

$$(4) E_{cell} = E_{cell}^{\circ} - \frac{RT}{2F} \ln \frac{[Mg^{2+}]}{[Ag^+]}$$

Answer (1)

Sol. Cathode $(Ag^+(aq) + e^- \rightarrow Ag) \times 2$

Anode $Mg \rightarrow Mg^{2+}(aq) + 2e^-$

Cell reaction $2Ag^+ + Mg \rightarrow 2Ag + Mg^{2+}$

$$Q = \frac{[Mg^{2+}]}{[Ag^+]^2}$$

By Nernst equation

$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln Q$$

$$E_{cell} = E_{cell}^{\circ} - \frac{RT}{nF} \ln \frac{[Mg^{2+}]}{[Ag^+]^2}$$

$$= E_{cell}^{\circ} + \frac{RT}{2F} \ln \frac{[Ag^+]^2}{[Mg^{2+}]}$$

52. 1.24 g of AX_2 (molar mass 124 g mol⁻¹) is dissolved in 1 kg of water to form a solution with boiling point of 100.0156°C, while 25.4 g of AY_2 (molar mass 250 g mol⁻¹) in 2 kg of water constitutes a solution with a boiling point of 100.0260°C.

$$K_b(H_2O) = 0.52 \text{ K kg mol}^{-1}$$

Which of the following is **correct** ?

- (1) AX_2 and AY_2 (both) are fully ionised
- (2) AX_2 is fully ionised while AY_2 is completely unionised
- (3) AX_2 and AY_2 (both) are completely unionised
- (4) AX_2 is completely unionised while AY_2 is fully ionised

Answer (2)

Sol. For AX_2

$$\Delta T_b = iK_b m$$

$$0.0156 = i \times 0.52 \times \frac{1.24}{124 \times 1}$$

$$3 = i$$

$$3 = 1 + 2\alpha$$

$$1 = \alpha$$

For AY_2

$$\Delta T_b = iK_b m$$

$$0.0260 = i \times 0.52 \times \frac{25.4}{250 \times 2}$$

$$i \approx 1$$

$\therefore AX_2$ is completely ionised & AY_2 is completely unionised

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Advanced) 2024

 Aakash
 Medical | IIT-JEE | Foundations

JEE (Main) 2024

JEE (Main) 2024

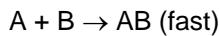
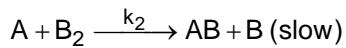
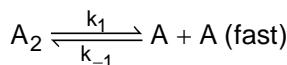
JEE (Main) 2024

JEE (Main) 2024

53. The standard reduction potential values of some of the p-block ions are given below. Predict the one with the strongest oxidising capacity.

$$(1) E^\ominus_{\text{Al}^{3+}/\text{Al}} = -1.66 \text{ V}$$

$$(2) E^\ominus_{\text{Sn}^{4+}/\text{Sn}^{2+}} = +1.15 \text{ V}$$




$$(3) E^\ominus_{\text{Ti}^{3+}/\text{Ti}} = +1.26 \text{ V}$$

$$(4) E^\ominus_{\text{Pb}^{4+}/\text{Pb}^{2+}} = +1.67 \text{ V}$$

Answer (4)

Sol. The element having strongest oxidising capacity will have highest value of standard reduction potential

54. The reaction $\text{A}_2 + \text{B}_2 \rightarrow 2\text{AB}$ follows the mechanism

The overall order of the reaction is :

(1) 1.5

(2) 2.5

(3) 3

(4) 2

Answer (1)

Sol. Since, second step is slow step

$$r = k_2[\text{A}][\text{B}_2] \quad \dots \text{(i)}$$

$$\text{Also, } \frac{k_1}{k_{-1}} = \frac{[\text{A}]^2}{[\text{A}_2]}$$

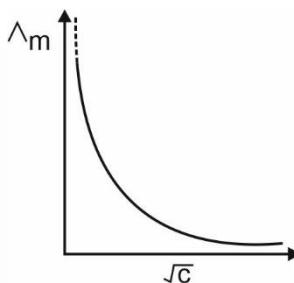
$$[\text{A}] = \left(\frac{[\text{A}_2]k_1}{k_{-1}} \right)^{\frac{1}{2}} \quad \dots \text{(ii)}$$

$$r = k_2 \left(\frac{k_1}{k_{-1}} \right)^{\frac{1}{2}} [\text{A}_2]^{\frac{1}{2}} [\text{B}_2]$$

$$\text{order} = \frac{1}{2} + 1 = \frac{3}{2}$$

55. The molar conductivity of a weak electrolyte when plotted against the square root of its concentration, which of the following is expected to be observed?

(1) A small increase in molar conductivity is observed at infinite dilution


(2) Molar conductivity increases sharply with increase in concentration

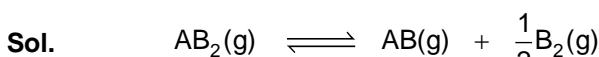
(3) A small decrease in molar conductivity is observed at infinite dilution

(4) Molar conductivity decreases sharply with increase in concentration.

Answer (4)

Sol. For weak electrolyte, variation of Λ_m with \sqrt{c} is

56. At temperature T, compound $\text{AB}_2(\text{g})$ dissociates as


$\text{AB}_2(\text{g}) \rightleftharpoons \text{AB}(\text{g}) + \frac{1}{2}\text{B}_2(\text{g})$ having degree of dissociation x (small compared to unity). The correct expression for x in terms of K_p and p is

$$(1) \sqrt[3]{\frac{2K_p^2}{p}}$$

$$(2) \sqrt[3]{\frac{2K_p}{p}}$$

$$(3) \sqrt[4]{\frac{2K_p}{p}}$$

$$(4) \sqrt{K_p}$$

Answer (1)

$$t = 0 \quad p_0$$

$$t = t_{\text{eq}} \quad p_0(1-x) \quad p_0x \quad \frac{p_0x}{2}$$

$$p = p_0 - p_0x + p_0x + \frac{p_0x}{2}$$

 Delivering Champions Consistently

JEE (Advanced) 2024

JEE (Advanced) 2024

JEE (Main) 2024

Answer (3)

Sol. Mass of substance is amount of matter present in it. Weight is force exerted by gravity on object.

60. Match **List-I** with **List-II**.

List-I (Carbohydrate)	List-II (Linkage Source)
(A) Amylose	(I) β -C ₁ -C ₄ , plant
(B) Cellulose	(II) α -C ₁ -C ₄ , animal
(C) Glycogen	(III) α -C ₁ -C ₄ , α -C ₁ -C ₆ , plant
(D) Amylopectin	(IV) α -C ₁ -C ₄ , plant

Choose the **correct** answer from the options given below.

- (1) (A)-(IV), (B)-(I), (C)-(III), (D)-(II)
- (2) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- (3) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)
- (4) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)

Answer (4)

Sol. Amylose \Rightarrow It is a plant based starch it has α -C₁-C₄ glycosidic linkage.

Cellulose \Rightarrow It has β -C₁-C₄ glycosidic linkage

Glycogen \Rightarrow It has α -C₁-C₄ and glycosidic linkage (animal starch)

Amylopectin \Rightarrow It is a plant based with α -C₁-C₄ and C₁-C₆ glycosidic linkage

61. If a_0 is denoted as the Bohr radius of hydrogen atom, then what is the de-Broglie wavelength (λ) of the electron present in the second orbit of hydrogen atom? [n : any integer]

- (1) $\frac{2a_0}{n\pi}$
- (2) $\frac{4n}{\pi a_0}$
- (3) $\frac{4\pi a_0}{n}$
- (4) $\frac{8\pi a_0}{n}$

Answer (4)

$$\text{Sol. } r_n = \frac{a_0 n^2}{z}$$

$$\text{Also, } 2\pi r_n = n\lambda$$

Where λ is de-Broglie wavelength

$$\frac{2\pi a_0 n^2}{z} = n\lambda$$

For second orbit of H-atom

$$\lambda = \frac{8\pi a_0}{n}$$

62. Match **List - I** with **List - II**.

List - I (Complex)	List - II (Hybridisation & Magnetic characters)
----------------------------------	---

(A) $[\text{MnBr}_4]^{2-}$	(I) d^2sp^3 & diamagnetic
(B) $[\text{FeF}_6]^{3-}$	(II) sp^3d^2 & paramagnetic
(C) $[\text{Co}(\text{C}_2\text{O}_4)_3]^{3-}$	(III) sp^3 & diamagnetic
(D) $[\text{Ni}(\text{CO})_4]$	(IV) sp^3 & paramagnetic

Choose the **correct** answer from the options given below :

- (1) (A)-(IV), (B)-(I), (C)-(I), (D)-(III)
- (2) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
- (3) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)
- (4) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)

Answer (1)

Sol. $[\text{MnBr}_4]^{2-}$

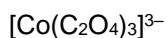
Mn^{2+} , Br^- is WFL

d^5 , so it is sp^3 and paramagnetic.

$[\text{FeF}_6]^{3-}$


Fe^{3+} , F^- is WFL

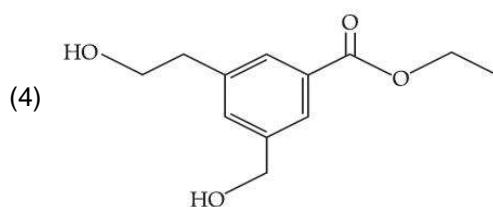
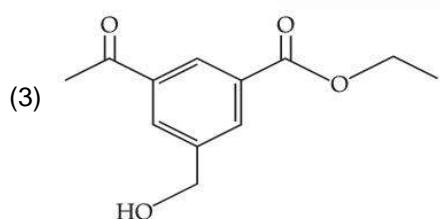
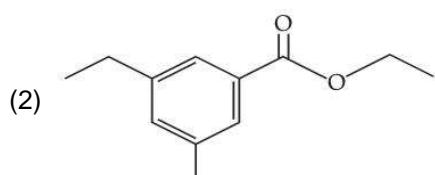
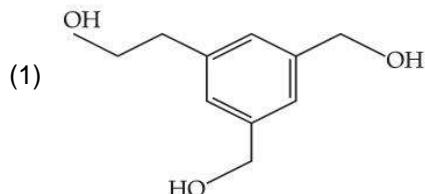
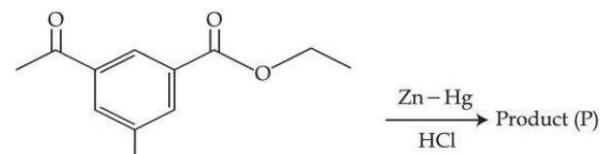
d^5 , so it is sp^3d^2 and paramagnetic.


 Delivering Champions Consistently

JEE (Advanced) 2024					
	AIR 25	Rishi Shekher Shukla	<small>2 Year Classroom</small>		AIR 67
	AIR 78	Abhishek Jain	<small>2 Year Classroom</small>		AIR 93
	AIR 95	Ujjwal Singh	<small>4 Year Classroom</small>		AIR 98

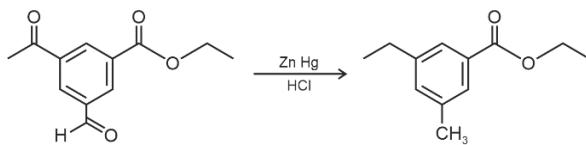
JEE (Main) 2024					
	AIR 24	Sanvi Jain	<small>2 Year Classroom</small>		AIR 15
	AIR 19	Rishi Shekher Shukla	<small>2 Year Classroom</small>		

Aakash
Medical IIT-JEE Foundations






Co^{3+} , $\text{C}_2\text{O}_4^{2-}$ is a **SFL**

d^6 , so it is d^2sp^3 and diamagnetic.

$[\text{Ni}(\text{CO})_4]$, CO is a **SFL**


d^{10} , it is sp^3 and diamagnetic.

63. The product (P) formed in the following reaction is:

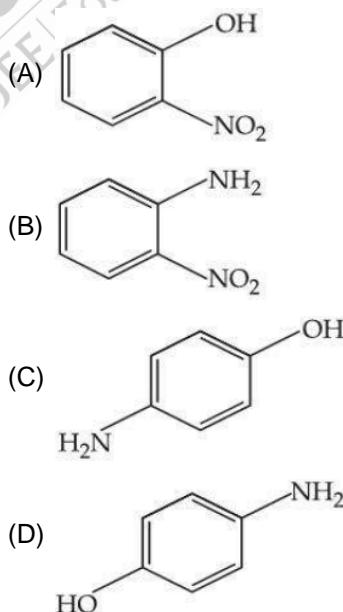
Answer (2)

Sol. It is Clemmensen reduction, it will not reduce ester,

Ester cannot be reduced by Clemmensen reduction

64. The correct increasing order of stability of the complexes based on Δ_0 value is:

I. $[\text{Mn}(\text{CN})_6]^{3-}$	II. $[\text{Co}(\text{CN})_6]^{4-}$
III. $[\text{Fe}(\text{CN})_6]^{4-}$	IV. $[\text{Fe}(\text{CN})_6]^{3-}$
(1) III < II < IV < I	(2) II < III < I < IV
(3) IV < III < II < I	(4) I < II < IV < III


Answer (4)

Sol. Neglecting pairing energy

I. $[\text{Mn}(\text{CN})_6]^{3-} \Rightarrow \text{Mn}^{3+}$, t_{2g}^4 , CFSE = $-0.4 \times 4 \Delta_0$ = $-1.6\Delta_0$
II. $[\text{Co}(\text{CN})_6]^{4-} \Rightarrow \text{Co}^{2+}$, $t_{2g}^6 e_g^1$, CFSE = $-0.4 \times 6 + 0.6 \times 1 = -1.8\Delta_0$
III. $[\text{Fe}(\text{CN})_6]^{4-} \Rightarrow \text{Fe}^{2+}$, $t_{2g}^6 e_g^0$, CFSE = $-0.4 \times 6 = -2.4\Delta_0$
IV. $[\text{Fe}(\text{CN})_6]^{3-} \Rightarrow \text{Fe}^{3+}$, $t_{2g}^5 e_g^0$, CFSE = $-0.4 \times 5 = -2\Delta_0$

Order of stability III > IV > II > I

65. The steam volatile compounds among the following are :

 Delivering Champions Consistently

	Rishi Shekher Shukla 2 Year Classroom
AIR 25	

	Krishna Sai Shishir 2 Year Classroom
AIR 67	

	Abhishek Jain 2 Year Classroom
AIR 78	

	Hardik Agarwal 2 Year Classroom
AIR 93	

	Ujjwal Singh 4 Year Classroom
AIR 95	

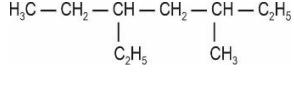
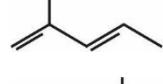
	Rachit Aggarwal 2 Year Classroom
AIR 98	

JEE (Advanced) 2024

	Karnataka Topper AIR 24
	Telangana Topper AIR 15
	Telangana Topper AIR 19

JEE (Main) 2024

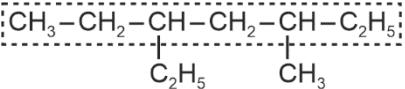
	Sanvi Jain 2 Year Classroom
	M Sai Divya Teja Reddy 2 Year Classroom
	Rishi Shekher Shukla 2 Year Classroom



Choose the **correct** answer from the options given below :

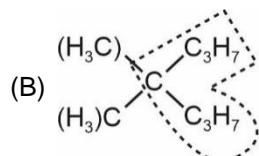
- (1) (B) and (D) Only
- (2) (A) and (C) Only
- (3) (A), (B) and (C) Only
- (4) (A) and (B) Only

Answer (4)

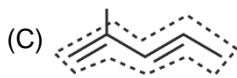
Sol. Ortho nitro phenol and ortho nitro aniline will be steam volatile as they will show intra molecular H-bonding.


66. Match List I with List-II

List-I	List-II
(Structure)	(IUPAC Name)
(A)	(I) 4-Methylpent-1-ene
(B) $(CH_3)_2C(C_3H_7)_2$	(II) 3-Ethyl-5-methylheptane
(C)	(III) 4, 4-Dimethylheptane
(D)	(IV) 2-Methyl-1, 3-pentadiene


Choose the correct answer from the options given below

- (1) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)
- (2) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)
- (3) (A)-(III), (B)-(II), (C)-(IV), (D)-(I)
- (4) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)


Answer (2)

Sol. (A)

3-Ethyl-5-methylheptane

4,4-Dimethylheptane

2-Methyl-1,3-pentadiene

4-Methylpent-1-ene

67. 500 J of energy is transferred as heat to 0.5 mol of Argon gas at 298 K and 1.00 atm. The final temperature and the change in internal energy respectively are: Given: $R = 8.3 \text{ JK}^{-1} \text{ mol}^{-1}$

- (1) 378 K and 500 J
- (2) 368 K and 500 J
- (3) 378 K and 300 J
- (4) 348 K and 300 J

Answer (4)

Sol. At cons. P

$$Q = nC_p \Delta T$$

$$500 = 0.5 \times \frac{5}{2} \times 8.3 (T_f - 298)$$

$$346.2 \text{ K} = T_f$$

$$\Delta U = nC_v \Delta T$$

$$= \frac{1}{2} \times \frac{3}{2} \times 8.3 \times (346.2 - 298)$$

$$= 300 \text{ J}$$

68. The correct option with order of melting points of the pairs (Mn, Fe), (Tc, Ru) and (Re, Os) is:

- (1) $\text{Fe} < \text{Mn}$, $\text{Ru} < \text{Tc}$ and $\text{Re} < \text{Os}$
- (2) $\text{Mn} < \text{Fe}$, $\text{Tc} < \text{Ru}$ and $\text{Os} < \text{Re}$
- (3) $\text{Fe} < \text{Mn}$, $\text{Ru} < \text{Tc}$ and $\text{Os} < \text{Re}$
- (4) $\text{Mn} < \text{Fe}$, $\text{Tc} < \text{Ru}$ and $\text{Re} < \text{Os}$

Answer (2)

Sol. Melting point order

$$\text{Fe} > \text{Mn}$$

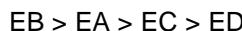
$$\text{Ru} > \text{Tc}$$

$$\text{Re} > \text{Os}$$


 Delivering Champions Consistently

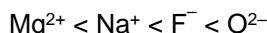
JEE (Advanced) 2024

JEE (Main) 2024

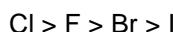


69. An element 'E' has the ionisation enthalpy value of 374 kJ mol^{-1} . 'E' reacts with elements A, B, C and D with electron gain enthalpy values of $-328, -349, -325$ and -295 kJ mol^{-1} , respectively. The correct order of the products EA, EB, EC and ED in terms of ionic character is:

- $\text{ED} > \text{EC} > \text{EA} > \text{EB}$
- $\text{EA} > \text{EB} > \text{EC} > \text{ED}$
- $\text{EB} > \text{EA} > \text{EC} > \text{ED}$
- $\text{ED} > \text{EC} > \text{EB} > \text{EA}$


Answer (3)

Sol. The element having high value of Electron gain enthalpy (magnitude) will form a compound having higher ionic character so order of ionic character



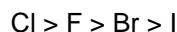
70. Given below are two statements :

Statement (I) : The radii of isoelectronic species increases in the order.

Statement (II) : The magnitude of electron gain enthalpy of halogen decreases in the order.

In the light of the above statements, choose the **most appropriate answer** from the options given below:

- Statement I** is correct but **Statement II** is incorrect
- Both **Statement I** and **Statement II** are correct
- Statement I** is incorrect but **Statement II** is correct
- Both **Statement I** and **Statement II** are incorrect

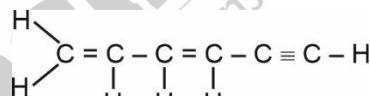

Answer (2)

Sol. $r \propto q^-$ (for isoelectronic species)

$$\propto \frac{1}{q^+}$$

\therefore Statement I is correct

Magnitude of electron gain enthalpy


SECTION - B

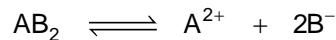
Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

71. The sum of sigma (σ) and pi(π) bonds in Hex-1, 3-dien-5-yne is _____.

Answer (15)

Sol.

Hex-1, 3-dien-5-yne


No. of π bond = 4

No. of σ bond = 11

72. If A_2B is 30% ionised in an aqueous solution, then the value of van't Hoff factor (i) is _____ $\times 10^{-1}$.

Answer (16)

Sol.

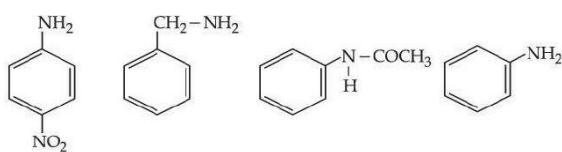
$$\begin{array}{ccc} 1 & 0 & 0 \\ 1-\alpha & \alpha & 2\alpha \end{array}$$

$$i = 1 + 2\alpha$$

$$= 1 + 2 \times (0.3)$$

$$= 1.6$$

$$= 16 \times 10^{-1}$$

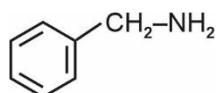

 Delivering Champions Consistently

 AIR 25	Rishi Shekher Shukla 2 Year Classroom
 AIR 67	Krishna Sai Shishir 2 Year Classroom
 AIR 78	Abhishek Jain 2 Year Classroom
 AIR 93	Hardik Agarwal 2 Year Classroom
 AIR 95	Ujjwal Singh 4 Year Classroom
 AIR 98	Rachit Aggarwal 4 Year Classroom

 JEE (Main) 2024

 Karnataka Topper	 Telangana Topper	 Telangana Topper
Sanvi Jain 2 Year Classroom	M Sai Divya Teja Reddy 2 Year Classroom	Rishi Shekher Shukla 2 Year Classroom
AIR 34	AIR 15	AIR 19

73. Given below are some nitrogen containing compounds

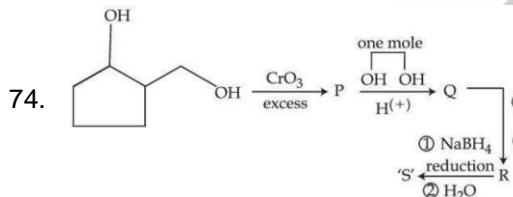


Each of them is treated with HCl separately, 1.0 g of the most basic compound will consume _____ mg of HCl.

(Given molar mass in g mol⁻¹ C : 12, H : 1, O : 16, Cl : 35.5)

Answer (341)

Sol. The most basic compound will be aliphatic amine due to localised electrons

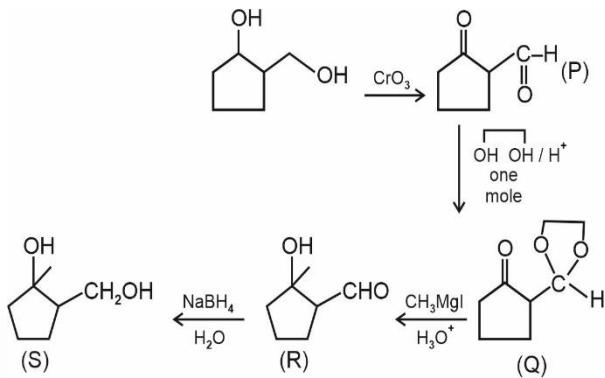

1 mole of this will consume 1 mole HCl

So mass of HCl consumed for 1 g of this compound

$$= \frac{1}{107} \times 36.5$$

$$= 0.341 \text{ gm}$$

$$= 341 \text{ mg}$$



0.1 mole of compound 'S' will weight _____ g.

(Given molar mass in g mol⁻¹ C : 12, H : 1, O : 16)

Answer (13)

Sol.

$$\text{mass of 0.1 mole (S)} = 0.1(84 + 32 + 14) \\ = 13 \text{ g}$$

75. The molar mass of the water insoluble product formed from the fusion of chromite ore (FeCr_2O_4), with Na_2CO_3 in presence of O_2 is _____ g mol⁻¹.

Answer (160)

Sol. $\text{FeCr}_2\text{O}_4 + \text{Na}_2\text{CO}_3 + \text{O}_2 \rightarrow \text{Na}_2\text{CrO}_4 + \text{Fe}_2\text{O}_3 + \text{CO}_2$

Insoluble product will be Fe_2O_3

$$\text{molar mass} = 56 \times 2 + 16 \times 3$$

$$= 112 + 48$$

$$= 160$$

 Delivering Champions Consistently

JEE (Advanced) 2024

 Aakash
 Medical IIT-JEE Foundations

JEE (Main) 2024

